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ABSTRACT

The advent of the smartphone in recent years opened new

possibilities for the concept of ubiquitous computing. We pro-

pose to use multiple smartphones spontaneously assembled

into an ad hoc microphone array as part of a teleconferenc-

ing system. The unknown spatial positions, the asynchronous

sampling and the unknown time offsets between clocks of

smartphones in the ad hoc array are the main problems for

such an application as well as for almost all other acoustic sig-

nal processing algorithms. A maximum likelihood approach

using time of arrival measurements of short calibration pulses

is proposed to solve this self-localization problem. The global

orientation of each phone, obtained by the means of nowadays

common built-in geomagnetic compasses, in combination with

the constant microphone-loudspeaker distance lead to a non-

linear optimization problem with a reduced dimensionality in

contrast to former methods. The applicability of the proposed

self-localization is shown in simulation and via recordings in

a typical reverberant and noisy conference room.

Index Terms— smartphone array, self-localization, maxi-

mum likelihood estimation

1. INTRODUCTION

The most well-known commercial application of microphone

arrays is their use in teleconferencing systems. Typically,

acoustic beamforming is applied on one central microphone

array for obtaining enhanced versions of signals recorded from

distant speakers. Acoustic source localization could be used

additionally to control the visual capturing of the meeting par-

ticipants, when multiple and potentially active cameras are

present. Though a number of technical solutions for telecon-

ferencing systems are available on the market, such systems

have not found their way into the standard repertoire of modern

conference rooms. This is attributed to the high costs of such

specialized audio-visual systems and the practical problems

concerning installation and maintenance. In contrast to that,

today every participant of a business meeting will certainly

carry a mobile phone able to provide hands-free speech com-

munication with reasonable quality. Therefore, we propose
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Fig. 1: An exemplary ad hoc array comprised of four commer-

cial off-the-shelf smartphones.

to use an ad hoc network of smartphones for providing the

acoustic communication capabilities required in a teleconfer-

encing scenario. The main challenge in forming a microphone

array from an ad hoc network of mobile phones lies in the fact

that the spatial configuration of the sensors is not known and

has to be estimated automatically, as this prior knowledge is

mandatory for most acoustic signal processing algorithms.

In this contribution we present a method for the acoustic

self-localization of nodes in an ad hoc array of commercial

off-the-shelf smartphones placed on a conference room ta-

ble (Fig. 1). Time of arrival (TOA) measurements of known

acoustic calibration signals and the orientation of the phones,

provided by built-in geomagnetic compasses, are used to esti-

mate the spatial locations of the nodes. Additionally, as such

an ad hoc array samples the sound field spatially in an asyn-

chronous manner, i.e. no central word clock is available, the

delays of the single platforms w.r.t. a reference time have to

be jointly estimated.

2. RELATED WORK

Self-localization for wireless sensor networks in general is a

well studied topic [1]. In such networks, sensor nodes com-

municate with neighbouring nodes in a peer-to-peer manner

to exchange TOA, received signal strength or angle of ar-
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rival measurements. The nodes are typically equipped with

specialized RF sensing hardware for the respective modalities.

Ad hoc arrays are always asynchronously sampled and

hence self-localization systems based on time measurements

must jointly estimate the respective local time frames w.r.t.

a reference channel. In order to avoid the joint estimation of

positions and exact timing information Liu et al. [2] propose

an energy based self-localization where only a rough time

synchronization of the nodes is needed. The ad hoc array is

formed by laptops with the assumption of one speaker in front

of each laptop. The pairwise relative speech energy attenuation

in combination with an energy decay model results in distance

estimates which are the basis for a nonlinear optimization

procedure. In a mildly reverberant room Liu et al. achieve an

average position error of 21 cm for seven speakers and hence

seven laptops.

Matrix factorization based approaches for finding suitable

starting points for iterative nonlinear self-localization have

been proposed. A closed-form rank-3 based factorization al-

gorithm for the joint source and sensor localization is given

by Thrun [3]. Under the assumption of far-field sources the

self-localization problem is solved in the space of affine ge-

ometry. Finding a transformation from the affine solution to

Euclidean space involves an iterative non-linear optimization

of a low-dimensional problem. A probabilistic extension of

this method exists which additionally takes the measurement

uncertainty into account [4]. If the far-field assumption is not

valid, a rank-5 factorization is necessary [5]. The drawback of

the closed-form approaches is the amount of microphones and

sources needed. For the rank-5 factorization method at least

ten microphones and four sources or vice versa are necessary.

Our work is part of a larger research endeavour with the

goal of an unsupervised joint calibration of an audio-visual

sensor network. Prior work focused on the calibration of

a distributed synchronously sampled microphone array [6].

The employed high-quality audio equipment allowed for a

calibration using only ambient noise and naturally occurring

sounds. The hierarchical approach first calibrates local arrays

via ambient noise, which is assumed to be diffuse. The known

distance dependent coherence of a diffuse noise field for omni-

directional microphones leads to pairwise distance estimates.

Classical multidimensional scaling (CMDS) [7] reveals the

spatial configuration of the local arrays. In the second stage

acoustic sources are localized with every locally calibrated

array. A matching procedure robust against localization out-

liers leads to the global spatial array configuration. Unlike [6]

we focus in this contribution on the calibration of low-quality

unsynchronized mobile phone audio hardware and resort to

acoustic calibration signals to approach the self-localization

task.

The proposed approach is inspired by the maximum like-

lihood (ML) method described by Raykar et al. [8]. The ML

estimation of microphone coordinates, loudspeaker coordi-

nates and capture start times of an ad hoc array of general

purpose computers (laptops, etc.) is formulated as an uncon-

strained nonlinear optimization problem. The starting point

for the iterative nonlinear optimization of the ML cost function

is obtained via a closed form approximation. Microphones

and loudspeaker are supposed to have the same coordinates

which results in pairwise distance measurements. Employing

CMDS [7] an approximate solution is found which serves as

a starting point for an iterative solver. In contrast to [8] we

propose to make use of the known and constant loudspeaker-

microphone distance per smartphone and the global orienta-

tions of the phones obtained via their integrated geomagnetic

compasses. This leads to a reduction of the number of free

model parameters, as the loudspeaker coordinates are then

solely dependent on the microphone coordinates.

3. SELF LOCALIZATION

The goal of our proposed self-localization procedure is to

obtain the D-dimensional Euclidean positions

M = (m1,m2, . . . ,mN ) (1)

of the microphones of all N smartphones contained in a spe-

cific ad hoc array. Due to the asynchronous sampling, the

capture start times

Tc = (tc1 , tc2 , . . . , tcN ) (2)

w.r.t an arbitrary reference channel, e.g. tc1 = 0 must be esti-

mated as well. In the examined scenario every smartphone has

additionally one loudspeaker and a built-in geomagnetic com-

pass. The constant distance di = ‖mi − si‖ of smartphones i
microphone to its loudspeaker si is assumed to be known in

advance. This quantity is not going to change for a given type

of smartphone. In combination with the global orientation ϕi

measured by the i-th compass, the loudspeaker coordinates in

the two-dimensional case can be expressed as

S = M +

(

d1 cos(ϕ1) d2 cos(ϕ2) · · · dN cos(ϕN )
d1 sin(ϕ1) d2 sin(ϕ2) · · · dN sin(ϕN )

)

.

(3)

An extension of this formulation to the three-dimensional case

is possible but unnecessary in the case of a table top ad hoc

array considered here.

The TOA at microphone mi of a sound emitted at time

tsk from the k-th loudspeaker in the local time of channel i is

defined by

t
(k)
i = tsk +

‖sk −mi‖

c
− tci . (4)

This equation incorporates the Euclidean distance ‖·‖ of the

originating loudspeaker sk to the receiver, and the speed of

sound c. The speed of sound is assumed constant for the rest of

this paper1. For a complete description of a TOA the capture

1The speed of sound depends on environmental effects [9], especially on

the temperature. For our purposes, the assumption of a constant speed of

sound c(θ = 20 ◦C) ≈ 343m s−1 is sufficient.
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Fig. 2: Array setup depicting the given global orientations ϕ∗,

distances d∗ and the Euclidean distance of the loudspeaker sk
to the microphone mi.

start time tci of channel i w.r.t an arbitrary reference channel

must be known. Fig. 2 shows the distances and angles involved

in an example ad hoc network with two phones.

Mobile phones are usually equipped with low-quality au-

dio hardware and hence accurate timing information for cap-

turing and playback is missing. Especially the exact signal

emission time tsk is not known, due to the uncertainty about

the audio pipelines latency. In order to circumvent the esti-

mation of the signal emission times, only time differences of

arrivals (TDOA)

τ
(k)
ij = t

(k)
i − t

(k)
j (5)

=
‖sk −mi‖

c
−

‖sk −mj‖

c
− tci + tcj (6)

between receiving channels i and j for a calibration signal

originated at loudspeaker k are used for the self-localization

task. The unknown signal emission time tsk gets cancelled out

and hence is irrelevant for the TDOA case.

Actual TOA measurements are distorted by noise. Under

a Gaussian uncorrelated noise assumption and taking into

acount the fact that the difference of two normally distributed

random variables is again Gaussian, the TDOA measurements

are expressed as

τ̂
(k)
ij ∼ N

(

t
(k)
i − t

(k)
j ,

(

σ
(k)
i

)2

+
(

σ
(k)
j

)2
)

(7)

= N

(

τ
(k)
ij ,

(

σ
(k)
ij

)2
)

(8)

with a standard deviation σ
(k)
i for the TOA case and σ

(k)
ij for

the respective TDOA case. The ML estimate [8] of the model

parameters M and Tc incorporating measurements from pairs

(i, j) ⊆ P = {1, 2, . . . , N}2 leads to a weighted least squares

minimization problem

(M̂ , T̂c) = arg min
M ,Tc

N
∑

k=1

∑

(i,j)∈P

((

τ̂
(k)
ij − τ

(k)
ij

)

/σ
(k)
ij

)2

.

(9)

In the following, all σ
(k)
ij are assumed to be equal. Conse-

quently, they can be ignored in the minimization as they are

independent of the model parameters. The ML estimate can

be extended to incorporate repeated measurements to make it

more robust in terms of noise. It is simply another sum over

all repetitions and omitted for the sake of brevity in the above

formulation.

Without prior knowledge about the array geometry an ML

estimate of the nonlinear optimization problem is not invariant

against rotation, translation and reflection. In order to ensure

a unique solution and to further reduce the number of free

parameters the first microphone is chosen arbitrarily as the

spatial origin m1 = (0, 0)T as well as the temporal origin

tc1 = 0. Furthermore, the second sensor is confined to lie on

the first positive axis m2 = (0,m2,y)
T, m2,y ≥ 0. In order

to eliminate the reflection ambiguity, the third microphone

is constrained to lie in the first two quadrants of the two-

dimensional Euclidean space formed by the first two sensors,

i.e. m3,x ≥ 0 and m3,y ≥ 0. Due to these constraints the

number of free model parameters is reduced by a total of four

with the additional benefit of a well-defined coordinate system.

For solving the above bound-constrained nonlinear op-

timization problem we employ the iterative trust-region-

reflective algorithm [10]. The key parts of the partial deriva-

tives needed for iteratively minimizing the least squares

problem (9) are

∂τ
(k)
ij

∂ma

=











































− sk−mi

c‖sk−mi‖
a = i, a 6= j, a 6= k

sk−mj

c‖sk−mj‖
a 6= i, a = j, a 6= k

sk−mi

c‖sk−mi‖
− sk−mj

c‖sk−mj‖
a 6= i, a 6= j, a = k

sk−mi

c‖sk−mi‖
a 6= i, a = j, a = k

− sk−mj

c‖sk−mj‖
a = i, a 6= j, a = k

0 otherwise,

(10)

∂τ
(k)
ij

∂tca
=











−1 a = i

1 a = j

0 otherwise.

(11)

Note that the loudspeaker coordinates sk are a function of

the microphone coordinates mk, which leads to the partial

derivative parts where a = k.

Iterative gradient descent based optimization algorithms

tend to get stuck in local minima. Hence, the starting point

plays a crucial role in such a method. A good approximation

of the model parameters can increase the probability to find a

global optimum. In the following we will shortly revisit the
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distance-based self-localization approximation given by [8].

Taking the difference of TDOAs between a pair of phones

τ
(i)
ij − τ

(j)
ij =

‖si −mi‖

c
−

‖si −mj‖

c

−

(

‖sj −mi‖

c
−

‖sj −mj‖

c

)

, (12)

the corresponding capture start times are eliminated. In or-

der to obtain an approximate distance estimate dij between

phone i and j the influence of the per phone loudspeaker-

microphone distance is neglected, i.e. ‖si −mi‖ = 0 and

‖sj −mj‖ = 0. This results in equal inter loudspeaker-

microphone distances ‖si −mj‖ = ‖sj −mi‖. The TDOA

difference (12) simplifies with these assumptions to an approx-

imate distance estimate

dij = ‖mi −mj‖ ≈
c

2

(

t
(i)
j − t

(i)
i + t

(j)
i − t

(j)
j

)

(13)

for all phone pairs. Employing CMDS [7], a spatial represen-

tation M̃(0) of the microphone coordinates is found. CMDS

finds the best embedding of the distance measurements in a

least squares sense into a lower-dimensional subspace. In the

examined self-localization task where the phones are supposed

to lie flat on a table, this subspace has two principal compo-

nents. Transforming the CMDS approximation such that it

adheres to the aforementioned constraints leads to the starting

point for the microphone coordinates M(0) of the iterative

optimization algorithm.

A starting point for the capture start times Tc,(0) could

be calculated in a similar manner. But a simpler recursive

method can be used due to the one-dimensionality of the cap-

ture start times. Taking the sum of TDOAs between a pair

of phones opposed to the difference in Eq. (12) but using the

same assumptions, an estimate for all capture start times is

found recursively

tci,(0) =
t
(i−1)
i−1 − t

(i−1)
i + t

(i)
i−1 − t

(i)
i

2
+ tci−1,(0). (14)

The arbitrarily chosen temporal origin tc1,(0) = 0 ends the

recursion. To avoid local minima during multiple invocations

of the iterative optimization procedure, a small amount of

uncorrelated white Gaussian noise is added to the initial pa-

rameter approximations for the microphone coordinates and

the capture start times.

The known loudspeaker-microphone distance per phone

and the global orientation of each phone given by the integrated

compasses reduce the number of free model parameters in

comparison to [8]. Due to the aforementioned constraints on

the microphone coordinates and the capture start times, which

guarantee a unique solution, P = (D+1)N−D−1 parameters

need to be estimated with dimensionality D. Whereas a total of

(2D+1)N −D−1 model parameters exist if the loudspeaker

coordinates have to be estimated as well. In combination with

a good initial guess even an under determined system can be

solved in practice. Hence, self-localization of even two phones

is possible.

4. EVALUATION

In the following, the performance of our proposed self-

localization procedure for ad hoc smartphone arrays is eval-

uated. First, a Monte Carlo simulation evaluating different

noise levels and array sizes is examined. The nowadays

widely available Android-based smartphones are utilized for

demonstrating the applicability of our self-localization method

in a real-world scenario, a reverberant meeting room.

The accuracy of the self-localization is measured in terms

of the root mean square error (RMSE)

ε(M) =

√

√

√

√

1

N

N
∑

i=1

(‖mi −mo
i ‖)

2. (15)

The ground truth positions are marked by the superscript (·)o.

The RMSE is analogously defined for the capture start times

Tc. For ε(Tc) however, the Euclidean norm ‖·‖ reduces to an

identity. Note that the error of the capture start time estimates

can not be evaluated in the real-world scenario as there is no

ground truth due to the lack of accurate timing information on

the Android-based smartphones.

4.1. Calibration Signals

Measuring the exact TOA of an arbitrary acoustic signal is

in general a hard task. The unknown microphone directivity

patterns of the different smartphones and the unfavorable di-

rection of the downwards facing loudspeakers in the employed

smartphones makes a TOA estimation error-prone. If, how-

ever, the excitation signal is known in advance, a convolution

of the captured signal with the inverse of the excitation signal

yields the impulse response of the transmitter-receiver chan-

nel [11]. In our case this channel consists of the loudspeaker,

the receiving microphone and a reverberant room. The di-

rect path component of the resulting impulse response is an

estimate for the TOA.

The first step in the design of the aforementioned self-

localization method is the choice of an adequate excitation

signal for measuring the impulse responses’ direct path com-

ponents and hence the TOA. Due to its flexibility in frequency

resolution and length we used a logarithmically swept sine

chirp [11, 12] throughout our experiments. Since we are only

interested in the direct path component and not in an accu-

rate estimate of the impulse response, the signal properties

can be chosen arbitrarily. A single chirp should be short in

order to reduce the measurement time and its audibility in the

deployment environment. Informal tests showed a good per-

formance for 100ms long sweeps with a frequency range from
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Fig. 3: Simulation results for an increasing number of sensors and increasing amount of noise. The results of the proposed

approach (a) are shown in direct comparison to the results of the same optimization procedure not using the prior knowledge (b).

5 kHz to 16 kHz. All recordings use a sampling frequency of

fs = 48 kHz.

It is common for consumer-oriented acoustic hardware to

have an automatic gain control (AGN) built-in. This is also

the case for the employed smartphones without a software-

side option to turn it off. Therefore, care has to be taken

in the experiment design concerning the playback gain of

the calibration signals, as an active AGN leads to non-linear

distortions of the impulse response estimates which have an

undesirable effect on the final TOA estimates.

4.2. Monte Carlo Simulation

The proposed self-localization method is evaluated for dif-

ferent measurement noise levels via Monte Carlo simulation.

For each noise level and number of phones, 1000 random ad

hoc array configurations are generated. Five independent TOA

measurements afflicted by additive white Gaussian noise are

used as a basis to self-localize every configuration. The gener-

ated arrays are constrained to lie inside a square of 1m side

length. Gaussian white noise with a standard deviation of 10◦

is added to the ground truth compass data.

Figure 3a depicts the average positional RMSE for increas-

ing measurement noise σ in meters and different array sizes.

The estimation error for the capture start times is negligible

over all configurations. For σ = 0.3m and N = 6 the error is

1.5ms and far below a millisecond for all the other configura-

tions. The resulting RMSE is proportional to the measurement

noise and for more than three phones, no further increase in

the RMSE due to more phones is visible. Exemplarily, an op-

timization result for N = 6 and σ = 0.1m is shown in Fig. 4.

The non-filled circles mark the microphone ground truth and

the squares the loudspeaker ground truth. The filled objects

mark the respective optimization results. Each gray cross is an

intermediate microphone coordinate result of a specific itera-

tion forming a trajectory. The first cross is the starting point

of the optimization obtained via the aforementioned approxi-

mation. The depicted example took ten iterations to converge

with a final RMSE of 6.2 cm.

The same simulation was carried out ignoring the proposed

prior knowledge, i.e. the microphone loudspeaker distances

and the global orientations of the phones. The results are

shown in Fig. 3b. Due to the increased number of model pa-

rameters the optimization fails to reveal adequate solutions

for N = 4 and σ > 0.2m. For more than four phones the

optimizations did not converge at all. This direct compar-

ison shows the superior performance of the proposed self-

localization approach.

4.3. Real-world test

The RMSE performance for the distance estimation task is

given in Fig. 5 for two phones with distances ranging from

10 cm to 40 cm. Five independent measurements per distance

were recorded. The individual distances from the pairwise

TOA measurements are estimated according to the approxi-

mate distance (13). For small distances (less than 20 cm) the

RMSE translates to a deviation of less than two samples at the

used sampling rate and speed of sound.

Recordings were made in a reverberant room with a rever-

beration time of 600ms for three ad hoc array configurations

consisting of four smartphones. The evaluated arrays have an

approximate diameter of 40 cm and the phones are placed with

arbitrary orientations. For the three configurations with ten in-

dependent recordings per configuration, an average positional

RMSE of 6.8 cm, 6.8 cm and 8.5 cm is achieved respectively.
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Fig. 4: Exemplary self-localization result for N = 6 smart-

phones and a measurement noise with standard deviation

σ = 0.1m converged after 10 iterations.
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Fig. 5: RMSE for increasing distance of two phones in meters

(left axis) and corresponding samples (right axis) according to

Eq. (13) for a sampling rate of fs = 48 kHz.

5. CONCLUSION

In this contribution, we proposed a self-localization method

for ad hoc smartphone arrays. Such a sensor network could be

used as part of a teleconferencing system. The described ML

approach for estimating the unknown model parameters, i.e.

the microphone coordinates, uses short calibration signals in

order to obtain TOA measurements. With the phones global

orientation, provided by built-in magnetic compasses, and

the fixed and hardware-dependent microphone-loudspeaker

distances, a reduction of the number of model parameters is

achieved in comparison to a formulation without this prior

knowledge. We showed the applicability and superior perfor-

mance of the proposed approach in simulation side by side to

a model which does not take the prior knowledge into account.

Finally, we demonstrated that our self-localization method

works also in a real-world scenario – a reverberant conference

room – using off-the-shelf smartphones.
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