
Eliminating Ghost Artifacts in the Overlap
Area of a Surround-View System

Sumukha Manjunatha
(Matrikelnummer: 162927)

February 2, 2015

Supervisors:

Prof. Dr.-Ing. Gernot A. Fink Dr.rer.nat. Hartmut S. Loos

René Grzeszick, M.Sc. Mr. Patrick Klie

Fakultät für Informatik Robert Bosch Car

Technische Universität Dortmund Multimedia GmbH

http://www.cs.uni-dortmund.de http://www.bosch.de

A C K N O W L E D G E M E N T

I would like to take this opportunity to thank Prof. Dr.-Ing. Gernot Fink and Mr.
René Grzeszick, M.Sc. for accepting to supervise my thesis. I appreciate their time,
continued guidance and support during the course of the thesis. I would also like to
thank them for reviewing my final thesis. I would like to thank Mr. Grzeszick for his
immense patience in periodically reviewing my progress, giving me suggestions and
discussing the various probable solutions to the problems I came across.

I wish to thank Robert Bosch Car Multimedia, Hildesheim for giving me this op-
portunity to complete my Master Thesis at their premises. I would like to take this
opportunity to express my heartfelt gratitude to my supervisor, Dr.rer.nat. Hartmut
S. Loos for having the confidence in me and giving me this responsibility. I extend
my sincere thanks to Mr. Patrick Klie, who was always a strong support, helped me
record all the real world sequences and guided me technically all through the course
of this thesis. I would also like to thank Dr.rer.nat. Thomas Reinert for his support in
helping me understand the mathematics behind the surfaces and meshes. I thank my
fellow interns at Robert Bosch Car Multimedia, Hildesheim who helped me keep my
morale up during difficult times.

Lastly I would like extend my sincere thanks to my family back in India, and friends
in India and Germany who have been a constant support during the course of this
work.

iii

C O N T E N T S

1 introduction 3

1.1 Motivation 3

1.2 Framework and Setup 5

1.3 Fundamentals of Image Projection as used in the Surround-View Sys-
tem 6

1.3.1 Feature/Point Correspondence 6

1.3.2 Image Stitching 7

1.3.3 Alpha Blending 8

1.3.4 Mesh/Mesh Grid 9

1.3.5 Image Projection 9

1.4 Problem description 10

2 related work 13

2.1 Image Stitching 13

2.2 Mesh Deformation 18

2.3 Discussion 22

3 eliminating ghost artefacts using mesh deformation 25

3.1 General Approach 25

3.1.1 Calculation of World Coordinates from Reliable Feature Corre-
spondences 26

3.1.2 Deformation of Projection Surface to eliminate Ghost Arte-
facts 30

3.1.3 Decision on Parameters 33

3.2 Selection of free, handle and fixed regions for the deformation algo-
rithm 38

3.2.1 Deformation Method without including the Ground Plane 38

3.2.2 Deformation Method including the Ground Plane 39

3.3 Challenges and Implementation Details 39

3.3.1 Failure of Deformation in certain frames 40

3.3.2 Black Areas in Frames after deformation is accomplished 41

4 experiments, results and observations 45

4.1 Dataset Used 45

4.2 Quantitative measurement of human perception of vision - The SSIM
Index 46

1

2 Contents

4.3 Decision on parameters of the fixed, handle and free regions 46

4.4 Accuracy of World Coordinates 48

4.5 Results of Deformation Method without using Ground Plane 51

4.6 Results of Deformation Method including the Ground Plane 52

4.7 Noise on Pixel Coordinates 56

4.8 Mismatch of image correspondences 59

4.9 Number of feature correspondences 63

4.10 Qualitative Evaluation 66

4.11 Timing of the algorithm 67

5 conclusion and future work 71

1
I N T R O D U C T I O N

1.1 motivation

In recent times, with increasing car sizes and luxuries, driving safety has gained
paramount importance. As per a report of the US Department of Transportation
from the National Highway Traffic Safety Administration [Adm08], most fatalities
and injuries during backing are caused by passenger vehicles. "Among cases where
the type of the striking vehicle is known, 78 percent of the backover fatalities and 95
percent of the backover injuries involved passenger vehicles" [Adm08]. The report
also states that backover injuries are more frequent in nonresidential parking lots
than other places. The investigations revealed that majority of non-occupants were
approaching the vehicle from the side. There is also a law enacted in the US recently
with all cars under 10000 pounds to be fitted with rear view cameras and display units
to aid the driver [Tra10].

Figure 1.1.1: An example of a parking scenario - Image provided by Robert Bosch Car Multi-
media GmbH

3

4 introduction

Similar laws would be enacted all around the globe. In future, driver assistance systems
would be a necessity of any automobile, rather than a luxury. Our reliance on these
systems would be on the rise and hence, these systems need to be extremely accurate.
In case these systems were not accurate, then they would cause more accidents or
would be rendered useless and drivers would not use them. Consider an example
of a driver parking into a slot in between two poles for guidance as shown in Figure
1.1.1. Assume, for example, that the driver assistant systems shows a view as shown in
Figure 1.1.2. As can be seen, imaging artifacts were introduced and it is very obvious
that the driver sees a different view as compared to the assistance system. This would
prompt the driver not to use the system and switch it off. This thesis analyses such a
situation and presents an unconventional approach to solve this challenge.

Figure 1.1.2: Visualization on Head Unit of the parking scenario with imaging artefacts in-
troduced (two poles are seen instead of a single pole at both locations) - Image
provided by Robert Bosch Car Multimedia GmbH

1.2 framework and setup 5

1.2 framework and setup

The driver assistance setup considered in this thesis, consists of a car with four cameras
and a head unit for visualization. The cameras are mounted on the front, the rear and
the two side mirrors. Each of the cameras has a wide field of view (more than 180o

on one direction and about 137o on the other). The cameras are mounted in such a
way, that each camera has an overlap with the adjacent camera. Therefore, the four
cameras put together, cover the complete surrounding area of the car.

For visualization purposes, the car is thought to be placed on the flat surface of
a bowl. The base of the bowl is circular and the walls of the bowl follow a parabola.
The transition from the flat surface to the walls is made as smooth as possible. The
top view is as shown in Figure 1.2.1 and the sketch of side view is as shown in Figure
1.2.2. The dark blue triangles (indicated by red circles) in Figure 1.2.1 are the positions
of the four cameras, the light blue areas are the regions visible to one camera only
and the dark blue regions on the four corners are the regions visible to two adjacent
cameras. The bowl is made up of a triangular mesh (explained in detail in Section
1.3) and rendered using OpenGLr (ES) (“OpenGLr and the oval logo are trademarks
or registered trademarks of Silicon Graphics, Inc. in the United States and/or other
countries worldwide.”). The images are projected onto this mesh assuming a flat
surface. The images are captured by the cameras in real time. These are rendered on
this triangular mesh and are visualized on the head unit of the car. This system is
used to assist the driver, especially during parking scenarios, where the driver cannot
see everything around the car.

Figure 1.2.1: Top View of the
driver assistance
setup

Figure 1.2.2: Side View of the driver assistance setup

6 introduction

For testing purposes, a simulator as shown in Figure 1.2.3 is available. The sim-
ulator simulates all the features of the head unit and can be used on a PC under
Windowsr platform. A tool is used to grab images from the cameras in real time and
save them as a sequence. These can be replayed on the simulator (to visualize the
same events that would occur in the real world with the head unit).

Figure 1.2.3: Screen-shot of Simulator simulating head unit of the driver assistance system
setup - Image provided by Robert Bosch Car Multimedia GmbH

1.3 fundamentals of image projection as used in the surround-view

system

1.3.1 Feature/Point Correspondence

The Surround-View system is made up of images. There are four different images, and
the visualization must look seamless across images. For such a seamless transition
between images, image stitching can be employed which uses feature correspondences

1.3 fundamentals of image projection as used in the surround-view system 7

between images to form the transformation from one image to the next. A Feature/Point
Correspondence is always made between two images that contain/capture two different
views of the same scene and have some part of the world in common [Sze10]. See
Figures 1.3.1 and 1.3.2 for an understanding. The two images are two different
perspectives of the same scene. A Point Correspondence is the set of pixel values in
both images corresponding to the same point in the world. In the Figures 1.3.1 and
1.3.2, the pixels marked with a red cross correspond to a single world point. The pixel
positions of the two points (in the two images) form a Point Correspondence. The area
of the images that contains a common part of the scene is called the area of overlap.

Figure 1.3.1: One Perspective of a Nat-
ural Scene1

Figure 1.3.2: Another Perspective of the same
Scene2

1.3.2 Image Stitching

Once we have feature correspondences, we need to use it to "stitch" the two images
into one larger image. This is achieved by Image Stitching [Sze10]. Image Stitching
is a domain of research focused on resolving challenges arising out of generating a
single huge image from multiple smaller images of different parts of the same scene.
There has been substantial research already done on the basic topic and currently
more advanced challenges are under research. Consider the images shown in Figures
1.3.1 and 1.3.2. Using image stitching the composite image formed after stitching the
two images would be as shown in Figure 1.3.3.

1 Image sourced from http://hugin.sourceforge.net/tutorials/two-photos/974-1.jpg on 20th January 2015
2 Image sourced from http://hugin.sourceforge.net/tutorials/two-photos/975-1.jpg on 20th January 2015

8 introduction

Figure 1.3.3: Composite - Stitched Image using algorithms of Image Stitching3

1.3.3 Alpha Blending

Once the stitched composite is available, it still has certain artefacts of stitching.
Normally, the line across which the images are stitched is noticeable. This is removed
using various blending methods. In our case, Alpha Blending is used. Alpha Blending is
normally used to blend a background colour with a foreground color. In our scenario,
the same is used a little differently. All images are made up of three channels, red,
green and blue (in case of RGB color space). In computer graphics, a fourth channel is
added, called the Alpha Channel. This channel decides the transparency with which
the image is rendered/displayed on screen [SG09]. When displaying, there is always
an opaque background (in our case, this is colored black). Images are rendered on
this background with varying alpha values. In regions where a single camera views
the scene, the images are displayed opaquely. When there are two cameras viewing
the same portion of the scene, as in the case of region with overlap, the images are
rendered in such a way that at any point in the overlap region, one of the images is
always drawn opaquely. This is done so as to avoid viewing the background when both
the images are drawn transparently. The way the alpha values change is controlled so
that the transition between the images is as smooth and intuitive as possible.

3 Image sourced from http://hugin.sourceforge.net/tutorials/two-photos/en.shtml on 20th January 2015

1.3 fundamentals of image projection as used in the surround-view system 9

1.3.4 Mesh/Mesh Grid

Once the blended, stitched image is available, it needs to be presented to the user in a
way that is pleasing. This is also referred as visualization. This is achieved, in the field
of Computer Graphics, using Mesh/Mesh Grid and Image Projection. A Mesh/Mesh
Grid is a set of vertices, edges and faces that describe a 3D object [Ede01]. Typically,
triangles are used as a simplex in space. See Figure 1.3.4 for an explanation of how a
pyramid is formed using these basic geometries. However, more complex shapes can
also be formed using these basic structures. A Vertex is a point in 3D space. An Edge
is a straight line segment connecting two vertices in space. A Face is a closed surface
enclosed by edges. Meshes are used extensively in 3D graphics for displaying complex
3D characters/objects. The most popular meshes used are Triangle Meshes where, the
faces are made up of three edges to form a triangle as shown in Figure 1.3.4. However,
with the evolution of more powerful Graphic Processing Units (GPUs), Quad Meshes
(where faces are formed by four edges to form a quadrilateral) and higher dimensional
meshes are also used.

Figure 1.3.4: Vertices, Edges and Faces in the context of Computer Graphics

1.3.5 Image Projection

Once the skeletal Mesh Grid is available, it needs to be filled with images for visual-
ization. This is dealt by "projecting the images" to the mesh. This process is also called
Texturing [SG09]. Image Projection is the process of presenting the images captured by
the cameras to the user. For visualization purposes, the triangle mesh created above
is used and the images captured are displayed onto this mesh. In our scenario, the
images so captured will first be rectified to remove the distortion effect caused by the
fish-eye optics. Then, they will be projected to the mesh surface (this process is similar

10 introduction

to that of an overhead projector). The projection is done assuming a flat surface. That
is to say, any vertical object in the scene, in the close vicinity will appear to lie on
the ground, as shown in the top left and top right sketches of Figure 1.4.1. Since, the
projected surface slowly transitions to a vertical plane, it gives a realistic view of the
scene.

1.4 problem description

The visualization of the Surround-View system is created by stitching the images and
blending of alpha values as described in Section 1.3, in the overlap areas of the bowl.
As described earlier, the flat surface assumption is used for displaying the images.
This assumption is valid for far away scenes, where, the changes in depth of scene is
much smaller than the distance of the camera to the scene. However, when there is a
small obstacle in the region of overlap, this assumption no longer holds. And due to
the alpha blending of the two images, it gives rise to dual artefacts of the same object.
Such dual artefacts will be referred to hereafter as “Ghost Artefacts". Figure 1.4.1
shows a sketch explaining the scenario assuming a pole (an obstacle) in the front-left
overlap region of the car. The same scenario in the real world with an obstacle (a fire
hydrant post) in the front-right overlap region, is as shown in Figure 1.4.2.

Figure 1.4.1: Ghost artefacts in the Surround-View situation, left top is the real world situation,
right top is the image projected by front camera, left bottom is the image projected
by left camera, right bottom is when both left and front cameras project the image
giving rise to ghost artefacts - Sketches provided by Robert Bosch Car Multimedia
GmbH

1.4 problem description 11

Figure 1.4.2: Ghost artefacts as viewed on Head Unit/Simulator of the Surround-View System
- Image provided by Robert Bosch Car Multimedia GmbH

Assuming that we have reliable good correspondences in the overlap area (in the
context of this thesis, these have been marked manually), this thesis discusses a pos-
sible unconventional approach, that uses deformation of the projection surface in
order to reduce ghost artefacts, and the respective challenges to solve the following
research question: “Find a suitable method, using known, good and reliable feature
correspondences, such that, the objects in the overlap region do not disappear and
ghost artefacts in the close proximity of the car are visibly reduced.”

The thesis is organized as follows: Section 2 discusses related work and challenges
that explain why image stitching cannot be implemented. Section 3 discusses the
algorithm used for reducing the Ghost Artefacts by deforming the projection surface,
the challenges faced and solutions arrived at. Section 4 discusses the experiments
conducted, their results and observations. Section 5 concludes the thesis along with
discussion on open issues and future work.

2
R E L AT E D W O R K

The problem statement as described in Section 1.4 seems to be a problem with Image
Stitching. Secondly, as explained in the Section 1.2, since the images are projected
assuming a flat surface, the problem could also be solved by modifying the projection
surface to be placed at the correct depth of the obstacle in the vertical direction (like a
screen at correct depth). For arriving at a solution to the said problem, the literature
was searched in these two specific domains that are related to the problem, namely
Image Stitching and Mesh Deformation. In the first sub-section, work related to
Image Stitching is discussed and in the second sub-section, those related to Mesh
Deformation is discussed. In the end, the approach used to solve the problem is briefly
introduced.

2.1 image stitching

Image Stitching is a domain of Image Processing, where two images with a certain
amount of overlap (both images have some common content) are “stitched” to form
a composite image with a wider angle. A brief overview of image stitching is given
in [Sze06].Also, the problem of ghost artefacts is well addressed in the image stitching
domain.

The simplest form of image stitching is, to align the images and make a smooth
transition from one image to the other along the border. [RLE+

05] discusses such
a simple and effective method for image stitching and blending with applications
in medical imaging. In this method, multiple images are aligned using the normal-
ized cross-correlation co-efficient in a small window as shown in Figure 2.1.1. The
normalised cross correlation coefficient is as defined in Equation 2.1.1 [RLE+

05].

cross-correlation =

L−1∑
x=0

K−1∑
y=0

(w(x,y) − w̄)(f(x+ i,y+ j) − f̄(i, j))√
L−1∑
x=0

K−1∑
y=0

(w(x,y) − w̄)2
√
L−1∑
x=0

K−1∑
y=0

(f(x+ i,y+ j) − f̄(i, j))2

(2.1.1)

13

14 related work

where, w(x,y) represents a pixel value of the image to be placed, w̄ is the mean
value of all pixels included in the box area, f(x+ i,y+ j) represents a pixel value of
the composite image inside the box area, f̄(i, j) is the mean value of all pixels of the
composite image within the box area and parameters K, L represent the box dimen-
sions in number of pixels included. Image stitching is achieved by sliding the image

Figure 2.1.1: The general normalized cross correlation procedure is performed within a small
search area - Image taken from [RLE+

05]

over the composite (since this yields better results than using the reference image) so
as to achieve the best cross-correlation [RLE+

05]. After stitching, the seam artifacts
are removed using alpha blending (thrice in case of color, by separating each color
channel). The algorithm is simple and very fast in case the overlap areas are known (as
in our case). The window’s size (the window in which the cross-correlation coefficient
is calculated) could be varied depending on the number of features available. The
algorithm would fail when no correlation is found either due to a lack of texture
or plane surfaces in the overlap region resulting in no features. Also, changes in
intensities would be very vividly visible.

For a more intuitive appearance, the above method could be applied in the derivative
domain. [ZLPW06] explains exactly this process. The derivative images are calculated
using the input images. The stitching is done by minimizing a cost function in the

2.1 image stitching 15

gradient domain. This results in a smooth transition between various input images. It
is very suitable for combining different perspectives of the same object. As a result
of working in the gradient domain, it is less susceptible to changes in the intensities
of the images. However, it assumes a planar scene and there is an additional cost of
computing the gradient images. The assumption of planar scenes is violated in our
scenario.

One way of automating the alignment and stitching process is explained in [BL07]. It
introduces automatic alignment and stitching of multiple unordered images under
ideal imaging conditions. The algorithm uses SIFT [Low99] to extract features from all
unordered images. It then finds the k nearest neighbors for each feature using a k-d
tree [Ben75]. For each image, the following is done:

1. Select m candidate images that have the most feature matches to this image.

2. Find geometrically consistent feature matches using RANSAC [FB81] to solve
the homography between pairs of images, and

3. Verify image matches using a probabilistic model (cf. [BL07]).

It then finds the connected components of image matches. For each connected compo-
nent, the algorithm performs bundle adjustment (cf. [BL07]) to solve for the rotation
angles and focal lengths of all cameras. The panorama is finally rendered using
multi-band blending (cf. [BL07]). The method is suitable for automatic stitching of
unordered images. The system is robust to camera zooms, orientations and changes
in illumination. It however is not robust to camera motions. Since, it uses the ideal
camera model; it does not take care of lens distortion or parallax. It uses SIFT that is
computationally intensive. Not using SIFT nullifies the advantages stated above and
sacrifices the robustness of the system, as a result.

All the methods till now do not take the error due to parallax into account. [QC07]
introduces a novel method of synthesizing mosaic from non-planar scenes with par-
allax using a sparse set of translated cameras. The algorithm assumes identical
high-definition translated cameras in an environment with controlled illumination,
ignoring effects of lens distortion, vignetting, exposure and color differences. The
method compensates parallax using a set of interpolated virtual images in between
the original images. The final mosaic is created by cutting successive strips from each
of these virtual interpolated images. The method gives good results of non-planar
scenes with parallax. However, it is applicable only to common baseline cameras

16 related work

with translation in only one axis. Also, the algorithm is shown to work well under
controlled illumination. The effect of different illuminations (common with outdoor
scenes) is not known.

In contrast, [DC04] considers generating an image mosaic for generic 3D scenes
under general camera motions. In case of parallax, while stitching two images, an
intermediate image is constructed, which has an overlapping area of the target image
and features the non-overlapping areas of both images. The fundamental matrix is
then used and the parallax is estimated between the target image - intermediate image
and between the target image - reference image pairs. The mosaic is constructed by
one of the following two methods:

1. an approximated mapping in 2D between the target and intermediate images,
and

2. approximating the scene as a piecewise planar scene.

The second method was shown to yield better results. However, this method assumes
a common baseline and a planar scene, both of which are not true in our case.

[SS07] describes the construction of panoramic image mosaic from image sequences
without projecting them explicitly to a common surface. It uses two motion models
namely homographies and, 3D rotations and zooms. A patch-based alignment al-
gorithm is developed for registration of images. The focal length is then estimated
and the error of misregistration is distributed evenly. A global alignment is then
done by having new point correspondences and minimizing a cost function in screen
coordinates. Finally, a deghosting step is performed to remove small misregistrations.
The method assumes planar scenes and is a good one for automatic stitching of
multiple images. It handles parallax using global and local adjustment. But, it is
computationally intensive and is useful for offline stitching of images.

A huge challenge in image stitching is handling occlusions. [LLM+
11] discusses

a method to stitch images, which is flexible to handle parallax, has good extrapo-
lation and occlusion handling properties. The method uses a sparse set of corner
features with associated SIFT descriptors. A global affine is computed from SIFT
correspondences using RANSAC. An affine stitching field is computed by repeatedly
minimizing a cost function until convergence. Lastly, Poisson blending with optimal
seam finding algorithm of [CE07] is used. The method results in good interpolation in
regions with features. However, it resorts to the global affine in absence of features and

2.1 image stitching 17

the extrapolation is poor as noted by [ZCBS13]. Also, it is computationally intensive
as the affine field is iteratively computed.

To stitch natural landscapes, [GKB11] comes up with an idea of using two homo-
graphies per image to stitch and blend the images using a non-linear warping. It
uses SIFT to detect and match feature points. The scene is then divided into two
parts namely the ground plane and distant plane using Llyod’s algorithm [Llo06] for
clustering. Further, RANSAC is used to robustly estimate two homographies, one
each for the ground plane and the distant plane. A weighted combination of both
homographies is done for every pixel. Then, seam cutting and blending is performed.
In the end, a global straightening is done by using the similarity transform [GKB11].
The algorithm is more accurate than the global homography when the scene is known
to consist of two distinct depths. As noted in [GKB11], it fails when there are more
than two distinct depths. Also, the clustering algorithm is computationally intensive
and time consuming.

[ZCBS13] introduces an innovative method of image stitching by using warps that
aim to be globally projective, yet allow non-projective deviations locally to account for
violations to the assumptions of the imaging conditions. It uses DLT [Har03] as a base
method. Additionally, a weight is added for every point correspondence in calculating
the homography matrix. The weight of every point correspondence is calculated as
a Gaussian which has more effect in the neighborhood of the point. Assume the
homography between two images is given by [ZCBS13]:

x̃ ′∗ = H∗x̃∗ (2.1.2)

where, H∗ is estimated from the weighted problem,

h∗ = arg min
h

N∑
i=1

||wi∗aih|| (2.1.3)

subject to ||h|| = 1. The weights {wi∗}Ni=1 vary according to x∗ according to the following:

wi∗ = exp(−||x∗ − xi||
2/σ2). (2.1.4)

Here, σ is a scale parameter and it can be seen that the weight is calculated as a
Gaussian. The image is split into a grid and a homography is computed for each cell
of this grid. It uses SIFT for feature correspondences and RANSAC to remove outliers.

18 related work

Figure 2.1.2: Results of Moving DLT [ZCBS13] along with Photosynth and Dual Homography
Warping [GKB11] - Images taken from [ZCBS13]

Figure 2.1.2 shows some results of this algorithm compared with the popular stitching
software Photosynth and with [GKB11] (Dual Homography Warping). As can be seen
from Figure 2.1.2, the algorithm is extremely accurate in terms of image stitching
quality and generic scenes can be effectively stitched irrespective of the varying depths
in the scene. However, it is computationally intensive and assumes planar scenes.

As shown in the discussion section, our Surround-View setup throws certain unique
challenges, that cannot be addressed by Image Stitching. Nevertheless, the available
literature was studied to understand the current trend in this field and to understand
if there exists a solution to deal with the current problem on hand.

2.2 mesh deformation

Meshes (triangle or polygonal) are the basic building blocks in computer graphics. In
our scenario, the visualization of the images is done using a triangular mesh. The im-
ages are projected to this mesh so as to form a 3D visualization. One approach to solve
the problem of ghost artefacts is to deform the mesh, which acts as a projection surface,

2.2 mesh deformation 19

to the position of the obstacle so that the images of the two cameras are projected
very close to each other. In order to try such an approach, the available literature was
searched for finding out appropriate methods for deforming the projection surface.
There are a lot of papers on free-form modeling and many methods on preserving fine
scale details which are not required for our scenario. We require a simple and efficient
method to deform a smooth mesh with no fine scale details.

The process of modeling and mathematics involved in constructing deformable curves
and surfaces are explained in great detail in [CG91]. It introduces the concepts of
curve energy and surface energy. The paper first details the complete system for
continuous curves and surfaces and then goes on to apply the same principles to
triangle meshes using Barycentric coordinates. It shows a method to build surfaces
using the ShapeWright paradigm [CG91], where a user first draws some characteristic
lines, then skins it, and finally sculpts the shape in accordance to external forces and
geometric constraints. Finite elements were used to solve for the systems of equations
in the discrete domain. This provides a sound mathematical understanding of the
deformation process along with results of the forces that can be applied on the surfaces.

A nice survey on the available methods in mesh deformation is presented in [BS08]. It
describes the basics of deformation, along with solutions to certain common challenges
encountered during implementation. The paper surveys methods that generally formu-
late the mesh deformation as a "global variational optimization problem that addresses
the differential properties of the edited surface" [BS08]. It outlines the similarities and
differences between various methods for deformation and preservation of details. It
helps as a good guideline for selecting a particular method depending on the scenario
and problem at hand.

To enable one to deform meshes at will, [BK04] suggests a simple but effective
method using “constraint shape optimization [BK04]”. The paper describes a mod-
eling metaphor where the user can potentially set any basis function using which
the mesh needs to be modified. The method minimizes an energy functional that
penalizes stretching and bending while satisfying the arbitrary boundary conditions.
The advantage is that it allows the user to take arbitrary boundary conditions and
these are taken into account resulting into an optimal solution that is known to have a
certain smoothness. This is why this approach is called “boundary constraint modeling
(BCM)" [BK04]. The intension of the algorithm is to offer complete flexibility to the
user to define his own basis functions which are tailored to result in an intended
modification. In this modeling metaphor, the user decides a certain region of the

20 related work

surface as the support. Then the user chooses a manipulator object (also called handle),
which is a subset of the support. This means that when the handle moves, the support
moves along with it. The user now decides the final position of the handle and the
remaining part, that is the region of support minus the handle, needs to smoothly
interpolate and bend according to the translation, rotation and scaling of the handle
region. The smoothness of the output can be determined mathematically. This method
can be easily adapted to discrete meshes as well. Mathematically, the continuous
energy functional of a surface S is [BK04]:

Ek(S) =

∫
Fk(Su...u,Su...uv,,Sv...v) (2.2.1)

where the expressions S∗ represent the partial derivatives of order k with respect to the
surface parameterization S : Ω→ R3. This energy functional needs to be minimized.
To solve equation 2.2.1, one uses variational calculus to get the corresponding Euler-
Lagrange equation that characterizes the minimizers of 2.2.1. For most common
quadratic functionals, the resulting differential equation is:

∆kS(x) = 0, x ∈ Ω \ δΩ

∆jS(x) = bj(x), x ∈ δΩ, j < k
(2.2.2)

where, ∆ is the Laplacian operator and bj are the boundary conditions of order j < k.
Discretizing this surface, for using the method on triangular meshes, implies dis-
cretizing the Laplacian operator and applying the algorithm. [BK04] describes a way
of converting this problem for discrete meshes to solving a sparse linear system for
the position of the free region (the region of support minus the handle). The main
advantage of this method is its simplicity, arbitrary use of basis functions, arbitrary
boundary conditions and ease of implementation. These advantages make it an ideal
candidate for our particular case. It however, does not preserve orientations of the fine
scale details and is not necessary in our case, as the surface we intend to deform is
smooth and does not have any detail.

There are a lot of methods that are used to preserve the orientation of fine scale
details, as intuitive as possible. [LSCO+

04] advocates using differential coordinates as
the means to preserve the fine scale details of the surface. To compensate for not being
rotational invariant, the authors rotate the differential coordinates in an approximated
local frame. This helps to edit complicated meshes while preserving the shape of fine
details in their intuitively natural orientation. The algorithm for preserving local de-
tails, first applies a rough transformation to the mesh that represents the low frequency

2.2 mesh deformation 21

detail of the surface. Then, it approximates the local rotations and each differential
coordinate is rotated by this rotation. Finally the system of the rotated differential
coordinates is solved to reconstruct the edited surface. While this method is very
intuitive for fine scale details, our mesh does not contain any such detail and is just
a smooth surface. Hence, the additional burden of transforming into the differential
domain is not justified.

[BSPG06] also introduces another method for preserving fine scale detail while de-
forming meshes. It combines minimization of the variational bending energy and
solving a Poisson system of differential coordinates. It involves separating the sur-
face into a low frequency base surface and high frequency details. The deformation
to the base surface is done in the gradient domain. The base surface is modified
as per [BK04]; however, other methods may also be used. Then, the deformation
transfer is done for the details, which preserves the gradient field of the original
surface in the deformed mesh. [ZHS+

05] describes deformation of large meshes using
the volumetric graph Laplacian [ZHS+

05] that helps avoid self-intersections during
deformation and make it as intuitive as possible. The method involves constructing
two volumetric graphs, an inside volumetric graph that resists changes to volume and
an outside volumetric graph that prevents local self-intersections during deformations.
It minimizes a weighted energy functional that also preserves the volume of the mesh
being deformed. This kind of deformation is very intuitive for 3D characters. Both
the methods [BSPG06] and [ZHS+

05] are intuitive and advantageous for meshes with
fine scale detail. But, both of them are also computationally expensive. While these
methods are very intuitive in appearance, they are computationally prohibitive for our
case.

Mesh deformations have also been widely studied in the morphing industry. [Ale03]
uses the differential coordinate representation for mesh morphing and deformation. It
uses the same advantages of differential coordinates as described in [LSCO+

04] for
applying local operations to meshes. The paper in particular introduces the Laplacian
coordinates, which are treated as a transformation that is invariant to translations and
are shown to be well suited for the modeling task. They are also made invariant to
affine transformations by adding a constraint. The main advantage of the Laplacian
coordinates is that they are not dependent on the transformations of the shape (that is
being morphed) and can tolerate degeneracies in mesh. However, they are affected by
scaling and rotations of the shape.

22 related work

2.3 discussion

All papers in Section 2.1 describe good methods for image stitching. However, they
assume planar scenes (where the change of depth in the scene is negligible when
compared to the distance of the scene from the camera) along with pin-hole camera
optics. When there are varying depths in the scene, [SS07], [LLM+

11] and [GKB11]
show visible artifacts as explained in [ZCBS13]. However, the method described
in [ZCBS13] seems very promising. None of the methods describe image stitching
when the images are from a wide angle fish-eye optic camera. Also, all the meth-
ods discussed assume ample computation power and are not capable of running
in real time. This is also true for methods discussed in Section 2.2 when the ver-
tices for deformation change with every frame. Further, due to certain challenges
as discussed below, we do not use image stitching to solve the problem of ghost artefacts.

Scenario 1: Different ordering of poles in images
Assume the scenario as shown in Figure 2.3.1. Assume there are three poles as shown.
Neglecting the effects of distortion (fish-eye optics) for the moment, the left camera
would see the scene as shown in Figure 2.3.2 and the front camera would see the scene
as shown in Figure 2.3.3. In this case, since the order of the poles seen in both the
cameras is different, image stitching cannot be used.

Figure 2.3.1: Scenario 1

Figure 2.3.2: Image of
Left Camera

Figure 2.3.3: Image of
Front Camera

2.3 discussion 23

Scenario 2: Occluded poles
Assume the scenario shown in Figure 2.3.4. Assume the height of pole B is less than
that of A. Hence, pole B is completely hidden by pole A in the image of the left
camera as seen in Figure 2.3.5. But, all three poles are seen in the image from the front
camera as shown in Figure 2.3.6. Since the information in the area to be stitched is not
consistent, image stitching cannot be used.

Figure 2.3.4: Scenario 2

Figure 2.3.5: Image of
Left Camera

Figure 2.3.6: Image of
Front Camera

Both the scenarios are very common and are generally encountered in parking situa-
tions, where this system is expected to provide assistance. As a result, it was decided
to pursue the deformation of the projection surface as against image stitching. Since
the surface to be deformed is smooth and without any fine scale detail, and that
it needs to be run on a low end processor, it was decided to adapt the method as
explained in [BK04].

3
E L I M I N AT I N G G H O S T A RT E FA C T S U S I N G M E S H
D E F O R M AT I O N

Deformation of the projection surface has never been used to solve the problem of
ghost artefacts. There have been many approaches in the image stitching domain, but,
none in the mesh deformation domain to solve this particular problem. This section
explains the method of deforming the projection surface as applied to eliminating
ghost artefacts.

3.1 general approach

As was explained in Section 1, during visualization, the projection on the regions
which are visible in only one camera is as one sees the scene. However, in the overlap
regions, the flat-surface assumption, used for projecting the images, is violated. Hence,
the images from the adjacent cameras do not match and give the illusion of two
poles (ghost artefacts - See Figure 3.1.1 for an example). The idea is to deform the

Figure 3.1.1: Visualization on the head-unit/simulator, of a parking scenario with single pole
in the overlap region giving rise to ghost artefacts - Image provided by Robert
Bosch Car Multimedia GmbH

25

26 eliminating ghost artefacts using mesh deformation

projection surface so that it is at the depth of the obstacle (pole in this case) and then,
the images from the adjacent cameras should coincide, thus eliminating the ghost
artefact. Although, the phenomenon of ghost artefacts occurs with all obstacles in the
close proximity of the car, an example of a thin pole is used in this thesis.

In the following, it is assumed that calibrated cameras with intrinsic parameter matrix,
extrinsic parameter matrix and the distortion function is available for each of the
four cameras. It is also assumed that reliable good correspondences are available
between adjacent images (marked manually using a tool). This assumption is made to
understand the ground truth of the method and to see if it is effective with known
good correspondences. Later, it can be adapted to any feature matching algorithm.
The task of eliminating ghost is divided into two parts namely, calculating depth from
known feature correspondences and deforming the projection surface.

3.1.1 Calculation of World Coordinates from Reliable Feature Correspondences

Since the correspondences between adjacent images are known, these are used along
with the camera parameters, and triangulated to find the depth of the corresponding
point in the world. Since the cameras that are used are wide angle with fish-eye
optics, the transformation from the image to the world is non-trivial. This is due to the
non-linear nature of the distortion function used to model the camera. The algorithm
used to arrive at the depth of obstacle from the point correspondences is as shown in
Figure 3.1.2.

Figure 3.1.2: Algorithm for calculation of world coordinates from image correspondences

3.1 general approach 27

The camera model as described in [Mei06] is used as reference, as the same is used for
calibration. As shown in Figure 3.1.2, first the image correspondences are read. Then,
these are transformed to the camera’s sensor coordinate system using the inverse of
the camera intrinsic matrix as per Equation 3.1.1.

Xs

Ys

1

 =


fx 0 Ox

0 fy Oy

0 0 1


(−1)

∗


X

Y

1

 (3.1.1)

where, [X, Y, 1] ′ are the pixel coordinates on the image and [Xs, Ys, 1] ′ are the corre-
sponding coordinates in the sensor coordinate system.

Next the distortion must be removed. This is done using the inverse of the dis-
tortion function. The distortion function modeled, is continuous and is differentiable
twice (see Equation 3.1.2). Hence, its inverse is calculated by using the iterative
Newton’s method [JS96], assuming that the solution lies in between [−1,−1]T and
[1, 1]T . This is because the distorted pixel coordinates of the corners of the image,
on multiplication with inverse of the camera intrinsic matrix lie between [−1,−1]T

and [1, 1]T , the undistorted pixels must also lie within the same range in the worst case.

Assume the function of distortion to be of the form,

xdis = f(xundis, x2undis, xundis ∗ yundis)

ydis = f(yundis,y2undis, xundis ∗ yundis)
(3.1.2)

where, (xdis,ydis) are pixel coordinates of the distorted image, (xundis,yundis) are
the pixel coordinates of the undistorted image and f(.) is a mapping between the two
pairs. On rearranging terms, Equations 3.1.2 can be written as,

xdis − f(xundis, x2undis, xundis ∗ yundis) = 0

ydis − f(yundis,y2undis, xundis ∗ yundis) = 0
(3.1.3)

28 eliminating ghost artefacts using mesh deformation

Assuming an initial solution as X0 = [0, 0]T , the system 3.1.3 can be solved iteratively
for a given tolerance on error, as follows:

1. Calculate the function values of f at the guessed value Xi = X0 to give G =

[g1,g2]T by evaluating 3.1.3.

2. Taking only first order partial derivatives into account for simplicity, the Jacobian
matrix is constructed as,

J =

 ∂g1
∂xundis

∂g1
∂yundis

∂g2
∂xundis

∂g2
∂yundis

 evaluated at Xi. (3.1.4)

3. Solve the linear system –G = J ∗ dx, where dx = [xundis,yundis]T , for dx.

4. Update the guess by dx, yielding Xi+1 = Xi + dx, where i is the iteration count.

5. Continue until the squared norm of G = [g1,g2]T evaluated at the new value
Xi+1 is less than a required tolerance on error.

The result of the above procedure is a point that is transformed from the distorted
image coordinates to the undistorted image coordinates in the camera’s sensor coordi-
nate system.

Next, using the inverse function of the camera model as described in [Mei06], the
points are transformed from the plane image to the unit sphere using Equation
3.1.5. Here, the transformation is from the two-dimensional image plane to the three
dimensional world in the camera’s coordinate system.

h(−1)


Xu

Yu

1

 =


ξ+
√
1+(1−ξ2)(x2u+y

2
u)

x2u+y
2
u+1

xu

ξ+
√
1+(1−ξ2)(x2u+y

2
u)

x2u+y
2
u+1

yu

ξ+
√
1+(1−ξ2)(x2u+y

2
u)

x2u+y
2
u+1

− ξ

 =


Xc

Yc

Zc

 (3.1.5)

where, [Xu, Yu, 1] ′ are the undistorted pixel coordinates in the sensor coordinate system
of the camera and [Xc, Yc,Zc] ′ are the world coordinates in the camera’s coordinate
system for the corresponding pixel [Xu, Yu, 1] ′.

Finally, the point is transformed into the world coordinate system using the inverse

3.1 general approach 29

of the camera extrinsic matrix. This is done for each pixel that is part of an image
correspondence using Equation 3.1.6.

Xw

Yw

Zw

 = R
(−1)
(3x3) ∗


Xc

Yc

Zc

+ T(3x1) (3.1.6)

where, R(3x3) is the (3x3) orthonormal rotational matrix and T(3x1) is the (3x1) trans-
lational vector.

Then, rays are constructed using the world coordinates of pixels in one image from
the origin of the respective camera. For a point correspondence, there are two rays

Figure 3.1.3: System of skew rays using two cameras for two points on the pole (top and
bottom) as obstacle

from adjacent cameras, that intersect. This intersection point is the world coordinate
of the point correspondence. On the edges of the obstacle (for example, the pole), the
adjacent cameras never see the same point in the world due to different perspectives,
although there exists feature correspondence between these two points in the image.
As a result, the two rays never intersect. In fact, they always form a pair of skew lines

30 eliminating ghost artefacts using mesh deformation

as depicted in Figure 3.1.3. The mid-point on the line of the shortest distance between
these two skew lines (which is necessarily perpendicular to both lines) is calculated as
follows and is used as the point of intersection.
Consider the two rays of a particular point correspondence to be:

L1 : r1 = p1 + t ∗ v1
L2 : r2 = p2 + s ∗ v2

(3.1.7)

where, v1 and v2 are the direction vectors of the rays, p1 and p2 are two points on the
respective rays, and t and s are scalars. To find the shortest distance between these
two lines, it suffices to find scalars t and s that minimize the squared norm (r1 − r2).
Substituting for r1 and r2 from 3.1.7 into ‖r1 − r2‖2, we get:

[v1,−v2] ∗ [t, s]T − [p2− p1] = 0 (3.1.8)

The coordinates of the midpoint of this line of shortest distance is given by,

(p1 + t ∗ v1 + p2 + s ∗ v2)/2 (3.1.9)

This is repeated for every point correspondence to result in a 3D point cloud in the
world. This point cloud indicates the location of the nearest obstacle in the world
coordinates (assuming the nearest obstacle had feature correspondences).

3.1.2 Deformation of Projection Surface to eliminate Ghost Artefacts

Once the location of the nearest obstacle is decided, the next task is to deform the
projection surface (the bowl) so that no ghost artefacts are visible. To achieve this,
the method as described in [BK04] and [BS08] is adapted ([BS08] has solved the
problem with geometry of meshes, it has never been used to solve the problem of
eliminating ghost artefacts by deforming projection surfaces), as discussed in Section 2.

The method described in [BS08] explains a way of deformation as minimizing the thin
shell energy. The mathematical model described, resists the changes to the fundamen-
tal forms of the surface giving an intuitive deformation. Before discussing it further,
the following definitions of surface regions are necessary to understand the method:

• Fixed Region - Region of the mesh that is unaffected by the deformation and
retains the original shape.

3.1 general approach 31

• Handle Region - Region of the mesh for which we know the position, or the
displacement from the original position, that is to be maintained after the
deformation.

• Free Region - The Region in between the Handle and Fixed Regions for which the
deformation needs to be intuitively carried out. The positions or displacements
of the mesh part for this surface needs to be calculated so as to result in an
intuitive deformation.

Let us first assume a continuous surface. Let the surface S be deformed to surface S ′.
Then the change of fundamental forms results into [BS08]:

E(Shell)(S
′) =

∫
Ω

ks‖I ′ − I‖2F + kb‖II ′ − II‖2Fdudv (3.1.10)

where, E(Shell)(S ′) is the shell energy of the modified surface, Ω ⊆ S is the surface
undergoing deformation, I(u, v), II(u, v) ∈ R2x2 represent the fundamental forms of
surface S, I ′(u, v), II ′(u, v) ∈ R2x2 represent the fundamental forms of surface S ′ and
‖∗‖F represents the Frobenius norm. The first fundamental form denoted by I(u, v)
allows one to calculate curvature and metric properties of the surface (length and area).
The second fundamental form denoted by II(u, v) along with the first fundamental
form defines the principal curvatures of the surface. The stiffness parameters ks and
kb are used to vary the resistance to stretching and bending [BS08]. This system needs
to be minimized to yield an intuitive deformation. However, Equation 3.1.10 is a
non-linear optimization problem and is computationally very expensive for real-time
applications. Hence, to simplify, the change of first and second fundamental forms is
replaced by the first and second order partial derivatives. This problem can be solved
efficiently using variational calculus so as to yield the following Euler-Lagrange Partial
Differential Equation [BS08].

−ks∆d+ kb∆
2d = 0 (3.1.11)

Equation 3.1.11 is analogous to the minimization problem of Equation 3.1.10, where
∆ and ∆2 are the Laplacian and bi-Laplacian operators respectively and d is the
displacement function (d can be absolute positions of the handle on S ′ or displacement
of the vertices from their initial position on S).

Since Ω is defined to be a subset of the original surface S, and additionally choosing d
on S itself, reduces Equation 3.1.11 to the following [BS08]:

−ks∆sd+ kb∆
2
sd = 0 (3.1.12)

32 eliminating ghost artefacts using mesh deformation

where, the Laplacian operator ∆ reduces to the Laplace-Beltrami operator ∆s.

To discretize the above setup to a triangle mesh, two approaches are available. The
Finite Element Method (FEM) and the Finite Differences. As per [BS08], FEM gives
better approximations, however has some restrictions on the initial surface. In com-
parison, [BS08] suggests use of finite differences as it is simpler to use. This involves
discretizing only the Laplace-Beltrami operator of Equation 3.1.12. Assume that a
piecewise scalar function f : S → R is defined on the initial surface S, the discrete
Laplace-Beltrami for a vertex vi can be written as [BS08]:

∆sf(vi) = wi
∑

vj∈N1(vi)

wij(f(vj) − f(vi)) (3.1.13)

where, vj ∈ N1(vi) are the connected one-ring neighbours of vi (cf. Figure 3.1.4).
The discretization depends on the normalization weights wi and the edge weights
wij = wji (see Section 3.1.3 for details).

Figure 3.1.4: Discretization Weights, One ring neighborhood of vi, one of the neighbors vj, the
dark gray area indicates the Voronoi Area - Image taken from [BS08]

Using Equation 3.1.13, the Laplace-Beltrami operator can be written in the following
way as [BS08]:

∆sf(v1)

.

.

.

∆sf(vn)


=M−1Ls



f(v1)

.

.

.

f(vn)


(3.1.14)

3.1 general approach 33

where, M is a diagonal matrix of normalization weights with, Mii =
1
wi

= Ai, the
Voronoi area (discussed in Section 3.1.3) and Ls is a symmetric matrix defined as
follows [BS08]:

(Ls)ij =



∑
vk∈N1(vi)

wik, i = j,

wij, vj ∈ N1(vi),

0, Otherwise

(3.1.15)

The Equation 3.1.12 now becomes a sparse n x n linear system, where, n is the total
number of mesh vertices:

(−ksL+ kbL
2)d = 0 (3.1.16)

The boundary conditions (the constraints of the fixed and handle regions) are incorpo-
rated into Equation 3.1.16 and the corresponding non-zero right hand side equation
system is solved.

3.1.3 Decision on Parameters

The above section describes the general approach that has been followed. To adapt this
approach to our case, certain values need to be decided for the various parameters that
are used. The choices and the justification of the same are discussed in this sub-section.

Discretization weights

There are many variants of discretizing the Laplace-Beltrami operator. The defacto
standard is the cotangent discretization as described in [DMSB99], [MDSA03] and
[PP93]. This is described by the following definition for weights:

wi =
1

Ai
, wij =

1

2
(cotαij + cotβij) (3.1.17)

where, αij and βij are the angles on opposite sides of the edge (vi, vj), and Ai is the
voronoi area (see Figure 3.1.4) as described in [MDSA03]. Also, more often, the uniform
Laplacian as used in [KCVS98], [LSCO+

04], [SCOL+
04] and [SZGP05] is commonly

employed owing to simpler computations. The definition of weights used are:

wij = 1, wi =
1∑

j

wij (3.1.18)

34 eliminating ghost artefacts using mesh deformation

Since this discretization does not take the geometry or position of vertices in the
neighborhood into account, it is an approximate method and works well only for
regular meshes, which is true in our case. To decide which discretization should be
used, a small experiment was performed.

A regular grid of 50 X 50 was constructed. An elliptical handle region was selected.
At first a deformation of 5 (10% 0f one side) units was chosen for both the methods.
The method with a uniform Laplacian gave intuitive results, whereas, this was not
the case with cotangent weights. To check when would the method with a uniform
Laplacian fail, the deformation was increased upto 100 units and the deformation was
still intuitive, mainly because of the regularity of mesh. The results of deformation of
100 units with a uniform Laplacian and that of 5 units with a cotangent discretization
are as shown in Figures 3.1.5 and 3.1.6. The blue vertices are the handle, the magenta
vertices (and black vertices not included in the equation system for reducing the
number of computations) are the fixed vertices and the red vertices are the free vertices.

Figure 3.1.5: An example of Cotangent Discretization on an experimental regular mesh of 50 x
50

As one can see from Figures 3.1.5 and 3.1.6, the cotangent discretization does not per-
form as well as the one of uniform Laplacian. It was also observed that the cotangent
discretization worked similar to the one with uniform Laplacian weights upto only 0.5

3.1 general approach 35

Figure 3.1.6: An example of Uniform Laplacian Discretization on an experimental regular
mesh of 50 x 50

units. Hence, 10 iterations each with increasing height of handle were made with the
deformed mesh as input to the next iteration in the case of cotangent discretization.
The result is as shown in Figure 3.1.7. As can be seen, this produces a similar result as
the deformation by Uniform Laplacian weights.

Figure 3.1.7: Same example of Cotangent Discretization, but with 10 iterations of 0.5 units
increase in deformation with every iteration

36 eliminating ghost artefacts using mesh deformation

Also, the execution times for Uniform Laplacian was 30 seconds and that for cotangent
discretization weights was 64 seconds/iteration. Looking at these results and the fact
that our mesh is a uniform grid, it was decided to use the Uniform Laplacian weights.

Stretching and bending coefficients

As per [BS08], if kb = 0, then the continuity of surface would be C0. This is highly
undesirable, especially when the surface is used for texturing. This is because the
textures would get stretched when continuity changes abruptly. This has been also
confirmed on the same regular grid and the result can be seen in Figure 3.1.8. Values

Figure 3.1.8: ks = 1,kb = 0 Note the loss of continuity between the transition from free region
to handle region

of 0, 1, 10, 100 and 1000 were tried on the regular grid and our case scenario. No
visible difference was observed except when ks = 0 or when kb = 0 for the regular
mesh. In the actual mesh, a difference was observed for cases with ks = 0, and for
ks = 1, kb = 1000. Hence, values of ks = 1 and kb = 10, as suggested in [BS08], are
used.

3.1 general approach 37

Handling Constraints

There are two approaches to include the boundary constraints, namely hard constraints
and soft constraints. In hard constraints, the known variables are shifted to the right
hand side by deleting the respective rows and columns of the system matrix. In soft
constraints, the known variables are added as additional equations to the system and
the resulting overdetermined system is solved.

Consider the example shown in Equation 3.1.19.


a b c

d e f

g h j

 ∗

x

y

z

 =


m1

m2

m3

 (3.1.19)

Assume that the value of y is known. When hard constraints are implemented, the
equation system 3.1.19 would become the following:

 a c

g j

 ∗
 x

z

 =

 m1− b ∗ y

m3− h ∗ y

 (3.1.20)

When soft constraints are implemented, the equation system 3.1.19 would become the
following:


a b c

d e f

g h j

0 λ 0

 ∗

x

y

z

 =


m1

m2

m3

λ ∗ y

 (3.1.21)

where, λ is a constant that can be varied depending on how much the constraint should
be weighted and satisfied. As explained in [BS08], hard constraints are preferred due to
better condition number of system matrix and better numerical stability as compared
to use of soft constraints. Hence, hard constraints are implemented.

38 eliminating ghost artefacts using mesh deformation

Handle, Fixed and Free Regions

The handle, fixed and free regions are selected based on the implementation method
and the visualization results on the simulator. Hence, these were decided by ex-
periments based on visualization results and are discussed in Section 4.3. Detailed
description of the methods are described in Section 3.2

3.2 selection of free , handle and fixed regions for the deformation

algorithm

The method for the selection of free, handle and fixed regions is discussed here. There
were two methods that were promising. The first one being a naive approach and the
second one extended the first.

3.2.1 Deformation Method without including the Ground Plane

The 3D point cloud generated from the image correspondences form the basis of the
handle. The idea is, all vertices of the mesh that are in the same radial direction as the
world coordinates of the nearest obstacle are treated as the handle vertices. And the
extent of their spread marks the handle sector (see Figure 3.2.1 for an illustration). The
closest world coordinate of the correspondence in the radial direction to the center
of the bowl, marks the position of the handle. The complete handle region is made
to have this position. The maximum height of the point cloud decides the height of
the handle region. Parameters, αfree and αfixed were used for angle of free sector on
both sides of the handle sector, and for the angle of fixed sector on both sides of the
free sector respectively.

In this method, the ground plane of the bowl was not included in the deforma-
tion. Also, the fixed and free sectors extended for a certain fixed height of the bowl.
When these were extended to cover the complete height of the bowl, certain unde-
sirable black areas were seen, which is explained in the Section 3.3. The results of
this method are as shown in Section 4.5. These results were very promising but, had
certain artefacts on the ground surface, which was expected, as the ground plane was
not included in the deformation. The results also proved that the direction was correct.
And hence, this paved the way for the deformation method including the ground
plane.

3.3 challenges and implementation details 39

Figure 3.2.1: Illustration of spread of free, fixed and handle vertices - Deformation Method
without including the ground plane

3.2.2 Deformation Method including the Ground Plane

Here, the idea of deformation method without including the ground plane is carried
forward. Here however, the ground plane is included in the deformation. Once the
3D point cloud is calculated, the depth of the handle region is arrived at in the same
way as with the previous method. Now, all the vertices beyond the handle depth on
the flat surface are interpolated to the vertical line in the gap between the flat surface
and the first vertex on the curve of the wall (see Figure 3.2.2 for an illustration). The
free and fixed regions are also decided in the same way as in the previous method.
However additionally, parameters are used to decide the height of the free region,
and the fixed region extends to the height of the bowl. The results of this method are
discussed in the Section 4.6. This method yields promising results but also throws
certain challenges which are discussed in the next section.

3.3 challenges and implementation details

In the following, a couple of challenges that were faced during the course of imple-
mentation of the methods described above, are discussed. These deal with certain
practicalities of the setup and results show improvement in visualization after dealing
with the challenges.

40 eliminating ghost artefacts using mesh deformation

Figure 3.2.2: Spread of free, fixed and handle vertices - Deformation Method including the
ground plane, the left figure illustrates interpolation of flat surface to the vertical
plane for the handle region, the right figure illustrates the use of ground plane in
the deformation algorithm

3.3.1 Failure of Deformation in certain frames

When the algorithm was run on a sequence of frames, in some frames, it was observed
that no deformation occurred, even though image correspondences data was present
and world coordinates were calculated. The problem was with respect to the resolution
of the bowl in the horizontal direction. A small pole of 8− 10 cm in diameter and 100
cm in height would subtend an angle of 0.5 degrees for the handle region when it is
very close to the car. This was less than the resolution of the bowl. Also, in case there
were no correspondences near the top of the pole, it would not be included as handle
in the deformation process and would be marked as free region.

To resolve this, a default handle angle and default height was chosen. The default
handle angle was decided to be a little more than the resolution of bowl. In case
spread of the 3D point cloud was more than this default value, the calculated value
would be used, else default value would be in effect. Similarly, the default height was
chosen depending on the visualization on the simulator. If the height as determined
by the 3D point cloud was beyond this default height, the calculated value would be
used, else the default height would be in effect.

3.3 challenges and implementation details 41

3.3.2 Black Areas in Frames after deformation is accomplished

When the algorithm was run on a sequence of frames, some frames contained a
black patch in the deformed region instead of image data. This was because, during
deformation, some of the deformed area would go outside the visible frustum of the
camera. Figure 3.3.1 shows the visible frustum of the setup. For simplicity, only the
planes that limit the visible portion (top planes) are pictured. The bottom planes
intersect inside the car and are not interesting here. Once the area is outside the

Figure 3.3.1: Visible frustum of cameras as mounted on the car, the combined volume below
the planes is the visible frustum. Everything above is not visible

visible frustum of all the cameras, it cannot be textured and hence would be rendered
transparent (with alpha value = 0). Since, the background color used was black,
this resulted in a black region inside the frame. Two solutions were tried for the
said problem namely, constrained deformation and deformation constraining the free
region to handle before deformation, which are discussed in the following.

42 eliminating ghost artefacts using mesh deformation

Constrained Deformation

Assume that the visibility is constrained by only two cameras, as only two cameras
contribute to the region in the overlap area of the bowl. These constraints can be
framed as equations of a plane with the form:

a1x+ b1y+ c1z+ d1 = 0

a2x+ b2y+ c2z+ d2 = 0
(3.3.1)

Equation 3.1.16 with the hard constraints implementation would be as follows:

(−ksL
′ + kbL

′2)d = b (3.3.2)

where, b is non-zero due to shifting of known variables to the right hand side and L ′

is the same matrix as L with the rows and columns of known variables (constraints)
deleted. To implement the visibility constraint, the Equations 3.3.1 and 3.3.2 need to be
solved together. However, there is no direct solver available to solve such a constrained
optimisation. Hence, the following solution was worked out.

Figure 3.3.2: Constrained Deformation - The vertex moving away from the visible frustum of
camera is constrained to the visible frustum using the intersection of the plane of
frustum and the ray joining the original vertex and its deformed position

The situation is explained with a single camera for simplicity as shown in Figure
3.3.2. Assume a vertex is present on the visible region of the camera. Consider that,
as a result of the deformation, it is shifted to a region not visible to the camera. The
position of this vertex is now forced to be at the intersection of the plane of the camera
frustum and the line joining the original vertex to its deformed position. When the
vertex is not visible in both cameras, the intersection with the least distance to the

3.3 challenges and implementation details 43

deformed vertex is chosen. With this, the constraint of continuity (C1 as dictated
by [BS08]) is lost, and the textures appear to be stretched and blurred, but the black
regions are eliminated. The results are shared in Section 4.6.

Deformation Constraining the Free Region to the Handle before deformation

Here, before performing the deformation, all the vertices in the free region in the same
radial direction as the handle were made to take positions similar to handle (at the
same distance as handle vertices with original Z coordinates). Then, the constraint
of Constrained Deformation was applied to this new handle region alone. With this
as handle, the equation system was solved to give an intuitive deformation that is
bound by the visible frustum, automatically. This is because upon deformation, none
of the parts of mesh go further than the handle. This method gives far less region
of C0 continuity than the Constrained Deformation. This is because a very small
portion of the free region gets constrained to be flat (the same sector as the handle
region), whereas, in Constrained Deformation, all the vertices of free region violating
the constraints of frustum had to be constrained. This resulted in a larger patch of
surface to be flat on a C1 surface.

To summarize, the complete algorithm is as follows:

1. Calculate world coordinates from feature correspondences between images.

2. Decide on the handle, free and fixed regions.

3. If method is constrained deformation,

• Solve the equation system.

• Apply the constraints of camera frustum.

• Replace the free vertices with the solution.

• Reform the bowl and put the image content on it.

else

• Apply constraint of camera frustum to free region in the same radial
direction as the handle region.

• Use these constrained vertices as new handle.

• Solve the equation system.

• Replace the free vertices with the solution.

• Reform the bowl and put the image content on it.

4
E X P E R I M E N T S , R E S U LT S A N D O B S E RVAT I O N S

This section is dedicated to explanations of the various experiments conducted, the
results and discussions there off, in order to understand the strengths and limitations
of the algorithms used.

4.1 dataset used

Sequence
Total

Number

of Frames

Number of

Frames

Used

Total Time

of

Sequence

Kind of

Obstacle

Real World

Sequence 1

174 27 and 15 18s

Pole in Front-Left

overlap region

and Back-Left overlap region

Real World

Sequence 2

208 22 21s
Pole in Front-Right

overlap region

Real World

Sequence 3

31 31 3s

Pole in different

overlap regions

with 10 correspondences each

Real World

Sequence 4

169 16 17s

Crate in Back-Left

overlap region

with 6 correspondences each

Synthetic

Sequence 1

180 22 10s
Pole in Front-Left

overlap region

Synthetic

Sequence 2

180 22 10s
Pole in Front-Right

overlap region

Table 4.1.1: Dataset used for all experiments

45

46 experiments , results and observations

Data forms an integral part of all experiments. For a systematic evaluation of any
algorithm, the data is the most important part and needs to be accurate enough. For
all the experiments, four real world sequences and two synthetic sequences were
used. The images of the real world sequences were captured using the surround view
system mounted on the Opel Insignia car, by driving it around the Bosch campus. The
synthetic sequences were generated using MATLABr and the camera model (intrinsic
matrix, extrinsic matrix and the distortion function) as described in Section 4.4. The
Table 4.1.1 gives more details on the dataset used.

4.2 quantitative measurement of human perception of vision - the

ssim index

For making a quantitative assessment of the visualizations, an algorithm as described
in [WBSS04] was used. [WBSS04] introduces a quantitative measure for measuring
human perception of vision, namely the Structural Similarity Index (SSIM Index).
The algorithm uses a quality assessment method based on degradation of structural
information. Structural information is all the information in a scene that does not
depend on illumination. In other words, on an image, it is all the information
(including edges, corners and their dependencies) that are not dependent on constrast
and luminance on the image. The SSIM Index gives a more realistic picture of human
perception and is rated a better measure than Peak Signal-to-Noise Ratio (PSNR) and
Mean Squared Error (MSE) [WBSS04]. The algorithm measures the similarity between
two images based on the structural information and gives an Index value between
0 and 1. An SSIM Index of 0 means no similarity and an SSIM Index of 1 means
identical images in terms of structure.

4.3 decision on parameters of the fixed, handle and free regions

The parameters used for the angles of handle, free and fixed regions, the heights of
these regions and the distance of these regions on the flat surface (for details, refer to
Section 3.2.2), were finalized using the visualization as an end result. The parameters
were modified with multiple experiments and finalized so as to give the best possible
visualization to the user.

Different values were tried for the angles and heights of the free, handle and fixed
regions for the methods described in Section 3.2.1 and 3.2.2. From the visualizations, it
was clear and required, to use a huge angle (αfree) for the free region (of the order of

4.3 decision on parameters of the fixed, handle and free regions 47

tens of degrees) and a small default angle (less than 10 degrees) for the handle region
(αhandle). For the fixed region, the results were compared between using the rest of
the mesh as fixed region and using a small angle of fixed region on both sides. No
difference was observed in both the solutions, however, using rest of the mesh for
solving the linear system took longer to solve. Also, using the rest of the mesh makes
the system more overdetermined, due to an increased number of constraints. With
the above two facts, it was decided to use a very small angle (less than or equal to 10
degrees) for the fixed region (αfixed).

Figure 4.3.1: Visualizations with different parameter selections for free, handle and fixed
regions - Left image shows visualization with αfree = 30o, αfixed = 5o,
Heighthandle = 1.5m, Heightfree = 4.5m and Heightfixed = 1m, Right im-
age shows visualization with optimized values, αfree = 70o, αfixed = 10o,
Heighthandle = 4.5m, Heightfree = 12.5m and Heightfixed = 4m - Image
provided by Robert Bosch Car Multimedia GmbH

For heights of different regions, it was observed that, the handle region needs a
substantial default height to help result in a good visualization (in our scenario
Heighthandle = 4.5m). An adequate height (12.5m above the handle) and distance
on flat ground (1m) was given for free region in agreement with the huge angles
provided to have a smooth and a symmetrical deformation and also to result in a good
visualization. Similarly, a comparatively smaller height (4m) and distance (1m) was
required for the fixed region. The values arrived at, for the various heights and angles
have been concluded by looking only at the resulting visualizations on the simulator. A
visualization of the result using the smaller angles with smaller heights (αfree = 30o,
αfixed = 5o, Heighthandle = 1.5m, Heightfree = 4.5m and Heightfixed = 1m as
an example) and optimized angles with higher heights (αfree = 70o, αfixed = 10o,
Heighthandle = 4.5m, Heightfree = 12.5m and Heightfixed = 4m) is as shown in

48 experiments , results and observations

Figure 4.3.1. As can be seen from the Figure 4.3.1, the left image looks definitely less
pleasing than the right. Hence, the parameters used for generating the visualization
on the right have been used in all the further experiments.

4.4 accuracy of world coordinates

To understand how good the calculation of the world coordinates from image corre-
spondences is, synthetic images were generated. A simple example of an obstacle is a
pole, which can be assumed to be approximated by a cylinder of a certain diameter
and height and having horizontal stripes so as to generate enough points for point
correspondences. It was decided to generate an artificial 3D pole. In the perspective of
the camera, this cylinder can be assumed to be a rectangle on a plane perpendicular to
the camera’s viewing direction. Therefore, individual point clouds were constructed
(one for each camera), given the coordinates of center of base, radius of base, height of
the cylinder and number of stripes on the cylinder, as shown in Figures 4.4.1 and 4.4.2.
Point clouds were generated instead of lines, as this facilitated the conversion of 3D

Figure 4.4.1: 3D point cloud of a pole as
seen from all cameras

Figure 4.4.2: Top view of the point clouds gen-
erated, red for front camera, blue
for left camera, magenta for rear
camera and black for right camera

World to 2D Images. It is easier to convert points from the world to the image using the
camera model (the intrinsics matrix, the extrinsics matrix and the distortion functions)
than lines, as lines will have to be finally converted to points, or only end points of line
would be available and the region in between would need to be interpolated. These
point clouds along with the camera model were used to create the images.

4.4 accuracy of world coordinates 49

In the world coordinate system, the origin is the center of the rear axle on the car. The
positive x-axis is directed towards the front and the positive y-axis is directed towards
the left of the car. For the example shown in Figure 4.4.1, the point cloud is visible
in the left and front cameras (since both x- and y-coordinates are positive) and is not
visible in the right and rear cameras (as the point cloud is behind the cameras, as
dictated by the viewing direction of the cameras). The images generated using this
method also proves this fact, and are as shown in Figures 4.4.3 (a), (b), (c) and (d). The

(a) Front Camera Image (b) Left Camera Image

(c) Rear Camera Image (d) Right Camera Image

Figure 4.4.3: Images generated from the synthetic point clouds using the camera model (intrin-
sic parameters, extrinsic parameters and distortion function)

image of the right camera as shown in Figure 4.4.3 (d) also shows the pole, however
the viewing angle is limited using the alpha blending explained earlier. Hence, all
points in the world can be utmost viewed by a maximum of two cameras.

50 experiments , results and observations

Two synthetic sequences, Synthetic sequence 1 and Synthetic sequence 2 were gener-
ated using this method. One simulated the car driving by the pole on the left side and
another on the right side. Correspondences were selected on these images using a
tool, as discussed in Section 1. The calculation of world coordinates was carried out
using the algorithm described in Section 3.1.1. This was compared with the actual
coordinates of the 3D point cloud. The Table 4.4.1 is one example of the outcome of
the algorithm on point correspondences of one frame of the synthetic images. The
Table 4.4.2 is the ground truth, where the actual coordinates of points from the point
cloud were used and the midpoint rule of skew lines (see Section 3.1.1 for details) was
used to calculate the world coordinates. Table 4.4.3 shows the % error of using the
algorithm with reference to the point cloud.

X Y Z

4919.99 2622.86 16.2298

5046.21 2437.17 15.7548

4888.85 2595.84 414.52

5088.78 2482.86 427.472

4873.20 2583.72 783.325

5064.80 2462.95 827.607

4858.96 2570.50 1218.07

5029.87 2428.16 1198.88

Table 4.4.1: Result of Algo-
rithm

X Y Z

5069.19 2421.81 0.57220

4925.70 2573.59 1.13250

5074.30 2426.41 399.268

4925.70 2573.59 401.533

5074.30 2426.41 799.668

4925.85 2573.44 801.931

5074.30 2426.41 1200.07

4926.00 2573.30 1202.33

Table 4.4.2: Ground Truth

X Y Z

−2.9432 8.3016 2736.31

2.4466 −5.3008 1291.15

−3.6547 6.9827 3.8200

3.3108 −3.5254 6.4600

−3.9631 6.4832 −2.0437

2.8208 −4.2935 3.2018

−4.2437 5.9384 1.5000

2.1086 −5.6402 −0.2869

Table 4.4.3: % Error

Similar tables were created for all the frames with correspondences. As can be
seen, there is a huge % error in the first two rows for the Z coordinate. This is due
to the points being on the ground surface having a small position error. But, owing
to the fact that the ground truth is close to 0, for the percentage, it causes a division
by a very small value, making the % error very high. The error statistics of X, Y and
Z coordinates are as detailed in Table 4.4.4. 136 points were used in total and it was
confirmed that the absolute error in the Z coordinates of ground point was much
less than the other errors and these were deleted before the statistics were calculated.
As can be seen from Table 4.4.4, the Z coordinate still had higher mean % error and
much higher standard deviation. This is due to the use of the mid-point rule of skew

4.5 results of deformation method without using ground plane 51

lines and that the point correspondences were always on the edge of the pole, which
explains the higher error.

X Y Z

Mean 0.008729 −0.35494 16.7811

Standard Deviation 1.8948 5.3499 10.9820

Table 4.4.4: % Error Statistics in calculation of World coordinates

The error in calculation of world Coordinates is mainly on account of low resolution of
the images (320 x 240) and due to pixel accuracy of image correspondences (sub-pixel
accuracy would improve the estimation). Hence, with an actual feature detection and
matching algorithm (with sub-pixel accuracy) and with improved resolution of images,
the estimation of world coordinates would improve.

4.5 results of deformation method without using ground plane

Figure 4.5.1 shows the comparison of the visualizations, as seen on the simulator. It
compares the non-deformed view with the deformed view for the method discussed
in Section 3.2.1. As can be seen from the figure, there is an improvement in the

Figure 4.5.1: Deformation without using ground plane (The left image is the undeformed View
and the right image is the deformed view) - Image provided by Robert Bosch Car
Multimedia GmbH

visualization for the surface above the ground (the region of the pole). The ghost
artefacts above the ground are eliminated. However, on the ground surface, the
ghost artefacts are still visible. This is due to the fact that the ground plane was not

52 experiments , results and observations

considered for the deformation. However, the improvement in visualization above the
ground proves that this method if used along with ground plane can help eliminate
the ghost artefacts completely.

4.6 results of deformation method including the ground plane

Figure 4.6.1: Deformation using ground plane (The left image is the undeformed view and
the right image is the deformed view) - Front View - Image provided by Robert
Bosch Car Multimedia GmbH

Figure 4.6.2: Deformation using ground plane (The left image is the undeformed View and the
right image is the deformed view) - Left View - Image provided by Robert Bosch
Car Multimedia GmbH

Figure 4.6.1 shows the comparison of the visualizations, as seen on the simulator. It
compares the non-deformed view with the deformed view for the method as dis-
cussed in Section 3.2.2. As can be seen from the figure, there is a great improvement
in visualization and the ghost artefacts are now parallel. This can be seen more clearly

4.6 results of deformation method including the ground plane 53

in Figure 4.6.2 which shows the view from the left side. These parallel ghosts appear
due to the small error in world coordinates (owing to the different perspectives of
camera in addition to the reasons stated in Section 4.4). When the algorithm was
run on multiple frames of different sequences, in some of the frames, black regions
were observed, as shown in Figure 4.6.3. This is due to the fact that some part of the
deformed surface is not within the visible frustum of cameras as discussed in Section
3.3.2.

As described in Section 3.3.2, a solution of using Constrained Deformation was
arrived at. Figure 4.6.4 shows the implementation of the same example frame with
black region shown in Figure 4.6.3, with the solution of Constrained Deformation im-
plemented. As can be seen from the Figure 4.6.4, there is visible blurring or stretching
of the image, where there were black regions. This is due to the fact that, the basic
algorithm results in a C1 continuous surface and resists the changes to fundamental
forms (lengths of curves, areas etc.) [BS08]. This is lost by using the Constrained
Deformation. Hence, the textures appear to be stretched.

Figure 4.6.3: Black Regions during Defor-
mation due to the mesh re-
gion going out of the visi-
ble frustum of cameras dur-
ing deformation - Image pro-
vided by Robert Bosch Car
Multimedia GmbH

Figure 4.6.4: Solution of black regions in
Deformation - Constrained
Deformation - Image pro-
vided by Robert Bosch Car
Multimedia GmbH

Figures 4.6.5, 4.6.6, 4.6.7 and 4.6.8 show frames of different sequences implemented
using the method of Constrained Deformation described in 3.3.2, including the imple-
mentation on the synthetic image sequence. As can be seen, in Figures 4.6.5 and 4.6.6

54 experiments , results and observations

Figure 4.6.5: Constrained Deformation including ground plane (obstacle in Back-Right Region)
- Image provided by Robert Bosch Car Multimedia GmbH

Figure 4.6.6: Constrained Deformation including ground plane (obstacle in Front-Right Region)
- Image provided by Robert Bosch Car Multimedia GmbH

Figure 4.6.7: Constrained Deformation including ground plane (obstacle in Front-Left Region -
Synthetic Images) - Image provided by Robert Bosch Car Multimedia GmbH

Figure 4.6.8: Constrained Deformation including ground plane (obstacle in Front-Right Region
- Synthetic Images) - Image provided by Robert Bosch Car Multimedia GmbH

4.6 results of deformation method including the ground plane 55

Figure 4.6.9: Free as handle Deformation including ground plane (obstacle in Back-Right
Region) - Image provided by Robert Bosch Car Multimedia GmbH

Figure 4.6.10: Free as handle Deformation including ground plane (obstacle in Front-Right
Region) - Image provided by Robert Bosch Car Multimedia GmbH

the scene seems rotated a little. This is due to the fact that the deformation is across a
very wide angle. Since the the deformation is intuitive, it tries to maintain a smooth
surface and tends to be directed towards the handle. This effect gives a feeling that
the scene is rotated. Also in Figure 4.6.6, three cars are seen on the left side instead
of two cars, in the deformed view. This is the same problem dealt with in this thesis.
Since the deformation is not done on this side, the car comes into the overlap region
at a farther distance and the two perspectives of the different cameras are projected
and blended, giving rise to three cars instead of two.

Using the method of constraining the free region to the handle before deforma-
tion as described in 3.3.2, the frames described in Figures 4.6.5 and 4.6.6 look as shown
in Figures 4.6.9 and 4.6.10. The synthetic frames exhibited no difference owing to the
fact that no textures other than the pole are present in the images. It can be seen that

56 experiments , results and observations

the amount of stretching of textures and blurring is visibly same or increased. This is
due to the fact that, although the solution tries to preserve the lengths and areas of
surface, it cannot preserve it completely. Hence, the textures still appear to be stretched.

Both the challenges discussed above (scene rotation and appearance of three cars
instead of two) can be eliminated when deformation is done at all the four overlap
regions, depending on the image correspondences simultaneously. Additionally a least
squares curve (preferably an ellipse) can be fit first with respect to the depth in four or
eight directions while forming the initial bowl, so that the amount of deformation with
respect to the frame can be minimized, resulting in fewer artefacts after deformation.

4.7 noise on pixel coordinates

The algorithm was run with image correspondences selected manually using a tool.
As explained in Section 3.1, this was done to understand the ground truth.

Figure 4.7.1: Variation of SSIM Index with respect to Noise Variance

4.7 noise on pixel coordinates 57

In actual practice this would not be feasible, as the algorithm has to run in real time
and an automatic feature detection and matching algorithm would be used. One of
the problems associated with such an algorithm is that it is bound to have some error
associated with it and is not perfect. To understand the behavior of the algorithm
when the feature matching algorithm is implemented, an experiment was carried out.

In this experiment, random noise from a Gaussian distribution with 0 mean and
varying variance was added to each of the pixel coordinates of the image correspon-
dences in both the images and the algorithm was run on the 64 Frames of Real World
Sequence 1 and Real World Sequence 2. To understand the effect of size of obstacle, 16
frames of the sequence, Real World Sequence 4 was used. The quality of the images
so formed on the visualization of simulator needed to be studied. This was done
qualitatively by getting the different sequences rated from different individuals and is
described in Section 4.10. The method of Constrained Deformation as described in
3.3.2 is used for the experiment. The SSIM Index as described in Section 4.2 is used as
a quality measure. Figure 4.7.1 shows the variation of the SSIM Index with respect to

Figure 4.7.2: Effect of Noise on Visualization - Left Image is a frame without noise, Right
Image is same frame with a random noise of ±10 variance with the lowest SSIM
Index of 0.65 - Image provided by Robert Bosch Car Multimedia GmbH

change in the variance of the 0 mean Gaussian noise. The curves with default height
were plotted when the algorithm was run using the default height of the handle region
(Heighthandle). The curves without default height were plotted with the algorithm
run without any default height of the handle region. In this case, the height of the
handle region was dictated by the maximum Z-coordinate of all the world coordinates
obtained from the feature correspondences as described in Section 3.2.1. As can be
seen from Figure 4.7.1, the mean and minimum SSIM Index reduces with increase

58 experiments , results and observations

in the variance of the noise (which is expected). However for the Pole Obstacle, the
decrease is not very sharp and is gradual with increase in noise variance. This is
evident from the Figure 4.7.2 which shows a comparison of a frame without noise and
the same frame with noise of 10 times the variance (equivalent of ±30 pixels), with
the lowest SSIM Index of all the frames. As can be seen, the pole seems more bent at
the bottom and then rises up. Also, there is not much difference in using the default
height of the handle for improving the visualization.

Figure 4.7.3: Variance of SSIM Index with respect to Noise Variance

But, the reduction in SSIM Index for a sequence with a bigger obstacle (a crate
in this case) is sharper. This is because of the fact that the default angle of the handle
is no longer in effect as the actual sector of handle (which is bigger than the default
value) is used and varies with noise. Figure 4.7.3 shows the variance of SSIM Index
with respect to change in noise variance. For the pole obstacle, the variance of SSIM
Index shows an increasing trend with increase in variance of noise. Also, not using
the default height, always has less variance with respect to the pole obstacle using the

4.8 mismatch of image correspondences 59

default height. Also, the mean of the SSIM Index is always higher (as seen in Figure
4.7.1). This suggests that not using the default height should be beneficial. This is true
only for individual frames. However, when run as a sequence, not using default height
exhibits lot of jumping back and forth. This is supported by the fact that users rated
not using default height lower than the algorithm using default height (see Section
4.10 for details). For the crate obstacle, the variance of SSIM Index initially increases
and later on decreases, with increase in noise variance, and is almost always less than
the pole obstacle using default height. However, the mean of SSIM Index for the crate
obstacle is substantially lower than that for the pole obstacle using default height.

The Figures 4.7.1, 4.7.2 and 4.7.3 suggest that the algorithm is quite robust to noise for
smaller obstacles. For larger obstacles, certain artefacts (similar to bending of crate) are
introduced even at low noise levels. However, theoretically the behavior can be very
different. This is because of the constrained deformation. The solution to the basic
equation system (without constrained deformation) is always similar and may be a
little shifted due to noise. The solution upto this part is robust to noise, in terms of the
visualizations on simulator. However, owing to the constraints, the vertices may get
laid on either plane of the frustum of the two cameras, due to which the visualisation
may be greatly affected, resulting in extremely poor SSIM Index for the same noise
level. This is especially true of the case where the obstacle is at a farther distance than
the flat ground surface. However, such a phenomenon was not observed during the
experiments.

4.8 mismatch of image correspondences

The previous section discussed one of the problems of feature detection and matching
algorithms. This section focusses on a second problem. Sometimes feature detection
and matching algorithm detects and matches features that are not identical, that
is, there are mismatches among detected features. To test on the robustness of our
algorithm to feature mismatches, a second experiment was carried out.

In this experiment, the pixel values of one image were kept constant. The corre-
spondences of this with the second image was changed in such a way that, one of the
pixel values was removed at random from the list and another from the rest available
would be repeated in its place. To understand the experiment, consider the following
example. In Table 4.8.1, x1,n, y1,n are the pixel coordinates of some world points
in Image 1. x2,n and y2,n are the pixel coordinates of these same world points in

60 experiments , results and observations

XImage1 YImage1 XImage2 YImage2

x1,1 y1,1 x2,1 y2,1

x1,2 y1,2 x2,2 y2,2

x1,3 y1,3 x2,3 y2,3

x1,4 y1,4 x2,4 y2,4

x1,5 y1,5 x2,5 y2,5

Table 4.8.1: Original Image Correspondences

XImage1 YImage1 XImage2 YImage2

x1,1 y1,1 x2,1 y2,1

x1,2 y1,2 x2,2 y2,2

x1,3 y1,3 x2,1 y2,1

x1,4 y1,4 x2,4 y2,4

x1,5 y1,5 x2,5 y2,5

Table 4.8.2: An example of Correspondences af-
ter mismatch

Image 2, thus making these rows, point correspondences between the two images.
Assume there are five image correspondences to begin with. Now consider having one
mismatch among these at random, say the third. Now, the third row pixel values of the
right image are removed and one among the remaining four is selected at random in
its place. The result is as shown in Table 4.8.2, where, the pixel coordinates of the first

Figure 4.8.1: Variation of SSIM Index with respect to Number of Mismatches in Feature
Correspondences

4.8 mismatch of image correspondences 61

correspondence on the second image are also the coordinates of the corresponding
pixel for the third correspondence. This process is repeated with more mismatches and
the algorithm is run each time. The images of visualization are saved and are evaluated
using SSIM Index, as described in Section 4.2, with respect to the visualizations with
no mismatches, on the simulator. The experiment was carried out on a set of 31 frames
of Real World Sequence 3 that have 10 image correspondences. To understand the
effect of size of obstacle, 16 frames of Real World sequence 4 was also used. The
method of Constrained Deformation as described in 3.3.2 is used for the experiment.

Figure 4.8.1 shows the variation of SSIM Index with respect to the number of mis-
matches between the feature correspondences. As can be seen, the SSIM Index drops
a little with more mismatches for the Pole Obstacle. However, there is not significant
difference between the visualization of Frame with no mismatches and the frame with
all correspondences being mismatched. This is evident from the Figure 4.8.2 where a
Frame with all its feature correspondences mismatched is compared with the same
frame having no mismatches in correspondences for the Pole Obstacle. Such behavior
can be reasoned due to the fact that all the correspondences are on the pole and the
width of the pole is too small to have a negative impact on the visualization.

To further understand about this, Real World Sequence 4 with a huge obstacle (a
Crate) was subjected to the same experiment. This is indicated by the curves Mean
(Crate obstacle) and Minimum (Crate obstacle) on Figure 4.8.1. As can be seen from
these curves, the SSIM Index drops sharply and there is a visible effect of mismatches

Figure 4.8.2: Effect of Mismatches on Visualization - Left Image is a Frame without mismatches,
Right Image is the same Frame with all 10 correspondences mismatched ran-
domly having lowest SSIM Index of 0.80 - Image provided by Robert Bosch Car
Multimedia GmbH

62 experiments , results and observations

Figure 4.8.3: Effect of Mismatches on Visualization - Left Image is a Frame without mis-
matches, Right Image is the same Frame with all 6 correspondences mismatched
randomly having lowest SSIM Index of 0.28 - Image provided by Robert Bosch
Car Multimedia GmbH

Figure 4.8.4: Variance of SSIM Index with respect to Number of Mismatches in Feature Corre-
spondences

4.9 number of feature correspondences 63

on the visualizations. This is also evident from Figure 4.8.3 where the frame without
mismatches is compared with the same frame with all correspondences mismatched
with the lowest SSIM Index of all frames. In this visualization, because of the mis-
matches, the location of the handle is inside the car. Due to this, the complete set of
vertices forming the deformation goes outside the visible frustum and is behind the
cameras, thereby rendering all those regions black. Also, there is no trend for the crate
obstacle, in the minimum curve for SSIM Index. This is because of the random nature
of generating mismatches.

This is also supported by the fact that the variance of SSIM Index for the crate
obstacle is always substantially larger than that for the pole obstacle as evident from
Figure 4.8.4. Hence, it can be concluded that the mismatches of feature correspon-
dences, depends hugely on the size of the obstacle. Hence, it can be concluded that
the algorithm is quite robust to small obstacles, but, fails with bigger obstacles.

4.9 number of feature correspondences

Another problem of feature detection and matching algorithm is detection of very few
features in the images or no features in the worst case. An experiment was planned
to understand the robustness of the algorithm to such an effect. The set of 31 Frames
used in the previous experiment is used as base. To understand the effect of size of
obstacle, the sequence of 16 frames of Real World sequence 4 was also used. Every
time a certain amount (ranging from 1 to 10 for the 31 frames and from 1 to 6 for the
16 frames) of the pixel correspondences is removed at random and the algorithm is
run, until there are no more correspondences available.

Each time the SSIM Index, as described in Section 4.2, is calculated between the
deformed visualization on the simulator with 10 correspondences and with the re-
maining visualizations obtained by removing the correspondences. The method of
Constrained Deformation as described in 3.3.2 is used for the experiment. The same is
plotted as a measure of number of correspondences.

Figure 4.9.1 shows the effect of the number of correspondences on the SSIM In-
dex. As can be seen, there is negligible impact of, the number of correspondences,
on the SSIM Index for the Pole Obstacle. Only when all correspondences are lost
(no features are detected), the SSIM Index falls sharply. This is due to the fact that
the mesh takes the undeformed shape in the absence of correspondences and the

64 experiments , results and observations

Figure 4.9.1: Variation of SSIM Index with respect to Number of Feature Correspondences

Figure 4.9.2: Effect of Number of Correspondences on Visualization - Left Image is a Frame
with all 10 Correspondences, Right Image is the same Frame with only 1 corre-
spondence at random having lowest SSIM Index of 0.83 for the Pole Obstacle -
Image provided by Robert Bosch Car Multimedia GmbH

4.9 number of feature correspondences 65

visualization is definitely a lot different from that of a deformed mesh. The negligible

Figure 4.9.3: Effect of Number of Correspondences on Visualization - Left Image is a Frame
with all 6 Correspondences, Right Image is the same Frame with only 1 corre-
spondence at random having lowest SSIM Index of 0.64 for the Crate Obstacle -
Image provided by Robert Bosch Car Multimedia GmbH

difference in visualizations, for a frame with one correspondence (with the lowest
SSIM Index), is compared with the same frame having ten correspondences, and is as
shown in Figure 4.9.2.

For a bigger obstacle (a Crate), the SSIM Index falls a little more sharply. This
is due to the fact that in absence of some of the correspondences, the angle of the
handle sector (which is greater than the default angle) is in effect and is varying.
This is evident from the Figure 4.9.3. Figure 4.9.4 shows the variance of SSIM Index
with respect to number of correspondences. The variance of SSIM Index is always
substantially larger for the crate obstacle than the pole obstacle. Only for 6 missing
correspondences, the variance of SSIM Index for crate obstacle is less than that of
pole obstacle. It is however equal to the variance of SSIM Index for the pole obstacle
with 10 missing correspondences. This is because, in both these cases (crate obstacle
with 6 missing correspondences and pole obstacle with 10 missing correspondences),
the bowl returns to undeformed state and is compared with that of the deformed
visualization.

Using Figures 4.9.1, 4.9.2 and Figure 4.9.4, it can be stated that the algorithm is
robust against the number of correspondences as long as there is at least one reliable
correspondence detected, for the Pole Obstacle. For larger obstacles, however, the
algorithm is not so robust against number of correspondences.

66 experiments , results and observations

Figure 4.9.4: Variance of SSIM Index with respect to Number of Feature Correspondences

4.10 qualitative evaluation

To understand if the algorithm implemented makes a difference to the visualizations
of the pole, there are no tools that can replace the human perception of vision. Hence,
videos of three different sequences were made, where each video had three options
for comparison and rating. The options were:

1. The deformation algorithm along with constrained deformation as described in
Section 3.3.2.

2. Same as option 1 above, but without using the default height for the handle
region.

3. Same as option 1 above, but with noise of 0 mean and 10 times the variance
(equivalent of ±30 pixels) added to the point correspondences at random. This
option is provided to verify the agreement/disagreement with results of Quanti-
tative analysis.

4.11 timing of the algorithm 67

Also, the uninteresting portions of the image (areas other than the pole) were darkened
to ensure focus on visualization of the pole alone and not of the surrounding regions.
These were shown to a set of 10 individuals of which 8 were experts in Computer
Vision/Computer Graphics. The users were to rate each of the three options relatively
from a rating of 1 to 10. 1 was to mean a really poor visualization and 10 was to mean
a very good visualization. The ratings were then normalized to have values between 0
and 1, 0 for poor and 1 for good visualization as per the user. The ratings received
and the observations there off, is discussed in the following.

Average

Ratings
Deformation

Deformation

without

Default Height

Deformation

with

Noise

Sequence 1 0.79 0.52 0.34

Sequence 2 0.79 0.68 0.27

Sequence 3 0.63 0.41 0.24

Table 4.10.1: User Evaluation - Ratings received are normalized to be between 0 and 1, 0 for
poor visualization and 1 for good visualization

The average ratings for each of the three sequences for the various options are as
summarized in Table 4.10.1. As can be seen from the Table 4.10.1, the option with the
deformation using default height for the handle region has the highest rating. Next is
the deformation without using the default height for the handle region and the option
of deformation with noise was rated as worst. This does not agree completely with the
quantitative results as seen in Section 4.7 above. Although, in quantitative analysis, the
SSIM Index with default height had always a lower score than the one without default
height, users thought otherwise. This is because of the fact that in video sequences,
the history of previous frames matters and a sequence with frequent jumps between
frames is considered disturbing and is rated lower.

4.11 timing of the algorithm

All experiments were done on the Simulator under Microsoft Windowsr platform and
MATLABr (The MathWorks Inc.) was used for solution to the sparse linear system.
For checking if the algorithm can be run on the target system, a skeleton form of
the algorithm was developed with the mesh and deformation functions alone and
without any images, to keep it simple. The code was tested on a Linux machine (in

68 experiments , results and observations

VirtualBox) on a desktop PC for confirming compatibility on the target. The target
system is a i.MX 6 DualLite Processor-Dual Core, 3D Graphics, HD Video, Multimedia,
ARMr Cortexr-A9 Core. The CPU can utmost run at 1GHz. The OS running on the
target system is a UBUNTU based Linux modified by Bosch for internal purposes. For
making the algorithm independent of MATLABr, three different methods were used
for solving the sparse linear system of equations, namely, SparseLU [Li05], Multifrontal
LU[DD97], [Dav04b] and BiCGSTAB[Vor92].

SparseLU is Sparse supernodal LU factorization into a lower triangular matrix L
and an upper triangular matrix U with partial pivoting, along with a permutation
matrix P which is pre-multiplied to the product of L and U. The resulting triangular
system after factorization is solved through forward and back substitution. This can
then be used along with an appropriate ordering to solve the linear system. The
column or row pre-ordering helps reducing the fill-in. "Fill-in is the introduction of
new non-zero enteries in L and U whose corresponding entries in A are zero" [Dav04b].
(Sparse LU solver with COLAMD which implements Supernodal LU, of Eigen 3.2.2,
was used [GJ+10]). COLAMD stands for COLumn Approximate Minimum Degree
pre-ordering algorithm. It is one of the methods of column pre-ordering used com-
monly to reduce fill-in.

In case of Multifrontal LU, the algorithm uses a preordering [Dav04a] using a mod-
ified version of COLAMD that reduces the fill-in using partial pivoting, and then
uses the multifrontal method [Dav04a]. The ordering method has different strategies
depending on the pattern of the system matrix so as to give the minimal fill-in. The
frontal method is a variation of the Guass elimination that avoids a large number of
operations on zero terms [KNB87]. The method involves working only on a small
subset of the equations. This small set is called the front and the operations on the
front are done using dense matrix operations that are very efficient on the CPU. During
a sparse matrix operation, the fronts are only stored in memory and operated on.
The multifrontal method exploits this, by allowing multiple fronts to occur at a time
[DR83] and hence, arriving at the solution of the system faster.

Lastly, BiCGSTAB uses the iterative variant of Bi-Conjugate Gradient (BiCG) method
and has faster and smoother convergence than the orignial BiCG[Vor92]. In this
method, pre-conditioners are used to help converge faster. (Diagonal pre conditioner
of Eigen 3.2.2, was used [GJ+10]). All the methods can be additionally run on GPU.
However, this suppresses the shaders, which means, the display becomes inactive
when GPU is used for mathematical processing. Since, our application has a user

4.11 timing of the algorithm 69

interface that needs updating in real time, this option was not explored. All the four
regions of overlap were tried and successfully implemented. The time taken by the
algorithms and further discussions on compatibility are presented in the following.

Table 4.11.1 shows the time taken by the various methods for solving the sparse
linear system as described in Section 4.11. These timings are an average of 10 trials.
These were run on a powerful 2.67 GHz processor. The target is a low end ARM
processor with a maximum frequency of 1 GHz.

Method
Sparse LU BiCGSTAB Multifrontal LU

Mean Variance Mean Variance Mean Variance

Handle 1

Deformation
41.9164 0.4513 141.532 1.8534 27.7872 0.3388

Handle 1 Back to

undeformed Bowl
0.0065 1.48e− 07 0.0066 4.66e− 07 0.0064 1.56e− 07

Handle 2

Deformation
42.7429 0.3566 139.988 1.4996 28.1425 0.2744

Handle 2 Back to

undeformed Bowl
0.0066 1.61e− 07 0.0069 1.58e− 07 0.0067 4.82e− 07

Handle 3

Deformation
47.1704 0.6299 165.297 0.3742 31.5149 0.0826

Handle 3 Back to

undeformed Bowl
0.0063 1.04e− 07 0.0065 6.97e− 08 0.0066 2.54e− 07

Handle 4

Deformation
47.0052 0.3802 160.756 3.8940 30.7542 0.0198

Handle 4 Back to

undeformed Bowl
0.0064 1.56e− 07 0.0064 5.79e− 08 0.0067 1.45e− 07

Table 4.11.1: Time taken by different methods (in seconds)

The four regions of overlap are named Handle1 for Front-Left region, Handle2 for
Back-Left region, Handle3 for Back-Right region and Handle4 for Front-Right region.
From Table 4.11.1, it can be seen that Multifrontal LU methods takes the least time

70 experiments , results and observations

and the iterative BiCGSTAB takes the highest. Incidentally, Multifrontal LU is also
used in MATLABr. However, the algorithm takes longer than MATLABr to solve
the system. Also, since the variance of all the methods is extremely low, it shows they
are all consistent in performance. It is also clear that, all these methods in this form
cannot be directly implemented on the target.

As an alternative, a 3D surface can be worked out based on the angles of free, fixed
and handle regions. A lookup table can be made to approximate this continuous
3D surface so as to maintain the properties of solution to the sparse linear system.
Different lookup tables can be stored for different depths depending on the amount
of memory and the values in between could be interpolated using a certain scheme.
This can be executed during startup and during runtime, only positions of vertices are
calculated using values picked from the lookup table. This method is less costly than
solving the sparse linear system. The time taken would be a little more than the time
taken for removing the deformation and forming the original bowl in the Table 4.11.1
above, which would then make it compatible for real-time execution.

5
C O N C L U S I O N A N D F U T U R E W O R K

The thesis adapted an unconventional method of deforming meshes, for solving the
problem of ghost artefacts. The idea used was, to deform the projection surface result-
ing in visible reduction of ghost artefacts. It was an attempt to understand the ground
truth using this approach. For thin obstacles for example, the pole, the proposed algo-
rithm is found to be quite robust against noise in feature correspondences, mismatches
among correspondences and scarce number of correspondences, and produces good
visualizations of the obstacle in the overlap region. For bigger obstacles, the algorithm
is not as robust, as explained in Section 4, however yields good results with reliable
feature correspondences on the obstacle. Also in the current form, it is not real-time
capable. Therefore, the algorithm in this form cannot be implemented on the low end
target system.

This thesis shows there is tremendous potential in the idea of using deformation
of projection surfaces to eliminate ghost artefacts, and more research needs to be
carried out in this direction, in order to come up with a solution that works well with
all obstacles, with all the limitations of feature matching algorithms used and also
works on the low end target system. It throws up a lot of research questions that needs
to be answered before one has a good, real-time visualization not depending on the
obstacle size or on reliability of feature detection and matching algorithms.

With respect to cameras, improved resolution with no compression should be used,
so as to have advantage of better resolution. Compression may be used in case less
bandwidth is available. This would improve visualization and also the accuracy of
world coordinates calculation for deformation. Also, the visible frustum of cameras
needs to be increased to aid in better visualization. This can be done either by choosing
cameras with more than 180o field of view in both directions, or by rotating the left and
right cameras to look more upwards (similar to the front and rear cameras see Figure
3.3.1 for details), so that more volume is available and the visualization would be
better after deformation. Ideal condition would be one where only pure deformation
is required and the visible frustum does not constrain the deformed portion of the
mesh.

71

72 conclusion and future work

For restricting the amount of deformation, one could use temporal correspondences
(correspondences between images of the same camera in successive time steps) to have
a sense of depth in different directions and fit a spline. This would then reduce the
amount of deformation for individual obstacles and improve the visualization. Also,
the depth could be discretized in steps and various lookup tables could be used to
interpolate amongst these depths. Only the system memory would be a limiting factor
on the number of lookup tables. With these factors, the algorithm would also be real
time capable. The bias to the orientation of big obstacles needs to be studied. This is
because, on big obstacles the depth varies on different parts of obstacle and may pose
a problem to the visualization after deformation.

The feature matching algorithms are used to match correspondences between im-
ages, ultimately resulting into depth of the various points on the scene. To counter
the unreliability of low end feature detection and matching algorithms that must run
on extremely less processing power, one could use a different approach to do the
same. For example, the LSDSLAM algorithm of [ESC14] could be used to directly find
the depth of various points in the scene. It does not use any feature correspondence
algorithm and relies on using image information alone to find depth of the scene and
is known to run real time. Each pixel in the image is assigned a depth value. The
information on the new image along with the history of depth maps for each pixel in
the image is used to arrive at the depth map of current image. The depth data from
the algorithm can be directly used to deform the bowl.

All the questions and possibilities stated above are taken up for future research
and development, so that it finally results in a solution close to the ideal scenario in
the real world.

B I B L I O G R A P H Y

[Adm08] Administration, National Highway Traffic S.: Fatalities and injuries
in motor vehicle backing crashes. http://www-nrd.nhtsa.dot.gov/Pubs/

811144.pdf. Version: 2008

[Ale03] Alexa, Marc: Differential coordinates for local mesh morphing and deformation.
Springer, 2003. http://dx.doi.org/14.02.2003. http://dx.doi.org/14.
02.2003

[Ben75] Bentley, Jon L.: Multidimensional Binary Search Trees Used for
Associative Searching. In: Commun. ACM 18 (1975), September,
Nr. 9, 509–517. http://dx.doi.org/10.1145/361002.361007. – DOI
10.1145/361002.361007. – ISSN 0001–0782

[BK04] Botsch, Mario ; Kobbelt, Leif: An intuitive framework for real-time
freeform modeling. In: (MERL), Joe Marks Mitsubishi Electric Research L.
(Hrsg.): ACM SIGGRAPH 2004 Papers, ACM, August 2004, S. 630–634

[BL07] Brown, Matthew ; Lowe, David G.: Automatic panoramic image stitching
using invariant features. In: International Journal of Computer Vision Bd. 74,
2007, S. 59–73

[BS08] Botsch, Mario ; Sorkine, Olga: On linear variational surface deformation
methods. In: IEEE Transactions on Visualization and Computer Graphics
Bd. 14, IEEE, February 2008, S. 213–230

[BSPG06] Botsch, Mario ; Sumner, Robert W. ; Pauly, Mark ; Gross, Markus:
Deformation transfer for detail-preserving surface editing. In: Vision,
Modelling & Visualization, IOS Press, AKA, November 2006, S. 357–364

[CE07] Chan, L. H. ; Efros, A. A.: Automatic generation of an infinite panorama.
2007. – Forschungsbericht

[CG91] Celniker, George ; Gossard, Dave: Deformable curve and surface finite-
elements for free-form-shape design. In: SIGGRAPH ’91 Proceedings of the
18th annual conference on Computer graphics and interactive techniques, ACM
New York, NY, USA, July 1991, S. 257–266

73

http://www-nrd.nhtsa.dot.gov/Pubs/811144.pdf
http://www-nrd.nhtsa.dot.gov/Pubs/811144.pdf
http://dx.doi.org/14.02.2003
http://dx.doi.org/14.02.2003
http://dx.doi.org/14.02.2003
http://dx.doi.org/10.1145/361002.361007

74 Bibliography

[Dav04a] Davis, Timothy A.: Algorithm 832: UMFPACK V4.3—an Unsymmetric-
pattern Multifrontal Method. In: ACM Trans. Math. Softw. 30 (2004),
Juni, Nr. 2, 196–199. http://dx.doi.org/10.1145/992200.992206. – DOI
10.1145/992200.992206. – ISSN 0098–3500

[Dav04b] Davis, Timothy A.: A Column Pre-ordering Strategy for the Unsymmetric-
pattern Multifrontal Method. In: ACM Trans. Math. Softw. 30 (2004),
Juni, Nr. 2, 165–195. http://dx.doi.org/10.1145/992200.992205. – DOI
10.1145/992200.992205. – ISSN 0098–3500

[DC04] Dornaika, F. ; Chung, R.: Mosaicking iimage with parallax. In: Signal
Processing: Image Communication Bd. 19, 2004, S. 771–786

[DD97] Davis, Timothy A. ; Duff, Iain S.: An unsymmetric-pattern multi-
frontal method for sparse LU factorization. In: SIAM Journal on Matrix
Analysis and Applications 18 (1997), Nr. 1. http://dx.doi.org/10.1137/

S0895479894246905. – DOI 10.1137/S0895479894246905

[DMSB99] Desbrun, Mathieu ; Meyer, Mark ; Schröder, Peter ; Barr, Alan H.:
Implicit fairing of irregular meshes using diffusion and curvature flow. In:
Computer Graphics (SIGGRAPH ’99 Proceedings of the 26th annual conference
on Computer graphics and interactive techniques), ACM Press/Addison-
Wesley Publishing Co. New York, NY, USA Copyright 1999, 1999. – ISBN
0–201–48560–5, S. 317–324

[DR83] Duff, I. S. ; Reid, J. K.: The Multifrontal Solution of Indefinite Sparse
Symmetric Linear. In: ACM Trans. Math. Softw. 9 (1983), September,
Nr. 3, 302–325. http://dx.doi.org/10.1145/356044.356047. – DOI
10.1145/356044.356047. – ISSN 0098–3500

[Ede01] Edelsbrunner, Herbert: Geometry and Topology for Mesh Genera-
tion. Cambridge University Press, 2001 http://dx.doi.org/10.1017/

CBO9780511530067. – ISBN 9780511530067. – Cambridge Books Online

[ESC14] Engel, J. ; Schöps, T. ; Cremers, D.: LSD-SLAM: Large-Scale Direct
Monocular SLAM. In: European Conference on Computer Vision (ECCV),
2014

[FB81] Fischler, Martin A. ; Bolles, Robert C.: Random Sample Consen-
sus: A Paradigm for Model Fitting with Applications to Image Anal-
ysis and Automated Cartography. In: Commun. ACM 24 (1981), Juni,

http://dx.doi.org/10.1145/992200.992206
http://dx.doi.org/10.1145/992200.992205
http://dx.doi.org/10.1137/S0895479894246905
http://dx.doi.org/10.1137/S0895479894246905
http://dx.doi.org/10.1145/356044.356047
http://dx.doi.org/10.1017/CBO9780511530067
http://dx.doi.org/10.1017/CBO9780511530067

Bibliography 75

Nr. 6, 381–395. http://dx.doi.org/10.1145/358669.358692. – DOI
10.1145/358669.358692. – ISSN 0001–0782

[GJ+10] Guennebaud, Gaël ; Jacob, Benoît u. a.: Eigen v3.
http://eigen.tuxfamily.org, 2010

[GKB11] Gao, Junhong ; Kim, Seon J. ; Brown, Michael S.: Constructing image
panoramas using dual-Homography warping. In: Computer Vision and
Pattern Recognition, IEEE, June 2011, S. 49–56

[Har03] Hartley, Richard: Multiple view geometry in computer vision. Cambridge,
UK New York : Cambridge University Press, 2003. – ISBN 9780521540513

[JS96] Jr., J. E. D. ; Schnabel, Robert B.: Numerical Methods for Unconstrained
Optimisation and Nonlinear Equations. Society for Industrial and Applied
Mathematics, 1996

[KCVS98] Kobbelt, Leif ; Campagna, Swen ; Vorsatz, Jens ; Seidel, Hans-Peter:
Interactive Multi-resolution Modeling on Arbitrary Meshes. In: Proceedings
of the 25th Annual Conference on Computer Graphics and Interactive Techniques.
New York, NY, USA : ACM, 1998 (SIGGRAPH ’98). – ISBN 0–89791–999–8,
105–114

[KNB87] Kardestuncer, H. ; Norrie, D.H. ; Brezzi, F.: Finite element hand-
book. McGraw-Hill, 1987 (McGraw-Hill reference books of interest:
Handbooks). http://books.google.de/books?id=fLoRAQAAMAAJ. – ISBN
9780070333055

[Li05] Li, Xiaoye S.: An Overview of SuperLU: Algorithms, Implementation,
and User Interface. 31 (2005), September, Nr. 3, S. 302–325

[LLM+
11] Lin, Wen-Yan ; Liu, Siying ; Matsushita, Yasuyuki ; Ng, Tian-Tsong ;

Cheong, Loong-Fah: Smoothly varying affine stitching. In: Computer
Vision and Pattern Recognition, IEEE, June 2011, S. 342–352

[Llo06] Lloyd, S.: Least Squares Quantization in PCM. In: IEEE Trans. Inf. Theor.
28 (2006), September, Nr. 2, 129–137. http://dx.doi.org/10.1109/TIT.

1982.1056489. – DOI 10.1109/TIT.1982.1056489. – ISSN 0018–9448

[Low99] Lowe, David: Object recognition from local scale-invariant features. In:
Computer Vision, 1999. The Proceedings of the Seventh IEEE International
Conference Bd. 2, IEEE, 20 Sep 1999-27 Sep 1999 1999, S. 1150 – 1157 vol.2

http://dx.doi.org/10.1145/358669.358692
http://books.google.de/books?id=fLoRAQAAMAAJ
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1109/TIT.1982.1056489

76 Bibliography

[LSCO+
04] Lipman, Yaron ; Sorkine, Olga ; Cohen-Or, Daniel ; Levin, David ; Rössl,

Christian ; Seidel, Hans-Peter: Differential Coordinates for Interactive
Mesh Editing. In: SMI ’04 Proceedings of the Shape Modeling International
2004, IEEE Computer Society Washington, DC, USA, June 2004, S. 181–190

[MDSA03] Meyer, Mark ; Desbrun, Mathieu ; Schröder, Peter ; AlanH.Barr:
Discrete differential-geometry operators for triangulated 2-manifolds.
Version: 2003. http://dx.doi.org/10.1007/978-3-662-05105-4_2. In:
Hege, Hans-Christian (Hrsg.) ; Polthier, Konrad (Hrsg.): Visualization
and Mathematics III. Springer Berlin Heidelberg, 2003 (Mathematics and
Visualization). – DOI 10.1007/978–3–662–05105–4_2. – ISBN 978–3–642–
05682–6, 35-57

[Mei06] Mei, Christopher: Projection Model. http://www.robots.ox.ac.uk/~cmei/
Toolbox.html. Version: 2006

[PP93] Pinkall, Ulrich ; Polthier, Konrad: Computing discrete minimal sur-
faces and their conjugates. In: Experiment. Math. 2 (1993), Nr. 1, 15–36.
http://projecteuclid.org/euclid.em/1062620735

[QC07] Qi, Zhi ; Cooperstock, Jeremy R.: Overcoming parallax and sampling
density issues in image mosaicing of non-planar scenes. In: BMVC, 2007,
S. –1–1

[RLE+
05] Rankov, Vladan ; Locke, Rosalind J. ; Edens, Richard J. ; Barber, Paul R.

; Vojnovic, Borivoj: An algorithm for image stitching and blending. In:
Proceedings of the SPIE Bd. 5701, 2005, S. 190–199

[SCOL+
04] Sorkine, Olga ; Cohen-Or, Daniel ; Lipman, Yaron ; Alexa, Marc ;

Christian Rössl, C. ; Seidel, Peter-Hans: Laplacian surface editing.
In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing. New York, NY, USA : ACM, 2004 (SGP ’04). – ISBN
3–905673–13–4, 175–184

[SG09] Shreiner, Dave ; Group, The Khronos OpenGL ARB W.: OpenGL Program-
ming Guide: The Official Guide to Learning OpenGL, Versions 3.0 and 3.1. 7th.
Addison-Wesley Professional, 2009. – ISBN 0321552628, 9780321552624

[SS07] Shum, Heung-Yeung ; Szeliski, Richard: Construction of panoramic
image mosaics with global and local alignment. In: Internation Journal of
Computer Vision 36 (2007), February, Nr. 2, S. 101–130

http://dx.doi.org/10.1007/978-3-662-05105-4_2
http://www.robots.ox.ac.uk/~cmei/Toolbox.html
http://www.robots.ox.ac.uk/~cmei/Toolbox.html
http://projecteuclid.org/euclid.em/1062620735

Bibliography 77

[Sze06] Szeliski, Richard: Image alignment and stitching: A tutorial / Mi-
crosoft Corporation. Version: December 2006. http://dx.doi.org/10.

1561/0600000009. 2006 (MSR-TR-2004-92). – Forschungsbericht

[Sze10] Szeliski, Richard: Computer Vision: Algorithms and Applications. 1st. New
York, NY, USA : Springer-Verlag New York, Inc., 2010. – ISBN 1848829345,
9781848829343

[SZGP05] Sumner, Robert W. ; Zwicker, Matthias ; Gotsman, Craig ; Popović,
Jovan: Mesh-based inverse kinematics. In: ACM SIGGRAPH 2005 Papers.
New York, NY, USA : ACM, 2005 (SIGGRAPH ’05), 488–495

[Tra10] Transportation, US D.: U.S. DOT Proposes Rear View Visibility Rule
to Protect Kids and the Elderly. http://www.nhtsa.gov/PR/NHTSA-17-10.
Version: 2010

[Vor92] Vorst, H. A. d.: Bi-CGSTAB: A fast and smoothly converging variant of
Bi-CG for the solution of nonsymmetric linear systems. In: SIAM Journal
on Scientific and Statistical Computing 13 (1992), Nr. 2. http://dx.doi.org/
10.1137/0913035. – DOI 10.1137/0913035

[WBSS04] Wang, Zhou ; Bovik, Alan C. ; Sheikh, Hamid R. ; Simoncelli, Eero P.:
Image quality assessment: from error visibility to structural similarity. In:
Image Processing, IEEE Transactions on (Volume:13 , Issue: 4) Bd. 13, IEEE,
2004. – ISBN 1057–7149 (ISSN), S. 600–612

[ZCBS13] Zaragoza, Julio ; Chin, Tat-Jun ; Brown, Michael S. ; Suter, David:
As-projective-as-possible image stitching with moving DLT. In: Computer
Vision and Pattern Recognition, IEEE, June 2013, S. 2339–2346

[ZHS+
05] Zhou, Kun ; Huang, Jin ; Snyder, John ; Liu, Xinguo ; Bao, Hujun ;

Guo, Baining ; Shum, Heung-Yeung: Large mesh deformation using the
volumetric graph laplacian. In: SIGGRAPH ’05 ACM SIGGRAPH 2005
Papers, ACM New York, NY, USA, July 2005, S. 496–503

[ZLPW06] Zomet, Assaf ; Levin, Anat ; Peleg, Shmuel ; Weiss, Yair: Seamless
image stitching by minimising false edges. In: IEEE Transactions on Image
Processing 15 (2006), S. 969–977. http://dx.doi.org/10.1109/TIP.2005.

863958. – DOI 10.1109/TIP.2005.863958

http://dx.doi.org/10.1561/0600000009
http://dx.doi.org/10.1561/0600000009
http://www.nhtsa.gov/PR/NHTSA-17-10
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1109/TIP.2005.863958
http://dx.doi.org/10.1109/TIP.2005.863958

Eidesstattliche Versicherung

______________________________ ____________________
Name, Vorname Matrikel-Nr.

Ich versichere hiermit an Eides statt, dass ich die vorliegende Masterarbeit mit dem Titel

selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate kenntlich
gemacht. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

__________________________ _______________________
Ort, Datum Unterschrift

Belehrung:

Wer vorsätzlich gegen eine die Täuschung über Prüfungsleistungen betreffende Regelung einer
Hochschulprüfungsordnung verstößt, handelt ordnungswidrig. Die Ordnungswidrigkeit kann mit
einer Geldbuße von bis zu 50.000,00 € geahndet werden. Zuständige Verwaltungsbehörde für die
Verfolgung und Ahndung von Ordnungswidrigkeiten ist der Kanzler der Technischen Universität
Dortmund. Im Falle eines mehrfachen oder sonstigen schwerwiegenden Täuschungsversuches
kann der Prüfling zudem exmatrikuliert werden. (§ 63 Abs. 5 Hochschulgesetz - HG -)

Die Abgabe einer falschen Versicherung an Eides statt wird mit Freiheitsstrafe bis zu 3 Jahren oder
mit Geldstrafe bestraft.

Die Technische Universität Dortmund wird gfls. elektronische Vergleichswerkzeuge (wie z.B. die
Software „turnitin“) zur Überprüfung von Ordnungswidrigkeiten in Prüfungsverfahren nutzen.

Die oben stehende Belehrung habe ich zur Kenntnis genommen:

_____________________________ _________________________
Ort, Datum Unterschrift

	1 Introduction
	1.1 Motivation
	1.2 Framework and Setup
	1.3 Fundamentals of Image Projection as used in the Surround-View System
	1.3.1 Feature/Point Correspondence
	1.3.2 Image Stitching
	1.3.3 Alpha Blending
	1.3.4 Mesh/Mesh Grid
	1.3.5 Image Projection

	1.4 Problem description

	2 Related Work
	2.1 Image Stitching
	2.2 Mesh Deformation
	2.3 Discussion

	3 Eliminating Ghost Artefacts using Mesh Deformation
	3.1 General Approach
	3.1.1 Calculation of World Coordinates from Reliable Feature Correspondences
	3.1.2 Deformation of Projection Surface to eliminate Ghost Artefacts
	3.1.3 Decision on Parameters

	3.2 Selection of free, handle and fixed regions for the deformation algorithm
	3.2.1 Deformation Method without including the Ground Plane
	3.2.2 Deformation Method including the Ground Plane

	3.3 Challenges and Implementation Details
	3.3.1 Failure of Deformation in certain frames
	3.3.2 Black Areas in Frames after deformation is accomplished

	4 Experiments, Results and Observations
	4.1 Dataset Used
	4.2 Quantitative measurement of human perception of vision - The SSIM Index
	4.3 Decision on parameters of the fixed, handle and free regions
	4.4 Accuracy of World Coordinates
	4.5 Results of Deformation Method without using Ground Plane
	4.6 Results of Deformation Method including the Ground Plane
	4.7 Noise on Pixel Coordinates
	4.8 Mismatch of image correspondences
	4.9 Number of feature correspondences
	4.10 Qualitative Evaluation
	4.11 Timing of the algorithm

	5 Conclusion and Future Work

