Towards Acoustic Self-Localization of Ad Hoc Smartphone Arrays

Marius H. Hennecke and Gernot A. Fink
Hands-Free Speech Communication and Microphone Arrays, pages 127-132, 2011.

Edinburgh, UK

BibTeX PDF

Abstract

The advent of the smartphone in recent years opened new possibilities for the concept of ubiquitous computing. We propose to use multiple smartphones spontaneously assembled into an ad hoc microphone array as part of a teleconferencing system. The unknown spatial positions, the asynchronous sampling and the unknown time offsets between clocks of smartphones in the ad hoc array are the main problems for such an application as well as for almost all other acoustic signal processing algorithms. A maximum likelihood approach using time of arrival measurements of short calibration pulses is proposed to solve this self-localization problem. The global orientation of each phone, obtained by the means of nowadays common built-in geomagnetic compasses, in combination with the constant microphone-loudspeaker distance lead to a nonlinear optimization problem with a reduced dimensionality in contrast to former methods. The applicability of the proposed self-localization is shown in simulation and via recordings in a typical reverberant and noisy conference room.