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EINLEITUNG

Viele Verwaltungsabldufe im 19. und 20. Jahrhundert basierten auf Formularen und
Karteikarten. Heute liegen solche Dokumente in grofser Zahl in Archiven und enthal-
ten wertvolle Informationen, die bislang nur eingeschrankt zuganglich sind. Besonders
tiir Historiker, Sozialwissenschaftler und Genealogen sind die personenbezogenen
Angaben in diesen Formularen jedoch von groflem Forschungsinteresse. Datenschutz-
bestimmungen erschweren héufig ihre Veroffentlichung. Nach Bundesarchivgesetz
in § 11 Abs. 2" gelten Informationen in der Regel zehn Jahre nach dem Tod einer
Person oder hundert Jahre nach ihrer Geburt als nicht mehr schutzbediirftig. Durch die
Bestimmung des Geburtsdatums der betroffenen Personen ldsst sich daher priifen, ob
personenbezogene Daten noch dem Datenschutz unterliegen oder bereits freigegeben
werden konnen.

Die manuelle Transkription dieser Daten ist allerdings zeitaufwendig, da die Doku-
mente in alter Schrift verfasst, oft durch Alterungsprozesse beschddigt und zudem
in grofier Zahl vorhanden sind. Um diesem Aufwand zu begegnen, bietet sich die
automatisierte Informationsextraktion als anspruchsvolle Losung an. Da den Ergeb-
nissen eines automatisierten Prozesses jedoch nicht uneingeschrankt vertraut werden
kann, ist eine Konfidenzbestimmung hilfreich, um die Verlasslichkeit der erkannten
Informationen einzuschéitzen.

Ziel dieser Arbeit ist es zu untersuchen, wie effektiv ein End-to-End-Modell zur
Extraktion historischer Geburtsdaten eingesetzt werden kann. Dabei wird ein zwei-
stufiges Fine-Tuning durchgefiihrt, gefolgt von einer Bewertung der Konfidenz der
Transkriptionen. Es ist zu beachten, dass eine automatisierte Transkription grund-
satzlich keine hundertprozentige Genauigkeit erreichen kann. Da Archive sensible
personenbezogene Daten verwalten, ist eine alleinige Abhédngigkeit von der automati-
sierten Transkription nicht moglich. Deshalb wird neben der Erkennungsgenauigkeit
auch die Konfidenz der Modellvorhersagen bewertet, um die Verldsslichkeit der extra-
hierten Informationen besser einschdtzen zu kénnen.

Die Aufgabe, Informationen aus historischen Dokumenten zu extrahieren, hat unter
anderem durch den Wettbewerb , Information Extraction in Historical Handwritten
Records (IEHHR)” im Jahr 2017 [BRM " 20] bereits Interesse geweckt. Dieser basierte

1 www.bundesarchiv.de/das-bundesarchiv/rechtsgrundlagen/bundesarchivgesetz
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auf der Esposalles Datenbank [RFS™ 13], einer historischen Sammlung von Heirats-
urkunden. Ziel des Wettbewerbs war es, relevante Informationen tiber Braut und
Brautigam sowie deren Eltern zu extrahieren.

Um die Herausforderung der Transkription handschriftlicher Daten aus historischen
Dokumenten anzugehen, setze ich in diese Arbeit den Document Understanding
Transformer (DONUT) [KHY " 22] ein, ein Modell, das sich laut aktuellem Stand
der Forschungen als besonders leistungsfihig fiir generische Transkriptionsaufgaben
erwiesen hat. DONUT ist ein OCR-freies Transformer-basiertes Modell fiir Dokumen-
tenverstandnis, der entwickelt wurde, um Herausforderungen bei der Verarbeitung
von vollstindigen Dokumentbildern zu bewéltigen, einschliefslich Texterkennung und
Dokumentenverstdndnis. Das Modell zeichnet sich durch eine End-to-End-Architektur
und ein Vortrainingsziel aus, wodurch es in verschiedenen Aufgaben der visuellen
Dokumentenanalyse zuverldssig gute Ergebnisse in Bezug auf Genauigkeit und Ge-
schwindigkeit erzielt.

Eine Strategie zum Finetuning des DONUT-Modells wird in dieser Arbeit entwickelt,
um die Extraktion von Datumseingaben aus historischen Formularen gezielt zu verbes-
sern. Die Methode basiert auf einem zweistufigen Fine-Tuning-Prozess: In der ersten
Phase wird das vortrainierte DONUT-Modell gezielt mit ausgeschnittenen Bildaus-
schnitten trainiert, die Datumsangaben enthalten. Diese stammen aus dem Datensatz
DC-2 der DARE-Datenbank (Database of Abstracts of Reviews of Effects) [D]S™ 22]
und ermoglichen dem Modell, die visuelle Struktur sowie das typische Textmuster von
Datumsformaten zu erlernen. In der zweiten Phase erfolgt ein weiteres Fine-Tuning
mit vollstindigen Dokumentseiten aus dem CM1-COVER-Datensatz. Dadurch lernt
das Modell, die zuvor erkannten Datumsmuster auch im komplexen Seitenkontext
prézise zu identifizieren und zu extrahieren.

Diese Arbeit besteht neben diesem Kapitel aus fiinf weiteren Kapiteln. Kapitel 2 ver-
mittelt das theoretische Grundlagenwissen, das fiir das Verstdndnis des eingesetzten
Dokumentenextraktionsverfahrens erforderlich ist. In Kapitel 3 werden verwand-
te Ansdtze vorgestellt, die die Entwicklung der in Kapitel 4 beschriebenen Donut-
Architekturen und Konfidenzmaf$ mafigeblich beeinflusst haben. Kapitel 5 erldutert das
Evaluationsprotokoll, die verwendeten Metriken sowie die eingesetzten Datensitze,
die als Basis fiir die Bewertung und den Vergleich verschiedener Dokumentenex-
traktionsverfahren dienen. Zudem werden hier die Ergebnisse der durchgefiihrten
Experimente prasentiert. Kapitel 6 bietet eine abschlieffende Bewertung der Resultate.
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In diesem Kapitel werden grundlegende Konzepte und Begriffe vorgestellt, die fiir
das Verstdandnis der in dieser Arbeit angewendeten Methodik von Bedeutung sind.

2.1 PROBLEMDEFINITION

Die Extraktion relevanter Informationen aus historischen handschriftlichen Dokumen-
tensammlungen ermdglicht, um diese Quellen systematisch zugénglich zu machen. In
diesem Zusammenhang reicht eine reine Handschriftenerkennung [FB14] nicht aus.
Das Ziel liegt mehr darin, ein umfassenderes Dokumentenverstiandnis zu entwickeln,
das in der Lage ist, gezielt semantisch bedeutsame Inhalte zu extrahieren [FRB" 17].

Die Aufgabe der Informationsextraktion besteht darin, semantisch relevante In-
formationen aus Dokumenten zu identifizieren und in strukturierter Form bereitzu-
stellen [FRB™ 17]. Herausfordernd ist dies bei handschriftlichen Datumsangaben aus
historischen Dokumenten. Zum einen sind sie visuell nicht einfach zu erkennen, da sie
durch stark variierende Schriftarten, verblasste Tinte oder historische Schreibweisen
gepragt sind. Zum anderen entstehen semantische Ambiguitdten, beispielsweise durch
die Vielfalt an Datumsformaten wie ,,12/03/1895"” oder ,12. Médrz 1895”. Erschwe-
rend kommt hinzu, dass Geburtsdaten in vollstindigen Dokumentseiten meist nicht
isoliert vorliegen, sondern in komplexe, mehrzeilige Registereintrage innerhalb von
Formularen eingebettet sind.

Klassische Ansitze [KKY " 14, ACM™ 15, gQL " 19] basieren hidufig auf OCR-Systemen,
die zundchst Textsegmente erkennen und anschliefSend die relevanten Informationen
extrahieren. Hierbei ist jedoch hédufig eine zusatzliche Segmentierung notwendig, um
einzelne Textblocke voneinander zu trennen. Solche Verfahren stofien schnell an ihre
Grenzen. OCR arbeitet in der Regel zuverldssig, solange die Dokumentbilder nur we-
nige Storungen enthalten und die Texte nicht stark beschéddigt sind. Sobald jedoch die
Bildqualitét erheblich abnimmt, wie es insbesondere bei historischen Dokumenten héu-
tig der Fall ist, verschlechtert sich die Erkennungsleistung erheblich [DSSo8]. Um diese
Limitierungen zu iiberwinden, werden End-to-End-Ansétze untersucht, die ohne klas-
sische OCR-Zwischenschritte auskommen. Die Bausteine des Systems, insbesondere
die Verarbeitung der visuellen Eingaben und die Sequenzmodellierung der extrahier-
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ten Informationen, konnen durch neuronale Netze und Transformer-Architekturen
realisiert werden. In dieser Arbeit wird ein transformerbasierter End-to-End-Ansatz
eingesetzt, der ein Dokumentenbild als Eingabe erhdlt und die darin enthaltenen
Datumsangaben direkt extrahiert.

Eine reine Bewertung anhand der Transkriptionsgenauigkeit reicht nicht aus, um die
Verlasslichkeit der Ergebnisse zu beurteilen. Deshalb ist es notwendig, die vom Modell
generierten Konfidenzwerte systematisch zu untersuchen und deren Aussagekraft im
Hinblick auf die Qualitdt der Transkriptionen zu bewerten.

2.2 NEURONALE NETZE

Kiinstliche Neuronale Netze sind aus schichtweise organisierten kiinstlichen Neuronen
aufgebaut, deren Struktur von biologischen Neuronalen Netzen in dem menschlichen
Gebhirn inspiriert ist. Jedes Neuron kann Eingangssignale empfangen, diese verarbei-
ten und ein Ausgangssignal erzeugen. Neuronen sind dabei mit mindestens einem
anderen Neuron verbunden, und jede Verbindung besitzt einen reellen Wert, den
sogenannten Gewichtungskoeffizienten, der die Bedeutung der Verbindung innerhalb
des Netzwerks beschreibt [SKPg7].

Dieses Kapitel bietet eine grundlegende Einfiihrung in kiinstliche neuronale Netze,
die als theoretische Grundlage fiir die vorliegende Arbeit dient. Zunéchst wird in
Abschnitt 2.2.1 das Feedforward-Netzwerk beschrieben. Danach werden verschiedene
Aktivierungsfunktionen vorgestellt und die Layer-Normalisierung wird anschliefsend
ndher erldutert. In dem ndchsten Abschnitt 2.2.2 werden Convolutional Neural Net-
works, die eine spezielle Form von neuronalen Netzen fiir Daten mit Gittertopologie
sind, erldutert. Schliefslich handelt sich im Abschnitt 2.2.3 um die Optimierung der
vorher beschriebenen neuronalen Netzen.

2.2.1 Feedforward-Netzwerk

Ein Feedforward-Netzwerk (FFN) ist einfaches neuronales Netzwerk, das ausschliefs-
lich Informationen von einer Schicht zur nachsthoheren weitergibt. Die Bezeichnung
Feed-Forward bedeutet, dass es keine Riickverbindungen gibt und somit keine Ausga-
ben oder Zwischenwerte zuriick in das Modell gefiihrt werden [GBC16, S. 164]. Ein
FEN kann als gerichteter Graph wie in der Abbildung 2.2.1 interpretiert werden, in
dem die Knoten Neuronen repréasentieren und die gerichteten Kanten die gewichteten
Verbindungen zwischen den Neuronen darstellen. Jedes Neuron empfangt Eingaben,
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Input Hidden Output
layer layer layer

Abbildung 2.2.1: (a) Berechnung innerhalb eines einzelnen Neurons mit gewichteten Eingaben
xi, Gewichtungsfaktoren w;, Bias-Term wy sowie Aktivierungsfunktion o
nach [Agg23, S. 5]. (b) Aufbau eines Multi-Layer FNN mit einem Input Layer,
zwei Hidden Layer und einem Output Layer nach [Agg23, S. 14].

verrechnet diese mit den zugehorigen Gewichtungen sowie einem Bias-Term und leitet
das Ergebnis nach Anwendung einer Aktivierungsfunktion weiter.

Ein FEN besteht aus Schichten 1y, k =0, ..., L, die jeweils M (%) Neuronen enthalten.
Die Eingabeschicht (Input Layer) 1y stellt den Eingabevektor x € RY bereit, die
Zwischenschichten 1y, k = 1,...,L—1 werden als versteckte Schichten (Hidden Layers)
bezeichnet, die Ausgabeschicht (Output Layer) 11 enthilt die finalen Ergebnisse der
Berechnung {j € RM" (siehe Abbildung 2.2.1 (b)). In den Hidden-Layern werden
Berechnungen auf Basis der Ausgaben der Neuronen im Vorgénger-Layer durchgefiihrt
und anschliefSend durch die Ausgabeschicht ausgegeben. Die Anzahl der Schichten
wird als Tiefe bezeichnet. Dabei wird die Eingabeschicht nicht mitgezahlt, da sie
lediglich die Daten weiterleitet und selbst keine Berechnungen durchfiihrt.

In einem FFN berechnet das j-te Neuron der k-ten Schicht zundchst eine gewichtete
Summe der Ausgaben der vorherigen Schicht. Dabei wird ein Bias-Term addiert, bevor
das Ergebnis durch eine nicht-lineare Aktivierungsfunktion transformiert wird (siehe
Abbildung 2.2.1 (a)). Entsprechend der Definition in [Biso6, S. 227-230] ergibt sich die
folgende mathematische Darstellung:

M&=1)
k k . k k k—1 k
yi¥ = (p(k)(a]F >> mit ol = 3wy ol (2.2.1)
i=1

Hierbei bezeichnet y(*~ 1) ¢ RM*" die Eingaben des Neurons, also die Ausgaben
der Neuronen aus der (k — 1)-ten Schicht, Wj(k) c RM“" den Gewichtungsvektor fiir

7
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das j-te Neuron der k-ten Schicht und wj(]g ) € R den zugehorigen Bias. Auf die Summe

agk) wird anschlieffend eine nicht-lineare Aktivierungsfunktion (p(k] angewendet,

damit die Berechnung nicht durch eine einzige Matrixmultiplikation ersetzt werden
kann und das Netzwerk auch nicht lineare Funktionen approximieren kann.

Die Berechnung innerhalb eines FFNs ldsst sich effizient in vektorisierter Form dar-
stellen. Dabei wird jede Schicht als eine Kombination aus einer linearen Transformation
und einer nicht-linearen Aktivierungsfunktion (vgl. Abschnitt 2.2.1) modelliert. Um
die Darstellung zu vereinfachen, kann der Bias in den Gewichtungsvektor integriert
werden. Dies geschieht, indem ein sogenanntes Bias-Neuron eingefiihrt wird, das stets
den festen Wert 1 weitergibt. Das Gewicht der Kante zwischen Bias-Neuron und Aus-
gabeneuron iibernimmt dann der Bias. Dadurch kann Gleichung 2.2.1 umgeschrieben
werden zu:

al®) = wiklyk=1) (2.2.2)

Dabei umfasst der Eingabevektor y(k=1) ¢ RM™ "+1 neben den Ausgaben der
vorherigen Schicht zusétzlich einen konstanten Eintrag yékf] ) = 1. Die Gewichtsmatrix
Wk ¢ RM™x (MU anthilt in jeder Zeile die Gewichte (inklusive Bias) eines
Neurons der k-ten Schicht.

Somit lasst sich die vom FFN approximierte Funktion f(x; W) als Komposition der

durch die einzelnen Schichten realisierten Teilfunktionen f*)(-; W(¥)) darstellen:
g =fxW) = (fHoft"Do...of)(x;wW), (2.2.3)
Dabei bezeichnet W = (W) ..., (W(L))} die Parameter des gesamten Netzwerks.

Jede Teilfunktion f(*) berechnet die nichtlineare Transformation einer Schichteingabe
(k=1)
Y

F) (y (k=10 Wik)y = (k) (W(ka(k—n), (2.2.4)

wobei @) eine (nichtlineare) Aktivierungsfunktion darstellt.

Aktivierungsfunktionen

Aktivierungsfunktionen spielen eine zentrale Rolle in neuronalen Netzen, da sie es
ermoglichen, nichtlineare Zusammenhénge in den Daten abzubilden. Dies erhoht die
Flexibilitat und Leistungsfahigkeit neuronaler Netze bei der Modellierung komplexer
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Abbildung 2.2.2: Drei Aktivierungsfunktionen (Sigmoid, ReLU, GELU) nach [Agg23, S. 13] im
Vergleich. Identische x-Skala (4 bis 4).

und differenzierter Daten [RAS20]. Ein neuronales Netz, das ausschliefSlich lineare
Aktivierungsfunktionen nutzt, wire nicht in der Lage, die Trainingsdaten korrekt zu
klassifizieren, da viele Datenpunkte nicht linear trennbar sind [Agg23]. Die Auswabhl ei-
ner geeigneten Aktivierungsfunktion hiangt dabei von der jeweiligen Modellarchitektur
ab. Abbildung 2.2.2 zeigt drei der in dieser Arbeit relevanten Aktivierungsfunktionen:
Sigmoid, die Rectified Linear Unit (ReLU) und die Gaussian Error Linear Unit (GELU).

In der Arbeit wird das Symbol ¢(:) zur Bezeichnung der Aktivierungsfunktion
verwendet. Der Wert, der vor der Anwendung der Aktivierungsfunktion ¢(-) be-
rechnet wird, wird als Pre-Activation (Voraktivierung) bezeichnet. Die Pre-Activation
spielt eine wichtige Rolle bei der Berechnung im Rahmen des Backpropagation (vgl.
Abschnitt 2.2.3), der spéter noch genauer behandelt wird. Sobald die Aktivierungs-
funktion auf diesen Wert angewandt wurde, spricht man vom Post-Activation, welcher
letztlich die Ausgabe des Neurons darstellt [Agg23, S. 12].

Eine klassische Aktivierungsfunktion ist die Sigmoid- oder logistische Aktivierungs-
funktion, die mathematisch nach [RAS20] wie folgt definiert ist:

B 1
C T4ex

@ (x) (2.2.5)

Sie transformiert den Eingabebereich von (—oo, +00) in den Bereich [0, 1]. Damit er-
moglicht sie sowohl die Erzeugung von Wahrscheinlichkeitsausgaben als auch die
Formulierung von Verlustfunktionen, die auf Maximum-Likelihood-Modellen basie-
ren [Agg23, S. 12].

Die ReLU
¢ (x) = max(0, x) (2.2.6)

ist derzeit die am h&ufigsten verwendete Aktivierungsfunktion [RZL17]. Die ReLU-
Funktion hat fiir x > 0 den Wert x und o andernfalls. Ihre Ableitung ergibt sich



10

GRUNDLAGEN

den Wert o fiir x < 0, den Wert 1 fiir x > 0 und ist fiir x = 0 nicht differenzierbar.
Ein Vorteil der ReLU [Agg23, S. 28] liegt darin, dass sie im positiven Bereich stets
eine konstante Ableitung von 1 besitzt und somit weniger anfillig fiir das Vanishing-
Gradient-Problem [BSF94] ist. Ein Nachteil besteht jedoch darin, dass wiahrend des
Trainings die Parameter so angepasst werden konnen, dass ein Neuron ausschliefSlich
Werte kleiner oder gleich 0 produziert und dadurch dauerhaft inaktiv bleibt [CMB23,
S. 185].

Die Gaussian Error Linear Unit (GELU) [HG23] ldsst sich durch folgende Nahe-
rungsformel beschreiben:

@(x) ~ 0.5x (1 + tanh [\/z (x+ O.O44715x3)] ) (2.2.7)

Die GELU ist eine nichtlineare Aktivierungsfunktion, die in vielen Transformer-
basierten Modellen, einschliefSlich BERT [DCLT19] und Swin [LLC*21] Transformer,
standardmaflig verwendet wird. Im Gegensatz zu ReLU fithrt GELU eine stochas-
tisch motivierte Glattung ein, indem sie die Eingabe gewichtet basierend auf deren
Wahrscheinlichkeit, positiv zu sein. Sie kombiniert dabei Merkmale linearer und
nichtlinearer Aktivierungen.

Layer-Normalisierung

Die Layer-Normalisierung [BKH16] ist eine von vielen Normalisierungstechniken,
die das Training tiefer neuronaler Netze verbessern, indem sie die Ausgabewerte einer
versteckten Schicht auf eine standardisierte Verteilung bringt.

Beim Training tiefer Netze hingen die Gradienten einer Schicht stark von den
Ausgaben der vorherigen Schicht ab. Dieses Problem ldsst sich verringern, indem die
summierten Eingaben (Voraktivierungen) jeder Schicht auf einen festen Mittelwert
und eine feste Varianz normalisiert werden [BKH16]. Gegeben sei der Vektor der
Voraktivierungen der k-ten Schicht a®) ¢ RM™ | Das arithmetische Mittel und die
Standardabweichung werden berechnet als:

1 1 2
n(e) = al® otk = (agk) — u(k)) (2.2.8)
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Anschlieflend wird jeder Wert des Vektors normiert, indem der Mittelwert subtra-
hiert und durch die Standardabweichung geteilt wird:

a = T (2.2.9)

Um der Normalisierung Flexibilitdt zu verleihen, werden zwei lernbare Parameter
eingefiihrt: ein Skalierungsfaktor y € RM™ und ein Bias-Term p € RM"™. Diese
Parameter dienen dazu, die normalisierten Werte in lernbarer Weise neu zu skalieren
und zu verschieben. Die endgiiltige Ausgabe der Layer-Normalisierung ergibt sich
somit zu:

)
normalized

—voa® +p (2.2.10)

wobei ® das elementweise Produkt bezeichnet. Layer-Normalisierung wird typischer-
weise nach der linearen Transformation, vor der Aktivierungsfunktion angewendet.
Nachteile sind der zusitzliche Rechenaufwand und eine eingeschrankte Wirksamkeit
bei Schichten mit wenigen Neuronen [BKH16].

2.2.2  Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [LB98] unterscheiden sich von klassischen
neuronalen Netzen dadurch, dass sie besonders gut fiir Daten mit einer Gitterstruktur
geeignet sind, wie beispielsweise Zeitreihen oder Bilddaten [GBC16, S. 326] [ON15].

Dies liegt daran, dass CNNs die raumliche oder zeitliche Nachbarschaft der Daten
gezielt ausnutzen konnen. Die Intuition hinter Convolutional Neural Networks besteht
darin, dass die Filter wahrend des Trainings selbststandig lernen, Merkmale wie Kan-
ten, Formen oder Texturen zu erkennen. Dadurch miissen die relevanten Eigenschaften
nicht manuell vorgegeben werden, sondern werden direkt aus den Trainingsdaten
gelernt. Durch das anschliefende Pooling wird zudem Ortsinvarianz erreicht, sodass
ein erkanntes Merkmal unabhéngig von seiner genauen Position im Bild beriicksichtigt
wird [Ket17, S. 77-78].

Ein wesentlicher Unterschied von CNNs zu klassischen Neural Networks besteht
darin, dass ihre Neuronen in drei Dimensionen Hohe, Breite und Tiefe organisiert
sind. Die Tiefe bezeichnet dabei nicht die Anzahl der Netzwerkschichten, sondern
die dritte Dimension des Aktivierungsvolumens. Zudem sind die Neuronen einer
CNN-Schicht nicht mit allen Neuronen der vorherigen Schicht verbunden, sondern
nur mit einem kleinen lokalen Bereich, was eine effiziente Verarbeitung raumlicher
Strukturen ermoglicht [ON15].

11
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Abbildung 2.2.3: Abbildung nach [AAS20] zeigt die Faltung eines Eingabebildes I mit einem
Kernel K. Der Kernel K wird {tiber das Eingabebild I verschoben. An jeder
Position werden die tiberdeckten Pixel mit den Kernel-Gewichten multipli-
ziert und summiert, um einen Wert in der Feature Map I * K zu erzeugen.

Im Folgenden wird zunéchst erldutert, was unter einer Convolution zu verstehen ist.
Anschlieffend wird das Verfahren des Poolings beschrieben, das in nahezu allen Con-
volutional Networks eingesetzt wird. Die in diesem Kapitel verwendete Terminologie
orientiert sich an [CMB23, S. 290—298] und [AAS20].

Convolution

Das zentrale Konzept der Faltung basiert auf dem sogenannten , Rezeptiven Feld”.
Darunter versteht man einen kleinen Ausschnitt des Bildes, in dem ein Neuron Merk-
male erkennt. In diesem Feld lernen die Gewichte des Modells, einfache Strukturen
wie Kanten, Linien oder andere visuelle Muster zu identifizieren.

Fiir die anschauliche Erklarung kann man sich die Eingabebilder zunéchst auf
Graustufenbilder beschrianken. Der dafiir verwendete Kernel ist eine kleine Matrix
von Gewichtswerten, die dieselbe Tiefe wie die Eingabeebene, jedoch eine geringere
rdaumliche Ausdehnung besitzt. Dieser Kernel wird tiber das Bild verschoben, wobei
an jeder Position eine gewichtete Summe der tiberdeckten Pixelwerte berechnet wird.
Durch die wiederholte Anwendung derselben Gewichtswerte auf alle Positionen des
Bildes entsteht die sogenannte Faltung. Dieses Teilen der Gewichte ist ein zentrales
Merkmal der CNN-Architektur, da es die Anzahl der zu lernenden Parameter im
Vergleich zu einem vollstdndig verbundenen Netzwerk drastisch reduziert [GBC16,
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S. 331-333]. Die Ergebnisse dieser Berechnungen werden in einer neuen Ausgabematrix
gespeichert, die als Feature Map bezeichnet wird (siehe Abbildung 2.2.3).

Die Faltung kann nach mathematisch formalisiert werden. Fiir ein Bild mit Intensita-
ten (Helligkeitswert) I und einen Kernel K ergibt sich die Aktivierung der Feature-Map
S an der Position (i,j) nach [GBC16, S. 328] zu

S(1,j) = (K«D)(ij) = Y_ Y I(i+mn, j+m)K(n,m). (2.2.11)

Genau genommen handelt es sich hierbei um eine Cross-Correlation, in der Litera-
tur zum maschinellen Lernen wird dieser Vorgang jedoch tiblicherweise als Faltung
bezeichnet. Durch Hinzufiigen eines Bias-Terms sowie der Anwendung einer Aktivie-
rungsfunktion werden die endgiiltigen Werte der Feature Map bestimmt. Traditionell
wurde in neuronalen Netzen hédufig die Sigmoid-Funktion als Aktivierungsfunktion
(vgl. Abschnitt 2.2.1) eingesetzt, da sie eine glatte, stetige Form besitzt und sich leicht
differenzieren lasst.

Pooling

Eine typische Schicht in einem CNN besteht aus drei Phasen [GBC16, S. 355].
Zunidchst werden mehrere Faltungen parallel durchgefiihrt, um lineare Aktivierungen
zu erzeugen. Im néchsten Schritt werden diese linearen Aktivierungen durch eine
nichtlineare Aktivierungsfunktion transformiert. Schliefllich kommt Pooling zum
Einsatz, die die Ausgaben weiter zusammenfasst und damit die Dimensionen reduziert,
ohne die relevanten Informationen zu verlieren.

Pooling-Schichten verfolgen das Ziel, die Dimensionalitdt der Repradsentationen
schrittweise zu verringern. Dadurch sinkt nicht nur die Anzahl der Parameter, sondern
auch die rechnerische Komplexitdt des Modells [ON15, AAS20]. Ein weiterer Ziel
dabei ist die Translationsinvarianz. Das bedeutet, dass die Ausgabe des Netzes auch
dann weitgehend stabil bleibt, wenn das Eingabebild leicht verschoben wird. Auf
diese Weise kann das Modell erkennen, dass ein bestimmtes Merkmal vorhanden ist,
unabhéngig davon, ob es sich im Bild ein wenig nach links, rechts, oben oder unten
bewegt hat [AAS20].

Das Grundprinzip von Pooling besteht darin, die Ausgaben einer bestimmten Regi-
on in der Feature Map durch eine statistische Kenngrofie zu ersetzen. Eine verbreitete
Methode ist das sogenannte Max-Pooling [ZC88] (siehe Abbildung 2.2.4 (a)), das
in Convolutional Neural Networks hédufig eingesetzt wird, da dabei keine zusatzli-
chen Parameter gelernt oder angepasst werden miissen. Hierbei wird innerhalb jeder
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Abbildung 2.2.4: Beispiel fiir Pooling-Operationen in CNNs: (a) Max-Pooling und (b) Average-
Pooling.

Pooling-Region der hochste Wert ausgewdhlt und an die ndchste Schicht weitergegeben.
Auf diese Weise bleibt erhalten, ob ein Merkmal in der betrachteten Region vorhanden
ist und wie stark es ausgeprigt ist, wiahrend Details iiber die exakte Position teilweise
verloren gehen.

Neben Max-Pooling gibt es auch andere Varianten. So kann die Ausgabe beispiels-
weise als Durchschnittswert aller Werte innerhalb des Bereichs berechnet werden
(siehe Abbildung 2.2.4 (b)), oder man verwendet die L2-Norm zur Zusammenfassung.
Ebenso sind gewichtete Mittelwerte moglich, bei denen Werte, die ndher am Zentrum
des Rezeptiven Feldes liegen, starker beriicksichtigt werden.

2.2.3 Optimierung

In den vorangegangenen Abschnitten wurde der grundlegende Aufbau neuronaler
Netze beschrieben. Dieses Kapitel beschiftigt sich mit der Optimierung dieser Net-
ze. Unter der Optimierung eines neuronalen Netzes versteht man die Anpassung
seiner Parameter W (also der Gewichte und Bias) mit dem Ziel, dass die Ausgaben
Ui = f(xy; W) fur Eingaben (xi,yi) aus einer Stichprobe X = {(x1,y1),..., (xn,Yn)}
moglichst genau mit den tatsdchlichen Zielwerten y; tibereinstimmen [Agg23, S. 6-—7].

Im Folgenden werden zunichst verschiedene Verlustfunktionen vorgestellt, die
messen, wie grofs die Abweichung zwischen Vorhersage und Zielwert ist. Darauf
aufbauend wird das Verfahren des Gradientenabstiegs (Gradient Descent) erldutert,
ein Algorithmus zur schrittweisen Minimierung der Verlustfunktion. Schliefflich wird
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die Backpropagation als algorithmisches Verfahren zur effizienten Berechnung dieser
Gradienten vorgestellt.

Verlustfunktion

Im Kontext neuronaler Netze beschreibt eine Verlustfunktion (Loss Function, Cost
Function, oder Error Function), wie stark die geschdtzte Ausgabe eines Modells von
der gewiinschten Zielausgabe abweicht. Um die Sicherheit einer Klassenvorhersage
tiir ein Eingabedatum x; zu bewerten, wird eine Verlustfunktion definiert, die einen
hohen Wert annimmt, wenn die vorhergesagte Klasse {j; nicht mit der tatsdchlichen
Klasse y; uibereinstimmt.

Fiir Klassifikationsprobleme wird héufig die Cross-Entropy-Loss (CE) zwischen den
Trainingsdaten und den Modellvorhersagen verwendet. Dabei kommt iiblicherweise
die Softmax-Funktion in der Ausgabeschicht des Klassifikators zum Einsatz, um die k
reellwertigen Scores bzw. Klassen-Scores v, ..., vx in Wahrscheinlichkeiten oy, ..., 0k
tiber k verschiedene Klassen zu transformieren [CMB23, S. 419].

Seien y1,...,yk € {0, 1} die One-Hot-codierten Labels der Trainingsdaten fiir die k
Klassen. Dabei nimmt die Komponente der korrekten Klasse den Wert 1 an, wahrend
alle anderen Komponenten 0 sind [SF17]. Fiir ein einzelnes Trainingsbeispiel i €
{0,...,k} ist der Cross-Entropy-Loss nach [Agg23, S. 118] definiert als:

eV
Y ev

In den meisten Optimierungsproblemen ldsst sich die Verlustfunktion als Summe
der Verluste tiber alle Trainingsbeispiele darstellen. Dann ergibt sich der Gesamtverlust
tiir eine Trainingsmenge mit n Trainingsbeispiele nach [CMB23, S. 234][GBC16, S. 122]
zZu:

Kk
Li(w) = — Zyj log(oj), 0j (2.2.12)
j=1

Liw) = Z Li(w). (2.2.13)
wobei L; der Verlust fiir ein einzelnes Trainingsbeispiel 1 ist.

Gradient Descent

Eine grundlegende Methode zur Minimierung der Verlustfunktion L(w) ist das
Gradient Descent [Lem12]. Die zugrunde liegende Idee von Gradient Descent besteht
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darin, von einem zuféllig gewdhlten Startpunkt aus schrittweise in die Richtung der
negativen Steigung der Verlustfunktion zu gehen bis ein (lokales) Minimum erreicht
ist. In hochdimensionalen Rdumen ist es jedoch schwierig, das globale Minimum zu
erreichen, weshalb in der Praxis meist eine Losung akzeptiert wird, deren Funktions-
wert zwar nicht minimal, aber dennoch hinreichend klein ist [GBC16, S. 81-82]. Um
eine ausreichend gute Losung zu erhalten, kann es notwendig sein, den Algorithmus
mehrfach mit unterschiedlichen Startpunkten auszufiihren und die Ergebnisse an-
schlieflend auf einer unabhingigen Validierungsmenge zu vergleichen [CMB23, S. 213].
Abbildung 2.2.5 veranschaulicht das Verfahren des Gradientenabstiegs.

Der Gradient V,,L(w(t)) ist ein Vektor und enthilt als Komponenten die partiellen
Ableitungen der Funktion L nach den Gewichten w. Die Parameter lassen sich dabei
als Vektor w auffassen, der nach jedem Schritt iterativ angepasst wird. Formal ergibt
sich das Aktualisierungsschema [CMB23, S. 214] zu:

witF =t _ev  L(wt), (2.2.14)

wobei e die Lernrate (learning rate) ist, ein positiver Skalar, der die Grofie der
einzelnen Schritte bestimmt. Nach jeder Aktualisierung wird der Gradient fiir den
neuen Parametervektor w(t*1) erneut berechnet und der Prozess wiederholt.

Wird der Verlust bei jeder Aktualisierung tiber alle Trainingsdaten hinweg berechnet,
spricht man von Batch Gradient Descent, dem Standardverfahren des Gradient Descents.
Dieses Verfahren ist insbesondere bei sehr grofsen Datensédtzen rechenintensiv und
fihrt zu langsamen Lernprozessen, da fiir jeden Schritt das gesamte Trainingsset
berticksichtigt werden muss [Rud17].

Im Gegensatz dazu wird beim Mini-Batch Gradient Descent nur eine zufillig aus-
gewdhlte Teilmenge der Trainingsdaten verwendet. Grofsere Mini-Batches liefern
genauere Schatzungen des Gradienten, erhohen jedoch den Aufwand fiir jede einzelne
Gradientenberechnung. Beim Mini-Batch Gradient Descent wird nur eine zufillig
ausgewihlte Teilmenge der Trainingsdaten verwendet. Dadurch reduziert sich der
Rechenaufwand pro Schritt.

Eine weitere, hdufig genutzte Alternative fiir grofie Datensétze ist das Stochastic
Gradient Descent (SGD) [Bot10]. Dabei wird der Parametervektor auf Grundlage eines
einzelnen zuféllig ausgewdéhlten Trainingsbeispiels aktualisiert:

W(tJr” = W(t) — €VW(‘£)L1 (W(t)) (2'2'15)

Der Begriff , stochastisch” weist darauf hin, dass der berechnete Gradient nur eine
noisy Approximation des tatsichlichen Gradienten tiber das gesamte Trainingsset
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Abbildung 2.2.5: Visualisierung des Gradient Descent auf der Funktion f(x,y) = x? +y?. Links
ist die Zielfunktion als 3D-Oberfliche dargestellt. Der rote Pfeilpfad zeigt die
sukzessiven Schritte des Gradientenverfahrens, die das Verfahren von einem
Startpunkt in Richtung des globalen Minimums bei (0, 0) fithren. Rechts ist
der Draufsicht mit Niveaulinien von f(x,y).

darstellt [DFO2o0, S. 231]. Trotz dieser Verzerrung ist SGD effektiv fiir grofie Machine-
Learning-Probleme, da es schnelle und regelméfsige Updates ermoglicht [BCN18].

Backpropagation

Die benoétigten Ableitungen der Fehlerfunktion mit Bezug auf die einzelnen Para-
meter des Netzes konnen effizient mithilfe der Backpropagation [RHW86] berechnet
werden. Dabei handelt es sich um ein Verfahren, das die Gradienten Schritt fiir Schritt
riickwarts durch das Netzwerk propagiert. Die Berechnungen folgen dabei in umge-
kehrter Richtung dem Ablauf des Vorwéartsdurchlaufs, bei dem die Netzwerkausgabe
bestimmt wird. Die folgende Darstellung orientiert sich an [CMB23, S. 233-238].

Der Backpropagation besteht aus zwei zwei Hauptphasen: Forward-Pass und Backward-
Pass.

Im Forward-Pass werden die Eingabedaten durch das Netzwerk geleitet, und die
Ausgabe wird berechnet. Dabei werden in jeder Schicht die Aktivierungen der Neuro-
nen sowie Zwischenergebnisse (wie die Summeneingéange), die spater fiir die Riick-
wartsberechnung der Gradienten benotigt werden. Auf dieser Grundlage kann an-
schlieSend der Wert der Verlustfunktion L(w) fiir die aktuellen Parameter w bestimmt
werden. Fiir eine einzelne Eingabe (x,y1) sei dabei die Fehlerfunktion L; betrachtet.
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Wie in Abschnitt 2.2.1 erldutert, berechnet jedes Neuron zunédchst eine gewichtete Sum-
me seiner Eingaben, die anschliefSfend durch eine nichtlineare Aktivierungsfunktion
@(-) transformiert. Fiir das Neuron j gilt:

aj; = Zwﬁzi, z; = @(aj), (2.2.16)
i

wobei wj; das Gewicht der Verbindung von Neuron i zu Neuron j. Die Werte z;
stammen entweder aus den Aktivierungen der vorherigen Schicht oder, im Falle der
Eingabeschicht, direkt aus den Eingangsdaten des Netzes.

Im Backward-Pass werden die Gradienten der Verlustfunktion beztiglich der Ge-
wichte mithilfe der Kettenregel berechnet. Zur Berechnung der Ableitung der Feh-
lerfunktion L beziiglich eines Gewichts wj; nutzen wir die Kettenregel. Da [; vom
Gewicht wj; nur {iber den Summeneingang a; abhingt, ergibt sich:

6L1 B % a(l]'
6wji B aaj 6wji

=0j-zy, (2.2.17)

wobei §; den der Fehler des Neurons j bezeichnet und als die Ableitung der Verlust-
funktion nach dem Summeneingang a; definiert wird.

Aus Gleichung (2.2.17) folgt, um den Gradient fiir alle Gewichte im Netz zu be-
rechnen, gentigt es also, den Fehler §; eines Neurons mit der Aktivierung z; seines
Eingabe-Neurons zu multiplizieren.

Falls ein Neuron j im Output-Layer liegt, ldsst sich der Fehler als

oL oL

—_ = . ! .
= 3a, ~ 1, ¢'(a) (2.2.18)

j
wobei ¢’ die Ableitung der Aktivierungsfunktion ist.

Befindet sich ein Neuron j in einem Hidden Layer, so muss eine Summe tiber alle
Neuronen k der nachfolgenden Schicht gebildet werden, da das Neuron j mit allen
Neuronen im sukzessiven Layer verbunden ist. Die Aktivierung z; geht somit in die
Berechnungen der folgenden Schicht ein. Fiir den Fehler 6; eines Neurons j im Hidden
Layer gilt daher:

5o 0Ly 0L da (2210
]_aaj_kaak aaj' =19

Fiur zwei direkt miteinander verbundene Neuronen j (in der aktuellen Schicht)
und k (in der nédchsten Schicht) gilt g—i‘; = % . 2—2 = Wij - ¢'(aj), wobei wyj das
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Gewicht der Verbindung von Neuron j zu Neuron k und ¢’(aj) die Ableitung der
Aktivierungsfunktion ist. Setzt man diesen Ausdruck in Gleichung (2.2.19) ein, so
ergibt sich der Fehler fiir ein Neuron j im Hidden Layer:

8 = ¢'(aj) - Zwkj Sk (2.2.20)
K

Damit wird klar, dass der Fehler §; eines Hidden-Neurons durch Backpropagation der
Fehlerwerte 0y aus der nachfolgenden Schicht berechnet werden kann.

2.3 TRANSFORMERS

Der Transformer [VSP ' 23] stellt eine der bedeutendsten Entwicklungen im Bereich des
Deep Learning dar [KNH " 22] und findet inzwischen breite Anwendung in verschie-
denen Feldern wie der natiirlichen Sprachverarbeitung (NLP), der Computer Vision
(CV) sowie der Sprachverarbeitung. Im Gegensatz zu CNNs benétigen Transformer
weder rekurrente noch konvolutionale Strukturen zur Modellierung von Sequen-
zen, sondern setzen ausschliefilich auf Attention-Mechanismen in Kombination mit
Feed-Forward-Netzwerken. In diesem Kapitel werden die zentralen Bausteine von
Transformer-Modellen vorgestellt und ihre Funktionsweise ndher erldutert.

2.3.1 Eingabereprisentationen

Die Eingabereprasentation bildet die Grundlage fiir die Verarbeitung von Eingabetext
durch Transformer-Modelle. Sie umfasst die Zerlegung von Texten in Tokens, die
Abbildung dieser Tokens auf Vektoren mittels Embeddings sowie die Integration
von Positionsinformationen iiber Positional Encoding. In den folgenden Abschnitten
werden diese drei Komponenten im Detail beschrieben.

Tokenisierung

In praktischen Anwendungen des Deep Learning im Bereich Natural Language
Processing (NLP) wird der Eingabetext zunéchst in eine tokenisierte Prasentationen
tiberfithrt. Die Tokenisierung ist ein Vorverarbeitungsschritt, bei dem ein Text in
kleinere Einheiten, sogenannte Tokens, zerlegt wird. Tokens konnen einzelne Zeichen,
ganze Worter oder Teile von Wortern darstellen [SN12].

Wihrend es verschiedene Ansidtze zur Tokenisierung gibt, wie etwa Zeichen-
oder Wort-Tokenisierung, hat sich in der modernen Sprachverarbeitung die Subword-
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Tokenisierung oft durchgesetzt [SHB16]. Das Grundprinzip besteht darin, seltene Worter
in kleinere Einheiten zu zerlegen, sodass das Modell auch mit unbekannten oder feh-
lerhaft geschriebenen Wortern umgehen kann. Haufig vorkommende Worter werden
hingegen als ganze Tokens beibehalten, um die Lange der Eingabesequenz in einem
handhabbaren Rahmen zu halten [TWW22, S. 33-34]. Der Tokenizer wird dabei auf
einem grofien Korpus wéihrend des Pre-Trainings gelernt, sodass er eine fiir das Modell
geeignete Zerlegung des Textes erzeugen kann.

Es existieren verschiedene Ansitze zur Subword-Tokenisierung. Ein hdufig ein-
gesetztes Verfahren ist die Byte Pair Encoding (BPE) [SHB16], das urspriinglich aus
der Datenkompression stammt und fiir die Text-Tokenisierung angepasst wurde. Die
Grundidee besteht darin, haufig vorkommende Zeichenfolgen schrittweise zusammen-
zufiihren. Zu Beginn wird die Tokenliste aus den einzelnen Zeichen des Alphabets
sowie einem speziellen Wortend-Symbol *-” initialisiert. Im ndchsten Schritt wird ein
Textkorpus nach den am haufigsten auftretenden aufeinanderfolgenden Token-Paaren
durchsucht. Das am hadufigsten vorkommende Paar, beispielsweise (‘A’, ‘B’), wird
anschlieffend zu einem neuen Token ("AB’) zusammengefiihrt. Dieser Vorgang wird
iterativ wiederholt, sodass nach und nach ldngere und haufigere Zeichenfolgen als
eigenstandige Tokens entstehen. Um zu verhindern, dass Worter tiber Wortgrenzen
hinweg zusammengefiihrt werden, wird ein neues Token nicht gebildet, wenn das
zweite Token mit einem Leerzeichen beginnt. Auf diese Weise entsteht eine Tokenliste,
die sowohl hdufige Worter als Ganzes als auch seltenere Worter in kleinere Einheiten
zerlegt.

Token-Embeddings

Transformermodelle konnen keine Rohtexte in Form von Zeichenketten direkt als
Eingabe verarbeiten. Token-Embeddings reprasentieren jedes Token durch einen Vektor
in einem hochdimensionalen Raum mit typischerweise einigen hundert Dimensionen.
Formal lasst sich dies nach [CMB23, S. 375] durch eine Embedding-Matrix E € R4*!V!
darstellen, wobei d die Dimension des Embedding-Raums und [V| die Grofie des
Vokabulars bezeichnet. Fiir einen one-hot-kodierten Eingabevektor x; ldsst sich der
zugehorige Embedding-Vektor berechnen als

Vi = EXi,

wobei v; derjenigen Spalte von E entspricht, die mit dem Token x,, assoziiert ist. Die
Embedding-Matrix E kann entweder zuféllig initialisiert oder aus einer vortrainierten
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Standard-Embedding-Matrix iibernommen werden [CMB23, S. 376]. Die Embedding-
Matrix E wird aus einem Trainingskorpus gelernt. Eine gidngige Methode dafiir ist
Word2Vec [MCCD13], die ldsst sich als ein einfaches zweischichtiges neuronales Netz
auffassen, das aus einer Eingabeschicht, einer Projektionsschicht und einer Ausgabe-
schicht besteht.

Dabei entsteht jedes Trainingsbeispiel durch die Betrachtung eines , Fenster” von
¢ benachbarten Wortern (typischerweise ¢ = 5), die als Kontextworter dienen. Die
Worter werden dabei als unabhédngige Einheiten behandelt, da sie im Vokabular
durch Indizes reprasentiert sind. Zu diesem Ansatz wurden 2 Varianten vorgestellt:
Continuous Bag of Words (CBOW) und Skip-gram.

Im CBOW ist das Trainingskriterium, das aktuelle (Mittel-)Wort korrekt aus dem
Kontext zu klassifizieren. Diese Architektur wird als Bag-of-Words-Modell bezeich-
net, da die Reihenfolge der Worter innerhalb des Kontextes vollstindig ignoriert
wird. Gegeben eine Sequenz von Trainingswortern wi, wy, ..., Wy, berechnet CBOW
nach [WXCH17] die Vektor-Représentation des aktuellen Wortes in dem Hidden Layer
als Mittelwert der Vektoren der Kontextworter x = Zwi cc €(wyi), wobei e(w;) das
Embedding des Kontextwortes w; bezeichnet. Das Optimierungsziel besteht darin, die
Log-Likelihood {tiber das gesamte Trainingskorpus D zu maximieren:

exp (e/(w)Tx)

wrev exp (e/(w')Tx) (2.3.1)

L= ) logpwlel,  pwle) =
(w,c)eD
Hierbei bezeichnet e’(w) das Output-Embedding von w und c ist die Menge der
entsprechenden Kontextworter. Die Wahrscheinlichkeit p(w | c¢), dass das Zielwort w
im Kontext ¢ auftritt, wird durch eine Softmax-Funktion beschrieben.

Das Skip-gram hingegen dreht die Vorhersagerichtung um: Statt das aktuelle Wort
aus dem Kontext vorherzusagen, wird das (Mittel-)Wort als Eingabe gegeben, und die
Kontextworter dienen als Zielwerte. Das Skip-gram-Modell maximiert nach [MSC™ 13]
die durchschnittliche logarithmische Wahrscheinlichkeit

o= LS S togpleiw),  pleslw) = —— ((e)"e(w))
== ogplci|w),  plei|w)=
LLgwveniby=! 2, . exp (e,(W/)Te(Ci))

Ein wesentliches Merkmal ist, dass semantisch dhnliche Worter in raumlich nahe
Positionen im Embedding-Raum abgebildet werden. Ein klassisches Beispiel fiir die-
sen Effekt ist die Vektoroperation vec(“Madrid”) — vec(“Spain”) + vec(“France”) =~
vec(“Paris”), die zeigt, dass semantische Beziehungen im Vektorraum explizit abgebil-
det werden konnen [MCCD13].

(2.3.2)

w’ev
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Positional Encoding

Da die vom Transformer gelernten Reprasentationen unabhidngig von der Reihen-
folge der Eingabetokens sind, ergibt sich bei der Verarbeitung sequenzieller Daten
das Problem [CMB23, S. 371—-372]. Um diese Einschrankung zu tiberwinden, wird
den Token-Embeddings eine Positionskodierung hinzugefiigt, die die Reihenfolge der
Tokens innerhalb der Sequenz abbildet. Die Token-Embeddings und die Positionsco-
dierungen werden komponentenweise addiert, um das finale Eingabe-Embedding zu
erhalten, was als Eingang fiir die erste Schicht des Encoder-Stacks und des Decoder-
Stacks dient.

Die Positionskodierungen besitzen dieselbe Dimension d wie die Eingabe-Embeddings,
damit beide Vektoren komponentenweise addiert werden konnen. Die von Vaswani
et al. [VSP*" 23] gewdhlten Positional Encoding an der Position pos in der Sequenz
und fiir die Dimension i basieren auf Sinus- und Kosinusfunktionen unterschiedlicher
Frequenzen lautet:

. pos
PE ;) = sin - 2.3.
(pos,21) (mooo%) (2:33)
0s
PE(pos,Zi—l—U = COs (101(3)00%;> (2.3.4)

Die Kodierungswerte an den geraden und ungeraden Positionen werden entspre-
chend durch Gleichung 2.3.3 bzw. 2.3.4 berechnet.

2.3.2 Attention

Attention ist ein zentrales Konzept in Transformer-Architekturen. Die Idee dieser
Mechanismen wurde urspriinglich als Erweiterung von RNNs eingefiihrt [BCB16].
Spater zeigten Vaswani et al. [VSP 23], dass sich die Leistung deutlich verbessern
lasst, wenn auf die rekurrente Struktur vollstindig verzichtet wird und das Modell
ausschliefSlich auf dem Attention-Mechanismus basiert.

Attention ermoglicht es dem Modell, bei der Verarbeitung eines Elements einer Se-
quenz dynamisch relevante Teile der gesamten Eingabesequenz zu gewichten. Im Fall
von Textsequenzen handelt es sich dabei um Token-Embeddings (vgl. Abschnitt 2.3.1),
wihrend bei Bilddaten entsprechende visuelle Token-Embeddings verwendet werden.
Dabei wird fiir jedes Token eine gewichtete Kombination aller anderen Tokens berech-
net, wodurch kontextabhidngige Reprasentationen entstehen. Abbildung 2.3.1 illustriert
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Abbildung 2.3.1: Beispiel nach [CMB23, S. 360] fiir gelernte Attention-Gewichte in einem
Transformer-Modell von [VSP*23]. Die Verbindungen zwischen den Tokens
veranschaulichen, welche Worter beim Verarbeiten eines bestimmten Tokens
besonders stark beriicksichtigt werden. Die Stiarke der Aufmerksamkeit wird
durch die Farbintensitit der Linien angezeigt.

die in einem Transformer gelernten Attention-Gewichte anhand eines Beispielsatzes.
In dem Beispiel richtet das Wort missing besonders grofse Attention-Gewichte auf what,
we und are (erkennbar an der starkeren Farbintensitit). Das Modell hebt damit die
Abhiéngigkeit zwischen missing und dem Ausdruck what we are hervor.

Die Menge von Eingabevektoren x1, ..., xy ist in einem Embedding-Raum gegeben,
die in eine neue Menge der Ausgabevektoren yj, ...,y abgebildet werden sollen.
Im Fall von Self-Attention besitzen die Ausgaben die gleiche Lange wie die Ein-
gabesequenz, liegen jedoch in einem neuen Raum, der reichhaltigere semantische
Strukturen abbilden kann. Dabei hidngt der Wert von y; nicht nur vom entsprechenden
Eingabevektor x; ab, sondern von allen Eingabevektoren x1, ..., Xn.

Self-Attention

Um zu bestimmen, wie stark ein Token auf ein anderes Token ,,achten” soll, muss
zunichst berechnet werden, wie dhnlich diese beiden Vektoren sind. Dieser Mecha-
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Abbildung 2.3.2: Aufbau der Architektur von Multi-Head Attention (links) und Scaled Dot-
Product Attention (rechts) aus [VSPT23].

nismus heifdt Self-Attention [VSP* 23], da dieselbe Eingabesequenz genutzt wird, um
Queries, Keys und Values zu erzeugen. Dazu wird die Eingabematrix X jeweils mit
eigenen Gewichtsmatrizen multipliziert:

Q=xwl), K=xwk, v=xw

Die Gewichtsmatrizen W(4), W(k) ¢ Rd%dx ynd W) € R4%dv gind Parameter, die
wahrend des Trainings gelernt werden. Dabei legt dy die Dimension der Query- und
Key-Vektoren fest (iiblicherweise dy = d), wahrend d, die Dimension der Ausgaben
bestimmt. Die Gewichtsmatrizen sind notwendig, weil nicht alle Merkmale eines
Token-Vektors gleich wichtig fiir die Berechnung der Ahnlichkeit sind. Durch die
lernbaren Parameter kann das Modell bestimmte Merkmale hervorheben und andere
abschwéchen.

Die Stirke der Beziehung zwischen dem Token x; und Token x; ergibt sich aus dem
Skalarprodukt qiT k;j, das ein Maf3 fiir die Ahnlichkeit zwischen den beiden Tokens
darstellt. Um daraus giiltige Attention-Gewichte zu berechnen, wird die Softmax-
Funktion angewandt:

wij = Softmax (qiTk]-) (2.3.5)

Die Softmax-Funktion sorgt dafiir, dass die berechneten Koeffizienten normalisiert
werden, sodass sie nicht negativ sind und sich tiber alle Tokens hinweg zu eins sum-
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mieren. In diesem Zusammenhang hat die Softmax-Funktion keine probabilistische
Bedeutung, sondern dient lediglich der Normalisierung der Gewichte.

Die Ausgabevektoren y; ergeben sich anschlieflend als gewichtete Summe der
Value-Vektoren:

n
Yi = Zwij\"j- (2.3.6)
j=1

Zur kompakteren Darstellung der Formel (2.3.5) und (2.3.6) wird die Berechnung
hiufig in Matrixschreibweise formuliert. Dabei bezeichnet Y € R™*¢ die Ausgabema-
trix, deren Zeilen den berechneten Vektoren y; entsprechen.

Y = Softmax (QK") V. (2.3.7)

Ein Problem der Softmax-Funktion besteht darin, dass die Gradienten fiir Eingaben
mit grofilem Betrag exponentiell (grofien Logits) klein werden konnen. Um diesen
Problem zu vermeiden, wird das Skalarprodukt der Query- und Key-Vektoren vor der
Anwendung der Softmax-Funktion normalisiert. Dies geschieht, indem das Produkt
durch die Standardabweichung, also die Quadratwurzel von dy, geteilt wird. Die
Ausgabe der Attention-Schicht ergibt sich damit zu

Y = Attention(Q, K, V) = Softmax (QKT) Vv
4 4 - \/a .
Dieses Verfahren wird als Scaled Dot-Product Self-Attention bezeichnet und wird in der
Abbildung 2.3.2 abgebildet.

Multi-Head Self-Attention

Die Multi-Head Self-Attention (MHA) [VSP " 23] stellt eine Erweiterung des Self-
Attention-Mechanismus dar. Anstatt nur eine einzelne Self-Attention-Berechnung
durchzufiihren, werden mehrere dieser Mechanismen parallel ausgefiihrt. Jede ein-
zelne dieser Berechnungen wird als Head bezeichnet. Durch die parallele Nutzung
mehrerer Heads kann das Modell verschiedene Représentationen und Abhéingig-
keiten innerhalb der Sequenz erfassen, da jeder Head unterschiedliche Aspekte der
Eingabe fokussieren kann [TWW22, S. 67]. MHA stellt eine zentrale Komponente
moderner Transformermodelle dar und hat sich insbesondere im Natural Language
Processing (NLP) [DCLT19] sowie zunehmend in der Computer Vision [DBK " 21] als
Standardarchitektur durchgesetzt.
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Jeder Head i € {1, ..., h} verarbeitet eine andere Projektion der Eingabedaten, fiihrt
eine eigene Scaled Dot-Product Attention aus und extrahiert unterschiedliche Bezie-
hungsmuster innerhalb der Sequenz. Die Ergebnisse aller h Kdpfe werden anschlie-
end konkateniert und mit einer weiteren Gewichtsmatrix WC© € R"4v*d multipliziert.
Das beschriebene Vorgehen ist in Abbildung 2.3.2 dargestellt. Formal lédsst sich dies
wie folgt beschreiben:

MultiHead(Q, K, V) = Concat(Head, ..., Heady,) WO,

(2.3.8)
Head; = Attention(QWiQ, KWf, VWiV ) 3

Im Originalpapier von Vaswani et al. [VSP" 23] wird mit h = 8 parallelen Heads
und dy =d, = % = 64 gearbeitet.

2.3.3 Transformer-Modelle

Der originale Transformer-Modell von Vaswani et al. [VSP* 23] basiert auf der Encoder-
Decoder-Architektur und ist in Abbildung 2.3.3 dargestellt.

Als Eingabe der Modelle dient eine Sequenz von Wortern, die zunédchst tokenisiert
(vgl. Abschnitt 2.3.1) und in Token-Embeddings (vgl. Abschnitt 2.3.1) umgewandelt
wird. Da der Attention-Mechanismus keine Informationen iiber die Reihenfolge der To-
kens enthalt, wird zusatzlich eine Positionscodierung eingebracht, um die sequenzielle
Struktur des Textes abzubilden. Die Token-Embeddings werden daher mit entspre-
chenden Positions-Embeddings (vgl. Abschnitt 2.3.1) addiert, die fiir jedes Token
seine Position in der Sequenz représentieren. Die resultierenden Vektoren durchlau-
fen anschlieffend mehrere hintereinander verbundenen Encoder-Layer, wobei jeder
Layer auf den Ausgaben des vorherigen Layers aufbaut. Formal transformiert der
Encoder eine Eingabesequenz x = (x1,...,Xy) in eine Sequenz kontinuierlicher Repré-
sentationen z = (z1,...,zn ). Diese finale Encoder-Ausgabe z dient dem Decoder als
Kontextinformation.

Die Ausgabe des Encoders wird an jede Decoder-Schicht weitergegeben. Der De-
coder erzeugt daraufhin eine Vorhersage fiir das wahrscheinlichste nachste Token in
der Zielsequenz. Am Anfang der Eingabesequenz des Encoders wird ein spezielles
Start-Token <start> eingefiigt, das den Beginn der Sequenz markiert. Damit die Ein-
gabesequenz fiir den Decoder um eine Position nach rechts verschoben wird und das
Token x, als Eingabe fiir die Vorhersage von y,, 1 dient . Die bis zu diesem Zeitpunkt
erzeugten Tokens werden Schritt fiir Schritt wieder in den Decoder eingespeist, um
das jeweils ndchste Token zu erzeugen. Dieser Prozess wird solange wiederholt, bis
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Abbildung 2.3.3: Aufbau der Transformer-Architektur nach [VSP"23] mit einem Encoder-
Stack (links) zur Verarbeitung der Eingabesequenz und einem Decoder-Stack
(rechts) zur Generierung der Ausgabe.

entweder ein spezielles End-of-Sequence-Token <eos> vorhergesagt wird oder eine
zuvor definierte maximale Sequenzlange erreicht ist, die durch die Eingabegrofie des
Transformers bestimmt wird. Auch hier baut jeder Decoder-Layer auf dem Output des
vorherigen Layers auf.

Encoder

Der Encoder ist in der linken Hélfte von Abbildung 2.3.3 dargestellt. Der Encoder-
Stack besteht aus N (N = 6 im urspriinglichen Transformer-Modell [VSP"23]) identi-
schen Schichten, die sequenziell angeordnet sind. Der Input der ersten Encoder-Schicht
ist die eingebettete Eingabesequenz, angereichert mit Positionscodierungen. Die Aus-
gabe einer Schicht dient als Eingabe fiir die nichste. Die letzte Encoder-Schicht liefert
kontextreiche Vektoren, die als Eingabe fiir den Decoder dienen.

Jede Schicht enthdlt zwei Unterschichten: Die erste ist ein Multi-Head-Self-Attention
(vgl. Abschnitt 2.3.2), die zweite ist ein Position-Wise-Feedforward-Netzwerk (vgl. Ab-
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schnitt 2.2.1). Die FFN-Unterschicht besteht aus einem einfachen zweischichtigen,
vollstindig verbundenen neuronalen Netz. Im Gegensatz zu einer gemeinsamen Verar-
beitung der gesamten Sequenz von Embeddings wird jedoch jedes Token-Embedding
unabhéngig voneinander transformiert. Aus diesem Grund wird diese Schicht als
Position-Wise FEN bezeichnet. Die Ausgabe jeder Unterschicht wird iiber eine Residual-
verbindung [HZRS16] mit ihrer jeweiligen urspriinglichen Eingabe addiert, und auf die
Summe wird anschlieffend eine Layer-Normalisierung (vgl. Abschnitt 2.2.1) angewendet.
Normalisierung und Residualverbindungen sind bewéhrte Techniken, die das Training
tiefer neuronaler Netze effizienter und stabiler machen.

Die Ausgabe der Multi-Head Attention Unterschicht ergibt sich formal durch die
Anwendung einer Residual-Verbindung, gefolgt von einer Layer-Normalisierung.
Dabei werden die Eingaben x gleichzeitig als Query, Key und Value genutzt. Die
Berechnung erfolgt wie folgt:

Output = LayerNorm(x + MultiHead(x, x, x)).

Zusitzlich enthilt der Transformer-Stack ein kleines Position-Wise Feedforward-
Netzwerk (FFN), das auf jede Position unabhidngig und identisch angewendet wird.
Das Feedforward-Netzwerk besteht aus zwei linearen Transformationen mit einer
nichtlinearen Aktivierungsfunktion ReLU dazwischen. Auch hier wird eine Residual-
Verbindung mit anschlieffender Layer-Normalisierung verwendet. Die vollstindige
Transformation des Eingabesignals x durch den Feedforward-Teil ldsst sich wie folgt
darstellen:

Output = LayerNorm(x + FFN(x))

(2.3.9)
FFN(x) = max(0,xW7 + b1 )W5 + b,

Decoder

Der Decoder ist in der rechten Hilfte von Abbildung 2.3.3 dargestellt. Der Decoder-
Stack besteht analog zum Encoder aus N identischen Schichte. Jede dieser Schich-
ten enthélt drei Unterschichten. Neben der Self-Attention und dem Feed-Forward-
Netzwerk wie im Encoder kommt im Decoder eine zusatzliche Self-Attention-Schicht
hinzu. Dabei erfiillt jede Multi-Head-Attention-Schicht im Decoder eine eigene spezifi-
sche Funktion. Der Input der ersten Schicht ist die eingebettete Zielsequenz y, erganzt
durch Positionscodierungen. Jede Schicht verarbeitet zwei Informationsquellen: die
eigene vorherige Decoder-Ausgabe tiber Masked Self-Attention und die Encoder-
Ausgabe tiber Encoder-Decoder Attention.



2.3 TRANSFORMERS

Die erste Unterschicht, die Masked-Self-Attention [VSP" 23], ermoglicht es jedem
Token, Informationen ausschliefSlich aus fritheren Tokens der Decoder-Eingabesequenz
zu beziehen, jedoch nicht aus zukiinftigen Positionen. Dadurch wird verhindert, dass
der Decoder wihrend des Trainings unrechtmaflig auf zukiinftige Informationen
zugreift und so lediglich das nédchste Token aus der Eingabe ,abschreibt” [CMBz23,
S. 384—385]. Wie im [NP20] beschrieben, wird in jedem Attention-Kopf die Maskierung
durch Addition einer Matrix M € RR4* 4 realisiert, wobei die Eintrége fiir unzuléssige
(zukiinftige) Positionen mit —oo belegt sind. Bei der anschliefenden Anwendung der
Softmax-Funktion fithren dazu, dass die entsprechenden Wahrscheinlichkeiten exakt
null werden, da gilt e~* = 0. Die Berechnung nach [NP20, XZ23] erfolgt analog zur
reguldren Attention, jedoch mit Maskierung;:

QKT 0 falls i < k,

Vi

Attention(Q, K, V) = Softmax ( + M> VvV, M(i,k) =

—oco fallsi>k
(2.3.10)
Die zweite Unterschicht ist die Encoder-Decoder Multi-Head Attention (auch als Cross-

Attention bezeichnet). Hierbei dienen die Ausgaben des Encoders gleichzeitig als
Queries Q und Keys K, widhrend die Ausgabe des vorherigen Decoder-Layers als
Values V verwendet wird. Diese Schicht erlaubt es dem Decoder, gezielt Informationen
aus dem Encoder-Kontext zu beziehen und relevante Teile der Eingabesequenz zu
fokussieren. Dadurch wird eine direkte Verbindung zwischen dem aktuell generierten
Decoder-Token und dem gesamten Input ermoglicht.

Analog zum Encoder werden Residualverbindungen um jede der Unterschichten
herum eingesetzt, gefolgt von einer Layer-Normalisierung.

Die finale Ausgabe des Decoder-Stacks, bezeichnet als z € R™ 4 wobei T die
Zielsequenzldnge ist, wird durch eine lineare Projektion und eine Softmax-Funktion in
Wahrscheinlichkeiten iiber das Zielvokabular tiberfiihrt:

¢ = Softmax(z{ W, + by)

Dabei ist W, € R4*IVI die Gewichtsmatrix der linearen Projektion, b, € RIVI ein
Bias-Term und |V| die GroRe des Zielvokabulars. Der Vektor {j; € RIVI enthilt die
vorhergesagten Wahrscheinlichkeiten fiir das ndchste Token an Position t.

Das Token mit der hochsten Wahrscheinlichkeit wird typischerweise durch

Yt = arg mjaxyt,j

ausgewdahlt.
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2.3.4 Vision Transformers

Vision Transformer (ViT) [DBK " 21] verwendet im Unterschied zu klassischen Trans-
formern (vgl. Abschnitt 2.3) keine Wort- oder Subword-Tokens, sondern kleine Bild-
ausschnitte (Patches) als Eingabetokens. Ein weiterer Unterschied ist, dass ViT aus-
schliefSlich einen Encoder nutzt.

Patch
Extraction Transformer Layer

Input

Patch
MHSA MLP
Embedding »

Abbildung 2.3.4: Vision-Transformer-Pipeline nach [IK23]: Das Bild wird in feste Patches
zerlegt, jedes Patch linear in einen Embedding-Raum projiziert, mit Positions-
Embeddings addiert und die entstehende Sequenz schliefllich von einem
Transformer-Encoder verarbeitet.

Das Eingangsbild x € R"*WXC€ wobei C die Anzahl der Farbkanile angibt (C = 3
fir RGB-Bilder), wird durch ein Patch-Extraction-Modul in nicht tiberlappende Patches
der Grofie P x P unterteilt (siehe Abbildung 2.3.4). Jeder Patch wird anschlieffend zu
einem Vektor der Dimension RP**C abgeflacht. Auf diese Weise entsteht eine Sequenz
von Patch-Vektoren x,, € RNX (PZ‘C), wobei N = HP‘QV die Gesamtzahl der Patches pro
Bild ist. Um diese Vektoren in den Modellraum zu tiberfiithren, wird jeder Patch-Vektor
mit einer lernbaren linearen Projektion in eine Dimension d abgebildet.

Zusitzlich wird ein spezielles [class]-Token vorangestellt, dessen Reprédsentation
spater fiir die Bildklassifikation genutzt wird. Um die raumliche Struktur der Patches
zu berticksichtigen, werden zu den Embeddings Positions-Embeddings addiert. Die
vollstandige Eingabesequenz lautet somit nach [DBK ™ 21]

X = [Xclassr X1WE/ ceey XTLWF_] + Epos

wobei Wg € R(P*C)xd dje Projektionsmatrix und Epos die Positions-Embeddings
bezeichnen. Die resultierende Vektorsequenz x dient anschlieffend als Eingabe fiir
einen Standard-Transformer-Encoder (vgl. Abschnitt 2.3.3).
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In diesem Kapitel werden zentrale Forschungsarbeiten im Bereich der Handschrifter-
kennung und Informationsextraktion aus gescannten Dokumentenbildern vorgestellt.
Anschlieffend wird auf Methoden zur Konfidenzbewertung eingegangen, die eine
zuverldssige Einschdatzung der Vertrauenswiirdigkeit von Modellvorhersagen ermogli-
chen.

3.1 HANDSCHRIFTERKENNUNG UND INFORMATIONSEXTRAKTION

Frithere Ansitze fiir die Handschriftenerkennung (HTR) nutzten hédufig Hidden-
Markov-Modelle (HMM) [MLEY " 0o, BBo8]. In einigen Arbeiten wurde HMM mit
Recurrent Neural Network (RNN) in Kombination mit einer Connectionist Temporal
Classification (CTC)-Verlustfunktion [GFGSo06] eingesetzt. Ein Nachteil der HMM-
basierten Ansitze bestand jedoch darin, dass sie nur die aktuelle Beobachtung und
einer kleinen Anzahl vorheriger Zustiande, wodurch lingere Abhidngigkeiten in der
Zeichenfolge vernachldssigt wurden.

Die Methoden [BM17, SNBTL2o0, Pui17] setzen auf Convolutional Neural Networks
(CNN) kombiniert mit RNN. Dabei werden zunidchst mehrere Convolutional Layers
eingesetzt, um lokale Merkmale aus Textzeilenbildern zu extrahieren. Anschliefiend
verarbeiten Recurrent Layers, meist Bi-directional Long Short-Term Memory (BLSTM)
[VDN16], diese Merkmale sequenziell und geben auf Grundlage kontextueller Ab-
héangigkeiten Zeichenwahrscheinlichkeiten aus. Diese Modelle werden haufig als
CRNN-CTC-Architekturen bezeichnet, da sie die CTC-Verlustfunktion verwenden, um
mit unterschiedlich langen Label- und Vorhersagesequenzen umzugehen, ohne eine
explizite Zeichensegmentierung zu benotigen. Ein Nachteil solcher Architekturen ist
jedoch die lange Trainingszeit, die vor allem durch die sequentielle Verarbeitung in
den rekurrenten Schichten verursacht wird.

Traditionelle Ansdtze zur Dokumentenanalyse basieren oft auf der Verwendung
von Optical Character Recognition (OCR), um Textinhalte zu extrahieren. Diese OCR-
Ergebnisse bilden anschliefiend die Grundlage fiir weiterfithrende Parsing- und Verar-
beitungsmethoden [XLC 20, XXL"22] (vgl. Abbildung 3.1.1(a)).
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Dokumentenbild —| OCR — Zelchenlfetten —{ Parser [— Ausgabe
+ Koordinaten

(a) OCR-basierter Ansatz

Dokumentenbild — End-to-End-Modelle ——— Ausgabe

(b) Ocr-freier End-to-End Ansatz

Abbildung 3.1.1: Vergleich von OCR-basierten und End-to-End-Ansitzen zur Informations-
extraktion aus Dokumentenbildern nach [OBK*24]. (a) Traditionelle OCR-
basierte Verfahren nutzen von einem externen OCR-Modul erzeugte Text-
zeichenketten und deren Koordinaten, die anschliefSend durch einen Parser
weiterverarbeitet werden. (b) End-to-End-Modelle hingegen generieren die
Ausgaben direkt aus dem Dokumentenbild durch sequenzbasiertes Decoding,
ohne auf externe OCR-Ergebnisse zuriickzugreifen.

Die LayoutLM-Modellfamilie [XLC " 20], zu der auch die Varianten LayoutLMv2
[XXL"22], LayoutLMv3 [HLC " 22] und LayoutXLM [XLC"21] kombiniert erkannte
Tokens mit Layout-Informationen sowie visuellen Merkmalen, die durch OCR extra-
hiert werden. Diese Reprasentationen dienen als Eingabe fiir ein Transformer-Modell,
das auf BERT [DCLT19] basiert und fiir verschiedene Aufgaben trainiert wird, darun-
ter Form Understanding (Erfassen von Formularstrukturen), Receipt Understanding
(Rechnungs- bzw. Belegverstehen) sowie die Klassifikation von Dokumentenbildern.

Die aktuellen Fortschritte in der HTR zeigen, dass Transformer-basierte Modellen zu-
nehmend den Stand der Technik bestimmen. Im Gegensatz zu CRNN-CTC-Modellen
lernen Transformer-basierte Modelle, Bildbereiche direkt mit den entsprechenden
Zielsequenzen zu verkniipfen, sodass das Netzwerk gezielt auf die relevanten Bild-
regionen fokussiert [PV21], ohne den Umweg tiber rekurrente Verarbeitungsschritte.
Transformer benotigen bei visuellen Aufgaben tendenziell mehr Rechenressourcen
als CRNNs, konnen aber Vorteile bei der parallelen Verarbeitung sequentieller Daten
bieten und sind daher eine leistungsfahige Alternative fiir HTR.

Diese auf OCR basierenden Ansitze zeigen vielversprechende Ergebnisse, leiden
jedoch unter hohen Rechenkosten, eingeschrankter Sprachflexibilitdt und der Fehler-
propagation in nachfolgende Verarbeitungsschritte. In den letzten Jahren hat sich das
Paradigma der Handschrift- und Dokumentenerkennung zunehmend in Richtung
einer End-to-End-Perspektive entwickelt (vgl. Abbildung 3.1.1(b)). Ziel ist es, Informa-
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tionen direkt aus dem vollstaindigen Dokumentenbild in einem einzigen Schritt ohne
vorherige explizite Texterkennung oder Layoutanalyse zu extrahieren. Zu den bekann-
testen dieser neueren Ansétze ziahlen DAN [CCP23a], Dessurt [DMP*22] und Nougat
[BCSS23]. Diese Modelle konnen durch das Fine-Tuning in unterschiedlichen Anwen-
dungsfeldern wie Drucktext- und Szene-Text-Erkennung, Dokumentenverstandnis
oder Visual Question Answering eingesetzt werden.

Der erster Ansatz in diese Richtung war das DAN (Document Attention Net-
work) [CCP23a]. Dieses Modell nutzt einen CNN-basierten Encoder zur Extraktion von
Bildmerkmalen sowie einen Transformer-Decoder zur zeichenweisen Sequenzgenerie-
rung. Damit gelang es erstmals, Dokumentenseiten ohne vorherige Segmentierung
vollstandig und autoregressiv zu transkribieren. Als Weiterentwicklung wurde Faster
DAN [CCP23b] vorgeschlagen. Hierbei wird die Verarbeitung beschleunigt, indem
die Texterkennung auf Zeilenebene parallelisiert durchgefiihrt wird. Dieser Geschwin-
digkeitsvorteil geht jedoch oft mit einer hoheren Fehlerrate im Vergleich zum ur-
spriinglichen DAN-Modell einher. Dieser Ansatz sind weiterhin auf CNN-Backbones
angewiesen und stellen damit keine vollstandig Transformer-basierte End-to-End-
Architektur dar.

Donut, Pix2Struct, Dessurt, und Nougat sind vollstindig Transformer-basierten
Vision-Encoder-Decoder-Modellen, die End-to-End trainiert werden. Trotz dhnlicher
Grundidee bestehen zwischen diesen Modellen deutliche Unterschiede. Pix2Struct setzt
einen Vision Transformer (ViT)[DBK " 21] als Encoder ein. Dessurt hingegen kombiniert
einen kleinen CNN-Encoder, der die Eingaben in Feature-Arrays umwandelt, mit
einem Transformer-Decoder. Donut und Nougat verwenden die Swin-Transformer-
Architektur[LLC"21] als Encoder. Dabei ist Nougat eine speziell fiir akademische
Dokumente angepasste, feinabgestimmte Variante von Donut. Donut teilt viele Vorteile
mit Dessurt. Beide nutzen einen Swin-Encoder [LLC"21], allerdings ist die Swin-
Architektur von Dessurt flacher und schmaler aufgebaut als die von Donut.

3.2 KONFIDENZBEWERTUNG

Hendrycks und Gimpel [HG18] etablierten einen grundlegenden Baseline-Ansatz zur
Konfidenzschédtzung. Dabei wird die Softmax-Funktion auf die Logits des Klassifika-
tors angewendet, um diese in eine Wahrscheinlichkeitsverteilung iiber alle moglichen
Klassen zu transformieren. Aus dieser Verteilung wird anschlieflend die hochste Wahr-
scheinlichkeit extrahiert, die als Konfidenzwert des Modells interpretiert wird. Dieser
Ansatz weist jedoch einige Einschrankungen auf. Da die Softmax-Funktion exponen-
tielles Wachstum nutzt, entstehen haufig sehr hohe Konfidenzwerte, auch wenn die
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zugrunde liegende Vorhersage falsch ist [GPSW17]. Dadurch neigen Softmax-basierte
Schitzungen zu einer Uberkonfidenz.

Ein alternativer Ansatz ist der sogenannte Trust Score [JKGG18], der von Jiang et al.
vorgeschlagen wurde. Der zugrunde liegende Gedanke ist, das Verhiltnis zwischen
dem Abstand einer Testeingabe zur niachsten Klasse, die von der Vorhersage abweicht,
und dem Abstand zur vorhergesagten Klasse zu betrachten. Ist der Abstand zur
vorhergesagten Klasse deutlich grofier als zu einer alternativen Klasse, deutet dies
darauf hin, dass die Vorhersage des Modells moglicherweise fehlerhaft ist. Der Nachteil
dieses Ansatzes liegt jedoch in seiner mangelnden Skalierbarkeit, da die Berechnung
néchster Nachbarn in grofien Datensédtzen sehr aufwendig ist [[KGG18].

Bayesianische Ansitze [KG1y, GG16, BCKW15] zur Schitzung von Unsicherheit
haben in den letzten Jahren grofses Interesse geweckt, da sie eine probabilistische
Interpretation von Modellen erméglichen, indem sie ganze Verteilungen {iiber die
Gewichte schitzen. Diese Methoden sind jedoch oft sehr rechenaufwendig. Gal und
Ghahramani [GG16] schlugen mit Monte Carlo Dropout (MCDropout) vor, bei der Un-
sicherheiten durch wiederholtes stochastisches Durchlaufen des Netzwerks geschatzt
werden. Dabei wird Dropout vor jeder Gewichtsschicht angewendet, und mehrere
Vorhersagen des Netzwerks werden zur Approximation der posterioren Vorhersage-
verteilung genutzt. Durch wiederholte stochastische Vorhersagen desselben Modells
kann so eine Ndherung der posterioren Verteilung iiber die Vorhersagen gewonnen
werden. Mathematisch entspricht ein neuronales Netzwerk mit beliebiger Tiefe und
nichtlinearen Aktivierungen unter Dropout einer Ndherung eines probabilistischen
tiefen Gaussian-Prozesses [DL13].

Eng mit der Konfidenzbewertung verkniipft ist das Forschungsfeld der Confidence
Calibration, die darauf abzielt, die vorhergesagten Wahrscheinlichkeiten eines Modells
an die tatsdchliche Eintrittswahrscheinlichkeit der Ereignisse anzupassen. Bei schlecht
kalibrierten Netzen kann es jedoch vorkommen, dass falsche Vorhersagen mit sehr
hoher Konfidenz getroffen werden. Zu den géangigen Verfahren zdhlen die Post-
Processing-Kalibrierung, bei der das Modell unverandert bleibt und lediglich die
Ausgaben im Nachhinein angepasst werden. Dazu zdhlen Methode wie Binning-
Methoden [ZEo1, ZEo2, PNCH15], Platt Scaling [Plaoo] und Temperature Scaling
[GPSW17].
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4.1 MODELLARCHITEKTUR

Aufbauend auf der Entwicklungen des Transformers wurde das Donut-Modell von
Kim et al. [KHY " 22] vorgestellt, um visuelle Informationen direkt aus Dokumentenbil-
dern zu extrahieren und diese anschlieffend in strukturierter Form zu dekodieren. In
dieser Arbeit dient das Donut-Modell als zentrale Grundlage fiir die vorgeschlagene
Losung zur datengetriebenen Informationsextraktion.

Der Ablauf von Donut (siehe Abbildung 4.1.1) gliedert sich in vier Schritte. Zundchst
erhilt das Modell ein Dokumentbild x € R"*W*3 als Eingabe. Ein visueller Encoder
auf Basis des Swin Transformers [LLC"21] wandelt das Bild in eingebettete Reprisen-
tationen {z; € R4 |1 < i < n} um. Die resultierenden Reprasentationen {z} werden
anschlieflend von einem vortrainierten BART-Modell [LLG " 19] dekodiert, das eine
Token-Sequenz (yi)M, erzeugt. Diese wird in strukturierter Form im JSON-Format
ausgegeben und enthalt die extrahierten Informationen, etwa ein Datum.

Das Pretraining von Donut erfolgte auf 11 Millionen gescannten englischen Doku-
menten aus dem IIT-CDIP-Korpus, ergdnzt durch 2 Millionen synthetische Dokumente
mit Wikipedia-Texten in Chinesisch, Japanisch, Koreanisch und Englisch. Das vortrai-
nierte Donut-Modell dient als Grundlage fiir die in dieser Arbeit vorgestellte Losung
zur datengetriebenen Informationsextraktion.

Im Folgenden wird die tibergeordnete Architektur von Swin und BART im Detail
beschrieben.

4.1.1 SWIN Encoder

Eine Ubersicht der Swin Transformer-Architektur ist in Abbildung 4.1.2 dargestellt.
Ahnlich wie bei Vision Transformers (vgl. Abschnitt 2.3.4) werden 2D-Bilder zunéchst
in eine Sequenz von Patch-Embeddings tiberfiihrt. In der urspriinglichen Implemen-
tierung [LLC " 21] wird eine Patch-Grofie von 4 x 4 verwendet, woraus sich fiir jedes
Patch eine Feature-Dimension von 4 x 4 x 3 = 48 ergibt.
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Abbildung 4.1.1: Pipeline des Donut-Modells: Das Eingabedokument wird in Patches zerlegt
und durch den Encoder in Embeddings tiberfiihrt. Der Decoder generiert
daraus eine Token-Sequenz, die in ein strukturiertes Ausgabeformat transfor-
miert wird.

Daraufhin folgen mehrere Swin-Transformer-Blocke, die auf die Patch-Tokens ange-
wendet werden. Die erste Stufe aus linearer Einbettung und Swin-Transformer-Blocken
wird als Stage 1 bezeichnet. Die Anzahl der Tokens bleibt dabei konstant bei 1} x Y.

Der Swin Transformer ersetzt die Standard Multi-Head Self-Attention (MSA) (vgl.
Abschnitt 2.3.2) durch Window-based Multi-head Self-Attention (W-MSA) und Shifted
Window-based Multi-head Self-Attention (SW-MSA), wiahrend andere Schichten unveran-
dert bleiben. Wie in Abbildung 4.1.2 (b) dargestellt, besteht jeder Swin-Transformer-
Block aus zwei aufeinanderfolgenden Unterschichten. Die erste verwendet W-MSA,
die Self-Attention innerhalb lokaler Fenster berechnet. Die zweite setzt SW-MSA ein,
bei der die Fenster verschoben werden, um den Informationsaustausch zwischen
benachbarten Fenstern zu ermdoglichen. In SW-MSA erfolgt die Verschiebung der
Fenster im Vergleich zur vorherigen Schicht um jeweils | ! | Pixel in horizontaler und
vertikaler Richtung, wobei M die Fenstergrofie bezeichnet (siehe Abbildung 4.1.3).

Die Berechnung innerhalb zweier aufeinanderfolgender Swin-Transformer-Blocke
lasst sich nach [LLC"21] wie folgt darstellen

2t = W—MSA(LayerNorm(zz_1 )+,
b= MLP(LayerNorm(iz)) + 3¢,
211 — SW-MSA (LayerNorm(z')) + z¢,
2! = MLP(LayerNorm(2¢+1)) 4- 201!

(4.1.1)



4.1 MODELLARCHITEKTUR

H W H W H W oW
T x48 TxexC %% 2 15 % 15 <4C

E-1 =0
] 5
£ 5
I -‘-’
& =
= 5
= =

g
£ &

(a) Architecture (b) Two Successive Swin Transformer Blocks

Abbildung 4.1.2: Ubersicht der Swin Transformer Architektur [LLC " 21]. (a) Das Eingabebild
(HxWx3) wird in Patches unterteilt und eingebettet. Darauf folgen vier hierar-
chische Stufen mit abwechselnden Patch-Merging-Layern und Swin Transfor-
mer Blocks. (b) Jeder Swin Transformer Block besteht aus Window-basiertem
Multi-Head Self-Attention (W-MSA bzw. SW-MSA), Layer-Normalisierung,
Residualverbindungen und einem MLP.

wobei Multilayer-Perzeptron (MLP) definiert ist als:
MLP(x) = GELU (xWj +b1) W, + b,

Bei der Berechnung der Self-Attention wird zusétzlich Positionsinformation bertick-
sichtigt. Swin verzichtet auf globale Position-Embeddings und verwendet stattdessen
relative Position Biases in jeder Attention-Berechnung. Die Attention wird formal
durch die Gleichung nach [LLC"21]

QK"
Vd

beschrieben. Hierbei ist B € RM”*M? der relative Position Bias, der die Abhéngigkeit
zwischen den Patches berticksichtigt. Durch die Hinzuftigung von B kann das Modell
nicht nur den Inhalt der Patches, sondern auch deren relative Position zueinander in
die Attention-Berechnung einbeziehen.

Der Swin Transformer erzeugt eine hierarchische Merkmalsdarstellung indem er
zundchst mit kleineren Patches arbeitet und diese in tieferen Schichten des Modells
sukzessive zu grofleren Regionen zusammentfiihrt. In einem weiteren Schritt wird
eine Patch-Merging-Schicht eingesetzt. Die Patch-Merging-Schicht reduziert die raum-
liche Aufldsung, indem sie jeweils 2 x 2 benachbarte Patches zusammenfasst. Diese
vier Vektoren werden zunichst konkateniert und anschlieffend linear in einen 2C-
dimensionalen Raum projiziert. Auf diese Weise werden gleichzeitig die Anzahl der

Attention(Q, K, V) = Softmax < + B) \'% (4.1.2)
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Abbildung 4.1.3: Darstellung des Shifted Window Mechanismus tiber zwei aufeinanderfolgen-
de Schichten nach [LLC " 21]. In Schicht 1 wird Self-Attention lokal innerhalb
nicht tiberlappender Fenster berechnet. In Schicht 1 4 1 werden die Fenster
verschoben, sodass Patches aus verschiedenen urspriinglichen Fenstern ge-
meinsam beriicksichtigt werden kénnen.

Tokens verringert und die Kanal-Dimension erhoht. Anschliefsend folgen weitere Swin-
Blocke zur Merkmalsextraktion bei reduzierter Auflosung % X %. Diese Kombination
bildet die Stage 2. Zwei weitere Blocke (Stage 3 und Stage 4) folgen dem gleichen
Prinzip und reduzieren die Auflosung weiter auf % X % bzw. % X %

Diese hierarchische Architektur erlaubt es dem Modell, Token unterschiedlicher
Grof3e tiber die Layer hinweg zu verarbeiten. Dadurch werden visuelle Merkmale auf
mehreren Skalenebenen zuverldssig extrahiert.

Neben der Standardarchitektur Swin-B (Base) wurden mehrere Varianten des Swin
Transformers von Ze Liu Et Al. [LLC"21] vorgeschlagen, die sich hinsichtlich Mo-
dellgrofie und Rechenaufwand unterscheiden. Diese werden als Swin-T (Tiny), Swin-
S (Small), und Swin-L (Large) bezeichnet. Alle Varianten folgen demselben Grund-
prinzip, variieren jedoch in den Architektur-Hyperparametern, insbesondere in der
Kanalanzahl C der ersten Stufe sowie in der Anzahl der geschalteten Swin-Transformer-
Blocken pro Stage. Swin-T stellt die kleinste Variante dar und nutzt C = 96 mit einer
Schichtenkonfiguration von (2,2, 6,2), wahrend Swin-S mit gleicher Kanalanzahl eine
grofiere Tiefe von (2,2,18,2) aufweist. Swin-B erhoht die Dimension auf C = 128
bei ebenfalls (2,2,18,2), und Swin-L bildet die grofite Ausfithrung mit C =192 und
derselben Tiefe. In allen Varianten wird eine Fenstergrofie von M = 7 verwendet.

Im Donut-Modell kommt die Swin-B-Variante als visueller Encoder mit leichten
Modifikationen zum Einsatz. Die Anzahl der Blocke pro Stage sowie die Fenstergrofse
wurden dabei auf (2,2, 14,2) bzw. 10 gesetzt [KHY " 22].
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4.1.2  BART Decoder

Das BART-Modell wurde urspriinglich von Lewis et al. [LLG " 19] als Denoising Auto-
encoder [VLBMo8] entwickelt. Ein Denoising Autoencoder ist ein neuronales Modell,
das darauf trainiert wird, aus absichtlich verrauschten Eingaben die urspriingliche,
unverrauschte Sequenz zu rekonstruieren. BART nutzt verschiedene Verfahren (siehe
Abbildung 4.1.4 (b)) zur gezielten Verrauschung von Texten. Beim Token Masking
werden zuféllige Tokens durch [_] ersetzt, bei der Token Deletion vollstindig ent-
fernt. Das Text Infilling ersetzt ganze Textspannen variabler Lange (gezogen aus einer
Poisson-Verteilung mit A = 3) durch ein einzelnes [_]. Zudem werden in der Sen-
tence Permutation die Satzreihenfolgen vertauscht, wiahrend die Document Rotation
den Text zyklisch verschiebt, indem ein zufélliges Token als neuer Beginn gewdahlt
wird. Dieses Verfahren starkt die Robustheit des Modells gegeniiber fehlerhaften oder
unvollstindigen Eingaben und verbessert zugleich seine Fahigkeit zur semantischen
Generalisierung.

ABCDE
(ac._e.) (oE.ABc.)  (C.DE.AB)
Bidirectional Autoregressive Token Masking ~ Sentence Permutation Document Rotation
(A.c.E.) )y (aBc.DE.) <I (A_.D_E.)
A_B_E <ssABCD Token Deletion Text Infilling

(@) (b)

Abbildung 4.1.4: (a) Ubersicht der BART-Architektur [LLG* 19]. Der bidirektionale Encoder
erfasst vollstindige Kontextinformationen der Eingabe, wihrend der auto-
regressive Decoder die Zielsequenz Schritt fiir Schritt generiert. (b) Verrau-
schungsverfahren, die beim Pretraining von BART eingesetzt werden.

Die urspriingliche Architektur von BART besteht aus zwei Hauptkomponenten:
einen bidirektionalen Encoder, der dem von BERT (Bidirectional Encoder Repre-
sentations from Transformers) [DCLT19] dhnelt, und einem autoregressiven Deco-
der, der dem GPT (Generative pre-trained Transformers) [RNS™* 18] entspricht (siehe
Abbildung 4.1.4 (a)). Im Donut-Modell wird der Encoder-Teil von BART nicht ver-
wendet. Stattdessen tibernimmt der Swin Transformer die Rolle der Eingabekodie-
rung [VSP'23]. Folglich konzentriert sich die nachfolgende Erkldrung ausschlieflich
auf den BART-Decoder.

Der Decoder von BART orientiert sich konzeptionell am GPT-Modell [RNS*18]. In
GPT besteht jede Decoderschicht aus einer Masked-Multi-Head Self-Attention, gefolgt
von positionsweisen Feed-Forward-Netzwerken. GPT ermoglicht, jedes Token der
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Ausgabesequenz Schritt fiir Schritt generieren werden zu konnen, wobei ausschliefSlich
die zuvor generierten Tokens als Kontext verwendet werden. Im Unterschied zum
GPT-Decoder enthélt der BART-Decoder in jeder Schicht zusétzlich eine Cross-Attention
(Encoder-Decoder-Attention), die die Verbindung zu den Encoder-Ausgaben herstellt.
Damit entspricht die Architektur des BART-Decoders im Wesentlichen dem Standard-
Transformer-Decoder, wie in Abschnitt 2.3.3 beschrieben.

Im urspriinglichen BART-Modell bestehen die Decoder-Architekturen je nach Mo-
dellgrofie aus 6 oder 12 Schichten. Donut verwendet jedoch lediglich die ersten 4
Schichten des vortrainierten, multilingualen BART-Decoders [LGG " 20], um ein giinsti-
ges Verhiltnis von Genauigkeit und Rechenaufwand sicherzustellen. Die Gewichte wer-
den dabei aus einem o6ffentlich verfiigbaren multilingualen BART-Modell* [LGG ™ 20]
initialisiert.

4.2 KONFIDENZMASSE

Die zuverlassige Einschatzung der Sicherheit einer Modellvorhersage sind entscheidend
fiir den praktischen Einsatz von Modellen. Hierbei bezeichnet Sicherheit den Grad, mit
dem das Modell davon ausgeht, dass seine Vorhersage korrekt ist, wahrend Konfidenz
einen quantitativen Wert darstellt, der diese Sicherheit ausdriickt [CTBH " 19]. Je hoher
dieser Wert ist, desto sicherer ist sich das Modell in Bezug auf das ausgegebene
Ergebnis. Ein geeignetes Konfidenzkriterium sollte dabei so gestaltet sein, dass falsche
Vorhersagen mit niedrigen Werten einhergehen und korrekte Vorhersagen mit hohen
Werten [CTBH " 19]. In der vorliegenden Arbeit wird die Konfidenz genutzt, um
die Zuverldssigkeit der Datumserkennung zu bewerten und damit die Qualitdt der
Ergebnisse zu messen.

Zur Quantifizierung der Modellsicherheit im Rahmen der Sequenzvorhersage ist die
Berechnung geeigneter Konfidenzmafie von zentraler Bedeutung. Grundlage bildet
dabei die durch eine Softmax-Normalisierung iiber das Vokabular erhaltene Token-
Wahrscheinlichkeit bzgl. Pseudowahrscheinlichkeit am Dekodierschritt t

exp(z;”))
ZuGV exp (Z’(cu))

wobei ZJ(EV) die Logits fiir das Token v darstellen. Das jeweils vorhergesagte Token yy
ist das mit der hochsten Wahrscheinlichkeit y = argmax,cvy o(z¢) V),

Die Log-Pseudowahrscheinlichkeit des gewdhlten Tokens y; wird als ¢y =
In (O‘(Zt)(yt)) definiert. Diese Werten dient als Grundlage fiir die Berechnung der

U(Zt)(v) =

ve. (4.2.1)

1 https://huggingface.co/hyunwoongko/asian-bart-ecjk
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4.2 KONFIDENZMASSE

Sequenzkonfidenz. In der Arbeit wird Log-Softmax anstelle von Softmax verwendet,
da das Arbeiten im Log-Raum numerisch stabiler ist, insbesondere bei sehr kleinen
Wahrscheinlichkeiten, die sonst zu Rundungsfehlern fithren konnten [GBC16, S. 79]. Im
Folgenden werden drei verschiedene Konfidenzmafie eingefiihrt, die unterschiedliche
Aspekte der Modellunsicherheit erfassen.

Das erste Maf3, das innerhalb dieser Arbeit eingefiihrt wird, ist die geometrische
Mittelkonfidenz (GAVG), definiert als

-
GAVG = exp (l Z ct> , (4.2.2)
t=1

wobei T die Sequenzliange ist. Dieses Maf3 entspricht dem geometrischen Mittel der
der maximalen Pseudowahrscheinlichkeiten je Token, dquivalent zur exponentiellen
mittleren Log-Wahrscheinlichkeit der gewéhlten Tokens. Intuitiv erfasst GAVG die
mittlere Sicherheit des Modells tiber die gesamte Sequenz hinweg. Ein hoher Wert zeigt
an, dass das Modell iiber die gesamte Sequenz hinweg konsistent sichere Vorhersagen
getroffen hat, wahrend ein niedriger Wert auf Unsicherheit hinweist.

Das zweite Mafs MIN fokussiert dagegen ausschlieslich auf das unsicherste Token
innerhalb der Sequenz:

MIN = mtin exp (ct) . (4-2.3)

Hierbei bestimmt das schwéchste Token die gesamte Konfidenz. Ein hoher MIN
bedeutet, dass selbst das unsicherste Token mit hoher Wahrscheinlichkeit korrekt
vorhergesagt wurde, sodass keine signifikante Unsicherheit in der Sequenz vorhanden
ist. Umgekehrt weist ein kleiner MIN darauf hin, dass mindestens ein Token sehr
unsicher war, wodurch die gesamte Sequenz potenziell fehlerhaft ist.

Eine weitere Moglichkeit, die Vorhersagesicherheit zu messen, ist die Top-2-Margin,
die den Abstand der beiden wahrscheinlichsten Kandidaten pro Token einer Sequenz
betrachtet. Fiir jedes Token wird die Differenz der Wahrscheinlichkeiten der Top-2-
Kandidaten als Margin definiert. Die Sequenzkonfidenz wird dann als Mittelwert iiber
alle Tokens aggregiert:

1 T
TaM = T tZ] Margin,, Margin, = exp (ci1 )) —exp (ciz)) (4.2.4)

wobei c,(tl) und C,EZ) die hochsten Log-Pseudowahrscheinlichkeit des Tokens y¢ sind.
Die Konfidenz ergibt sich somit aus dem Abstand zwischen der Wahrscheinlichkeit
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des vorhergesagten Tokens und der des zweitbesten Tokens. Ein hoher Top-2-Margin
signalisiert, dass das Modell eine klare Entscheidung fiir das gewihlte Token getroffen
hat, wihrend ein niedriger Wert auf eine Unsicherheit zwischen mehreren Kandidaten
hindeutet.

Bei der Berechnung der Konfidenzmafie werden bestimmte Spezialtokens wie das
Offnen- und Schliefen-Symbol [, ] sowie das <eos> (End-of-Sequence) Token explizit
ausgeschlossen. Der Grund dafiir ist, dass diese Tokens keine semantische Bedeutung
im extrahierten Inhalt tragen, sondern lediglich der Strukturierung dienen. Ihre Vorher-
sage ist in der Regel trivial und fiihrt daher zu kiinstlich hohen Wahrscheinlichkeiten,
die die Konfidenzschédtzung verzerren wiirden. In Abschnitt 5.4.2 werden alle drei Kon-
fidenzmafle genutzt und verglichen, um ein umfassendes Bild der Vorhersagesicherheit
im DONUT-Modell zu erhalten.

Dabei ist zu beachten, dass sich die hier betrachteten Konfidenzwerte immer auf die
gesamte vorhergesagte Sequenz eines Bildes beziehen. Da ein Bild mehrere Datum-
seintrage enthalten kann, geben die Mafle nicht die Sicherheit fiir ein einzelnes Datum
wieder, sondern die aggregierte Sicherheit aller im Bild enthaltenen Datumssequenzen.



EVALUATION

5.1 DATENSATZE

Fiir die Experimente werden insgesamt zwei Datensitze verwendet. Der erste Daten-
satz besteht aus ausgeschnittenen Bildausschnitten, die ausschliefflich Datumsangaben
enthalten. Dadurch kann das Modell die visuelle Struktur und typische Textmuster von
Datumsformaten erlernen. Der zweite Datensatz umfasst vollstindige Dokumentseiten,
auf denen das zuvor gelernte Wissen {iber Datumsangaben im Kontext ganzer Seiten
angewendet wird, um diese korrekt zu erkennen und zu lokalisieren. Im Folgenden
werden beide Datensétze ndher vorgestellt.

5.1.1 Death Certificates 2

Der Datensatz Death Certificates 2 (DC-2) aus der DARE! Datenbank [DJS*22] um-
fasst handschriftliche Datumsangaben, die aus ddnischen Todesurkunden stammen.
Die DARE-Datenbank umfasst insgesamt sechs verschiedene Datensétze, die sich in
Herkunft und Format der Datumsangaben unterscheiden (z. B. TT-MM-]]JJ], TT-MM-]J]
oder TT-MM). Neben danischen Todesurkunden finden sich darin auch Datums-
angaben aus ddnischen Polizeiberichten, Beerdigungsunterlagen und Dokumenten
von Krankenpflegeheimen sowie zwei Datensitze aus dem schwedischen Register
zu Todesursachen. Fiir diese Arbeit wurde der Datensatz DC-2 ausgewdhlt, da die
Datumsangaben dort in der Regel einzeilig geschrieben sind und tiberwiegend dem
Format TT-MM-JJJJ entsprechen (siehe Abbildung 5.1.1), was mit dem im zweiten Trai-
ningsdatensatz verwendeten Format iibereinstimmt. In einigen Fallen fehlt jedoch die
Jahresangabe oder das Format weicht zu JJJJ-MM-TT ab oder wird der Monatsangabe
nicht als Zahl, sondern als ausgeschriebenes Wort dargestellt.

Die urspriinglichen Quelldokumente weisen teils starke Unterschiede in ihrer Grofle
auf, mit Breiten von bis zu 1400 Pixeln und Hohen bis 356 Pixel. Fur die weitere
Verarbeitung wurden alle Bilder einheitlich auf eine Grofie von 1400x250 Pixeln
skaliert.

1 https://www.kaggle.com/datasets/sdusimonwittrock/dare-database
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Grofde der Sets des DC-2 Datensatzes

Training Validierung  Test Gesamt

Bilder 150.439 5.000 8.338 163.777

Tabelle 5.1.1: Grofle der Sets des DC-1 Datensatzes

(a) "date: "01-03-1848" (b) "date: "28-05-1859"

Abbildung 5.1.1: Beispiele verschiedener Datumsformate aus dem DC-2 Datensatz mit zuge-
horiger JSON-Annotation

Jedes dieser Bilder zeigt genau eine handschriftliche Datumsangabe. Die zugehorige
Ground Truth folgt dabei dem Format "date": "TT-MM-JJJJ" und stellt das jeweils
enthaltene Datum in standardisierter Form dar. Der Datensatz ist in Trainings-, Validierungs-
und Testmengen unterteilt, die 150.439, 5.000 bzw. 8.338 Bilder enthalten. Eine Ubersicht zur
Aufteilung ist in Tabelle 5.1.1 dargestellt.

5.1.2 CM1-COVER

Die CM1 (Care and Maintenance) umfasst Formulare, die zwischen 1947 und 1952 von der
International Refugee Organization (IRO) und ihren Vorgédngerorganisationen zusammengetra-
gen wurden. Sie dokumentieren die Betreuung von Displaced Persons (DPs) in den westlichen
Besatzungszonen Deutschlands sowie in Italien, Osterreich, der Schweiz und England. Zentra-
les Dokumententyp ist der Fragebdgen aus dem Care and Maintenance Programm der IRO,
den DPs zur Beantragung humanitarer Hilfe ausfiillen mussten [Arc].

Die Scans der CM1-Dokumente wurden von den Arolsen Archives * bereitgestellt. Jeder
Eintrag im Datensatz umfasst mehrere Dokumente eines individuellen Verwaltungsverfahrens,
typischerweise bestehend aus einem Deckblatt (Cover), einem ausgefiillten Antragsformu-
lar sowie weiteren begleitenden personlichen Unterlagen [WTM*25]. Die in dieser Arbeit
untersuchten Aufgaben beziehen sich ausschliellich auf die Deckblatter, die strukturierte,
handschriftlich eingetragene Informationen zur antragstellenden Person sowie zu bis zu drei
begleitenden Angehorigen enthalten.

Der vollstdndige Datensatz umfasst insgesamt 123.550 digitalisierte Dokumentbilder mit
184.647 annotierten Datumsangaben. Zur Modellentwicklung wurde der Datensatz in drei

2 https://collections.arolsen-archives.org/en/archive/3-2-1
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5.2 EVALUATIONSMETRIKEN

Grofde der Sets des CM1-COVER Datensatzes

Training Validierung  Test Gesamt

Bilder 113.237 3.427 6.886 123.550

Tabelle 5.1.2: Grofle der Sets des CM1-COVER Datensatzes

Teile aufgeteilt: 113.237 Bilder fiir das Training, 3.427 fiir die Validierung und 6.886 fiir
den abschlieenden Test. Eine tabellarische Ubersicht dieser Aufteilung ist in Tabelle 5.1.2
dargestellt.

Ein Dokumentbild kann bis zu vier Datumsangaben enthalten, die tiblicherweise dem
Format TT-MM-JJJJ folgen. Die zugehorige Ground-Truth-Annotation wird entsprechend als
JSON angegeben, beispielsweise "dates": ["1913-01-31",

"1924-06-31"]. Ein anschauliches Beispiel ist in Abbildung 5.1.2 dargestellt.

5.2 EVALUATIONSMETRIKEN

In diesem Kapitel werden die Metriken beschrieben, die zur Bewertung der Modellleistung
verwendet werden. In dieser Arbeit werden die Mean Character Error Rate (mCER) und die
Sequence Accuracy (SeqAcc) verwendet, da sie sowohl die Genauigkeit auf Zeichen- als auch
auf Sequenzebene abbilden.

5.2.1  Mean Character Error Rate

Die gebréduchlichste Metrik zur Bewertung von Handschriftenerkennungssystemen (HTR) ist
die Character Error Rate (CER). CER misst den Anteil der fehlerhaft erkannten Zeichen im
Vergleich zur Annotation.

Zur Berechnung wird die Anzahl der fehlerhaften Bearbeitungsoperationen bzw. Einftigun-
gen, Loschungen und Ersetzungen gezihlt. Diese Zahl wird dann durch die Gesamtanzahl der
Zeichen in der Annotation geteilt:

_ #Einfiigungen + #Loschungen + #Ersetzungen

CER Lange der Annotation (52.1)
Fiir ein Testset wird die mittlere CER (mCER) tiber alle N Stichproben gebildet:
;N
mCER = & ; CER; (5.2.2)

Ein niedriger mCER-Wert zeigt eine gute Erkennungsleistung, wahrend ein hoher Wert viele
Fehler deutet. Es ist zu beachten, dass in Fillen, in denen die vorhergesagte Datumssequenz
leer ist, der Zeichenfehlerratewert (CER) in dieser Arbeit standardméfliig auf 1.0 gesetzt wird.
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Abbildung 5.1.2: CM1-COVER  Beispielbild  mit  zugehoriger = JSON-Annotation:
"dates: ["1913-01-31", "1924-06-31"]

Da ein Dokumentbild mehrere Datumsangaben enthalten kann, wird zun&chst fiir jedes
Bild die mCER berechnet. Anschliefiend werden die mCER tiber den gesamten Datensatz
aggregiert.

5.2.2  Sequence Accuracy

Eine weitere Metrik zur Bewertung von Transkriptionsqualitat ist die Sequence Accuracy (Se-
gAcc). Dabei gilt eine Vorhersage nur dann als korrekt, wenn alle Zeichen bzw. Token in einer
Sequenz vollstidndig richtig erkannt wurden. Ist auch nur eines der Token falsch, wird die
gesamte Vorhersage als fehlerhaft gewertet. Dies macht die SeqAcc besonders streng und
unterscheidet sie deutlich von Metriken wie der CER, da sie die Transkription als Ganzes
bewertet. Typischerweise ist die SeqAcc daher deutlich niedriger als zeichenbasierte Metriken.
Die Berechnung erfolgt gemaf:

Anzahl korrekt erkannter Sequenzen
Gesamtanzahl der Sequenzen

SeqAcc = (5.2.3)

Da ein Bild mehrere Datumsangaben enthalten kann, wird die SeqAcc zunédchst pro Da-
tumssequenz ermittelt. Die SeqAcc pro Bild ergibt sich als Durchschnitt dieser Sequenzen,
und iiber den gesamten Datensatz wird wiederum der Mittelwert aller Bild-SeqAcc berechnet.



5.2 EVALUATIONSMETRIKEN

5.2.3 Kilassifikationsleistung

Um die Wirkung der Konfidenzschranken auf die Freigabe historischer Dokumente zu be-
werten (siehe Abschnitt 5.4.4), wird die Klassifikationsleistung des Modells in Bezug auf die
100-Jahres-Grenze untersucht. Dabei ist entscheidend, ob ein Dokument korrekt als , veroffent-
lichbar” oder ,nicht veroffentlichbar” eingestuft wird.

Zur quantitativen Analyse werden zwei zentrale Mafse herangezogen: Precision und Relative
Error Reduction (RER). Die Grundlage bildet die in Tabelle 5.2.1 dargestellte Konfusionsmatrix.
Sie unterscheidet vier Félle: Wird eine Instanz, die tatsdchlich positiv ist, korrekt als positiv
erkannt, spricht man von einem True Positive (TP). Erfolgt dagegen eine positive Vorhersage
fiir eine eigentlich negative Instanz, handelt es sich um ein False Positive (FP). Analog
bezeichnet man korrekt negative Vorhersagen als True Negative (TN), wahrend falsch negative
Vorhersagen als False Negative (FN) gelten.

Vorhersage
Positive Negative
(]
2
-§ True positive False negative
a
©
2
c o
B
b= L) -
&0 False positive True negative
(]
=2

Abbildung 5.2.1: Konfusionsmatrix eines bindren Klassifikators.

Auf Basis dieser Grofen lasst sich die Precision nach [Pow20] definieren. Sie beschreibt den
Anteil korrekt positiver Klassifikationen an allen positiven Vorhersagen und ergibt sich formal
zZu:

- TP
Precision = PP (5.2.4)

Eine hohe Precision bedeutet, dass nur ein geringer Anteil der als positiv klassifizierten
Instanzen tatsachlich fehlerhaft ist.

Ein weiteres Maf§ zur Bewertung der Modellleistung ist die Relative Error Reduction (RER),
wie sie in [VWN23] zur vergleichenden Analyse verschiedener Modelle vorgeschlagen wurde.
RER misst die relative Verringerung der Fehlklassifikationen gegeniiber einer Referenzmethode
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(Baseline). Angenommen, die Baseline erreicht eine Genauigkeit von 80% und ein verbessertes
Modell erzielt 85%, so ergibt sich eine RER von 25—0 = 25%. Formal lasst sich RER wie folgt
ausdriicken:

RER — ETThaseline — ETTMethode % 100%,

(5.2.5)
I:—T"rbaseline 525

wobei ErTpageline die Anzahl der Fehler in der Baseline beschreibt und Erryjethode die Fehler-
zahl des betrachteten Verfahrens.

In dieser Arbeit wird die RER auf die False Positives (FP) angewendet. Dazu wird FPpaseline
als die Anzahl an False Positives in der Baseline (ohne Konfidenzfilter) definiert. FP; bezeichnet
hingegen die Zahl der False Positives bei Anwendung eines Konfidenzschwellwertes t. Die
RER< ergibt sich damit formal zu:

RER.(FP) = FPoaseline = FPx 4500, (5.2.6)
FPhaseline
Dieses Maf3 verdeutlicht, in welchem Ausmaf die Einfithrung einer Konfidenzschranke zur
Reduktion fehlerhafter positiver Vorhersagen beitrdagt. Damit ldsst sich quantitativ belegen,
dass die Konfidenzbewertung ein wirksames Mittel zur Verbesserung der Filterung tiber
Modellvorhersagen darstellt.

5.3 TRAININGSAUFBAU

Fiir die Experimente dieser Arbeit wurde das vortrainierte Donut-Modell 3 auf dem Conso-
lidated Receipt Dataset (CORD) [PSL " 19] als Basis-Modell fiir das Fine-Tuning verwendet.
Dieses Modell wurde speziell fiir die Aufgaben der Dokumenten-Informationsextraktion auf
dem CORD trainiert. Der Datensatz umfasst 8oo Trainings-, 100 Validierungs- und 100 Test-
beispielen. Die enthaltenen Texte sind in lateinischer Schrift verfasst. Insgesamt werden 30
unterschiedliche Informationsfelder extrahiert, darunter beispielsweise Mentiname, Menge,
Gesamtpreis und weitere relevante Felder.

Als technische Grundlage diente Python 3.9 zusammen mit dem PyTorch-Framework fiir
das Deep Learning. Alle Trainingsvorgange wurden auf einer NVIDIA GeForce RTX 3070
mit 8GB Grafikspeicher ausgefiihrt, was hinsichtlich Speicherkapazitit und Rechenleistung
gewisse Einschrankungen mit sich brachte.

Das Training erfolgte unter Verwendung des Adam-Optimizers [KB17] mit einer Lernrate
von 3 x 107°. Aufgrund der begrenzten Hardware-Ressourcen wurde das Training auf die
Batch-Grofie von 1 beschrankt und mit einer maximal moglichen Eingabegrofie von 640 x 320
Pixeln durchgefiihrt. Um den Lernprozess zu stabilisieren, wurde eine Warmup-Phase von
10.000 Iterationen eingefiihrt. Die maximale Token-Lénge wurde auf 50 Zeichen begrenzt, um
die Effizienz zu gewdhrleisten. Diese Hyperparameter blieben {iber alle im Rahmen dieser
Arbeit untersuchten Experimente hinweg unverandert.

https://huggingface.co/naver-clova-ix/donut-base-finetuned-cord-v2/tree/
official


https://huggingface.co/naver-clova-ix/donut-base-finetuned-cord-v2/tree/official
https://huggingface.co/naver-clova-ix/donut-base-finetuned-cord-v2/tree/official

5.4 ERGEBNISSE

Zur Vermeidung von Overfitting wurde ein Early Stopping [Pre12] eingesetzt. Dabei wird
die Modellleistung auf dem Validierungsdatensatz wihrend des Trainings tiberwacht. Sobald
sich die Leistung nicht weiter verbessert oder sich verschlechtert, wird der Trainingsprozess
automatisch gestoppt. Dieses Verfahren verhindert, dass das Modell {ibermifiig stark auf
Rauschen im Trainingsdatensatz reagiert und verbessert somit die Generalisierungsfahigkeit.

5.4 ERGEBNISSE

In diesem Kapitel werden die Ergebnisse der Experimente zur Leistung der Donut-Modelle
nach dem Finetuning mit dem DC2- und CM1-COVER-Datensatz vorgestellt. Der Fokus
liegt dabei auf zwei Aspekten: zum einen auf der Abhingigkeit der Modellleistung von der
GrofSe der verfiigbaren Trainingsdaten, zum anderen auf der Bewertung der Modellsicherheit
anhand verschiedener Konfidenzmafle. Um dariiber hinaus den praktischen Nutzen der
Konfidenzpriifung zu verdeutlichen, wurde ein Simulationsszenario entworfen, das reale
Veroffentlichungssituationen nachbildet.

5.4.1 Reduktion der Trainingsdaten

Die Bewertung der Modellleistung in Abhéngigkeit von der Verfiigbarkeit von Trainingsdaten
ist ein wichtiger Aspekt. Eine giangige Methode besteht darin, die Menge an Trainingsdaten zu
reduzieren, indem nur ein zuféallig ausgewéahlter Teil des urspriinglichen Datensatzes verwen-
det wird. Dieser Experiment beantwortet 2 Fragestellungen: Erstens, wie stark die Leistung
des Modells vom Umfang der verfiigbaren Trainingsdaten abhdngt, und zweitens, welchen
Einfluss ein vorheriges Finetuning auf dem DC2-Datensatz im Vergleich zum Basismodell hat.

Konkret wurde der Trainingsdatensatz des CM1-COVER-Datensatzes in hierarchisch aufge-
baute Teilmengen unterteilt. Dies bedeutet, dass jede kleinere Teilmenge vollstandig in der
néchstgrofieren enthalten ist. Insgesamt wurden vier Trainingsstufen definiert, die 20%, 50%,
80%, 100% des urspriinglichen Trainingsdatensatzes umfassen. Die Validierungs- und Testmen-
gen blieben tiber alle Experimente hinweg unverdndert (Siehe Tabelle 5.4.1).

Mit diesen Datensplits wurden anschlieffend zwei Modellvarianten untersucht. Zum einen
das Donut-Basismodell, das ohne zusétzliches Finetuning verwendet wurde (Donut-Base).
Zum anderen das Donut-Modell, das zuvor bereits auf dem DC2-Datensatz vortrainiert wurde
(Donut-DC2). Beide Modelle wurden separat mit den vier unterschiedlichen Trainingsmengen
trainiert und anschlieffend auf denselben Testdaten evaluiert.

Die Auswertung der in Abbildung 5.4.1 dargestellten Ergebnisse zeigt, dass Donut-DC2 in
allen Konfigurationen deutliche Leistungsgewinne gegentiber dem Basismodell Donut-Base
erzielt. Bereits bei geringen Trainingsanteilen zeigt sich ein deutlicher Vorteil von Donut-DCa2.
Wiéhrend Donut-Base bei nur 20% Trainingsdaten noch eine sehr hohe mCER von 37.4 auf-
weist, reduziert Donut-DC2 diesen Wert auf 13.5. Damit werden fast zwei Drittel der Fehler
eliminiert. Mit zunehmendem Anteil an Trainingsdaten verbessert sich die Leistung beider
Modelle deutlich. Donut-Base zeigt dabei einen sprunghaften Leistungsanstieg zwischen 20%
und 50% Trainingsdaten und erreicht bei 100% Daten eine Sequenzgenauigkeit von 775.4% bei
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Datensatz Train Val  Test

20% 50% 80% 100%

CM1-COVER 22,647 56,618 90,589 113,237 3,427 6,886

Tabelle 5.4.1: Die Aufteilung des Datensatzes erfolgt in Trainings-, Validierungs- und Test-
mengen. Die Trainingsmengen sind hierarchisch aufgebaut, wobei jede kleinere
Teilmenge vollstandig in der jeweils nachstgrofieren enthalten ist.

80 N 75:6 7? 40 374 ¢ Donut-Base
bib 73.3 754 ¢ Donut-DC2
g 60 |- i g 30 -
() 54
< 40| B 20|
o 292 @)
@ | g |
20 - e- Donut-Base 1077 vy S
. 4.6
Donut-DC2 ¢ ® e
4l9 e
o L% | T T oL I I 3
20 50 80 100 20 50 80 100
Anzahl Trainingsdaten (%) Anzahl Trainingsdaten (%)
(a) SeqAcc fiir verschiedene o-Werte. (b) mCER fiir verschiedene o-Werte.

Abbildung 5.4.1: Vergleich von Donut-Base und Donut-DC2 bei unterschiedlichen Trainings-
anteilen (20%, 50%, 80%, 100%).

einer mCER von 4.6%. Donut-DC2 skaliert hingegen kontinuierlich mit zunehmender Daten-
menge und {ibertrifft das Basismodell in allen Féllen. Unter Verwendung des vollstindigen
Trainingssatzes erreicht das Modell den hochsten Leistungswert mit 79,4% Sequenzgenauigkeit
bei einer mCER von 3,1%.

Die Ergebnisse verdeutlichen zudem, dass der Nutzen zusitzlicher Trainingsdaten mit
wachsender Datenmenge abnimmt. Besonders fiir Donut-Base ist der Sprung von 20% auf
50% Trainingsdaten erheblich (37.4 auf 8.2), wahrend die Verbesserung von 80% auf 100%
vergleichsweise gering ausfillt (7.8 auf 4.6). Ein dhnliches Bild zeigt sich bei Donut-DC2, wenn
auch auf niedrigerem Niveau. Dies weist darauf hin, dass die Modelle ab einem bestimmten
Punkt weitgehend gesittigt sind.

Zusammenfassend ldsst sich festhalten, Donut-DCz2 in allen Szenarien deutlich tiberlegen ist,
sowohl bei kleiner als auch bei grofiem Trainingssatz. Das Vortraining auf dem DC2-Datensatz
wirkt daher wie ein leistungsfahiges Transfer-Learning.
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5.4.2 Modellsicherheit durch Konfidenzmafe

Zur Quantifizierung der Zuverlassigkeit der Vorhersagen des DONUT-DC2-Modells zu quan-
tifizieren, wurden die im Abschnitt 4.2 vorgestellten Konfidenzmafie MULT, MIN und T2M
untersucht.

Zur Evaluation wurde fiir jede Konfidenzmetrik folgender Ansatz gewéahlt: Zundchst werden
alle Testdaten nach ihrem Konfidenzwert absteigend sortiert. Anschlieffend werden sukzessive
die obersten 10%, 20%, 40%, 60%, 80% sowie schliefllich den gesamten Datensatz (100%)
berticksichtigt. Fiir jede dieser Teilmengen wurden die mittlere SeqAcc und mCER berech-
net. So konnte tiberpriift werden, ob eine hohe Konfidenz tatsdchlich mit einer besseren
Vorhersagequalitdt korreliert.

100
z : ] 41| e T2M
° e MIN
. e MULT )
3\.0/ 90 ] g 3+ ///
g &
= 27
» 80 e T2M ¢ !
e MIN T -
¢ MULT ’ $ ¢
70 T T | | | | | | | | |
10 20 40 60 80 100 10 20 40 60 80 100
Abgedeckte Testdaten (%) Abgedeckte Testdaten (%)

(a) (b)

Abbildung 5.4.2: Vergleich der Konfidenzmetriken T2M, MIN und MULT hinsichtlich (a)
Sequenzgenauigkeit (SeqAcc) und (b) mittlerem Character Error Rate (mCER)
des Donut-DC2 Modells. Die Auswertung erfolgt auf sukzessiven Teilmengen
des Testdatensatzes, die nach absteigendem Konfidenzwert sortiert wurden
(10% bis 100%).

Ein wesentlicher Aspekt, der sich aus den Ergebnissen (siehe Abbildungen 5.4.2) ableiten
lasst, ist der deutliche Trade-off zwischen Abdeckungsrate und Zuverldssigkeit. Wahrend
die obersten 10-40% der nach Konfidenz sortierten Vorhersagen eine nahezu fehlerfreie
Erkennung (mit einer Sequenzgenauigkeit von tiber 97,0% bei allen drei Konfidenzmaf3e)
liefern, nimmt die Genauigkeit mit steigender Abdeckung erwartungsgemafs ab. Fiir die
praktische Anwendung stellt sich damit die Frage nach einem geeigneten Gleichgewicht: Soll
ein System nur die sichersten Vorhersagen automatisch tibernehmen und damit eine geringere
Abdeckung, aber hohe Verlasslichkeit gewahrleisten, oder ist eine vollstindige automatische
Verarbeitung wiinschenswert, obwohl dies ein hoheres Fehlerrisiko mit sich bringt.
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Ein dhnliches Bild zeigt sich auf Zeichenebene bei den mCER. In den obersten 10% erreicht
MIN mit 0,22(%) den niedrigsten Fehlerwert, wahrend MULT (0,43(%)) und T2M (0,36(%))
leicht dartiber liegen. Auch bei 20% und 40% bleibt MIN vorn und weist damit durchgangig die
geringsten Fehler auf. Dies verdeutlicht, dass die nach Konfidenzmaflen ausgewdahlten Vorher-
sagen nicht nur weniger komplette Sequenzfehler enthalten, sondern auch auf Zeichenebene
prézise sind.

Mit zunehmender Abdeckung sinkt die Genauigkeit erwartungsgemaf ab, da auch weniger
sichere Vorhersagen in die Bewertung einbezogen werden. Bei grofieren Anteilen (60% und
80%) fallt die SeqAcc in allen Féllen deutlich ab und liegt zwischen 93-87%. Parallel dazu
steigen die mCER sptirbar an. Wird schliefilich die gesamte Testmenge betrachtet, so erreichen
alle drei Konfidenzmafle identische Ergebnisse von 79,4% SeqAcc bei einer mCER von 3,11%.
Dieses Resultat entspricht der Leistung des Modells ohne Anwendung einer Konfidenzschwelle
(vgl. Experiment 5.4.2 mit Donut-DC1 bei 100% Trainingsdaten).

Insgesamt ldsst sich somit festhalten, dass alle drei Konfidenzmafe in der Lage sind, zuver-
lassig zwischen sicheren und unsicheren Vorhersagen zu unterscheiden. Unter ihnen erweist
sich MIN als das stabilste und leistugsfahigste Maf, da es in den oberen Konfidenz-Segmenten
(Top-10% bis Top-40%) konstant die hochste Sequenzgenauigkeit und gleichzeitig die nied-
rigste mCER liefert. Dies deutet darauf hin, dass die schlechteste Token-Wahrscheinlichkeit
tatsdchlich ein aussagekraftiger Indikator fiir die Gesamtzuverlédssigkeit einer Sequenz ist.
GAVG und T2M zeigen dagegen nahezu identische Verldufe und liegen insgesamt etwas
unterhalb von MIN, da sie die Unsicherheit iiber die gesamte Sequenz mitteln und daher
insgesamt etwas weniger strikt sind.

5.4.3 Datensatzreduktion & Konfidenzbewertung

In diesem kombinierten Experiment werden die beiden zuvor beschriebenen Experimente
zusammengefiihrt: die Reduktion der Trainingsdaten (vgl. Abschnitt 5.4.1) sowie die Mo-
dellsicherheit durch Konfidenzmafie (vgl. Abschnitt 5.4.2). Dazu wurde der CM1-COVER-
Trainingsdatensatz in hierarchische Teilmengen aufgeteilt. Fiir jede Trainingsstufe wurde das
Modell Donut-DC2 trainiert und die Vorhersagen mithilfe der Konfidenzmetriken ausgewertet.
Die Testdaten wurden dabei nach Konfidenzwert sortiert, und fiir Abdeckungsraten von
10% bis 100% wurden die SeqAcc sowie die mCER berechnet. Die Ergebnisse werden in der
Abbildung 5.4.3 dargestellt.

Bei einer Reduktion der Trainingsdaten auf 20% wird der Einfluss der Verftigbarkeit von
Trainingsdaten auf die Wirksamkeit der Konfidenzmetriken deutlich sichtbar. Die Sequenz-
genauigkeit liegt zundchst bei rund 76% fiir die obersten 10% der nach Konfidenz sortierten
Testdaten und sinkt kontinuierlich auf etwa 29% bei vollstindiger Abdeckung. Gleichzeitig
steigt die mCER von rund 3% auf 13,5%. In diesem Szenario gelingt es den Konfidenzwerten
noch nicht, zuverlédssig zwischen guten und schlechten Vorhersagen zu unterscheiden.

Mit 50% Trainingsdaten verbessert sich die Situation erheblich. Die Accuracy steigt bei
niedrigen Abdeckungsraten (10-40%) auf iiber 9o%, und der mCER bleibt in diesem Bereich
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Abbildung 5.4.3: Vergleich der Konfidenzmetriken T2M, MIN und MULT hinsichtlich SeqAcc
(links) und mCER (rechts) des Donut-DC2 Modells bei unterschiedlichen
Trainingsanteilen (20%, 50%, 80%). Die Auswertung erfolgt auf sukzessiven
Teilmengen des Testdatensatzes, die nach absteigendem Konfidenzwert sor-

tiert wurden.
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gering. Die geringen Unterschiede zwischen den Konfidenzmetriken deuten darauf hin, dass
das Modell in diesem Szenario bereits ein stabiles Unsicherheitsmaf3 erlernt hat.

Bei 80% Trainingsdaten werden in den oberen Konfidenzbereichen (10-40%) weiterhin
SeqAcc tiber 95% und sehr niedrigen mCER erzielt. Erst bei hoherer Coverage nimmt die
Leistung starker ab, bleibt jedoch nur geringfiigig schlechter als bei voller Trainingsmenge (vgl.
Abschnitt 5.4.2). Dies deutet darauf hin, dass der Nutzen zusitzlicher Trainingsdaten ab einem
Umfang von etwa 80% deutlich abnimmt und die Konfidenzmafle auch in diesem Kontext
zuverldssig arbeiten.

5.4.4 Fehlervermeidung durch Konfidenzschranken

Um den praktischen Nutzen der Konfidenzpriifung zu demonstrieren, wurde ein Simula-
tionsszenario entworfen. Dokumente sollen nur dann verdffentlicht werden, wenn fiir alle
extrahierten Geburtsdaten gilt, dass seit der Geburt mindestens 100 Jahre vergangen sind. Da
die CM1-Dokumente ohnehin fast alle dlter als 100 Jahre sind, wurde ein fiktiver Stichtag
eingefiihrt, um realistischere Priifbedingungen zu schaffen.

Um die Robustheit der Ergebnisse zu gewahrleisten, wurde das Experiment nicht nur fiir
einen einzelnen Stichtag, sondern fiir mehrere Referenzdaten im Zeitraum vom 01.01.2010
bis zum 01.01.2020 (in Jahresschritten) durchgefiihrt. Diese Auswahl ist reprasentativ, da die
meisten Geburtsdaten in den CM1-Dokumenten in den Jahren 1900-1930 liegen. Somit lassen
sich unterschiedliche Szenarien abbilden, in denen die 100-Jahres-Grenze gerade erreicht oder
knapp verfehlt wird.

Fiir jedes Referenzdatum wird das Modell bewertet, ob es die Dokumente im Hinblick auf
die 100-Jahres-Regel korrekt klassifiziert. Das Modell wird folgendermaflen evaluiert:

e True Positives (TP): Dokumente, die zurecht veroffentlicht werden, weil sowohl die
Ground-Truth-Daten als auch die vom Modell vorhergesagten Daten &lter als 100 Jahre
sind.

e False Positives (FP): Dokumente, die veroffentlicht werden, obwohl mindestens ein
Datum in den Ground-Truth-Daten jiinger als 100 Jahre sind.

¢ False Negatives (FN): Dokumente, die eigentlich veroffentlicht werden diirften (alle
Ground-Truth-Daten >100 Jahre), vom Modell aber zuriickgehalten werden.

¢ True Negatives (TN): Dokumente, die korrekt zuriickgehalten werden, da mindestens
ein Ground-Truth-Datum noch nicht 100 Jahre alt ist.

Wichtig ist, dass hier nicht gepriift wird, ob das exakte Datum korrekt vorhergesagt wurde.
Entscheidend ist allein, ob das Modell mit seiner Vorhersage zu einer richtigen oder falschen
Klassifikation beztiglich der 100-Jahres-Grenze fiihrt.

In einem weiteren Schritt wird untersucht, wie viele Dokumente ohne Konfidenzpriifung
falschlicherweise veroffentlicht worden wiren und in welchem Maf sich solche Fehler durch
eine Konfidenzschranke vermeiden lassen. Dazu werden alle Dokumente zunéchst nach ihrem
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Abbildung 5.4.4: Vergleich der Konfidenzmetriken T2M, MIN und MULT hinsichtlich (a)
Precision sowie (b) Relative Error Reduction (RER) des Donut-DC2 Modells.
Die Auswertung erfolgt auf sukzessiven Teilmengen des Testdatensatzes, die
nach absteigendem Konfidenzwert sortiert wurden.

Konfidenzwert sortiert und anschlieflend nur die obersten 10% bis 100% der Daten berticksich-
tigt. Das Vorgehen entspricht dabei konzeptionell dem zuvor beschriebenen Experiment 5.4.2,
jedoch wird hier nicht die Sequenzgenauigkeit als Bewertungsmafs herangezogen, sondern die
Presicion und Relative Error Reduction (RER) (vgl. Abschnitt 5.2.3).

Die Betrachtung der Precision (Siehe Abbildung 5.4.4 (a)) zeigt, dass bei obersten Konfidenz-
schwellen (10-50%) nahezu alle als veroffentlichbar eingestuften Dokumente korrekt sind. Die
Precision liegt hier etwa 99% fiir alle drei Konfidenzmafie. Mit zunehmender Schwelle sinkt
die Precision leicht, da mehr Dokumente mit geringerer Sicherheit freigegeben werden, aber

selbst bei 80% bleibt sie noch hoch (ca. 97%).

Parallel dazu verdeutlicht RER die Wirksamkeit der Konfidenzschranken (Siehe Abbil-
dung 5.4.4 (b)). Bereits moderate Schwellenwerte o = 50% verhindern {iber 9o% der potenziell
falschen Veroffentlichungen. Bei o = 80% liegt die Reduktion noch zwischen ca. 52% und 65%.
Wird hingegen die gesamte Datenmenge ohne Konfidenzfilter berticksichtigt (o = 100%), so
ergibt sich erwartungsgemaf keine Reduktion, die als Baseline dient.

Die kombinierte Betrachtung von Precision und Reduktion zeigt, dass hohe Konfidenzwerte
einerseits die Anzahl korrekt veroffentlichter Dokumente maximieren und andererseits das
Risiko von Fehlveroffentlichungen deutlich reduzieren. Insgesamt demonstriert die Analyse,
dass die Anwendung von Konfidenzschranken eine effiziente Methode zur sicheren Freigabe
historischer Dokumente darstellt.
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Ziel dieser Arbeit war die Untersuchung eines End-to-End-Ansatzes zur automatisierten Tran-
skription handschriftlicher Datumsangaben in historischen Dokumenten. Hierfiir wurde ein
Ansatz auf Basis des Donut-Modells gewdhlt, das Bildinformationen in einem durchgiangigen
Prozess ohne vorgelagerte OCR-Schritt direkt in Textsequenzen transkribiert. Ergdnzend wur-
den Konfidenzmafle integriert, die eine Einschédtzung der Vorhersagesicherheit ermoglichen.
Dies ist insbesondere fiir praktische Anwendungen im Bereich historischer Archive oder
der Forschung, wo fehlerhafte Transkriptionen erhebliche Auswirkungen haben kénnen, von
grofier Bedeutung. Durch die Konfidenzmafle konnte ein halbautomatisches System entwickelt
werden. Dazu gehen unsichere Ergebnisse an Menschen zur Uberpriifung, sichere Ergebnisse
konnen automatisch iibernommen werden.

Das DONUT-Modell basiert auf einer Architektur mit einem Swin-Transformer als Encoder
zur visuellen Représentation und einem BART-Decoder zur textuellen Sequenzgenerierung. Ein
zentraler Baustein war die zweistufige Finetuning-Strategie. Zunichst wurden ausgeschnittene
Bildsegmente mit isolierten Datumsangaben aus DC1-Datensatz genutzt, um dem Modell
typische Muster von Datumsformaten beizubringen. Anschlieffend erfolgte ein Training auf
vollstindigen Dokumentseiten aus CM1-COVER-Datensatz, wodurch das Modell in der Lage
war, die zuvor erlernten Muster in einem komplexeren Kontext korrekt zu erkennen und zu
lokalisieren.

Die Arbeit hebt mehrere Stiarken des Donut-DC2 Modells hervor. Bei der Extraktion von
Datumsangaben erreicht das Modell eine Sequenzgenauigkeit von 79,4% und eine mittlere
Character Error Rate (mCER) von 3,4, wobei die Integration von Konfidenzwerten zusatzliche
Vorteile bietet. Insbesondere lassen sich unsichere Vorhersagen gezielt identifizieren, wodurch
die Qualitdt der extrahierten Daten verbessert werden kann. Dies zeigt sich besonders deut-
lich bei den obersten 40% der Testdaten mit den hochsten Konfidenzwerten, fiir die eine
Sequenzgenauigkeit von iiber 96% erzielt wurde.

Zur Veranschaulichung des praktischen Nutzens der Konfidenzpriifung wurde ein Beispiel
in Form eines Simulationsszenarios durchgefiihrt. Dabei sollten Dokumente nur dann verof-
fentlicht werden, wenn fiir alle extrahierten Geburtsdaten gilt, dass seit der Geburt mindestens
100 Jahre vergangen sind. Um realistische Priifbedingungen zu schaffen, wurde ein fiktiver
Stichtag eingefiihrt. Die Betrachtung der Precision in diesem Experiment zeigt, dass bei den
obersten Konfidenzschwellen von 10-50% nahezu alle als veroffentlichbar eingestuften Doku-
mente korrekt sind. Die Precision liegt fiir alle drei Konfidenzmafle bei etwa 99%, was den
praktischen Nutzen der Konfidenzpriifung verdeutlicht.

Gleichzeitig bestehen auch Einschrankungen. Das Modell ist in seiner Leistungsfdhigkeit eng
an bestimmte Dokumentformate gebunden, da die historischen Dokumente des CM1-COVER-
Korpus ein relativ homogenes Layout aufweisen. Auch bleibt die Abhangigkeit von ausreichend
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annotierten Trainingsdaten bestehen, wodurch der Einsatz in diversifizierten oder datenarmen
Anwendungsszenarien erschwert wird. Schlieilich erweisen sich Konfidenzmafle zwar als
niitzlich, liefern jedoch nicht in allen Féllen eine verldssliche Abbildung der tatsdchlichen
Unsicherheit.

Fiir die Zukunft ergeben sich mehrere Ansatzpunkte. Zum einen bietet sich die Erweiterung
des Ansatzes auf weitere Dokumentfelder, wie Namen, Betrdge oder Adressen, an. Zum ande-
ren bieten aktive Lernstrategien [Setog, Set12] oder semi-supervised Learning [Zhuo8, CSZo9]
die Moglichkeit, die Dateneffizienz zu steigern und die Abhingigkeit von grofSen Trainings-
mengen zu reduzieren. Dartiber hinaus erscheint die Integration in digitale Archivsysteme
besonders vielversprechend, um historische Datenbestinde automatisiert und qualitédtsgesi-
chert zu erschliefien.

Insgesamt zeigt diese Arbeit, dass moderne End-to-End-Modelle wie Donut in Verbin-
dung mit geeigneten Finetuning-Strategien und Konfidenzbewertung ein leistungsfahiges
Werkzeug zur automatisierung historischer Dokumente darstellen. Damit einen wichtigen
Schritt in Richtung einer effizienteren und verlésslicheren Digitalisierung des kulturellen Erbes
ermoglichen.



ANHANG

Abg. SeqAcc mCER
Daten

T2M MIN MULT | t2M MIN MULT
10% 96.61 97.80 96.63 0.36 0.22 0.43
20% 96.33 97.37 96.15 0.40 0.26 0.45
40% 96.58 96.95 96.50 0.40 0.36 0.42
60% 93.73 93.76 93.85 | 0.75 0.74 0.73
80% 87.82 87.14 87.85 1.55 1.59 1.51
100% 79.39 79.39 79.39 3.11 3.11  3.11

Tabelle 7.0.1: Die exakten Werte von SeqAcc (%) und mCER (%) in Experiment 5.4.2 in Ab-
héngigkeit vom Anteil der Testdaten, die nach absteigenden Konfidenzwerten
ausgewdhlt wurden.
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Abg. SeqAcc mCER
Daten

T2M MIN MULT | t2M MIN MULT
10% 75.87 77.22  77.43 3.42 3.20 3.20

° 20% 62.86 62.08 63.99 5.60 5.85 4.84

=)

E 40% 48.72 47.29 49.53 8.00 850 7.55
60% 40.31 38.96 40.71 9.73 10.19 9.35
80% 34.33 33.76 34.72 11.45 11.72 11.15
100% 29.24 29.24 29.24 13.48 13.48 13.48
10% 93.81 93.91 93.96 0.72 0.70 0.70

2 20% 93.85 94.20 93.57 0.80 o0.76 0.88

% 40% 90.14 91.42 90.29 1.28 113 1.27

’ 60% 81.92 83.90 82.26 2.40 2.23 2.37
80% 73.46 76.27 73.69 3.76  3.33 3.65
100% 68.61 68.61 68.61 4.91 491 4.91
10% 95.92 96.66 095.44 0.43 034 049

e 20% 95.70 96.25 95.45 0.47 041 0.50

(]

°|T 40% 95.20 95.26 94.99 0.60 0.55 0.58

’ 60% 89.68 9o0.10 89.63 1.33 1.26 1.32
80% 82.94 83.61 82.81 241 2.29 233
100% 75.54 75.54 75.54 4.06 4.06  4.06

Tabelle 7.0.2: Exakte Werte von SeqAcc (%) und mCER (%) des Donut-DC2 Modells bei un-
terschiedlichen Trainingsanteilen (20%, 50%, 80%) im Vergleich der Konfidenz-
metriken T2M, MIN und MULT aus Experiment 5.4.3. Die Auswertung erfolgt
auf sukzessiven Teilmengen des Testdatensatzes (10%, 20%, 40%, 60%, 80%, 100%),
die nach absteigendem Konfidenzwert sortiert wurden.



Abg. Precision RER
Daten

T2M MIN MULT | t2M MIN MULT
10% 98.9 99.6 98.9 | 97.9 99.2 97.9
20% 99.2 99.6 99.0 97.1 98.4 96.2
30% 99-4 99.6 99.3 97.1 97.6 96.2
40% 995 99.5 99.2 | 96.3 96.3 94.7
50% 99-3 99-1  99.1 942 923 923
60% 98.8 98.8 98.8 87.6 88.3 885
70% 98.1 98.1 ¢98.2 78.3 77.3 79.2
80% 97.2 96.4 97.3 63.4 52.5 65.4
90% 957 954 959 39.1 31.8 417
100% 93.8 93.8 03.8 0.0 0.0 0.0

Tabelle 7.0.3: Die exakten Werte von Precision (%) und Relative Error Reduction (%) tiber
verschiedene Konfidenzschwellenwerte aus Experiment 5.4.4.
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