
End-to-End-Transkription und
Konfidenzbewertung handschriftlicher

Datumsangaben in historischen Dokumenten

Thi Dung Pham
8. Januar 2026

Supervisors:

Prof. Dr.-Ing. Gernot A. Fink

Arthur Matei, M.Sc.

Fakultät für Informatik

Technische Universität Dortmund

http://www.cs.uni-dortmund.de

I N H A LT S V E R Z E I C H N I S

1 einleitung 3

2 grundlagen 5

2.1 Problemdefinition 5

2.2 Neuronale Netze 6

2.2.1 Feedforward-Netzwerk 6

2.2.2 Convolutional Neural Networks 11

2.2.3 Optimierung 14

2.3 Transformers 19

2.3.1 Eingaberepräsentationen 19

2.3.2 Attention 22

2.3.3 Transformer-Modelle 26

2.3.4 Vision Transformers 30

3 verwandte arbeiten 31

3.1 Handschrifterkennung und Informationsextraktion 31

3.2 Konfidenzbewertung 33

4 methodik 35

4.1 Modellarchitektur 35

4.1.1 SWIN Encoder 35

4.1.2 BART Decoder 39

4.2 Konfidenzmaße 40

5 evaluation 43

5.1 Datensätze 43

5.1.1 Death Certificates 2 43

5.1.2 CM1-COVER 44

5.2 Evaluationsmetriken 45

5.2.1 Mean Character Error Rate 45

5.2.2 Sequence Accuracy 46

5.2.3 Klassifikationsleistung 47

5.3 Trainingsaufbau 48

5.4 Ergebnisse 49

5.4.1 Reduktion der Trainingsdaten 49

5.4.2 Modellsicherheit durch Konfidenzmaße 51

5.4.3 Datensatzreduktion & Konfidenzbewertung 52

1

2 inhaltsverzeichnis

5.4.4 Fehlervermeidung durch Konfidenzschranken 54

6 fazit 57

7 anhang 59

1
E I N L E I T U N G

Viele Verwaltungsabläufe im 19. und 20. Jahrhundert basierten auf Formularen und
Karteikarten. Heute liegen solche Dokumente in großer Zahl in Archiven und enthal-
ten wertvolle Informationen, die bislang nur eingeschränkt zugänglich sind. Besonders
für Historiker, Sozialwissenschaftler und Genealogen sind die personenbezogenen
Angaben in diesen Formularen jedoch von großem Forschungsinteresse. Datenschutz-
bestimmungen erschweren häufig ihre Veröffentlichung. Nach Bundesarchivgesetz
in § 11 Abs. 2

1 gelten Informationen in der Regel zehn Jahre nach dem Tod einer
Person oder hundert Jahre nach ihrer Geburt als nicht mehr schutzbedürftig. Durch die
Bestimmung des Geburtsdatums der betroffenen Personen lässt sich daher prüfen, ob
personenbezogene Daten noch dem Datenschutz unterliegen oder bereits freigegeben
werden können.

Die manuelle Transkription dieser Daten ist allerdings zeitaufwendig, da die Doku-
mente in alter Schrift verfasst, oft durch Alterungsprozesse beschädigt und zudem
in großer Zahl vorhanden sind. Um diesem Aufwand zu begegnen, bietet sich die
automatisierte Informationsextraktion als anspruchsvolle Lösung an. Da den Ergeb-
nissen eines automatisierten Prozesses jedoch nicht uneingeschränkt vertraut werden
kann, ist eine Konfidenzbestimmung hilfreich, um die Verlässlichkeit der erkannten
Informationen einzuschätzen.

Ziel dieser Arbeit ist es zu untersuchen, wie effektiv ein End-to-End-Modell zur
Extraktion historischer Geburtsdaten eingesetzt werden kann. Dabei wird ein zwei-
stufiges Fine-Tuning durchgeführt, gefolgt von einer Bewertung der Konfidenz der
Transkriptionen. Es ist zu beachten, dass eine automatisierte Transkription grund-
sätzlich keine hundertprozentige Genauigkeit erreichen kann. Da Archive sensible
personenbezogene Daten verwalten, ist eine alleinige Abhängigkeit von der automati-
sierten Transkription nicht möglich. Deshalb wird neben der Erkennungsgenauigkeit
auch die Konfidenz der Modellvorhersagen bewertet, um die Verlässlichkeit der extra-
hierten Informationen besser einschätzen zu können.

Die Aufgabe, Informationen aus historischen Dokumenten zu extrahieren, hat unter
anderem durch den Wettbewerb „Information Extraction in Historical Handwritten
Records (IEHHR)“ im Jahr 2017 [BRM+

20] bereits Interesse geweckt. Dieser basierte

1 www.bundesarchiv.de/das-bundesarchiv/rechtsgrundlagen/bundesarchivgesetz

3

www.bundesarchiv.de/das-bundesarchiv/rechtsgrundlagen/bundesarchivgesetz

4 einleitung

auf der Esposalles Datenbank [RFS+
13], einer historischen Sammlung von Heirats-

urkunden. Ziel des Wettbewerbs war es, relevante Informationen über Braut und
Bräutigam sowie deren Eltern zu extrahieren.

Um die Herausforderung der Transkription handschriftlicher Daten aus historischen
Dokumenten anzugehen, setze ich in diese Arbeit den Document Understanding
Transformer (DONUT) [KHY+

22] ein, ein Modell, das sich laut aktuellem Stand
der Forschungen als besonders leistungsfähig für generische Transkriptionsaufgaben
erwiesen hat. DONUT ist ein OCR-freies Transformer-basiertes Modell für Dokumen-
tenverständnis, der entwickelt wurde, um Herausforderungen bei der Verarbeitung
von vollständigen Dokumentbildern zu bewältigen, einschließlich Texterkennung und
Dokumentenverständnis. Das Modell zeichnet sich durch eine End-to-End-Architektur
und ein Vortrainingsziel aus, wodurch es in verschiedenen Aufgaben der visuellen
Dokumentenanalyse zuverlässig gute Ergebnisse in Bezug auf Genauigkeit und Ge-
schwindigkeit erzielt.

Eine Strategie zum Finetuning des DONUT-Modells wird in dieser Arbeit entwickelt,
um die Extraktion von Datumseingaben aus historischen Formularen gezielt zu verbes-
sern. Die Methode basiert auf einem zweistufigen Fine-Tuning-Prozess: In der ersten
Phase wird das vortrainierte DONUT-Modell gezielt mit ausgeschnittenen Bildaus-
schnitten trainiert, die Datumsangaben enthalten. Diese stammen aus dem Datensatz
DC-2 der DARE-Datenbank (Database of Abstracts of Reviews of Effects) [DJS+

22]
und ermöglichen dem Modell, die visuelle Struktur sowie das typische Textmuster von
Datumsformaten zu erlernen. In der zweiten Phase erfolgt ein weiteres Fine-Tuning
mit vollständigen Dokumentseiten aus dem CM1-COVER-Datensatz. Dadurch lernt
das Modell, die zuvor erkannten Datumsmuster auch im komplexen Seitenkontext
präzise zu identifizieren und zu extrahieren.

Diese Arbeit besteht neben diesem Kapitel aus fünf weiteren Kapiteln. Kapitel 2 ver-
mittelt das theoretische Grundlagenwissen, das für das Verständnis des eingesetzten
Dokumentenextraktionsverfahrens erforderlich ist. In Kapitel 3 werden verwand-
te Ansätze vorgestellt, die die Entwicklung der in Kapitel 4 beschriebenen Donut-
Architekturen und Konfidenzmaß maßgeblich beeinflusst haben. Kapitel 5 erläutert das
Evaluationsprotokoll, die verwendeten Metriken sowie die eingesetzten Datensätze,
die als Basis für die Bewertung und den Vergleich verschiedener Dokumentenex-
traktionsverfahren dienen. Zudem werden hier die Ergebnisse der durchgeführten
Experimente präsentiert. Kapitel 6 bietet eine abschließende Bewertung der Resultate.

2
G R U N D L A G E N

In diesem Kapitel werden grundlegende Konzepte und Begriffe vorgestellt, die für
das Verständnis der in dieser Arbeit angewendeten Methodik von Bedeutung sind.

2.1 problemdefinition

Die Extraktion relevanter Informationen aus historischen handschriftlichen Dokumen-
tensammlungen ermöglicht, um diese Quellen systematisch zugänglich zu machen. In
diesem Zusammenhang reicht eine reine Handschriftenerkennung [FB14] nicht aus.
Das Ziel liegt mehr darin, ein umfassenderes Dokumentenverständnis zu entwickeln,
das in der Lage ist, gezielt semantisch bedeutsame Inhalte zu extrahieren [FRB+

17].
Die Aufgabe der Informationsextraktion besteht darin, semantisch relevante In-

formationen aus Dokumenten zu identifizieren und in strukturierter Form bereitzu-
stellen [FRB+

17]. Herausfordernd ist dies bei handschriftlichen Datumsangaben aus
historischen Dokumenten. Zum einen sind sie visuell nicht einfach zu erkennen, da sie
durch stark variierende Schriftarten, verblasste Tinte oder historische Schreibweisen
geprägt sind. Zum anderen entstehen semantische Ambiguitäten, beispielsweise durch
die Vielfalt an Datumsformaten wie „12/03/1895“ oder „12. März 1895“. Erschwe-
rend kommt hinzu, dass Geburtsdaten in vollständigen Dokumentseiten meist nicht
isoliert vorliegen, sondern in komplexe, mehrzeilige Registereinträge innerhalb von
Formularen eingebettet sind.

Klassische Ansätze [KKY+
14, ACM+

15, gQL+
19] basieren häufig auf OCR-Systemen,

die zunächst Textsegmente erkennen und anschließend die relevanten Informationen
extrahieren. Hierbei ist jedoch häufig eine zusätzliche Segmentierung notwendig, um
einzelne Textblöcke voneinander zu trennen. Solche Verfahren stoßen schnell an ihre
Grenzen. OCR arbeitet in der Regel zuverlässig, solange die Dokumentbilder nur we-
nige Störungen enthalten und die Texte nicht stark beschädigt sind. Sobald jedoch die
Bildqualität erheblich abnimmt, wie es insbesondere bei historischen Dokumenten häu-
fig der Fall ist, verschlechtert sich die Erkennungsleistung erheblich [DSS08]. Um diese
Limitierungen zu überwinden, werden End-to-End-Ansätze untersucht, die ohne klas-
sische OCR-Zwischenschritte auskommen. Die Bausteine des Systems, insbesondere
die Verarbeitung der visuellen Eingaben und die Sequenzmodellierung der extrahier-

5

6 grundlagen

ten Informationen, können durch neuronale Netze und Transformer-Architekturen
realisiert werden. In dieser Arbeit wird ein transformerbasierter End-to-End-Ansatz
eingesetzt, der ein Dokumentenbild als Eingabe erhält und die darin enthaltenen
Datumsangaben direkt extrahiert.

Eine reine Bewertung anhand der Transkriptionsgenauigkeit reicht nicht aus, um die
Verlässlichkeit der Ergebnisse zu beurteilen. Deshalb ist es notwendig, die vom Modell
generierten Konfidenzwerte systematisch zu untersuchen und deren Aussagekraft im
Hinblick auf die Qualität der Transkriptionen zu bewerten.

2.2 neuronale netze

Künstliche Neuronale Netze sind aus schichtweise organisierten künstlichen Neuronen
aufgebaut, deren Struktur von biologischen Neuronalen Netzen in dem menschlichen
Gehirn inspiriert ist. Jedes Neuron kann Eingangssignale empfangen, diese verarbei-
ten und ein Ausgangssignal erzeugen. Neuronen sind dabei mit mindestens einem
anderen Neuron verbunden, und jede Verbindung besitzt einen reellen Wert, den
sogenannten Gewichtungskoeffizienten, der die Bedeutung der Verbindung innerhalb
des Netzwerks beschreibt [SKP97].

Dieses Kapitel bietet eine grundlegende Einführung in künstliche neuronale Netze,
die als theoretische Grundlage für die vorliegende Arbeit dient. Zunächst wird in
Abschnitt 2.2.1 das Feedforward-Netzwerk beschrieben. Danach werden verschiedene
Aktivierungsfunktionen vorgestellt und die Layer-Normalisierung wird anschließend
näher erläutert. In dem nächsten Abschnitt 2.2.2 werden Convolutional Neural Net-
works, die eine spezielle Form von neuronalen Netzen für Daten mit Gittertopologie
sind, erläutert. Schließlich handelt sich im Abschnitt 2.2.3 um die Optimierung der
vorher beschriebenen neuronalen Netzen.

2.2.1 Feedforward-Netzwerk

Ein Feedforward-Netzwerk (FFN) ist einfaches neuronales Netzwerk, das ausschließ-
lich Informationen von einer Schicht zur nächsthöheren weitergibt. Die Bezeichnung
Feed-Forward bedeutet, dass es keine Rückverbindungen gibt und somit keine Ausga-
ben oder Zwischenwerte zurück in das Modell geführt werden [GBC16, S. 164]. Ein
FFN kann als gerichteter Graph wie in der Abbildung 2.2.1 interpretiert werden, in
dem die Knoten Neuronen repräsentieren und die gerichteten Kanten die gewichteten
Verbindungen zwischen den Neuronen darstellen. Jedes Neuron empfängt Eingaben,

2.2 neuronale netze 7

Σ φ

b

x1

x2

xn

w0

w1

w2

wn

φ

(
n∑

i=0

wixi

)

...

(a)

...

Input
layer

Hidden
layer

Output
layer

(b)

Abbildung 2.2.1: (a) Berechnung innerhalb eines einzelnen Neurons mit gewichteten Eingaben
xi, Gewichtungsfaktoren wi, Bias-Term w0 sowie Aktivierungsfunktion σ

nach [Agg23, S. 5]. (b) Aufbau eines Multi-Layer FNN mit einem Input Layer,
zwei Hidden Layer und einem Output Layer nach [Agg23, S. 14].

verrechnet diese mit den zugehörigen Gewichtungen sowie einem Bias-Term und leitet
das Ergebnis nach Anwendung einer Aktivierungsfunktion weiter.

Ein FFN besteht aus Schichten lk, k = 0, . . . ,L, die jeweils M(k) Neuronen enthalten.
Die Eingabeschicht (Input Layer) l0 stellt den Eingabevektor x ∈ Rd bereit, die
Zwischenschichten lk, k = 1, . . . ,L− 1 werden als versteckte Schichten (Hidden Layers)
bezeichnet, die Ausgabeschicht (Output Layer) lL enthält die finalen Ergebnisse der
Berechnung ŷ ∈ RM(L)

(siehe Abbildung 2.2.1 (b)). In den Hidden-Layern werden
Berechnungen auf Basis der Ausgaben der Neuronen im Vorgänger-Layer durchgeführt
und anschließend durch die Ausgabeschicht ausgegeben. Die Anzahl der Schichten
wird als Tiefe bezeichnet. Dabei wird die Eingabeschicht nicht mitgezählt, da sie
lediglich die Daten weiterleitet und selbst keine Berechnungen durchführt.

In einem FFN berechnet das j-te Neuron der k-ten Schicht zunächst eine gewichtete
Summe der Ausgaben der vorherigen Schicht. Dabei wird ein Bias-Term addiert, bevor
das Ergebnis durch eine nicht-lineare Aktivierungsfunktion transformiert wird (siehe
Abbildung 2.2.1 (a)). Entsprechend der Definition in [Bis06, S. 227-230] ergibt sich die
folgende mathematische Darstellung:

y
(k)
j = φ(k)

(
a
(k)
j

)
mit a

(k)
j =

M(k−1)∑
i=1

w
(k)
ji y

(k−1)
i + w

(k)
j0 , (2.2.1)

Hierbei bezeichnet y(k−1) ∈ RM(k−1)
die Eingaben des Neurons, also die Ausgaben

der Neuronen aus der (k− 1)-ten Schicht, w(k)
j ∈ RM(k−1)

den Gewichtungsvektor für

8 grundlagen

das j-te Neuron der k-ten Schicht und w
(k)
j0 ∈ R den zugehörigen Bias. Auf die Summe

a
(k)
j wird anschließend eine nicht-lineare Aktivierungsfunktion φ(k) angewendet,

damit die Berechnung nicht durch eine einzige Matrixmultiplikation ersetzt werden
kann und das Netzwerk auch nicht lineare Funktionen approximieren kann.

Die Berechnung innerhalb eines FFNs lässt sich effizient in vektorisierter Form dar-
stellen. Dabei wird jede Schicht als eine Kombination aus einer linearen Transformation
und einer nicht-linearen Aktivierungsfunktion (vgl. Abschnitt 2.2.1) modelliert. Um
die Darstellung zu vereinfachen, kann der Bias in den Gewichtungsvektor integriert
werden. Dies geschieht, indem ein sogenanntes Bias-Neuron eingeführt wird, das stets
den festen Wert 1 weitergibt. Das Gewicht der Kante zwischen Bias-Neuron und Aus-
gabeneuron übernimmt dann der Bias. Dadurch kann Gleichung 2.2.1 umgeschrieben
werden zu:

a(k) = W(k)y(k−1) (2.2.2)

Dabei umfasst der Eingabevektor y(k−1) ∈ RM(k−1)+1 neben den Ausgaben der
vorherigen Schicht zusätzlich einen konstanten Eintrag y

(k−1)
0 = 1. Die Gewichtsmatrix

W(k) ∈ RM(k)×(M(k−1)+1) enthält in jeder Zeile die Gewichte (inklusive Bias) eines
Neurons der k-ten Schicht.

Somit lässt sich die vom FFN approximierte Funktion f(x;W) als Komposition der
durch die einzelnen Schichten realisierten Teilfunktionen f(k)(·;W(k)) darstellen:

ŷ = f(x;W) =
(
f(L) ◦ f(L−1) ◦ · · · ◦ f(1)

)
(x;W), (2.2.3)

Dabei bezeichnet W = {W(1), . . . , (W(L))} die Parameter des gesamten Netzwerks.
Jede Teilfunktion f(k) berechnet die nichtlineare Transformation einer Schichteingabe
y(k−1):

f(k)(y(k−1);W(k)) = φ(k)
(
W(k)y(k−1)

)
, (2.2.4)

wobei φ(k) eine (nichtlineare) Aktivierungsfunktion darstellt.

Aktivierungsfunktionen

Aktivierungsfunktionen spielen eine zentrale Rolle in neuronalen Netzen, da sie es
ermöglichen, nichtlineare Zusammenhänge in den Daten abzubilden. Dies erhöht die
Flexibilität und Leistungsfähigkeit neuronaler Netze bei der Modellierung komplexer

2.2 neuronale netze 9

−4 −2 2 4

0.5

1

x

Sigmoid(x)

−4 −2 2 4

1

2

3

x

ReLU(x)

−4 −2 2 4

1

2

3

x

GELU(x)

Abbildung 2.2.2: Drei Aktivierungsfunktionen (Sigmoid, ReLU, GELU) nach [Agg23, S. 13] im
Vergleich. Identische x-Skala (4 bis 4).

und differenzierter Daten [RAS20]. Ein neuronales Netz, das ausschließlich lineare
Aktivierungsfunktionen nutzt, wäre nicht in der Lage, die Trainingsdaten korrekt zu
klassifizieren, da viele Datenpunkte nicht linear trennbar sind [Agg23]. Die Auswahl ei-
ner geeigneten Aktivierungsfunktion hängt dabei von der jeweiligen Modellarchitektur
ab. Abbildung 2.2.2 zeigt drei der in dieser Arbeit relevanten Aktivierungsfunktionen:
Sigmoid, die Rectified Linear Unit (ReLU) und die Gaussian Error Linear Unit (GELU).

In der Arbeit wird das Symbol φ(·) zur Bezeichnung der Aktivierungsfunktion
verwendet. Der Wert, der vor der Anwendung der Aktivierungsfunktion φ(·) be-
rechnet wird, wird als Pre-Activation (Voraktivierung) bezeichnet. Die Pre-Activation
spielt eine wichtige Rolle bei der Berechnung im Rahmen des Backpropagation (vgl.
Abschnitt 2.2.3), der später noch genauer behandelt wird. Sobald die Aktivierungs-
funktion auf diesen Wert angewandt wurde, spricht man vom Post-Activation, welcher
letztlich die Ausgabe des Neurons darstellt [Agg23, S. 12].

Eine klassische Aktivierungsfunktion ist die Sigmoid- oder logistische Aktivierungs-
funktion, die mathematisch nach [RAS20] wie folgt definiert ist:

φ(x) =
1

1+ e−x
(2.2.5)

Sie transformiert den Eingabebereich von (−∞,+∞) in den Bereich [0, 1]. Damit er-
möglicht sie sowohl die Erzeugung von Wahrscheinlichkeitsausgaben als auch die
Formulierung von Verlustfunktionen, die auf Maximum-Likelihood-Modellen basie-
ren [Agg23, S. 12].

Die ReLU

φ(x) = max(0, x) (2.2.6)

ist derzeit die am häufigsten verwendete Aktivierungsfunktion [RZL17]. Die ReLU-
Funktion hat für x ⩾ 0 den Wert x und 0 andernfalls. Ihre Ableitung ergibt sich

10 grundlagen

den Wert 0 für x < 0, den Wert 1 für x > 0 und ist für x = 0 nicht differenzierbar.
Ein Vorteil der ReLU [Agg23, S. 28] liegt darin, dass sie im positiven Bereich stets
eine konstante Ableitung von 1 besitzt und somit weniger anfällig für das Vanishing-
Gradient-Problem [BSF94] ist. Ein Nachteil besteht jedoch darin, dass während des
Trainings die Parameter so angepasst werden können, dass ein Neuron ausschließlich
Werte kleiner oder gleich 0 produziert und dadurch dauerhaft inaktiv bleibt [CMB23,
S. 185].

Die Gaussian Error Linear Unit (GELU) [HG23] lässt sich durch folgende Nähe-
rungsformel beschreiben:

φ(x) ≈ 0.5x

(
1+ tanh

[√
2

π

(
x+ 0.044715x3

)])
(2.2.7)

Die GELU ist eine nichtlineare Aktivierungsfunktion, die in vielen Transformer-
basierten Modellen, einschließlich BERT [DCLT19] und Swin [LLC+

21] Transformer,
standardmäßig verwendet wird. Im Gegensatz zu ReLU führt GELU eine stochas-
tisch motivierte Glättung ein, indem sie die Eingabe gewichtet basierend auf deren
Wahrscheinlichkeit, positiv zu sein. Sie kombiniert dabei Merkmale linearer und
nichtlinearer Aktivierungen.

Layer-Normalisierung

Die Layer-Normalisierung [BKH16] ist eine von vielen Normalisierungstechniken,
die das Training tiefer neuronaler Netze verbessern, indem sie die Ausgabewerte einer
versteckten Schicht auf eine standardisierte Verteilung bringt.

Beim Training tiefer Netze hängen die Gradienten einer Schicht stark von den
Ausgaben der vorherigen Schicht ab. Dieses Problem lässt sich verringern, indem die
summierten Eingaben (Voraktivierungen) jeder Schicht auf einen festen Mittelwert
und eine feste Varianz normalisiert werden [BKH16]. Gegeben sei der Vektor der
Voraktivierungen der k-ten Schicht a(k) ∈ RM(k)

. Das arithmetische Mittel und die
Standardabweichung werden berechnet als:

µ(k) =
1

M(k)

M(k)∑
i=1

a
(k)
i , σ(k) =

√√√√ 1

M(k)

M(k)∑
i=1

(
a
(k)
i − µ(k)

)2
(2.2.8)

2.2 neuronale netze 11

Anschließend wird jeder Wert des Vektors normiert, indem der Mittelwert subtra-
hiert und durch die Standardabweichung geteilt wird:

â(k) =
a(k) − µ(k)

σ(k)
(2.2.9)

Um der Normalisierung Flexibilität zu verleihen, werden zwei lernbare Parameter
eingeführt: ein Skalierungsfaktor γ ∈ RM(k)

und ein Bias-Term β ∈ RM(k)
. Diese

Parameter dienen dazu, die normalisierten Werte in lernbarer Weise neu zu skalieren
und zu verschieben. Die endgültige Ausgabe der Layer-Normalisierung ergibt sich
somit zu:

a
(k)
normalized = γ⊙ â(k) +β (2.2.10)

wobei ⊙ das elementweise Produkt bezeichnet. Layer-Normalisierung wird typischer-
weise nach der linearen Transformation, vor der Aktivierungsfunktion angewendet.
Nachteile sind der zusätzliche Rechenaufwand und eine eingeschränkte Wirksamkeit
bei Schichten mit wenigen Neuronen [BKH16].

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [LB98] unterscheiden sich von klassischen
neuronalen Netzen dadurch, dass sie besonders gut für Daten mit einer Gitterstruktur
geeignet sind, wie beispielsweise Zeitreihen oder Bilddaten [GBC16, S. 326] [ON15].

Dies liegt daran, dass CNNs die räumliche oder zeitliche Nachbarschaft der Daten
gezielt ausnutzen können. Die Intuition hinter Convolutional Neural Networks besteht
darin, dass die Filter während des Trainings selbstständig lernen, Merkmale wie Kan-
ten, Formen oder Texturen zu erkennen. Dadurch müssen die relevanten Eigenschaften
nicht manuell vorgegeben werden, sondern werden direkt aus den Trainingsdaten
gelernt. Durch das anschließende Pooling wird zudem Ortsinvarianz erreicht, sodass
ein erkanntes Merkmal unabhängig von seiner genauen Position im Bild berücksichtigt
wird [Ket17, S. 77–78].

Ein wesentlicher Unterschied von CNNs zu klassischen Neural Networks besteht
darin, dass ihre Neuronen in drei Dimensionen Höhe, Breite und Tiefe organisiert
sind. Die Tiefe bezeichnet dabei nicht die Anzahl der Netzwerkschichten, sondern
die dritte Dimension des Aktivierungsvolumens. Zudem sind die Neuronen einer
CNN-Schicht nicht mit allen Neuronen der vorherigen Schicht verbunden, sondern
nur mit einem kleinen lokalen Bereich, was eine effiziente Verarbeitung räumlicher
Strukturen ermöglicht [ON15].

12 grundlagen

0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 1 0 0 0 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

I

∗
0 0 1

1 0 0

0 1 1

K

=

0 1 0 0 0

0 1 1 1 0

1 0 1 2 1

1 4 2 1 0

0 0 1 2 1

I ∗ K

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Abbildung 2.2.3: Abbildung nach [AAS20] zeigt die Faltung eines Eingabebildes I mit einem
Kernel K. Der Kernel K wird über das Eingabebild I verschoben. An jeder
Position werden die überdeckten Pixel mit den Kernel-Gewichten multipli-
ziert und summiert, um einen Wert in der Feature Map I ∗K zu erzeugen.

Im Folgenden wird zunächst erläutert, was unter einer Convolution zu verstehen ist.
Anschließend wird das Verfahren des Poolings beschrieben, das in nahezu allen Con-
volutional Networks eingesetzt wird. Die in diesem Kapitel verwendete Terminologie
orientiert sich an [CMB23, S. 290–298] und [AAS20].

Convolution

Das zentrale Konzept der Faltung basiert auf dem sogenannten „Rezeptiven Feld“.
Darunter versteht man einen kleinen Ausschnitt des Bildes, in dem ein Neuron Merk-
male erkennt. In diesem Feld lernen die Gewichte des Modells, einfache Strukturen
wie Kanten, Linien oder andere visuelle Muster zu identifizieren.

Für die anschauliche Erklärung kann man sich die Eingabebilder zunächst auf
Graustufenbilder beschränken. Der dafür verwendete Kernel ist eine kleine Matrix
von Gewichtswerten, die dieselbe Tiefe wie die Eingabeebene, jedoch eine geringere
räumliche Ausdehnung besitzt. Dieser Kernel wird über das Bild verschoben, wobei
an jeder Position eine gewichtete Summe der überdeckten Pixelwerte berechnet wird.
Durch die wiederholte Anwendung derselben Gewichtswerte auf alle Positionen des
Bildes entsteht die sogenannte Faltung. Dieses Teilen der Gewichte ist ein zentrales
Merkmal der CNN-Architektur, da es die Anzahl der zu lernenden Parameter im
Vergleich zu einem vollständig verbundenen Netzwerk drastisch reduziert [GBC16,

2.2 neuronale netze 13

S. 331–333]. Die Ergebnisse dieser Berechnungen werden in einer neuen Ausgabematrix
gespeichert, die als Feature Map bezeichnet wird (siehe Abbildung 2.2.3).

Die Faltung kann nach mathematisch formalisiert werden. Für ein Bild mit Intensitä-
ten (Helligkeitswert) I und einen Kernel K ergibt sich die Aktivierung der Feature-Map
S an der Position (i, j) nach [GBC16, S. 328] zu

S(i, j) = (K ∗ I)(i j) =
∑
n

∑
m

I(i+n, j+m)K(n,m). (2.2.11)

Genau genommen handelt es sich hierbei um eine Cross-Correlation, in der Litera-
tur zum maschinellen Lernen wird dieser Vorgang jedoch üblicherweise als Faltung
bezeichnet. Durch Hinzufügen eines Bias-Terms sowie der Anwendung einer Aktivie-
rungsfunktion werden die endgültigen Werte der Feature Map bestimmt. Traditionell
wurde in neuronalen Netzen häufig die Sigmoid-Funktion als Aktivierungsfunktion
(vgl. Abschnitt 2.2.1) eingesetzt, da sie eine glatte, stetige Form besitzt und sich leicht
differenzieren lässt.

Pooling

Eine typische Schicht in einem CNN besteht aus drei Phasen [GBC16, S. 355].
Zunächst werden mehrere Faltungen parallel durchgeführt, um lineare Aktivierungen
zu erzeugen. Im nächsten Schritt werden diese linearen Aktivierungen durch eine
nichtlineare Aktivierungsfunktion transformiert. Schließlich kommt Pooling zum
Einsatz, die die Ausgaben weiter zusammenfasst und damit die Dimensionen reduziert,
ohne die relevanten Informationen zu verlieren.

Pooling-Schichten verfolgen das Ziel, die Dimensionalität der Repräsentationen
schrittweise zu verringern. Dadurch sinkt nicht nur die Anzahl der Parameter, sondern
auch die rechnerische Komplexität des Modells [ON15, AAS20]. Ein weiterer Ziel
dabei ist die Translationsinvarianz. Das bedeutet, dass die Ausgabe des Netzes auch
dann weitgehend stabil bleibt, wenn das Eingabebild leicht verschoben wird. Auf
diese Weise kann das Modell erkennen, dass ein bestimmtes Merkmal vorhanden ist,
unabhängig davon, ob es sich im Bild ein wenig nach links, rechts, oben oder unten
bewegt hat [AAS20].

Das Grundprinzip von Pooling besteht darin, die Ausgaben einer bestimmten Regi-
on in der Feature Map durch eine statistische Kenngröße zu ersetzen. Eine verbreitete
Methode ist das sogenannte Max-Pooling [ZC88] (siehe Abbildung 2.2.4 (a)), das
in Convolutional Neural Networks häufig eingesetzt wird, da dabei keine zusätzli-
chen Parameter gelernt oder angepasst werden müssen. Hierbei wird innerhalb jeder

14 grundlagen

3 2 0 0

0 7 1 3

5 2 3 0

0 9 2 3

I

7 3

9 3

MAX

(a)

3 2 0 0

0 7 1 3

5 2 3 0

0 9 2 3

I

3 1

4 2

AVG

(b)

Abbildung 2.2.4: Beispiel für Pooling-Operationen in CNNs: (a) Max-Pooling und (b) Average-
Pooling.

Pooling-Region der höchste Wert ausgewählt und an die nächste Schicht weitergegeben.
Auf diese Weise bleibt erhalten, ob ein Merkmal in der betrachteten Region vorhanden
ist und wie stark es ausgeprägt ist, während Details über die exakte Position teilweise
verloren gehen.

Neben Max-Pooling gibt es auch andere Varianten. So kann die Ausgabe beispiels-
weise als Durchschnittswert aller Werte innerhalb des Bereichs berechnet werden
(siehe Abbildung 2.2.4 (b)), oder man verwendet die L2-Norm zur Zusammenfassung.
Ebenso sind gewichtete Mittelwerte möglich, bei denen Werte, die näher am Zentrum
des Rezeptiven Feldes liegen, stärker berücksichtigt werden.

2.2.3 Optimierung

In den vorangegangenen Abschnitten wurde der grundlegende Aufbau neuronaler
Netze beschrieben. Dieses Kapitel beschäftigt sich mit der Optimierung dieser Net-
ze. Unter der Optimierung eines neuronalen Netzes versteht man die Anpassung
seiner Parameter W (also der Gewichte und Bias) mit dem Ziel, dass die Ausgaben
ŷi = f(xi;W) für Eingaben (xi,yi) aus einer Stichprobe X = {(x1,y1), . . . , (xn,yn)}

möglichst genau mit den tatsächlichen Zielwerten yi übereinstimmen [Agg23, S. 6–7].
Im Folgenden werden zunächst verschiedene Verlustfunktionen vorgestellt, die

messen, wie groß die Abweichung zwischen Vorhersage und Zielwert ist. Darauf
aufbauend wird das Verfahren des Gradientenabstiegs (Gradient Descent) erläutert,
ein Algorithmus zur schrittweisen Minimierung der Verlustfunktion. Schließlich wird

2.2 neuronale netze 15

die Backpropagation als algorithmisches Verfahren zur effizienten Berechnung dieser
Gradienten vorgestellt.

Verlustfunktion

Im Kontext neuronaler Netze beschreibt eine Verlustfunktion (Loss Function, Cost
Function, oder Error Function), wie stark die geschätzte Ausgabe eines Modells von
der gewünschten Zielausgabe abweicht. Um die Sicherheit einer Klassenvorhersage
für ein Eingabedatum xi zu bewerten, wird eine Verlustfunktion definiert, die einen
hohen Wert annimmt, wenn die vorhergesagte Klasse ŷi nicht mit der tatsächlichen
Klasse yi übereinstimmt.

Für Klassifikationsprobleme wird häufig die Cross-Entropy-Loss (CE) zwischen den
Trainingsdaten und den Modellvorhersagen verwendet. Dabei kommt üblicherweise
die Softmax-Funktion in der Ausgabeschicht des Klassifikators zum Einsatz, um die k

reellwertigen Scores bzw. Klassen-Scores v1, . . . , vk in Wahrscheinlichkeiten o1, . . . ,ok
über k verschiedene Klassen zu transformieren [CMB23, S. 419].

Seien y1, . . . ,yk ∈ {0, 1} die One-Hot-codierten Labels der Trainingsdaten für die k

Klassen. Dabei nimmt die Komponente der korrekten Klasse den Wert 1 an, während
alle anderen Komponenten 0 sind [SF17]. Für ein einzelnes Trainingsbeispiel i ∈
{0, . . . ,k} ist der Cross-Entropy-Loss nach [Agg23, S. 118] definiert als:

Li(w) = −

k∑
j=1

yj log(oj), oj =
evj∑k
l=1 e

vl

(2.2.12)

In den meisten Optimierungsproblemen lässt sich die Verlustfunktion als Summe
der Verluste über alle Trainingsbeispiele darstellen. Dann ergibt sich der Gesamtverlust
für eine Trainingsmenge mit n Trainingsbeispiele nach [CMB23, S. 234][GBC16, S. 122]
zu:

L(w) =

n∑
i=1

Li(w). (2.2.13)

wobei Li der Verlust für ein einzelnes Trainingsbeispiel i ist.

Gradient Descent

Eine grundlegende Methode zur Minimierung der Verlustfunktion L(w) ist das
Gradient Descent [Lem12]. Die zugrunde liegende Idee von Gradient Descent besteht

16 grundlagen

darin, von einem zufällig gewählten Startpunkt aus schrittweise in die Richtung der
negativen Steigung der Verlustfunktion zu gehen bis ein (lokales) Minimum erreicht
ist. In hochdimensionalen Räumen ist es jedoch schwierig, das globale Minimum zu
erreichen, weshalb in der Praxis meist eine Lösung akzeptiert wird, deren Funktions-
wert zwar nicht minimal, aber dennoch hinreichend klein ist [GBC16, S. 81–82]. Um
eine ausreichend gute Lösung zu erhalten, kann es notwendig sein, den Algorithmus
mehrfach mit unterschiedlichen Startpunkten auszuführen und die Ergebnisse an-
schließend auf einer unabhängigen Validierungsmenge zu vergleichen [CMB23, S. 213].
Abbildung 2.2.5 veranschaulicht das Verfahren des Gradientenabstiegs.

Der Gradient ∇wL
(
w(t)

)
ist ein Vektor und enthält als Komponenten die partiellen

Ableitungen der Funktion L nach den Gewichten w. Die Parameter lassen sich dabei
als Vektor w auffassen, der nach jedem Schritt iterativ angepasst wird. Formal ergibt
sich das Aktualisierungsschema [CMB23, S. 214] zu:

w(t+1) = w(t) − ϵ∇w(t)L
(
w(t)

)
, (2.2.14)

wobei ϵ die Lernrate (learning rate) ist, ein positiver Skalar, der die Größe der
einzelnen Schritte bestimmt. Nach jeder Aktualisierung wird der Gradient für den
neuen Parametervektor w(t+1) erneut berechnet und der Prozess wiederholt.

Wird der Verlust bei jeder Aktualisierung über alle Trainingsdaten hinweg berechnet,
spricht man von Batch Gradient Descent, dem Standardverfahren des Gradient Descents.
Dieses Verfahren ist insbesondere bei sehr großen Datensätzen rechenintensiv und
führt zu langsamen Lernprozessen, da für jeden Schritt das gesamte Trainingsset
berücksichtigt werden muss [Rud17].

Im Gegensatz dazu wird beim Mini-Batch Gradient Descent nur eine zufällig aus-
gewählte Teilmenge der Trainingsdaten verwendet. Größere Mini-Batches liefern
genauere Schätzungen des Gradienten, erhöhen jedoch den Aufwand für jede einzelne
Gradientenberechnung. Beim Mini-Batch Gradient Descent wird nur eine zufällig
ausgewählte Teilmenge der Trainingsdaten verwendet. Dadurch reduziert sich der
Rechenaufwand pro Schritt.

Eine weitere, häufig genutzte Alternative für große Datensätze ist das Stochastic
Gradient Descent (SGD) [Bot10]. Dabei wird der Parametervektor auf Grundlage eines
einzelnen zufällig ausgewählten Trainingsbeispiels aktualisiert:

w(t+1) = w(t) − ϵ∇w(t)Li
(
w(t)

)
. (2.2.15)

Der Begriff „stochastisch“ weist darauf hin, dass der berechnete Gradient nur eine
noisy Approximation des tatsächlichen Gradienten über das gesamte Trainingsset

2.2 neuronale netze 17

−10

0

10

−10
0

10

0

200

x
y

f(
x

,y
)

−10 −5 0 5 10

−10

0

10

x

y

Abbildung 2.2.5: Visualisierung des Gradient Descent auf der Funktion f(x,y) = x2+y2. Links
ist die Zielfunktion als 3D-Oberfläche dargestellt. Der rote Pfeilpfad zeigt die
sukzessiven Schritte des Gradientenverfahrens, die das Verfahren von einem
Startpunkt in Richtung des globalen Minimums bei (0, 0) führen. Rechts ist
der Draufsicht mit Niveaulinien von f(x,y).

darstellt [DFO20, S. 231]. Trotz dieser Verzerrung ist SGD effektiv für große Machine-
Learning-Probleme, da es schnelle und regelmäßige Updates ermöglicht [BCN18].

Backpropagation

Die benötigten Ableitungen der Fehlerfunktion mit Bezug auf die einzelnen Para-
meter des Netzes können effizient mithilfe der Backpropagation [RHW86] berechnet
werden. Dabei handelt es sich um ein Verfahren, das die Gradienten Schritt für Schritt
rückwärts durch das Netzwerk propagiert. Die Berechnungen folgen dabei in umge-
kehrter Richtung dem Ablauf des Vorwärtsdurchlaufs, bei dem die Netzwerkausgabe
bestimmt wird. Die folgende Darstellung orientiert sich an [CMB23, S. 233–238].

Der Backpropagation besteht aus zwei zwei Hauptphasen: Forward-Pass und Backward-
Pass.

Im Forward-Pass werden die Eingabedaten durch das Netzwerk geleitet, und die
Ausgabe wird berechnet. Dabei werden in jeder Schicht die Aktivierungen der Neuro-
nen sowie Zwischenergebnisse (wie die Summeneingänge), die später für die Rück-
wärtsberechnung der Gradienten benötigt werden. Auf dieser Grundlage kann an-
schließend der Wert der Verlustfunktion L(w) für die aktuellen Parameter w bestimmt
werden. Für eine einzelne Eingabe (xl,yl) sei dabei die Fehlerfunktion Ll betrachtet.

18 grundlagen

Wie in Abschnitt 2.2.1 erläutert, berechnet jedes Neuron zunächst eine gewichtete Sum-
me seiner Eingaben, die anschließend durch eine nichtlineare Aktivierungsfunktion
φ(·) transformiert. Für das Neuron j gilt:

aj =
∑
i

wjizi, zj = φ(aj), (2.2.16)

wobei wji das Gewicht der Verbindung von Neuron i zu Neuron j. Die Werte zi
stammen entweder aus den Aktivierungen der vorherigen Schicht oder, im Falle der
Eingabeschicht, direkt aus den Eingangsdaten des Netzes.

Im Backward-Pass werden die Gradienten der Verlustfunktion bezüglich der Ge-
wichte mithilfe der Kettenregel berechnet. Zur Berechnung der Ableitung der Feh-
lerfunktion Ll bezüglich eines Gewichts wji nutzen wir die Kettenregel. Da Ll vom
Gewicht wji nur über den Summeneingang aj abhängt, ergibt sich:

∂Ll
∂wji

=
∂Ll
∂aj

·
∂aj

∂wji
= δj · zi, (2.2.17)

wobei δj den der Fehler des Neurons j bezeichnet und als die Ableitung der Verlust-
funktion nach dem Summeneingang aj definiert wird.

Aus Gleichung (2.2.17) folgt, um den Gradient für alle Gewichte im Netz zu be-
rechnen, genügt es also, den Fehler δj eines Neurons mit der Aktivierung zj seines
Eingabe-Neurons zu multiplizieren.

Falls ein Neuron j im Output-Layer liegt, lässt sich der Fehler als

δj =
∂L

∂aj
=

∂L

∂ŷj
·φ ′(aj) (2.2.18)

wobei φ ′ die Ableitung der Aktivierungsfunktion ist.
Befindet sich ein Neuron j in einem Hidden Layer, so muss eine Summe über alle

Neuronen k der nachfolgenden Schicht gebildet werden, da das Neuron j mit allen
Neuronen im sukzessiven Layer verbunden ist. Die Aktivierung zj geht somit in die
Berechnungen der folgenden Schicht ein. Für den Fehler δj eines Neurons j im Hidden
Layer gilt daher:

δj =
∂L

∂aj
=

∑
k

∂L

∂ak
· ∂ak

∂aj
. (2.2.19)

Für zwei direkt miteinander verbundene Neuronen j (in der aktuellen Schicht)
und k (in der nächsten Schicht) gilt ∂ak

∂aj
= ∂ak

∂zj
· ∂zj
∂aj

= wkj ·φ ′(aj), wobei wkj das

2.3 transformers 19

Gewicht der Verbindung von Neuron j zu Neuron k und φ ′(aj) die Ableitung der
Aktivierungsfunktion ist. Setzt man diesen Ausdruck in Gleichung (2.2.19) ein, so
ergibt sich der Fehler für ein Neuron j im Hidden Layer:

δj = φ ′(aj) ·
∑
k

wkj δk. (2.2.20)

Damit wird klar, dass der Fehler δj eines Hidden-Neurons durch Backpropagation der
Fehlerwerte δk aus der nachfolgenden Schicht berechnet werden kann.

2.3 transformers

Der Transformer [VSP+
23] stellt eine der bedeutendsten Entwicklungen im Bereich des

Deep Learning dar [KNH+
22] und findet inzwischen breite Anwendung in verschie-

denen Feldern wie der natürlichen Sprachverarbeitung (NLP), der Computer Vision
(CV) sowie der Sprachverarbeitung. Im Gegensatz zu CNNs benötigen Transformer
weder rekurrente noch konvolutionale Strukturen zur Modellierung von Sequen-
zen, sondern setzen ausschließlich auf Attention-Mechanismen in Kombination mit
Feed-Forward-Netzwerken. In diesem Kapitel werden die zentralen Bausteine von
Transformer-Modellen vorgestellt und ihre Funktionsweise näher erläutert.

2.3.1 Eingaberepräsentationen

Die Eingaberepräsentation bildet die Grundlage für die Verarbeitung von Eingabetext
durch Transformer-Modelle. Sie umfasst die Zerlegung von Texten in Tokens, die
Abbildung dieser Tokens auf Vektoren mittels Embeddings sowie die Integration
von Positionsinformationen über Positional Encoding. In den folgenden Abschnitten
werden diese drei Komponenten im Detail beschrieben.

Tokenisierung

In praktischen Anwendungen des Deep Learning im Bereich Natural Language
Processing (NLP) wird der Eingabetext zunächst in eine tokenisierte Präsentationen
überführt. Die Tokenisierung ist ein Vorverarbeitungsschritt, bei dem ein Text in
kleinere Einheiten, sogenannte Tokens, zerlegt wird. Tokens können einzelne Zeichen,
ganze Wörter oder Teile von Wörtern darstellen [SN12].

Während es verschiedene Ansätze zur Tokenisierung gibt, wie etwa Zeichen-
oder Wort-Tokenisierung, hat sich in der modernen Sprachverarbeitung die Subword-

20 grundlagen

Tokenisierung oft durchgesetzt [SHB16]. Das Grundprinzip besteht darin, seltene Wörter
in kleinere Einheiten zu zerlegen, sodass das Modell auch mit unbekannten oder feh-
lerhaft geschriebenen Wörtern umgehen kann. Häufig vorkommende Wörter werden
hingegen als ganze Tokens beibehalten, um die Länge der Eingabesequenz in einem
handhabbaren Rahmen zu halten [TWW22, S. 33–34]. Der Tokenizer wird dabei auf
einem großen Korpus während des Pre-Trainings gelernt, sodass er eine für das Modell
geeignete Zerlegung des Textes erzeugen kann.

Es existieren verschiedene Ansätze zur Subword-Tokenisierung. Ein häufig ein-
gesetztes Verfahren ist die Byte Pair Encoding (BPE) [SHB16], das ursprünglich aus
der Datenkompression stammt und für die Text-Tokenisierung angepasst wurde. Die
Grundidee besteht darin, häufig vorkommende Zeichenfolgen schrittweise zusammen-
zuführen. Zu Beginn wird die Tokenliste aus den einzelnen Zeichen des Alphabets
sowie einem speziellen Wortend-Symbol ‘·’ initialisiert. Im nächsten Schritt wird ein
Textkorpus nach den am häufigsten auftretenden aufeinanderfolgenden Token-Paaren
durchsucht. Das am häufigsten vorkommende Paar, beispielsweise (‘A’, ‘B’), wird
anschließend zu einem neuen Token (‘AB’) zusammengeführt. Dieser Vorgang wird
iterativ wiederholt, sodass nach und nach längere und häufigere Zeichenfolgen als
eigenständige Tokens entstehen. Um zu verhindern, dass Wörter über Wortgrenzen
hinweg zusammengeführt werden, wird ein neues Token nicht gebildet, wenn das
zweite Token mit einem Leerzeichen beginnt. Auf diese Weise entsteht eine Tokenliste,
die sowohl häufige Wörter als Ganzes als auch seltenere Wörter in kleinere Einheiten
zerlegt.

Token-Embeddings

Transformermodelle können keine Rohtexte in Form von Zeichenketten direkt als
Eingabe verarbeiten. Token-Embeddings repräsentieren jedes Token durch einen Vektor
in einem hochdimensionalen Raum mit typischerweise einigen hundert Dimensionen.
Formal lässt sich dies nach [CMB23, S. 375] durch eine Embedding-Matrix E ∈ Rd×|V |

darstellen, wobei d die Dimension des Embedding-Raums und |V | die Größe des
Vokabulars bezeichnet. Für einen one-hot-kodierten Eingabevektor xi lässt sich der
zugehörige Embedding-Vektor berechnen als

vi = Exi,

wobei vi derjenigen Spalte von E entspricht, die mit dem Token xn assoziiert ist. Die
Embedding-Matrix E kann entweder zufällig initialisiert oder aus einer vortrainierten

2.3 transformers 21

Standard-Embedding-Matrix übernommen werden [CMB23, S. 376]. Die Embedding-
Matrix E wird aus einem Trainingskorpus gelernt. Eine gängige Methode dafür ist
Word2Vec [MCCD13], die lässt sich als ein einfaches zweischichtiges neuronales Netz
auffassen, das aus einer Eingabeschicht, einer Projektionsschicht und einer Ausgabe-
schicht besteht.

Dabei entsteht jedes Trainingsbeispiel durch die Betrachtung eines „Fenster“ von
c benachbarten Wörtern (typischerweise c = 5), die als Kontextwörter dienen. Die
Wörter werden dabei als unabhängige Einheiten behandelt, da sie im Vokabular
durch Indizes repräsentiert sind. Zu diesem Ansatz wurden 2 Varianten vorgestellt:
Continuous Bag of Words (CBOW) und Skip-gram.

Im CBOW ist das Trainingskriterium, das aktuelle (Mittel-)Wort korrekt aus dem
Kontext zu klassifizieren. Diese Architektur wird als Bag-of-Words-Modell bezeich-
net, da die Reihenfolge der Wörter innerhalb des Kontextes vollständig ignoriert
wird. Gegeben eine Sequenz von Trainingswörtern w1,w2, . . . ,wn, berechnet CBOW
nach [WXCH17] die Vektor-Repräsentation des aktuellen Wortes in dem Hidden Layer
als Mittelwert der Vektoren der Kontextwörter x =

∑
wi∈c e(wi), wobei e(wi) das

Embedding des Kontextwortes wi bezeichnet. Das Optimierungsziel besteht darin, die
Log-Likelihood über das gesamte Trainingskorpus D zu maximieren:

L =
∑

(w,c)∈D

logp(w | c), p(w | c) =
exp

(
e ′(w)⊤x

)∑
w ′∈V exp (e ′(w ′)⊤x)

(2.3.1)

Hierbei bezeichnet e ′(w) das Output-Embedding von w und c ist die Menge der
entsprechenden Kontextwörter. Die Wahrscheinlichkeit p(w | c), dass das Zielwort w
im Kontext c auftritt, wird durch eine Softmax-Funktion beschrieben.

Das Skip-gram hingegen dreht die Vorhersagerichtung um: Statt das aktuelle Wort
aus dem Kontext vorherzusagen, wird das (Mittel-)Wort als Eingabe gegeben, und die
Kontextwörter dienen als Zielwerte. Das Skip-gram-Modell maximiert nach [MSC+

13]
die durchschnittliche logarithmische Wahrscheinlichkeit

L =
1

n

∑
w

∑
ci∈c

logp(ci | w), p(ci | w) =
exp

(
e ′(ci)

⊤
e(w)

)
∑

w ′∈V
exp

(
e ′(w ′)⊤e(ci)

) (2.3.2)

Ein wesentliches Merkmal ist, dass semantisch ähnliche Wörter in räumlich nahe
Positionen im Embedding-Raum abgebildet werden. Ein klassisches Beispiel für die-
sen Effekt ist die Vektoroperation vec(“Madrid”) − vec(“Spain”) + vec(“France”) ≃
vec(“Paris”), die zeigt, dass semantische Beziehungen im Vektorraum explizit abgebil-
det werden können [MCCD13].

22 grundlagen

Positional Encoding

Da die vom Transformer gelernten Repräsentationen unabhängig von der Reihen-
folge der Eingabetokens sind, ergibt sich bei der Verarbeitung sequenzieller Daten
das Problem [CMB23, S. 371–372]. Um diese Einschränkung zu überwinden, wird
den Token-Embeddings eine Positionskodierung hinzugefügt, die die Reihenfolge der
Tokens innerhalb der Sequenz abbildet. Die Token-Embeddings und die Positionsco-
dierungen werden komponentenweise addiert, um das finale Eingabe-Embedding zu
erhalten, was als Eingang für die erste Schicht des Encoder-Stacks und des Decoder-
Stacks dient.

Die Positionskodierungen besitzen dieselbe Dimension d wie die Eingabe-Embeddings,
damit beide Vektoren komponentenweise addiert werden können. Die von Vaswani
et al. [VSP+

23] gewählten Positional Encoding an der Position pos in der Sequenz
und für die Dimension i basieren auf Sinus- und Kosinusfunktionen unterschiedlicher
Frequenzen lautet:

PE(pos,2i) = sin
(

pos

10000
2i
d

)
(2.3.3)

PE(pos,2i+1) = cos
(

pos

10000
2i
d

)
(2.3.4)

Die Kodierungswerte an den geraden und ungeraden Positionen werden entspre-
chend durch Gleichung 2.3.3 bzw. 2.3.4 berechnet.

2.3.2 Attention

Attention ist ein zentrales Konzept in Transformer-Architekturen. Die Idee dieser
Mechanismen wurde ursprünglich als Erweiterung von RNNs eingeführt [BCB16].
Später zeigten Vaswani et al. [VSP+

23], dass sich die Leistung deutlich verbessern
lässt, wenn auf die rekurrente Struktur vollständig verzichtet wird und das Modell
ausschließlich auf dem Attention-Mechanismus basiert.

Attention ermöglicht es dem Modell, bei der Verarbeitung eines Elements einer Se-
quenz dynamisch relevante Teile der gesamten Eingabesequenz zu gewichten. Im Fall
von Textsequenzen handelt es sich dabei um Token-Embeddings (vgl. Abschnitt 2.3.1),
während bei Bilddaten entsprechende visuelle Token-Embeddings verwendet werden.
Dabei wird für jedes Token eine gewichtete Kombination aller anderen Tokens berech-
net, wodurch kontextabhängige Repräsentationen entstehen. Abbildung 2.3.1 illustriert

2.3 transformers 23

Abbildung 2.3.1: Beispiel nach [CMB23, S. 360] für gelernte Attention-Gewichte in einem
Transformer-Modell von [VSP+

23]. Die Verbindungen zwischen den Tokens
veranschaulichen, welche Wörter beim Verarbeiten eines bestimmten Tokens
besonders stark berücksichtigt werden. Die Stärke der Aufmerksamkeit wird
durch die Farbintensität der Linien angezeigt.

die in einem Transformer gelernten Attention-Gewichte anhand eines Beispielsatzes.
In dem Beispiel richtet das Wort missing besonders große Attention-Gewichte auf what,
we und are (erkennbar an der stärkeren Farbintensität). Das Modell hebt damit die
Abhängigkeit zwischen missing und dem Ausdruck what we are hervor.

Die Menge von Eingabevektoren x1, . . . , xn ist in einem Embedding-Raum gegeben,
die in eine neue Menge der Ausgabevektoren y1, . . . ,yn abgebildet werden sollen.
Im Fall von Self-Attention besitzen die Ausgaben die gleiche Länge wie die Ein-
gabesequenz, liegen jedoch in einem neuen Raum, der reichhaltigere semantische
Strukturen abbilden kann. Dabei hängt der Wert von yi nicht nur vom entsprechenden
Eingabevektor xi ab, sondern von allen Eingabevektoren x1, . . . , xn.

Self-Attention

Um zu bestimmen, wie stark ein Token auf ein anderes Token „achten“ soll, muss
zunächst berechnet werden, wie ähnlich diese beiden Vektoren sind. Dieser Mecha-

24 grundlagen

Abbildung 2.3.2: Aufbau der Architektur von Multi-Head Attention (links) und Scaled Dot-
Product Attention (rechts) aus [VSP+

23].

nismus heißt Self-Attention [VSP+
23], da dieselbe Eingabesequenz genutzt wird, um

Queries, Keys und Values zu erzeugen. Dazu wird die Eingabematrix X jeweils mit
eigenen Gewichtsmatrizen multipliziert:

Q = XW(q), K = XW(k), V = XW(v)

Die Gewichtsmatrizen W(q),W(k) ∈ Rd×dk und W(v) ∈ Rd×dv sind Parameter, die
während des Trainings gelernt werden. Dabei legt dk die Dimension der Query- und
Key-Vektoren fest (üblicherweise dk = d), während dv die Dimension der Ausgaben
bestimmt. Die Gewichtsmatrizen sind notwendig, weil nicht alle Merkmale eines
Token-Vektors gleich wichtig für die Berechnung der Ähnlichkeit sind. Durch die
lernbaren Parameter kann das Modell bestimmte Merkmale hervorheben und andere
abschwächen.

Die Stärke der Beziehung zwischen dem Token xi und Token xj ergibt sich aus dem
Skalarprodukt q⊤

i kj, das ein Maß für die Ähnlichkeit zwischen den beiden Tokens
darstellt. Um daraus gültige Attention-Gewichte zu berechnen, wird die Softmax-
Funktion angewandt:

wij = Softmax
(
q⊤
i kj

)
(2.3.5)

Die Softmax-Funktion sorgt dafür, dass die berechneten Koeffizienten normalisiert
werden, sodass sie nicht negativ sind und sich über alle Tokens hinweg zu eins sum-

2.3 transformers 25

mieren. In diesem Zusammenhang hat die Softmax-Funktion keine probabilistische
Bedeutung, sondern dient lediglich der Normalisierung der Gewichte.

Die Ausgabevektoren yi ergeben sich anschließend als gewichtete Summe der
Value-Vektoren:

yi =

n∑
j=1

wijvj. (2.3.6)

Zur kompakteren Darstellung der Formel (2.3.5) und (2.3.6) wird die Berechnung
häufig in Matrixschreibweise formuliert. Dabei bezeichnet Y ∈ Rn×d die Ausgabema-
trix, deren Zeilen den berechneten Vektoren yi entsprechen.

Y = Softmax
(
QKT

)
V . (2.3.7)

Ein Problem der Softmax-Funktion besteht darin, dass die Gradienten für Eingaben
mit großem Betrag exponentiell (großen Logits) klein werden können. Um diesen
Problem zu vermeiden, wird das Skalarprodukt der Query- und Key-Vektoren vor der
Anwendung der Softmax-Funktion normalisiert. Dies geschieht, indem das Produkt
durch die Standardabweichung, also die Quadratwurzel von dk, geteilt wird. Die
Ausgabe der Attention-Schicht ergibt sich damit zu

Y = Attention(Q,K,V) ≡ Softmax
(
QKT

√
dk

)
V .

Dieses Verfahren wird als Scaled Dot-Product Self-Attention bezeichnet und wird in der
Abbildung 2.3.2 abgebildet.

Multi-Head Self-Attention

Die Multi-Head Self-Attention (MHA) [VSP+
23] stellt eine Erweiterung des Self-

Attention-Mechanismus dar. Anstatt nur eine einzelne Self-Attention-Berechnung
durchzuführen, werden mehrere dieser Mechanismen parallel ausgeführt. Jede ein-
zelne dieser Berechnungen wird als Head bezeichnet. Durch die parallele Nutzung
mehrerer Heads kann das Modell verschiedene Repräsentationen und Abhängig-
keiten innerhalb der Sequenz erfassen, da jeder Head unterschiedliche Aspekte der
Eingabe fokussieren kann [TWW22, S. 67]. MHA stellt eine zentrale Komponente
moderner Transformermodelle dar und hat sich insbesondere im Natural Language
Processing (NLP) [DCLT19] sowie zunehmend in der Computer Vision [DBK+

21] als
Standardarchitektur durchgesetzt.

26 grundlagen

Jeder Head i ∈ {1, . . . ,h} verarbeitet eine andere Projektion der Eingabedaten, führt
eine eigene Scaled Dot-Product Attention aus und extrahiert unterschiedliche Bezie-
hungsmuster innerhalb der Sequenz. Die Ergebnisse aller h Köpfe werden anschlie-
ßend konkateniert und mit einer weiteren Gewichtsmatrix WO ∈ Rhdv×d multipliziert.
Das beschriebene Vorgehen ist in Abbildung 2.3.2 dargestellt. Formal lässt sich dies
wie folgt beschreiben:

MultiHead(Q,K,V) = Concat(Head1, . . . , Headh) ·WO,

Headi = Attention(QW
Q
i ,KWK

i ,VWV
i)

(2.3.8)

Im Originalpapier von Vaswani et al. [VSP+
23] wird mit h = 8 parallelen Heads

und dk = dv = D
h = 64 gearbeitet.

2.3.3 Transformer-Modelle

Der originale Transformer-Modell von Vaswani et al. [VSP+
23] basiert auf der Encoder-

Decoder-Architektur und ist in Abbildung 2.3.3 dargestellt.
Als Eingabe der Modelle dient eine Sequenz von Wörtern, die zunächst tokenisiert

(vgl. Abschnitt 2.3.1) und in Token-Embeddings (vgl. Abschnitt 2.3.1) umgewandelt
wird. Da der Attention-Mechanismus keine Informationen über die Reihenfolge der To-
kens enthält, wird zusätzlich eine Positionscodierung eingebracht, um die sequenzielle
Struktur des Textes abzubilden. Die Token-Embeddings werden daher mit entspre-
chenden Positions-Embeddings (vgl. Abschnitt 2.3.1) addiert, die für jedes Token
seine Position in der Sequenz repräsentieren. Die resultierenden Vektoren durchlau-
fen anschließend mehrere hintereinander verbundenen Encoder-Layer, wobei jeder
Layer auf den Ausgaben des vorherigen Layers aufbaut. Formal transformiert der
Encoder eine Eingabesequenz x = (x1, . . . , xn) in eine Sequenz kontinuierlicher Reprä-
sentationen z = (z1, . . . , zn). Diese finale Encoder-Ausgabe z dient dem Decoder als
Kontextinformation.

Die Ausgabe des Encoders wird an jede Decoder-Schicht weitergegeben. Der De-
coder erzeugt daraufhin eine Vorhersage für das wahrscheinlichste nächste Token in
der Zielsequenz. Am Anfang der Eingabesequenz des Encoders wird ein spezielles
Start-Token <start> eingefügt, das den Beginn der Sequenz markiert. Damit die Ein-
gabesequenz für den Decoder um eine Position nach rechts verschoben wird und das
Token xn als Eingabe für die Vorhersage von yn+1 dient . Die bis zu diesem Zeitpunkt
erzeugten Tokens werden Schritt für Schritt wieder in den Decoder eingespeist, um
das jeweils nächste Token zu erzeugen. Dieser Prozess wird solange wiederholt, bis

2.3 transformers 27

Abbildung 2.3.3: Aufbau der Transformer-Architektur nach [VSP+
23] mit einem Encoder-

Stack (links) zur Verarbeitung der Eingabesequenz und einem Decoder-Stack
(rechts) zur Generierung der Ausgabe.

entweder ein spezielles End-of-Sequence-Token <eos> vorhergesagt wird oder eine
zuvor definierte maximale Sequenzlänge erreicht ist, die durch die Eingabegröße des
Transformers bestimmt wird. Auch hier baut jeder Decoder-Layer auf dem Output des
vorherigen Layers auf.

Encoder

Der Encoder ist in der linken Hälfte von Abbildung 2.3.3 dargestellt. Der Encoder-
Stack besteht aus N (N = 6 im ursprünglichen Transformer-Modell [VSP+

23]) identi-
schen Schichten, die sequenziell angeordnet sind. Der Input der ersten Encoder-Schicht
ist die eingebettete Eingabesequenz, angereichert mit Positionscodierungen. Die Aus-
gabe einer Schicht dient als Eingabe für die nächste. Die letzte Encoder-Schicht liefert
kontextreiche Vektoren, die als Eingabe für den Decoder dienen.

Jede Schicht enthält zwei Unterschichten: Die erste ist ein Multi-Head-Self-Attention
(vgl. Abschnitt 2.3.2), die zweite ist ein Position-Wise-Feedforward-Netzwerk (vgl. Ab-

28 grundlagen

schnitt 2.2.1). Die FFN-Unterschicht besteht aus einem einfachen zweischichtigen,
vollständig verbundenen neuronalen Netz. Im Gegensatz zu einer gemeinsamen Verar-
beitung der gesamten Sequenz von Embeddings wird jedoch jedes Token-Embedding
unabhängig voneinander transformiert. Aus diesem Grund wird diese Schicht als
Position-Wise FFN bezeichnet. Die Ausgabe jeder Unterschicht wird über eine Residual-
verbindung [HZRS16] mit ihrer jeweiligen ursprünglichen Eingabe addiert, und auf die
Summe wird anschließend eine Layer-Normalisierung (vgl. Abschnitt 2.2.1) angewendet.
Normalisierung und Residualverbindungen sind bewährte Techniken, die das Training
tiefer neuronaler Netze effizienter und stabiler machen.

Die Ausgabe der Multi-Head Attention Unterschicht ergibt sich formal durch die
Anwendung einer Residual-Verbindung, gefolgt von einer Layer-Normalisierung.
Dabei werden die Eingaben x gleichzeitig als Query, Key und Value genutzt. Die
Berechnung erfolgt wie folgt:

Output = LayerNorm(x + MultiHead(x, x, x)).

Zusätzlich enthält der Transformer-Stack ein kleines Position-Wise Feedforward-
Netzwerk (FFN), das auf jede Position unabhängig und identisch angewendet wird.
Das Feedforward-Netzwerk besteht aus zwei linearen Transformationen mit einer
nichtlinearen Aktivierungsfunktion ReLU dazwischen. Auch hier wird eine Residual-
Verbindung mit anschließender Layer-Normalisierung verwendet. Die vollständige
Transformation des Eingabesignals x durch den Feedforward-Teil lässt sich wie folgt
darstellen:

Output = LayerNorm(x+ FFN(x))

FFN(x) = max(0, xW1 + b1)W2 + b2

(2.3.9)

Decoder

Der Decoder ist in der rechten Hälfte von Abbildung 2.3.3 dargestellt. Der Decoder-
Stack besteht analog zum Encoder aus N identischen Schichte. Jede dieser Schich-
ten enthält drei Unterschichten. Neben der Self-Attention und dem Feed-Forward-
Netzwerk wie im Encoder kommt im Decoder eine zusätzliche Self-Attention-Schicht
hinzu. Dabei erfüllt jede Multi-Head-Attention-Schicht im Decoder eine eigene spezifi-
sche Funktion. Der Input der ersten Schicht ist die eingebettete Zielsequenz y, ergänzt
durch Positionscodierungen. Jede Schicht verarbeitet zwei Informationsquellen: die
eigene vorherige Decoder-Ausgabe über Masked Self-Attention und die Encoder-
Ausgabe über Encoder-Decoder Attention.

2.3 transformers 29

Die erste Unterschicht, die Masked-Self-Attention [VSP+
23], ermöglicht es jedem

Token, Informationen ausschließlich aus früheren Tokens der Decoder-Eingabesequenz
zu beziehen, jedoch nicht aus zukünftigen Positionen. Dadurch wird verhindert, dass
der Decoder während des Trainings unrechtmäßig auf zukünftige Informationen
zugreift und so lediglich das nächste Token aus der Eingabe „abschreibt“ [CMB23,
S. 384–385]. Wie im [NP20] beschrieben, wird in jedem Attention-Kopf die Maskierung
durch Addition einer Matrix M ∈ Rd×d realisiert, wobei die Einträge für unzulässige
(zukünftige) Positionen mit −∞ belegt sind. Bei der anschließenden Anwendung der
Softmax-Funktion führen dazu, dass die entsprechenden Wahrscheinlichkeiten exakt
null werden, da gilt e−∞ = 0. Die Berechnung nach [NP20, XZ23] erfolgt analog zur
regulären Attention, jedoch mit Maskierung:

Attention(Q,K,V) = Softmax
(
QK⊤
√
dk

+M

)
V ; M(i,k) =

0 falls i ⩽ k,

−∞ falls i > k

(2.3.10)

Die zweite Unterschicht ist die Encoder-Decoder Multi-Head Attention (auch als Cross-

Attention bezeichnet). Hierbei dienen die Ausgaben des Encoders gleichzeitig als
Queries Q und Keys K, während die Ausgabe des vorherigen Decoder-Layers als
Values V verwendet wird. Diese Schicht erlaubt es dem Decoder, gezielt Informationen
aus dem Encoder-Kontext zu beziehen und relevante Teile der Eingabesequenz zu
fokussieren. Dadurch wird eine direkte Verbindung zwischen dem aktuell generierten
Decoder-Token und dem gesamten Input ermöglicht.

Analog zum Encoder werden Residualverbindungen um jede der Unterschichten
herum eingesetzt, gefolgt von einer Layer-Normalisierung.

Die finale Ausgabe des Decoder-Stacks, bezeichnet als z ∈ RT×d, wobei T die
Zielsequenzlänge ist, wird durch eine lineare Projektion und eine Softmax-Funktion in
Wahrscheinlichkeiten über das Zielvokabular überführt:

ŷt = Softmax(ztWo + bo)

Dabei ist Wo ∈ Rd×|V | die Gewichtsmatrix der linearen Projektion, bo ∈ R|V | ein
Bias-Term und |V | die Größe des Zielvokabulars. Der Vektor ŷt ∈ R|V | enthält die
vorhergesagten Wahrscheinlichkeiten für das nächste Token an Position t.

Das Token mit der höchsten Wahrscheinlichkeit wird typischerweise durch

yt = arg max
j

ŷt,j

ausgewählt.

30 grundlagen

2.3.4 Vision Transformers

Vision Transformer (ViT) [DBK+
21] verwendet im Unterschied zu klassischen Trans-

formern (vgl. Abschnitt 2.3) keine Wort- oder Subword-Tokens, sondern kleine Bild-
ausschnitte (Patches) als Eingabetokens. Ein weiterer Unterschied ist, dass ViT aus-
schließlich einen Encoder nutzt.

Abbildung 2.3.4: Vision-Transformer-Pipeline nach [IK23]: Das Bild wird in feste Patches
zerlegt, jedes Patch linear in einen Embedding-Raum projiziert, mit Positions-
Embeddings addiert und die entstehende Sequenz schließlich von einem
Transformer-Encoder verarbeitet.

Das Eingangsbild x ∈ RH×W×C, wobei C die Anzahl der Farbkanäle angibt (C = 3

für RGB-Bilder), wird durch ein Patch-Extraction-Modul in nicht überlappende Patches
der Größe P× P unterteilt (siehe Abbildung 2.3.4). Jeder Patch wird anschließend zu
einem Vektor der Dimension RP2·C abgeflacht. Auf diese Weise entsteht eine Sequenz
von Patch-Vektoren xp ∈ RN×(P2·C), wobei N = HW

P2 die Gesamtzahl der Patches pro
Bild ist. Um diese Vektoren in den Modellraum zu überführen, wird jeder Patch-Vektor
mit einer lernbaren linearen Projektion in eine Dimension d abgebildet.

Zusätzlich wird ein spezielles [class]-Token vorangestellt, dessen Repräsentation
später für die Bildklassifikation genutzt wird. Um die räumliche Struktur der Patches
zu berücksichtigen, werden zu den Embeddings Positions-Embeddings addiert. Die
vollständige Eingabesequenz lautet somit nach [DBK+

21]

x = [xclass, x1WE, . . . , xnWE] + Epos

wobei WE ∈ R(P2·C)×d die Projektionsmatrix und Epos die Positions-Embeddings
bezeichnen. Die resultierende Vektorsequenz x dient anschließend als Eingabe für
einen Standard-Transformer-Encoder (vgl. Abschnitt 2.3.3).

3
V E RWA N D T E A R B E I T E N

In diesem Kapitel werden zentrale Forschungsarbeiten im Bereich der Handschrifter-
kennung und Informationsextraktion aus gescannten Dokumentenbildern vorgestellt.
Anschließend wird auf Methoden zur Konfidenzbewertung eingegangen, die eine
zuverlässige Einschätzung der Vertrauenswürdigkeit von Modellvorhersagen ermögli-
chen.

3.1 handschrifterkennung und informationsextraktion

Frühere Ansätze für die Handschriftenerkennung (HTR) nutzten häufig Hidden-
Markov-Modelle (HMM) [MLEY+

00, BB08]. In einigen Arbeiten wurde HMM mit
Recurrent Neural Network (RNN) in Kombination mit einer Connectionist Temporal
Classification (CTC)-Verlustfunktion [GFGS06] eingesetzt. Ein Nachteil der HMM-
basierten Ansätze bestand jedoch darin, dass sie nur die aktuelle Beobachtung und
einer kleinen Anzahl vorheriger Zustände, wodurch längere Abhängigkeiten in der
Zeichenfolge vernachlässigt wurden.

Die Methoden [BM17, SNBTL20, Pui17] setzen auf Convolutional Neural Networks
(CNN) kombiniert mit RNN. Dabei werden zunächst mehrere Convolutional Layers
eingesetzt, um lokale Merkmale aus Textzeilenbildern zu extrahieren. Anschließend
verarbeiten Recurrent Layers, meist Bi-directional Long Short-Term Memory (BLSTM)
[VDN16], diese Merkmale sequenziell und geben auf Grundlage kontextueller Ab-
hängigkeiten Zeichenwahrscheinlichkeiten aus. Diese Modelle werden häufig als
CRNN-CTC-Architekturen bezeichnet, da sie die CTC-Verlustfunktion verwenden, um
mit unterschiedlich langen Label- und Vorhersagesequenzen umzugehen, ohne eine
explizite Zeichensegmentierung zu benötigen. Ein Nachteil solcher Architekturen ist
jedoch die lange Trainingszeit, die vor allem durch die sequentielle Verarbeitung in
den rekurrenten Schichten verursacht wird.

Traditionelle Ansätze zur Dokumentenanalyse basieren oft auf der Verwendung
von Optical Character Recognition (OCR), um Textinhalte zu extrahieren. Diese OCR-
Ergebnisse bilden anschließend die Grundlage für weiterführende Parsing- und Verar-
beitungsmethoden [XLC+

20, XXL+
22] (vgl. Abbildung 3.1.1(a)).

31

32 verwandte arbeiten

Dokumentenbild OCR
Zeichenketten
+ Koordinaten

Parser Ausgabe

(a) OCR-basierter Ansatz

Dokumentenbild End-to-End-Modelle Ausgabe

(b) Ocr-freier End-to-End Ansatz

Abbildung 3.1.1: Vergleich von OCR-basierten und End-to-End-Ansätzen zur Informations-
extraktion aus Dokumentenbildern nach [OBK+

24]. (a) Traditionelle OCR-
basierte Verfahren nutzen von einem externen OCR-Modul erzeugte Text-
zeichenketten und deren Koordinaten, die anschließend durch einen Parser
weiterverarbeitet werden. (b) End-to-End-Modelle hingegen generieren die
Ausgaben direkt aus dem Dokumentenbild durch sequenzbasiertes Decoding,
ohne auf externe OCR-Ergebnisse zurückzugreifen.

Die LayoutLM-Modellfamilie [XLC+
20], zu der auch die Varianten LayoutLMv2

[XXL+
22], LayoutLMv3 [HLC+

22] und LayoutXLM [XLC+
21] kombiniert erkannte

Tokens mit Layout-Informationen sowie visuellen Merkmalen, die durch OCR extra-
hiert werden. Diese Repräsentationen dienen als Eingabe für ein Transformer-Modell,
das auf BERT [DCLT19] basiert und für verschiedene Aufgaben trainiert wird, darun-
ter Form Understanding (Erfassen von Formularstrukturen), Receipt Understanding
(Rechnungs- bzw. Belegverstehen) sowie die Klassifikation von Dokumentenbildern.

Die aktuellen Fortschritte in der HTR zeigen, dass Transformer-basierte Modellen zu-
nehmend den Stand der Technik bestimmen. Im Gegensatz zu CRNN-CTC-Modellen
lernen Transformer-basierte Modelle, Bildbereiche direkt mit den entsprechenden
Zielsequenzen zu verknüpfen, sodass das Netzwerk gezielt auf die relevanten Bild-
regionen fokussiert [PV21], ohne den Umweg über rekurrente Verarbeitungsschritte.
Transformer benötigen bei visuellen Aufgaben tendenziell mehr Rechenressourcen
als CRNNs, können aber Vorteile bei der parallelen Verarbeitung sequentieller Daten
bieten und sind daher eine leistungsfähige Alternative für HTR.

Diese auf OCR basierenden Ansätze zeigen vielversprechende Ergebnisse, leiden
jedoch unter hohen Rechenkosten, eingeschränkter Sprachflexibilität und der Fehler-
propagation in nachfolgende Verarbeitungsschritte. In den letzten Jahren hat sich das
Paradigma der Handschrift- und Dokumentenerkennung zunehmend in Richtung
einer End-to-End-Perspektive entwickelt (vgl. Abbildung 3.1.1(b)). Ziel ist es, Informa-

3.2 konfidenzbewertung 33

tionen direkt aus dem vollständigen Dokumentenbild in einem einzigen Schritt ohne
vorherige explizite Texterkennung oder Layoutanalyse zu extrahieren. Zu den bekann-
testen dieser neueren Ansätze zählen DAN [CCP23a], Dessurt [DMP+

22] und Nougat
[BCSS23]. Diese Modelle können durch das Fine-Tuning in unterschiedlichen Anwen-
dungsfeldern wie Drucktext- und Szene-Text-Erkennung, Dokumentenverständnis
oder Visual Question Answering eingesetzt werden.

Der erster Ansatz in diese Richtung war das DAN (Document Attention Net-
work) [CCP23a]. Dieses Modell nutzt einen CNN-basierten Encoder zur Extraktion von
Bildmerkmalen sowie einen Transformer-Decoder zur zeichenweisen Sequenzgenerie-
rung. Damit gelang es erstmals, Dokumentenseiten ohne vorherige Segmentierung
vollständig und autoregressiv zu transkribieren. Als Weiterentwicklung wurde Faster
DAN [CCP23b] vorgeschlagen. Hierbei wird die Verarbeitung beschleunigt, indem
die Texterkennung auf Zeilenebene parallelisiert durchgeführt wird. Dieser Geschwin-
digkeitsvorteil geht jedoch oft mit einer höheren Fehlerrate im Vergleich zum ur-
sprünglichen DAN-Modell einher. Dieser Ansatz sind weiterhin auf CNN-Backbones
angewiesen und stellen damit keine vollständig Transformer-basierte End-to-End-
Architektur dar.

Donut, Pix2Struct, Dessurt, und Nougat sind vollständig Transformer-basierten
Vision-Encoder-Decoder-Modellen, die End-to-End trainiert werden. Trotz ähnlicher
Grundidee bestehen zwischen diesen Modellen deutliche Unterschiede. Pix2Struct setzt
einen Vision Transformer (ViT)[DBK+

21] als Encoder ein. Dessurt hingegen kombiniert
einen kleinen CNN-Encoder, der die Eingaben in Feature-Arrays umwandelt, mit
einem Transformer-Decoder. Donut und Nougat verwenden die Swin-Transformer-
Architektur[LLC+

21] als Encoder. Dabei ist Nougat eine speziell für akademische
Dokumente angepasste, feinabgestimmte Variante von Donut. Donut teilt viele Vorteile
mit Dessurt. Beide nutzen einen Swin-Encoder [LLC+

21], allerdings ist die Swin-
Architektur von Dessurt flacher und schmaler aufgebaut als die von Donut.

3.2 konfidenzbewertung

Hendrycks und Gimpel [HG18] etablierten einen grundlegenden Baseline-Ansatz zur
Konfidenzschätzung. Dabei wird die Softmax-Funktion auf die Logits des Klassifika-
tors angewendet, um diese in eine Wahrscheinlichkeitsverteilung über alle möglichen
Klassen zu transformieren. Aus dieser Verteilung wird anschließend die höchste Wahr-
scheinlichkeit extrahiert, die als Konfidenzwert des Modells interpretiert wird. Dieser
Ansatz weist jedoch einige Einschränkungen auf. Da die Softmax-Funktion exponen-
tielles Wachstum nutzt, entstehen häufig sehr hohe Konfidenzwerte, auch wenn die

34 verwandte arbeiten

zugrunde liegende Vorhersage falsch ist [GPSW17]. Dadurch neigen Softmax-basierte
Schätzungen zu einer Überkonfidenz.

Ein alternativer Ansatz ist der sogenannte Trust Score [JKGG18], der von Jiang et al.
vorgeschlagen wurde. Der zugrunde liegende Gedanke ist, das Verhältnis zwischen
dem Abstand einer Testeingabe zur nächsten Klasse, die von der Vorhersage abweicht,
und dem Abstand zur vorhergesagten Klasse zu betrachten. Ist der Abstand zur
vorhergesagten Klasse deutlich größer als zu einer alternativen Klasse, deutet dies
darauf hin, dass die Vorhersage des Modells möglicherweise fehlerhaft ist. Der Nachteil
dieses Ansatzes liegt jedoch in seiner mangelnden Skalierbarkeit, da die Berechnung
nächster Nachbarn in großen Datensätzen sehr aufwendig ist [JKGG18].

Bayesianische Ansätze [KG17, GG16, BCKW15] zur Schätzung von Unsicherheit
haben in den letzten Jahren großes Interesse geweckt, da sie eine probabilistische
Interpretation von Modellen ermöglichen, indem sie ganze Verteilungen über die
Gewichte schätzen. Diese Methoden sind jedoch oft sehr rechenaufwendig. Gal und
Ghahramani [GG16] schlugen mit Monte Carlo Dropout (MCDropout) vor, bei der Un-
sicherheiten durch wiederholtes stochastisches Durchlaufen des Netzwerks geschätzt
werden. Dabei wird Dropout vor jeder Gewichtsschicht angewendet, und mehrere
Vorhersagen des Netzwerks werden zur Approximation der posterioren Vorhersage-
verteilung genutzt. Durch wiederholte stochastische Vorhersagen desselben Modells
kann so eine Näherung der posterioren Verteilung über die Vorhersagen gewonnen
werden. Mathematisch entspricht ein neuronales Netzwerk mit beliebiger Tiefe und
nichtlinearen Aktivierungen unter Dropout einer Näherung eines probabilistischen
tiefen Gaussian-Prozesses [DL13].

Eng mit der Konfidenzbewertung verknüpft ist das Forschungsfeld der Confidence
Calibration, die darauf abzielt, die vorhergesagten Wahrscheinlichkeiten eines Modells
an die tatsächliche Eintrittswahrscheinlichkeit der Ereignisse anzupassen. Bei schlecht
kalibrierten Netzen kann es jedoch vorkommen, dass falsche Vorhersagen mit sehr
hoher Konfidenz getroffen werden. Zu den gängigen Verfahren zählen die Post-
Processing-Kalibrierung, bei der das Modell unverändert bleibt und lediglich die
Ausgaben im Nachhinein angepasst werden. Dazu zählen Methode wie Binning-
Methoden [ZE01, ZE02, PNCH15], Platt Scaling [Pla00] und Temperature Scaling
[GPSW17].

4
M E T H O D I K

4.1 modellarchitektur

Aufbauend auf der Entwicklungen des Transformers wurde das Donut-Modell von
Kim et al. [KHY+

22] vorgestellt, um visuelle Informationen direkt aus Dokumentenbil-
dern zu extrahieren und diese anschließend in strukturierter Form zu dekodieren. In
dieser Arbeit dient das Donut-Modell als zentrale Grundlage für die vorgeschlagene
Lösung zur datengetriebenen Informationsextraktion.

Der Ablauf von Donut (siehe Abbildung 4.1.1) gliedert sich in vier Schritte. Zunächst
erhält das Modell ein Dokumentbild x ∈ RH×W×3 als Eingabe. Ein visueller Encoder
auf Basis des Swin Transformers [LLC+

21] wandelt das Bild in eingebettete Repräsen-
tationen {zi ∈ Rd | 1 ⩽ i ⩽ n} um. Die resultierenden Repräsentationen {z} werden
anschließend von einem vortrainierten BART-Modell [LLG+

19] dekodiert, das eine
Token-Sequenz (yi)

M
i=1 erzeugt. Diese wird in strukturierter Form im JSON-Format

ausgegeben und enthält die extrahierten Informationen, etwa ein Datum.
Das Pretraining von Donut erfolgte auf 11 Millionen gescannten englischen Doku-

menten aus dem IIT-CDIP-Korpus, ergänzt durch 2 Millionen synthetische Dokumente
mit Wikipedia-Texten in Chinesisch, Japanisch, Koreanisch und Englisch. Das vortrai-
nierte Donut-Modell dient als Grundlage für die in dieser Arbeit vorgestellte Lösung
zur datengetriebenen Informationsextraktion.

Im Folgenden wird die übergeordnete Architektur von Swin und BART im Detail
beschrieben.

4.1.1 SWIN Encoder

Eine Übersicht der Swin Transformer-Architektur ist in Abbildung 4.1.2 dargestellt.
Ähnlich wie bei Vision Transformers (vgl. Abschnitt 2.3.4) werden 2D-Bilder zunächst
in eine Sequenz von Patch-Embeddings überführt. In der ursprünglichen Implemen-
tierung [LLC+

21] wird eine Patch-Größe von 4× 4 verwendet, woraus sich für jedes
Patch eine Feature-Dimension von 4× 4× 3 = 48 ergibt.

35

36 methodik

Patch
partition

Swin
Encoder

Embeddings
z

BART
Decoder

"dates:̈
["1913.01.31",
"1924.06.31"]

Abbildung 4.1.1: Pipeline des Donut-Modells: Das Eingabedokument wird in Patches zerlegt
und durch den Encoder in Embeddings überführt. Der Decoder generiert
daraus eine Token-Sequenz, die in ein strukturiertes Ausgabeformat transfor-
miert wird.

Daraufhin folgen mehrere Swin-Transformer-Blöcke, die auf die Patch-Tokens ange-
wendet werden. Die erste Stufe aus linearer Einbettung und Swin-Transformer-Blöcken
wird als Stage 1 bezeichnet. Die Anzahl der Tokens bleibt dabei konstant bei H

4 × W
4 .

Der Swin Transformer ersetzt die Standard Multi-Head Self-Attention (MSA) (vgl.
Abschnitt 2.3.2) durch Window-based Multi-head Self-Attention (W-MSA) und Shifted
Window-based Multi-head Self-Attention (SW-MSA), während andere Schichten unverän-
dert bleiben. Wie in Abbildung 4.1.2 (b) dargestellt, besteht jeder Swin-Transformer-
Block aus zwei aufeinanderfolgenden Unterschichten. Die erste verwendet W-MSA,
die Self-Attention innerhalb lokaler Fenster berechnet. Die zweite setzt SW-MSA ein,
bei der die Fenster verschoben werden, um den Informationsaustausch zwischen
benachbarten Fenstern zu ermöglichen. In SW-MSA erfolgt die Verschiebung der
Fenster im Vergleich zur vorherigen Schicht um jeweils

⌊
M
2

⌋
Pixel in horizontaler und

vertikaler Richtung, wobei M die Fenstergröße bezeichnet (siehe Abbildung 4.1.3).
Die Berechnung innerhalb zweier aufeinanderfolgender Swin-Transformer-Blöcke

lässt sich nach [LLC+
21] wie folgt darstellen

ẑℓ = W-MSA(LayerNorm(zℓ−1)) + zℓ−1,

zℓ = MLP(LayerNorm(ẑℓ)) + ẑℓ,

ẑℓ+1 = SW-MSA(LayerNorm(zℓ)) + zℓ,

zℓ+1 = MLP(LayerNorm(ẑℓ+1)) + ẑℓ+1

(4.1.1)

4.1 modellarchitektur 37

Abbildung 4.1.2: Übersicht der Swin Transformer Architektur [LLC+
21]. (a) Das Eingabebild

(H×W×3) wird in Patches unterteilt und eingebettet. Darauf folgen vier hierar-
chische Stufen mit abwechselnden Patch-Merging-Layern und Swin Transfor-
mer Blocks. (b) Jeder Swin Transformer Block besteht aus Window-basiertem
Multi-Head Self-Attention (W-MSA bzw. SW-MSA), Layer-Normalisierung,
Residualverbindungen und einem MLP.

wobei Multilayer-Perzeptron (MLP) definiert ist als:

MLP(x) = GELU (xW1 + b1)W2 + b2

Bei der Berechnung der Self-Attention wird zusätzlich Positionsinformation berück-
sichtigt. Swin verzichtet auf globale Position-Embeddings und verwendet stattdessen
relative Position Biases in jeder Attention-Berechnung. Die Attention wird formal
durch die Gleichung nach [LLC+

21]

Attention(Q,K,V) = Softmax
(
QK⊤
√
d

+B

)
V (4.1.2)

beschrieben. Hierbei ist B ∈ RM2×M2
der relative Position Bias, der die Abhängigkeit

zwischen den Patches berücksichtigt. Durch die Hinzufügung von B kann das Modell
nicht nur den Inhalt der Patches, sondern auch deren relative Position zueinander in
die Attention-Berechnung einbeziehen.

Der Swin Transformer erzeugt eine hierarchische Merkmalsdarstellung indem er
zunächst mit kleineren Patches arbeitet und diese in tieferen Schichten des Modells
sukzessive zu größeren Regionen zusammenführt. In einem weiteren Schritt wird
eine Patch-Merging-Schicht eingesetzt. Die Patch-Merging-Schicht reduziert die räum-
liche Auflösung, indem sie jeweils 2× 2 benachbarte Patches zusammenfasst. Diese
vier Vektoren werden zunächst konkateniert und anschließend linear in einen 2C-
dimensionalen Raum projiziert. Auf diese Weise werden gleichzeitig die Anzahl der

38 methodik

Abbildung 4.1.3: Darstellung des Shifted Window Mechanismus über zwei aufeinanderfolgen-
de Schichten nach [LLC+

21]. In Schicht l wird Self-Attention lokal innerhalb
nicht überlappender Fenster berechnet. In Schicht l+ 1 werden die Fenster
verschoben, sodass Patches aus verschiedenen ursprünglichen Fenstern ge-
meinsam berücksichtigt werden können.

Tokens verringert und die Kanal-Dimension erhöht. Anschließend folgen weitere Swin-
Blöcke zur Merkmalsextraktion bei reduzierter Auflösung H

8 × W
8 . Diese Kombination

bildet die Stage 2. Zwei weitere Blöcke (Stage 3 und Stage 4) folgen dem gleichen
Prinzip und reduzieren die Auflösung weiter auf H

16 × W
16 bzw. H

32 × W
32 .

Diese hierarchische Architektur erlaubt es dem Modell, Token unterschiedlicher
Größe über die Layer hinweg zu verarbeiten. Dadurch werden visuelle Merkmale auf
mehreren Skalenebenen zuverlässig extrahiert.

Neben der Standardarchitektur Swin-B (Base) wurden mehrere Varianten des Swin
Transformers von Ze Liu Et Al. [LLC+

21] vorgeschlagen, die sich hinsichtlich Mo-
dellgröße und Rechenaufwand unterscheiden. Diese werden als Swin-T (Tiny), Swin-
S (Small), und Swin-L (Large) bezeichnet. Alle Varianten folgen demselben Grund-
prinzip, variieren jedoch in den Architektur-Hyperparametern, insbesondere in der
Kanalanzahl C der ersten Stufe sowie in der Anzahl der geschalteten Swin-Transformer-
Blöcken pro Stage. Swin-T stellt die kleinste Variante dar und nutzt C = 96 mit einer
Schichtenkonfiguration von (2, 2, 6, 2), während Swin-S mit gleicher Kanalanzahl eine
größere Tiefe von (2, 2, 18, 2) aufweist. Swin-B erhöht die Dimension auf C = 128

bei ebenfalls (2, 2, 18, 2), und Swin-L bildet die größte Ausführung mit C = 192 und
derselben Tiefe. In allen Varianten wird eine Fenstergröße von M = 7 verwendet.

Im Donut-Modell kommt die Swin-B-Variante als visueller Encoder mit leichten
Modifikationen zum Einsatz. Die Anzahl der Blöcke pro Stage sowie die Fenstergröße
wurden dabei auf (2, 2, 14, 2) bzw. 10 gesetzt [KHY+

22].

4.1 modellarchitektur 39

4.1.2 BART Decoder

Das BART-Modell wurde ursprünglich von Lewis et al. [LLG+
19] als Denoising Auto-

encoder [VLBM08] entwickelt. Ein Denoising Autoencoder ist ein neuronales Modell,
das darauf trainiert wird, aus absichtlich verrauschten Eingaben die ursprüngliche,
unverrauschte Sequenz zu rekonstruieren. BART nutzt verschiedene Verfahren (siehe
Abbildung 4.1.4 (b)) zur gezielten Verrauschung von Texten. Beim Token Masking
werden zufällige Tokens durch [_] ersetzt, bei der Token Deletion vollständig ent-
fernt. Das Text Infilling ersetzt ganze Textspannen variabler Länge (gezogen aus einer
Poisson-Verteilung mit λ = 3) durch ein einzelnes [_]. Zudem werden in der Sen-
tence Permutation die Satzreihenfolgen vertauscht, während die Document Rotation
den Text zyklisch verschiebt, indem ein zufälliges Token als neuer Beginn gewählt
wird. Dieses Verfahren stärkt die Robustheit des Modells gegenüber fehlerhaften oder
unvollständigen Eingaben und verbessert zugleich seine Fähigkeit zur semantischen
Generalisierung.

(a) (b)

Abbildung 4.1.4: (a) Übersicht der BART-Architektur [LLG+
19]. Der bidirektionale Encoder

erfasst vollständige Kontextinformationen der Eingabe, während der auto-
regressive Decoder die Zielsequenz Schritt für Schritt generiert. (b) Verrau-
schungsverfahren, die beim Pretraining von BART eingesetzt werden.

Die ursprüngliche Architektur von BART besteht aus zwei Hauptkomponenten:
einen bidirektionalen Encoder, der dem von BERT (Bidirectional Encoder Repre-
sentations from Transformers) [DCLT19] ähnelt, und einem autoregressiven Deco-
der, der dem GPT (Generative pre-trained Transformers) [RNS+

18] entspricht (siehe
Abbildung 4.1.4 (a)). Im Donut-Modell wird der Encoder-Teil von BART nicht ver-
wendet. Stattdessen übernimmt der Swin Transformer die Rolle der Eingabekodie-
rung [VSP+

23]. Folglich konzentriert sich die nachfolgende Erklärung ausschließlich
auf den BART-Decoder.

Der Decoder von BART orientiert sich konzeptionell am GPT-Modell [RNS+
18]. In

GPT besteht jede Decoderschicht aus einer Masked-Multi-Head Self-Attention, gefolgt
von positionsweisen Feed-Forward-Netzwerken. GPT ermöglicht, jedes Token der

40 methodik

Ausgabesequenz Schritt für Schritt generieren werden zu können, wobei ausschließlich
die zuvor generierten Tokens als Kontext verwendet werden. Im Unterschied zum
GPT-Decoder enthält der BART-Decoder in jeder Schicht zusätzlich eine Cross-Attention
(Encoder-Decoder-Attention), die die Verbindung zu den Encoder-Ausgaben herstellt.
Damit entspricht die Architektur des BART-Decoders im Wesentlichen dem Standard-
Transformer-Decoder, wie in Abschnitt 2.3.3 beschrieben.

Im ursprünglichen BART-Modell bestehen die Decoder-Architekturen je nach Mo-
dellgröße aus 6 oder 12 Schichten. Donut verwendet jedoch lediglich die ersten 4

Schichten des vortrainierten, multilingualen BART-Decoders [LGG+
20], um ein günsti-

ges Verhältnis von Genauigkeit und Rechenaufwand sicherzustellen. Die Gewichte wer-
den dabei aus einem öffentlich verfügbaren multilingualen BART-Modell1 [LGG+

20]
initialisiert.

4.2 konfidenzmaße

Die zuverlässige Einschätzung der Sicherheit einer Modellvorhersage sind entscheidend
für den praktischen Einsatz von Modellen. Hierbei bezeichnet Sicherheit den Grad, mit
dem das Modell davon ausgeht, dass seine Vorhersage korrekt ist, während Konfidenz
einen quantitativen Wert darstellt, der diese Sicherheit ausdrückt [CTBH+

19]. Je höher
dieser Wert ist, desto sicherer ist sich das Modell in Bezug auf das ausgegebene
Ergebnis. Ein geeignetes Konfidenzkriterium sollte dabei so gestaltet sein, dass falsche
Vorhersagen mit niedrigen Werten einhergehen und korrekte Vorhersagen mit hohen
Werten [CTBH+

19]. In der vorliegenden Arbeit wird die Konfidenz genutzt, um
die Zuverlässigkeit der Datumserkennung zu bewerten und damit die Qualität der
Ergebnisse zu messen.

Zur Quantifizierung der Modellsicherheit im Rahmen der Sequenzvorhersage ist die
Berechnung geeigneter Konfidenzmaße von zentraler Bedeutung. Grundlage bildet
dabei die durch eine Softmax-Normalisierung über das Vokabular erhaltene Token-
Wahrscheinlichkeit bzgl. Pseudowahrscheinlichkeit am Dekodierschritt t

σ(zt)
(v) =

exp
(
z
(v)
t

)∑
u∈V exp

(
z
(u)
t

) , v ∈ V. (4.2.1)

wobei z(v)t die Logits für das Token v darstellen. Das jeweils vorhergesagte Token yt

ist das mit der höchsten Wahrscheinlichkeit yt = arg maxv∈V σ(zt)
(v).

Die Log-Pseudowahrscheinlichkeit des gewählten Tokens yt wird als ct =

ln
(
σ(zt)

(yt)
)

definiert. Diese Werten dient als Grundlage für die Berechnung der

1 https://huggingface.co/hyunwoongko/asian-bart-ecjk

https://huggingface.co/hyunwoongko/asian-bart-ecjk

4.2 konfidenzmaße 41

Sequenzkonfidenz. In der Arbeit wird Log-Softmax anstelle von Softmax verwendet,
da das Arbeiten im Log-Raum numerisch stabiler ist, insbesondere bei sehr kleinen
Wahrscheinlichkeiten, die sonst zu Rundungsfehlern führen könnten [GBC16, S. 79]. Im
Folgenden werden drei verschiedene Konfidenzmaße eingeführt, die unterschiedliche
Aspekte der Modellunsicherheit erfassen.

Das erste Maß, das innerhalb dieser Arbeit eingeführt wird, ist die geometrische
Mittelkonfidenz (GAVG), definiert als

GAVG = exp

(
1

T

T∑
t=1

ct

)
, (4.2.2)

wobei T die Sequenzlänge ist. Dieses Maß entspricht dem geometrischen Mittel der
der maximalen Pseudowahrscheinlichkeiten je Token, äquivalent zur exponentiellen
mittleren Log-Wahrscheinlichkeit der gewählten Tokens. Intuitiv erfasst GAVG die
mittlere Sicherheit des Modells über die gesamte Sequenz hinweg. Ein hoher Wert zeigt
an, dass das Modell über die gesamte Sequenz hinweg konsistent sichere Vorhersagen
getroffen hat, während ein niedriger Wert auf Unsicherheit hinweist.

Das zweite Maß MIN fokussiert dagegen ausschließlich auf das unsicherste Token
innerhalb der Sequenz:

MIN = min
t

exp
(
ct

)
. (4.2.3)

Hierbei bestimmt das schwächste Token die gesamte Konfidenz. Ein hoher MIN
bedeutet, dass selbst das unsicherste Token mit hoher Wahrscheinlichkeit korrekt
vorhergesagt wurde, sodass keine signifikante Unsicherheit in der Sequenz vorhanden
ist. Umgekehrt weist ein kleiner MIN darauf hin, dass mindestens ein Token sehr
unsicher war, wodurch die gesamte Sequenz potenziell fehlerhaft ist.

Eine weitere Möglichkeit, die Vorhersagesicherheit zu messen, ist die Top-2-Margin,
die den Abstand der beiden wahrscheinlichsten Kandidaten pro Token einer Sequenz
betrachtet. Für jedes Token wird die Differenz der Wahrscheinlichkeiten der Top-2-
Kandidaten als Margin definiert. Die Sequenzkonfidenz wird dann als Mittelwert über
alle Tokens aggregiert:

T2M =
1

T

T∑
t=1

Margint, Margint = exp
(
c
(1)
t

)
− exp

(
c
(2)
t

)
(4.2.4)

wobei c(1)t und c
(2)
t die höchsten Log-Pseudowahrscheinlichkeit des Tokens yt sind.

Die Konfidenz ergibt sich somit aus dem Abstand zwischen der Wahrscheinlichkeit

42 methodik

des vorhergesagten Tokens und der des zweitbesten Tokens. Ein hoher Top-2-Margin
signalisiert, dass das Modell eine klare Entscheidung für das gewählte Token getroffen
hat, während ein niedriger Wert auf eine Unsicherheit zwischen mehreren Kandidaten
hindeutet.

Bei der Berechnung der Konfidenzmaße werden bestimmte Spezialtokens wie das
Öffnen- und Schließen-Symbol [,] sowie das <eos> (End-of-Sequence) Token explizit
ausgeschlossen. Der Grund dafür ist, dass diese Tokens keine semantische Bedeutung
im extrahierten Inhalt tragen, sondern lediglich der Strukturierung dienen. Ihre Vorher-
sage ist in der Regel trivial und führt daher zu künstlich hohen Wahrscheinlichkeiten,
die die Konfidenzschätzung verzerren würden. In Abschnitt 5.4.2 werden alle drei Kon-
fidenzmaße genutzt und verglichen, um ein umfassendes Bild der Vorhersagesicherheit
im DONUT-Modell zu erhalten.

Dabei ist zu beachten, dass sich die hier betrachteten Konfidenzwerte immer auf die
gesamte vorhergesagte Sequenz eines Bildes beziehen. Da ein Bild mehrere Datum-
seinträge enthalten kann, geben die Maße nicht die Sicherheit für ein einzelnes Datum
wieder, sondern die aggregierte Sicherheit aller im Bild enthaltenen Datumssequenzen.

5
E VA L UAT I O N

5.1 datensätze

Für die Experimente werden insgesamt zwei Datensätze verwendet. Der erste Daten-
satz besteht aus ausgeschnittenen Bildausschnitten, die ausschließlich Datumsangaben
enthalten. Dadurch kann das Modell die visuelle Struktur und typische Textmuster von
Datumsformaten erlernen. Der zweite Datensatz umfasst vollständige Dokumentseiten,
auf denen das zuvor gelernte Wissen über Datumsangaben im Kontext ganzer Seiten
angewendet wird, um diese korrekt zu erkennen und zu lokalisieren. Im Folgenden
werden beide Datensätze näher vorgestellt.

5.1.1 Death Certificates 2

Der Datensatz Death Certificates 2 (DC-2) aus der DARE1 Datenbank [DJS+
22] um-

fasst handschriftliche Datumsangaben, die aus dänischen Todesurkunden stammen.
Die DARE-Datenbank umfasst insgesamt sechs verschiedene Datensätze, die sich in
Herkunft und Format der Datumsangaben unterscheiden (z. B. TT-MM-JJJJ, TT-MM-JJ
oder TT-MM). Neben dänischen Todesurkunden finden sich darin auch Datums-
angaben aus dänischen Polizeiberichten, Beerdigungsunterlagen und Dokumenten
von Krankenpflegeheimen sowie zwei Datensätze aus dem schwedischen Register
zu Todesursachen. Für diese Arbeit wurde der Datensatz DC-2 ausgewählt, da die
Datumsangaben dort in der Regel einzeilig geschrieben sind und überwiegend dem
Format TT-MM-JJJJ entsprechen (siehe Abbildung 5.1.1), was mit dem im zweiten Trai-
ningsdatensatz verwendeten Format übereinstimmt. In einigen Fällen fehlt jedoch die
Jahresangabe oder das Format weicht zu JJJJ-MM-TT ab oder wird der Monatsangabe
nicht als Zahl, sondern als ausgeschriebenes Wort dargestellt.

Die ursprünglichen Quelldokumente weisen teils starke Unterschiede in ihrer Größe
auf, mit Breiten von bis zu 1400 Pixeln und Höhen bis 356 Pixel. Für die weitere
Verarbeitung wurden alle Bilder einheitlich auf eine Größe von 1400×250 Pixeln
skaliert.

1 https://www.kaggle.com/datasets/sdusimonwittrock/dare-database

43

https://www.kaggle.com/datasets/sdusimonwittrock/dare-database

44 evaluation

Größe der Sets des DC-2 Datensatzes

Training Validierung Test Gesamt

Bilder 150.439 5.000 8.338 163.777

Tabelle 5.1.1: Größe der Sets des DC-1 Datensatzes

(a) "date: "01-03-1848" (b) "date: "28-05-1859"

Abbildung 5.1.1: Beispiele verschiedener Datumsformate aus dem DC-2 Datensatz mit zuge-
höriger JSON-Annotation

Jedes dieser Bilder zeigt genau eine handschriftliche Datumsangabe. Die zugehörige
Ground Truth folgt dabei dem Format "date": "TT-MM-JJJJ" und stellt das jeweils
enthaltene Datum in standardisierter Form dar. Der Datensatz ist in Trainings-, Validierungs-
und Testmengen unterteilt, die 150.439, 5.000 bzw. 8.338 Bilder enthalten. Eine Übersicht zur
Aufteilung ist in Tabelle 5.1.1 dargestellt.

5.1.2 CM1-COVER

Die CM1 (Care and Maintenance) umfasst Formulare, die zwischen 1947 und 1952 von der
International Refugee Organization (IRO) und ihren Vorgängerorganisationen zusammengetra-
gen wurden. Sie dokumentieren die Betreuung von Displaced Persons (DPs) in den westlichen
Besatzungszonen Deutschlands sowie in Italien, Österreich, der Schweiz und England. Zentra-
les Dokumententyp ist der Fragebögen aus dem Care and Maintenance Programm der IRO,
den DPs zur Beantragung humanitärer Hilfe ausfüllen mussten [Arc].

Die Scans der CM1-Dokumente wurden von den Arolsen Archives 2 bereitgestellt. Jeder
Eintrag im Datensatz umfasst mehrere Dokumente eines individuellen Verwaltungsverfahrens,
typischerweise bestehend aus einem Deckblatt (Cover), einem ausgefüllten Antragsformu-
lar sowie weiteren begleitenden persönlichen Unterlagen [WTM+

25]. Die in dieser Arbeit
untersuchten Aufgaben beziehen sich ausschließlich auf die Deckblätter, die strukturierte,
handschriftlich eingetragene Informationen zur antragstellenden Person sowie zu bis zu drei
begleitenden Angehörigen enthalten.

Der vollständige Datensatz umfasst insgesamt 123.550 digitalisierte Dokumentbilder mit
184.647 annotierten Datumsangaben. Zur Modellentwicklung wurde der Datensatz in drei

2 https://collections.arolsen-archives.org/en/archive/3-2-1

https://collections.arolsen-archives.org/en/archive/3-2-1

5.2 evaluationsmetriken 45

Größe der Sets des CM1-COVER Datensatzes

Training Validierung Test Gesamt

Bilder 113.237 3.427 6.886 123.550

Tabelle 5.1.2: Größe der Sets des CM1-COVER Datensatzes

Teile aufgeteilt: 113.237 Bilder für das Training, 3.427 für die Validierung und 6.886 für
den abschließenden Test. Eine tabellarische Übersicht dieser Aufteilung ist in Tabelle 5.1.2
dargestellt.

Ein Dokumentbild kann bis zu vier Datumsangaben enthalten, die üblicherweise dem
Format TT-MM-JJJJ folgen. Die zugehörige Ground-Truth-Annotation wird entsprechend als
JSON angegeben, beispielsweise "dates": ["1913-01-31",
"1924-06-31"]. Ein anschauliches Beispiel ist in Abbildung 5.1.2 dargestellt.

5.2 evaluationsmetriken

In diesem Kapitel werden die Metriken beschrieben, die zur Bewertung der Modellleistung
verwendet werden. In dieser Arbeit werden die Mean Character Error Rate (mCER) und die
Sequence Accuracy (SeqAcc) verwendet, da sie sowohl die Genauigkeit auf Zeichen- als auch
auf Sequenzebene abbilden.

5.2.1 Mean Character Error Rate

Die gebräuchlichste Metrik zur Bewertung von Handschriftenerkennungssystemen (HTR) ist
die Character Error Rate (CER). CER misst den Anteil der fehlerhaft erkannten Zeichen im
Vergleich zur Annotation.

Zur Berechnung wird die Anzahl der fehlerhaften Bearbeitungsoperationen bzw. Einfügun-
gen, Löschungen und Ersetzungen gezählt. Diese Zahl wird dann durch die Gesamtanzahl der
Zeichen in der Annotation geteilt:

CER =
#Einfügungen + #Löschungen + #Ersetzungen

Länge der Annotation
(5.2.1)

Für ein Testset wird die mittlere CER (mCER) über alle N Stichproben gebildet:

mCER =
1

N

N∑
i=1

CERi (5.2.2)

Ein niedriger mCER-Wert zeigt eine gute Erkennungsleistung, während ein hoher Wert viele
Fehler deutet. Es ist zu beachten, dass in Fällen, in denen die vorhergesagte Datumssequenz
leer ist, der Zeichenfehlerratewert (CER) in dieser Arbeit standardmäßig auf 1.0 gesetzt wird.

46 evaluation

Abbildung 5.1.2: CM1-COVER Beispielbild mit zugehöriger JSON-Annotation:
"dates: ["1913-01-31", "1924-06-31"]

Da ein Dokumentbild mehrere Datumsangaben enthalten kann, wird zunächst für jedes
Bild die mCER berechnet. Anschließend werden die mCER über den gesamten Datensatz
aggregiert.

5.2.2 Sequence Accuracy

Eine weitere Metrik zur Bewertung von Transkriptionsqualität ist die Sequence Accuracy (Se-
qAcc). Dabei gilt eine Vorhersage nur dann als korrekt, wenn alle Zeichen bzw. Token in einer
Sequenz vollständig richtig erkannt wurden. Ist auch nur eines der Token falsch, wird die
gesamte Vorhersage als fehlerhaft gewertet. Dies macht die SeqAcc besonders streng und
unterscheidet sie deutlich von Metriken wie der CER, da sie die Transkription als Ganzes
bewertet. Typischerweise ist die SeqAcc daher deutlich niedriger als zeichenbasierte Metriken.
Die Berechnung erfolgt gemäß:

SeqAcc =
Anzahl korrekt erkannter Sequenzen

Gesamtanzahl der Sequenzen
(5.2.3)

Da ein Bild mehrere Datumsangaben enthalten kann, wird die SeqAcc zunächst pro Da-
tumssequenz ermittelt. Die SeqAcc pro Bild ergibt sich als Durchschnitt dieser Sequenzen,
und über den gesamten Datensatz wird wiederum der Mittelwert aller Bild-SeqAcc berechnet.

5.2 evaluationsmetriken 47

5.2.3 Klassifikationsleistung

Um die Wirkung der Konfidenzschranken auf die Freigabe historischer Dokumente zu be-
werten (siehe Abschnitt 5.4.4), wird die Klassifikationsleistung des Modells in Bezug auf die
100-Jahres-Grenze untersucht. Dabei ist entscheidend, ob ein Dokument korrekt als „veröffent-
lichbar“ oder „nicht veröffentlichbar“ eingestuft wird.

Zur quantitativen Analyse werden zwei zentrale Maße herangezogen: Precision und Relative
Error Reduction (RER). Die Grundlage bildet die in Tabelle 5.2.1 dargestellte Konfusionsmatrix.
Sie unterscheidet vier Fälle: Wird eine Instanz, die tatsächlich positiv ist, korrekt als positiv
erkannt, spricht man von einem True Positive (TP). Erfolgt dagegen eine positive Vorhersage
für eine eigentlich negative Instanz, handelt es sich um ein False Positive (FP). Analog
bezeichnet man korrekt negative Vorhersagen als True Negative (TN), während falsch negative
Vorhersagen als False Negative (FN) gelten.

True positive False negative

False positive True negative

Vorhersage

L
a
b
el

Positive Negative

P
os
it
iv
e

N
eg
at
iv
e

Abbildung 5.2.1: Konfusionsmatrix eines binären Klassifikators.

Auf Basis dieser Größen lässt sich die Precision nach [Pow20] definieren. Sie beschreibt den
Anteil korrekt positiver Klassifikationen an allen positiven Vorhersagen und ergibt sich formal
zu:

Precision =
TP

TP+ FP
(5.2.4)

Eine hohe Precision bedeutet, dass nur ein geringer Anteil der als positiv klassifizierten
Instanzen tatsächlich fehlerhaft ist.

Ein weiteres Maß zur Bewertung der Modellleistung ist die Relative Error Reduction (RER),
wie sie in [VWN23] zur vergleichenden Analyse verschiedener Modelle vorgeschlagen wurde.
RER misst die relative Verringerung der Fehlklassifikationen gegenüber einer Referenzmethode

48 evaluation

(Baseline). Angenommen, die Baseline erreicht eine Genauigkeit von 80% und ein verbessertes
Modell erzielt 85%, so ergibt sich eine RER von 5

20 = 25%. Formal lässt sich RER wie folgt
ausdrücken:

RER =
Errbaseline − ErrMethode

Errbaseline
× 100%, (5.2.5)

wobei Errbaseline die Anzahl der Fehler in der Baseline beschreibt und ErrMethode die Fehler-
zahl des betrachteten Verfahrens.

In dieser Arbeit wird die RER auf die False Positives (FP) angewendet. Dazu wird FPbaseline
als die Anzahl an False Positives in der Baseline (ohne Konfidenzfilter) definiert. FPτ bezeichnet
hingegen die Zahl der False Positives bei Anwendung eines Konfidenzschwellwertes τ. Die
RERτ ergibt sich damit formal zu:

RERτ(FP) =
FPbaseline − FPτ

FPbaseline
× 100%. (5.2.6)

Dieses Maß verdeutlicht, in welchem Ausmaß die Einführung einer Konfidenzschranke zur
Reduktion fehlerhafter positiver Vorhersagen beiträgt. Damit lässt sich quantitativ belegen,
dass die Konfidenzbewertung ein wirksames Mittel zur Verbesserung der Filterung über
Modellvorhersagen darstellt.

5.3 trainingsaufbau

Für die Experimente dieser Arbeit wurde das vortrainierte Donut-Modell 3 auf dem Conso-
lidated Receipt Dataset (CORD) [PSL+

19] als Basis-Modell für das Fine-Tuning verwendet.
Dieses Modell wurde speziell für die Aufgaben der Dokumenten-Informationsextraktion auf
dem CORD trainiert. Der Datensatz umfasst 800 Trainings-, 100 Validierungs- und 100 Test-
beispielen. Die enthaltenen Texte sind in lateinischer Schrift verfasst. Insgesamt werden 30

unterschiedliche Informationsfelder extrahiert, darunter beispielsweise Menüname, Menge,
Gesamtpreis und weitere relevante Felder.

Als technische Grundlage diente Python 3.9 zusammen mit dem PyTorch-Framework für
das Deep Learning. Alle Trainingsvorgänge wurden auf einer NVIDIA GeForce RTX 3070

mit 8GB Grafikspeicher ausgeführt, was hinsichtlich Speicherkapazität und Rechenleistung
gewisse Einschränkungen mit sich brachte.

Das Training erfolgte unter Verwendung des Adam-Optimizers [KB17] mit einer Lernrate
von 3× 10−5. Aufgrund der begrenzten Hardware-Ressourcen wurde das Training auf die
Batch-Größe von 1 beschränkt und mit einer maximal möglichen Eingabegröße von 640× 320

Pixeln durchgeführt. Um den Lernprozess zu stabilisieren, wurde eine Warmup-Phase von
10.000 Iterationen eingeführt. Die maximale Token-Länge wurde auf 50 Zeichen begrenzt, um
die Effizienz zu gewährleisten. Diese Hyperparameter blieben über alle im Rahmen dieser
Arbeit untersuchten Experimente hinweg unverändert.

3 https://huggingface.co/naver-clova-ix/donut-base-finetuned-cord-v2/tree/
official

https://huggingface.co/naver-clova-ix/donut-base-finetuned-cord-v2/tree/official
https://huggingface.co/naver-clova-ix/donut-base-finetuned-cord-v2/tree/official

5.4 ergebnisse 49

Zur Vermeidung von Overfitting wurde ein Early Stopping [Pre12] eingesetzt. Dabei wird
die Modellleistung auf dem Validierungsdatensatz während des Trainings überwacht. Sobald
sich die Leistung nicht weiter verbessert oder sich verschlechtert, wird der Trainingsprozess
automatisch gestoppt. Dieses Verfahren verhindert, dass das Modell übermäßig stark auf
Rauschen im Trainingsdatensatz reagiert und verbessert somit die Generalisierungsfähigkeit.

5.4 ergebnisse

In diesem Kapitel werden die Ergebnisse der Experimente zur Leistung der Donut-Modelle
nach dem Finetuning mit dem DC2- und CM1-COVER-Datensatz vorgestellt. Der Fokus
liegt dabei auf zwei Aspekten: zum einen auf der Abhängigkeit der Modellleistung von der
Größe der verfügbaren Trainingsdaten, zum anderen auf der Bewertung der Modellsicherheit
anhand verschiedener Konfidenzmaße. Um darüber hinaus den praktischen Nutzen der
Konfidenzprüfung zu verdeutlichen, wurde ein Simulationsszenario entworfen, das reale
Veröffentlichungssituationen nachbildet.

5.4.1 Reduktion der Trainingsdaten

Die Bewertung der Modellleistung in Abhängigkeit von der Verfügbarkeit von Trainingsdaten
ist ein wichtiger Aspekt. Eine gängige Methode besteht darin, die Menge an Trainingsdaten zu
reduzieren, indem nur ein zufällig ausgewählter Teil des ursprünglichen Datensatzes verwen-
det wird. Dieser Experiment beantwortet 2 Fragestellungen: Erstens, wie stark die Leistung
des Modells vom Umfang der verfügbaren Trainingsdaten abhängt, und zweitens, welchen
Einfluss ein vorheriges Finetuning auf dem DC2-Datensatz im Vergleich zum Basismodell hat.

Konkret wurde der Trainingsdatensatz des CM1-COVER-Datensatzes in hierarchisch aufge-
baute Teilmengen unterteilt. Dies bedeutet, dass jede kleinere Teilmenge vollständig in der
nächstgrößeren enthalten ist. Insgesamt wurden vier Trainingsstufen definiert, die 20%, 50%,
80%, 100% des ursprünglichen Trainingsdatensatzes umfassen. Die Validierungs- und Testmen-
gen blieben über alle Experimente hinweg unverändert (Siehe Tabelle 5.4.1).

Mit diesen Datensplits wurden anschließend zwei Modellvarianten untersucht. Zum einen
das Donut-Basismodell, das ohne zusätzliches Finetuning verwendet wurde (Donut-Base).
Zum anderen das Donut-Modell, das zuvor bereits auf dem DC2-Datensatz vortrainiert wurde
(Donut-DC2). Beide Modelle wurden separat mit den vier unterschiedlichen Trainingsmengen
trainiert und anschließend auf denselben Testdaten evaluiert.

Die Auswertung der in Abbildung 5.4.1 dargestellten Ergebnisse zeigt, dass Donut-DC2 in
allen Konfigurationen deutliche Leistungsgewinne gegenüber dem Basismodell Donut-Base
erzielt. Bereits bei geringen Trainingsanteilen zeigt sich ein deutlicher Vorteil von Donut-DC2.
Während Donut-Base bei nur 20% Trainingsdaten noch eine sehr hohe mCER von 37.4 auf-
weist, reduziert Donut-DC2 diesen Wert auf 13.5. Damit werden fast zwei Drittel der Fehler
eliminiert. Mit zunehmendem Anteil an Trainingsdaten verbessert sich die Leistung beider
Modelle deutlich. Donut-Base zeigt dabei einen sprunghaften Leistungsanstieg zwischen 20%
und 50% Trainingsdaten und erreicht bei 100% Daten eine Sequenzgenauigkeit von 75.4% bei

50 evaluation

Datensatz Train Val Test

20% 50% 80% 100%

CM1-COVER 22,647 56,618 90,589 113,237 3,427 6,886

Tabelle 5.4.1: Die Aufteilung des Datensatzes erfolgt in Trainings-, Validierungs- und Test-
mengen. Die Trainingsmengen sind hierarchisch aufgebaut, wobei jede kleinere
Teilmenge vollständig in der jeweils nächstgrößeren enthalten ist.

20 50 80 100
0

20

40

60

80

4.6

54

73.3 75.4

29.2

68.6
75.6

79.4

Anzahl Trainingsdaten (%)

Se
qA

cc
(%

)

Donut-Base
Donut-DC2

(a) SeqAcc für verschiedene σ-Werte.

20 50 80 100
0

10

20

30

40 37.4

8.2 7.8
4.6

13.5

4.9 4.1 3.1

Anzahl Trainingsdaten (%)

m
C

ER
(%

)

Donut-Base
Donut-DC2

(b) mCER für verschiedene σ-Werte.

Abbildung 5.4.1: Vergleich von Donut-Base und Donut-DC2 bei unterschiedlichen Trainings-
anteilen (20%, 50%, 80%, 100%).

einer mCER von 4.6%. Donut-DC2 skaliert hingegen kontinuierlich mit zunehmender Daten-
menge und übertrifft das Basismodell in allen Fällen. Unter Verwendung des vollständigen
Trainingssatzes erreicht das Modell den höchsten Leistungswert mit 79,4% Sequenzgenauigkeit
bei einer mCER von 3,1%.

Die Ergebnisse verdeutlichen zudem, dass der Nutzen zusätzlicher Trainingsdaten mit
wachsender Datenmenge abnimmt. Besonders für Donut-Base ist der Sprung von 20% auf
50% Trainingsdaten erheblich (37.4 auf 8.2), während die Verbesserung von 80% auf 100%
vergleichsweise gering ausfällt (7.8 auf 4.6). Ein ähnliches Bild zeigt sich bei Donut-DC2, wenn
auch auf niedrigerem Niveau. Dies weist darauf hin, dass die Modelle ab einem bestimmten
Punkt weitgehend gesättigt sind.

Zusammenfassend lässt sich festhalten, Donut-DC2 in allen Szenarien deutlich überlegen ist,
sowohl bei kleiner als auch bei großem Trainingssatz. Das Vortraining auf dem DC2-Datensatz
wirkt daher wie ein leistungsfähiges Transfer-Learning.

5.4 ergebnisse 51

5.4.2 Modellsicherheit durch Konfidenzmaße

Zur Quantifizierung der Zuverlässigkeit der Vorhersagen des DONUT-DC2-Modells zu quan-
tifizieren, wurden die im Abschnitt 4.2 vorgestellten Konfidenzmaße MULT, MIN und T2M
untersucht.

Zur Evaluation wurde für jede Konfidenzmetrik folgender Ansatz gewählt: Zunächst werden
alle Testdaten nach ihrem Konfidenzwert absteigend sortiert. Anschließend werden sukzessive
die obersten 10%, 20%, 40%, 60%, 80% sowie schließlich den gesamten Datensatz (100%)
berücksichtigt. Für jede dieser Teilmengen wurden die mittlere SeqAcc und mCER berech-
net. So konnte überprüft werden, ob eine hohe Konfidenz tatsächlich mit einer besseren
Vorhersagequalität korreliert.

10 20 40 60 80 100
70

80

90

100

Abgedeckte Testdaten (%)

Se
qA

cc
(%

)

T2M
MIN

MULT

(a)

10 20 40 60 80 100

1

2

3

4

Abgedeckte Testdaten (%)

m
C

ER
(%

)

T2M
MIN

MULT

(b)

Abbildung 5.4.2: Vergleich der Konfidenzmetriken T2M, MIN und MULT hinsichtlich (a)
Sequenzgenauigkeit (SeqAcc) und (b) mittlerem Character Error Rate (mCER)
des Donut-DC2 Modells. Die Auswertung erfolgt auf sukzessiven Teilmengen
des Testdatensatzes, die nach absteigendem Konfidenzwert sortiert wurden
(10% bis 100%).

Ein wesentlicher Aspekt, der sich aus den Ergebnissen (siehe Abbildungen 5.4.2) ableiten
lässt, ist der deutliche Trade-off zwischen Abdeckungsrate und Zuverlässigkeit. Während
die obersten 10–40% der nach Konfidenz sortierten Vorhersagen eine nahezu fehlerfreie
Erkennung (mit einer Sequenzgenauigkeit von über 97,0% bei allen drei Konfidenzmaße)
liefern, nimmt die Genauigkeit mit steigender Abdeckung erwartungsgemäß ab. Für die
praktische Anwendung stellt sich damit die Frage nach einem geeigneten Gleichgewicht: Soll
ein System nur die sichersten Vorhersagen automatisch übernehmen und damit eine geringere
Abdeckung, aber hohe Verlässlichkeit gewährleisten, oder ist eine vollständige automatische
Verarbeitung wünschenswert, obwohl dies ein höheres Fehlerrisiko mit sich bringt.

52 evaluation

Ein ähnliches Bild zeigt sich auf Zeichenebene bei den mCER. In den obersten 10% erreicht
MIN mit 0,22(%) den niedrigsten Fehlerwert, während MULT (0,43(%)) und T2M (0,36(%))
leicht darüber liegen. Auch bei 20% und 40% bleibt MIN vorn und weist damit durchgängig die
geringsten Fehler auf. Dies verdeutlicht, dass die nach Konfidenzmaßen ausgewählten Vorher-
sagen nicht nur weniger komplette Sequenzfehler enthalten, sondern auch auf Zeichenebene
präzise sind.

Mit zunehmender Abdeckung sinkt die Genauigkeit erwartungsgemäß ab, da auch weniger
sichere Vorhersagen in die Bewertung einbezogen werden. Bei größeren Anteilen (60% und
80%) fällt die SeqAcc in allen Fällen deutlich ab und liegt zwischen 93–87%. Parallel dazu
steigen die mCER spürbar an. Wird schließlich die gesamte Testmenge betrachtet, so erreichen
alle drei Konfidenzmaße identische Ergebnisse von 79,4% SeqAcc bei einer mCER von 3,11%.
Dieses Resultat entspricht der Leistung des Modells ohne Anwendung einer Konfidenzschwelle
(vgl. Experiment 5.4.2 mit Donut-DC1 bei 100% Trainingsdaten).

Insgesamt lässt sich somit festhalten, dass alle drei Konfidenzmaße in der Lage sind, zuver-
lässig zwischen sicheren und unsicheren Vorhersagen zu unterscheiden. Unter ihnen erweist
sich MIN als das stabilste und leistugsfähigste Maß, da es in den oberen Konfidenz-Segmenten
(Top-10% bis Top-40%) konstant die höchste Sequenzgenauigkeit und gleichzeitig die nied-
rigste mCER liefert. Dies deutet darauf hin, dass die schlechteste Token-Wahrscheinlichkeit
tatsächlich ein aussagekräftiger Indikator für die Gesamtzuverlässigkeit einer Sequenz ist.
GAVG und T2M zeigen dagegen nahezu identische Verläufe und liegen insgesamt etwas
unterhalb von MIN, da sie die Unsicherheit über die gesamte Sequenz mitteln und daher
insgesamt etwas weniger strikt sind.

5.4.3 Datensatzreduktion & Konfidenzbewertung

In diesem kombinierten Experiment werden die beiden zuvor beschriebenen Experimente
zusammengeführt: die Reduktion der Trainingsdaten (vgl. Abschnitt 5.4.1) sowie die Mo-
dellsicherheit durch Konfidenzmaße (vgl. Abschnitt 5.4.2). Dazu wurde der CM1-COVER-
Trainingsdatensatz in hierarchische Teilmengen aufgeteilt. Für jede Trainingsstufe wurde das
Modell Donut-DC2 trainiert und die Vorhersagen mithilfe der Konfidenzmetriken ausgewertet.
Die Testdaten wurden dabei nach Konfidenzwert sortiert, und für Abdeckungsraten von
10% bis 100% wurden die SeqAcc sowie die mCER berechnet. Die Ergebnisse werden in der
Abbildung 5.4.3 dargestellt.

Bei einer Reduktion der Trainingsdaten auf 20% wird der Einfluss der Verfügbarkeit von
Trainingsdaten auf die Wirksamkeit der Konfidenzmetriken deutlich sichtbar. Die Sequenz-
genauigkeit liegt zunächst bei rund 76% für die obersten 10% der nach Konfidenz sortierten
Testdaten und sinkt kontinuierlich auf etwa 29% bei vollständiger Abdeckung. Gleichzeitig
steigt die mCER von rund 3% auf 13,5%. In diesem Szenario gelingt es den Konfidenzwerten
noch nicht, zuverlässig zwischen guten und schlechten Vorhersagen zu unterscheiden.

Mit 50% Trainingsdaten verbessert sich die Situation erheblich. Die Accuracy steigt bei
niedrigen Abdeckungsraten (10–40%) auf über 90%, und der mCER bleibt in diesem Bereich

5.4 ergebnisse 53

σ = 20%

10 20 40 60 80 100
20

40

60

80

100

Abgedeckte Testdaten (%)

Se
qA

cc
(%

)

T2M
MIN

MULT

10 20 40 60 80 100
0

3

6

9

12

15

Abgedeckte Testdaten (%)

m
C

ER
(%

)

T2M
MIN

MULT

σ = 50%

10 20 40 60 80 100
20

40

60

80

100

Abgedeckte Testdaten (%)

Se
qA

cc
(%

)

T2M
MIN

MULT

10 20 40 60 80 100
0

3

6

9

12

15

Abgedeckte Testdaten (%)

m
C

ER
(%

)

T2M
MIN

MULT

σ = 80%

10 20 40 60 80 100
20

40

60

80

100

Abgedeckte Testdaten (%)

Se
qA

cc
(%

)

T2M
MIN

MULT

10 20 40 60 80 100
0

3

6

9

12

15

Abgedeckte Testdaten (%)

m
C

ER
(%

)

T2M
MIN

MULT

Abbildung 5.4.3: Vergleich der Konfidenzmetriken T2M, MIN und MULT hinsichtlich SeqAcc
(links) und mCER (rechts) des Donut-DC2 Modells bei unterschiedlichen
Trainingsanteilen (20%, 50%, 80%). Die Auswertung erfolgt auf sukzessiven
Teilmengen des Testdatensatzes, die nach absteigendem Konfidenzwert sor-
tiert wurden.

54 evaluation

gering. Die geringen Unterschiede zwischen den Konfidenzmetriken deuten darauf hin, dass
das Modell in diesem Szenario bereits ein stabiles Unsicherheitsmaß erlernt hat.

Bei 80% Trainingsdaten werden in den oberen Konfidenzbereichen (10–40%) weiterhin
SeqAcc über 95% und sehr niedrigen mCER erzielt. Erst bei höherer Coverage nimmt die
Leistung stärker ab, bleibt jedoch nur geringfügig schlechter als bei voller Trainingsmenge (vgl.
Abschnitt 5.4.2). Dies deutet darauf hin, dass der Nutzen zusätzlicher Trainingsdaten ab einem
Umfang von etwa 80% deutlich abnimmt und die Konfidenzmaße auch in diesem Kontext
zuverlässig arbeiten.

5.4.4 Fehlervermeidung durch Konfidenzschranken

Um den praktischen Nutzen der Konfidenzprüfung zu demonstrieren, wurde ein Simula-
tionsszenario entworfen. Dokumente sollen nur dann veröffentlicht werden, wenn für alle
extrahierten Geburtsdaten gilt, dass seit der Geburt mindestens 100 Jahre vergangen sind. Da
die CM1-Dokumente ohnehin fast alle älter als 100 Jahre sind, wurde ein fiktiver Stichtag
eingeführt, um realistischere Prüfbedingungen zu schaffen.

Um die Robustheit der Ergebnisse zu gewährleisten, wurde das Experiment nicht nur für
einen einzelnen Stichtag, sondern für mehrere Referenzdaten im Zeitraum vom 01.01.2010

bis zum 01.01.2020 (in Jahresschritten) durchgeführt. Diese Auswahl ist repräsentativ, da die
meisten Geburtsdaten in den CM1-Dokumenten in den Jahren 1900–1930 liegen. Somit lassen
sich unterschiedliche Szenarien abbilden, in denen die 100-Jahres-Grenze gerade erreicht oder
knapp verfehlt wird.

Für jedes Referenzdatum wird das Modell bewertet, ob es die Dokumente im Hinblick auf
die 100-Jahres-Regel korrekt klassifiziert. Das Modell wird folgendermaßen evaluiert:

• True Positives (TP): Dokumente, die zurecht veröffentlicht werden, weil sowohl die
Ground-Truth-Daten als auch die vom Modell vorhergesagten Daten älter als 100 Jahre
sind.

• False Positives (FP): Dokumente, die veröffentlicht werden, obwohl mindestens ein
Datum in den Ground-Truth-Daten jünger als 100 Jahre sind.

• False Negatives (FN): Dokumente, die eigentlich veröffentlicht werden dürften (alle
Ground-Truth-Daten >100 Jahre), vom Modell aber zurückgehalten werden.

• True Negatives (TN): Dokumente, die korrekt zurückgehalten werden, da mindestens
ein Ground-Truth-Datum noch nicht 100 Jahre alt ist.

Wichtig ist, dass hier nicht geprüft wird, ob das exakte Datum korrekt vorhergesagt wurde.
Entscheidend ist allein, ob das Modell mit seiner Vorhersage zu einer richtigen oder falschen
Klassifikation bezüglich der 100-Jahres-Grenze führt.

In einem weiteren Schritt wird untersucht, wie viele Dokumente ohne Konfidenzprüfung
fälschlicherweise veröffentlicht worden wären und in welchem Maß sich solche Fehler durch
eine Konfidenzschranke vermeiden lassen. Dazu werden alle Dokumente zunächst nach ihrem

5.4 ergebnisse 55

10 20 30 40 50 60 70 80 90 100
92

94

96

98

100

Abgedeckte Testdaten (%)

Pr
ec

is
io

n
(%

)

T2M
MIN

MULT

(a)

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Abgedeckte Testdaten (%)

R
ER

(%
)

T2M
MIN

MULT

(b)

Abbildung 5.4.4: Vergleich der Konfidenzmetriken T2M, MIN und MULT hinsichtlich (a)
Precision sowie (b) Relative Error Reduction (RER) des Donut-DC2 Modells.
Die Auswertung erfolgt auf sukzessiven Teilmengen des Testdatensatzes, die
nach absteigendem Konfidenzwert sortiert wurden.

Konfidenzwert sortiert und anschließend nur die obersten 10% bis 100% der Daten berücksich-
tigt. Das Vorgehen entspricht dabei konzeptionell dem zuvor beschriebenen Experiment 5.4.2,
jedoch wird hier nicht die Sequenzgenauigkeit als Bewertungsmaß herangezogen, sondern die
Presicion und Relative Error Reduction (RER) (vgl. Abschnitt 5.2.3).

Die Betrachtung der Precision (Siehe Abbildung 5.4.4 (a)) zeigt, dass bei obersten Konfidenz-
schwellen (10–50%) nahezu alle als veröffentlichbar eingestuften Dokumente korrekt sind. Die
Precision liegt hier etwa 99% für alle drei Konfidenzmaße. Mit zunehmender Schwelle sinkt
die Precision leicht, da mehr Dokumente mit geringerer Sicherheit freigegeben werden, aber
selbst bei 80% bleibt sie noch hoch (ca. 97%).

Parallel dazu verdeutlicht RER die Wirksamkeit der Konfidenzschranken (Siehe Abbil-
dung 5.4.4 (b)). Bereits moderate Schwellenwerte σ = 50% verhindern über 90% der potenziell
falschen Veröffentlichungen. Bei σ = 80% liegt die Reduktion noch zwischen ca. 52% und 65%.
Wird hingegen die gesamte Datenmenge ohne Konfidenzfilter berücksichtigt (σ = 100%), so
ergibt sich erwartungsgemäß keine Reduktion, die als Baseline dient.

Die kombinierte Betrachtung von Precision und Reduktion zeigt, dass hohe Konfidenzwerte
einerseits die Anzahl korrekt veröffentlichter Dokumente maximieren und andererseits das
Risiko von Fehlveröffentlichungen deutlich reduzieren. Insgesamt demonstriert die Analyse,
dass die Anwendung von Konfidenzschranken eine effiziente Methode zur sicheren Freigabe
historischer Dokumente darstellt.

6
FA Z I T

Ziel dieser Arbeit war die Untersuchung eines End-to-End-Ansatzes zur automatisierten Tran-
skription handschriftlicher Datumsangaben in historischen Dokumenten. Hierfür wurde ein
Ansatz auf Basis des Donut-Modells gewählt, das Bildinformationen in einem durchgängigen
Prozess ohne vorgelagerte OCR-Schritt direkt in Textsequenzen transkribiert. Ergänzend wur-
den Konfidenzmaße integriert, die eine Einschätzung der Vorhersagesicherheit ermöglichen.
Dies ist insbesondere für praktische Anwendungen im Bereich historischer Archive oder
der Forschung, wo fehlerhafte Transkriptionen erhebliche Auswirkungen haben können, von
großer Bedeutung. Durch die Konfidenzmaße könnte ein halbautomatisches System entwickelt
werden. Dazu gehen unsichere Ergebnisse an Menschen zur Überprüfung, sichere Ergebnisse
können automatisch übernommen werden.

Das DONUT-Modell basiert auf einer Architektur mit einem Swin-Transformer als Encoder
zur visuellen Repräsentation und einem BART-Decoder zur textuellen Sequenzgenerierung. Ein
zentraler Baustein war die zweistufige Finetuning-Strategie. Zunächst wurden ausgeschnittene
Bildsegmente mit isolierten Datumsangaben aus DC1-Datensatz genutzt, um dem Modell
typische Muster von Datumsformaten beizubringen. Anschließend erfolgte ein Training auf
vollständigen Dokumentseiten aus CM1-COVER-Datensatz, wodurch das Modell in der Lage
war, die zuvor erlernten Muster in einem komplexeren Kontext korrekt zu erkennen und zu
lokalisieren.

Die Arbeit hebt mehrere Stärken des Donut-DC2 Modells hervor. Bei der Extraktion von
Datumsangaben erreicht das Modell eine Sequenzgenauigkeit von 79,4% und eine mittlere
Character Error Rate (mCER) von 3,4, wobei die Integration von Konfidenzwerten zusätzliche
Vorteile bietet. Insbesondere lassen sich unsichere Vorhersagen gezielt identifizieren, wodurch
die Qualität der extrahierten Daten verbessert werden kann. Dies zeigt sich besonders deut-
lich bei den obersten 40% der Testdaten mit den höchsten Konfidenzwerten, für die eine
Sequenzgenauigkeit von über 96% erzielt wurde.

Zur Veranschaulichung des praktischen Nutzens der Konfidenzprüfung wurde ein Beispiel
in Form eines Simulationsszenarios durchgeführt. Dabei sollten Dokumente nur dann veröf-
fentlicht werden, wenn für alle extrahierten Geburtsdaten gilt, dass seit der Geburt mindestens
100 Jahre vergangen sind. Um realistische Prüfbedingungen zu schaffen, wurde ein fiktiver
Stichtag eingeführt. Die Betrachtung der Precision in diesem Experiment zeigt, dass bei den
obersten Konfidenzschwellen von 10–50% nahezu alle als veröffentlichbar eingestuften Doku-
mente korrekt sind. Die Precision liegt für alle drei Konfidenzmaße bei etwa 99%, was den
praktischen Nutzen der Konfidenzprüfung verdeutlicht.

Gleichzeitig bestehen auch Einschränkungen. Das Modell ist in seiner Leistungsfähigkeit eng
an bestimmte Dokumentformate gebunden, da die historischen Dokumente des CM1-COVER-
Korpus ein relativ homogenes Layout aufweisen. Auch bleibt die Abhängigkeit von ausreichend

57

58 fazit

annotierten Trainingsdaten bestehen, wodurch der Einsatz in diversifizierten oder datenarmen
Anwendungsszenarien erschwert wird. Schließlich erweisen sich Konfidenzmaße zwar als
nützlich, liefern jedoch nicht in allen Fällen eine verlässliche Abbildung der tatsächlichen
Unsicherheit.

Für die Zukunft ergeben sich mehrere Ansatzpunkte. Zum einen bietet sich die Erweiterung
des Ansatzes auf weitere Dokumentfelder, wie Namen, Beträge oder Adressen, an. Zum ande-
ren bieten aktive Lernstrategien [Set09, Set12] oder semi-supervised Learning [Zhu08, CSZ09]
die Möglichkeit, die Dateneffizienz zu steigern und die Abhängigkeit von großen Trainings-
mengen zu reduzieren. Darüber hinaus erscheint die Integration in digitale Archivsysteme
besonders vielversprechend, um historische Datenbestände automatisiert und qualitätsgesi-
chert zu erschließen.

Insgesamt zeigt diese Arbeit, dass moderne End-to-End-Modelle wie Donut in Verbin-
dung mit geeigneten Finetuning-Strategien und Konfidenzbewertung ein leistungsfähiges
Werkzeug zur automatisierung historischer Dokumente darstellen. Damit einen wichtigen
Schritt in Richtung einer effizienteren und verlässlicheren Digitalisierung des kulturellen Erbes
ermöglichen.

7
A N H A N G

Abg.
Daten

SeqAcc mCER

T2M MIN MULT t2M MIN MULT

10% 96.61 97.80 96.63 0.36 0.22 0.43

20% 96.33 97.37 96.15 0.40 0.26 0.45

40% 96.58 96.95 96.50 0.40 0.36 0.42

60% 93.73 93.76 93.85 0.75 0.74 0.73

80% 87.82 87.14 87.85 1.55 1.59 1.51

100% 79.39 79.39 79.39 3.11 3.11 3.11

Tabelle 7.0.1: Die exakten Werte von SeqAcc (%) und mCER (%) in Experiment 5.4.2 in Ab-
hängigkeit vom Anteil der Testdaten, die nach absteigenden Konfidenzwerten
ausgewählt wurden.

59

60 anhang

Abg.
Daten

SeqAcc mCER

T2M MIN MULT t2M MIN MULT
σ
=

2
0

%

10% 75.87 77.22 77.43 3.42 3.20 3.20

20% 62.86 62.08 63.99 5.60 5.85 4.84

40% 48.72 47.29 49.53 8.00 8.50 7.55

60% 40.31 38.96 40.71 9.73 10.19 9.35

80% 34.33 33.76 34.72 11.45 11.72 11.15

100% 29.24 29.24 29.24 13.48 13.48 13.48

σ
=

5
0

%

10% 93.81 93.91 93.96 0.72 0.70 0.70

20% 93.85 94.20 93.57 0.80 0.76 0.88

40% 90.14 91.42 90.29 1.28 1.13 1.27

60% 81.92 83.90 82.26 2.40 2.23 2.37

80% 73.46 76.27 73.69 3.76 3.33 3.65

100% 68.61 68.61 68.61 4.91 4.91 4.91

σ
=

8
0

%

10% 95.92 96.66 95.44 0.43 0.34 0.49

20% 95.70 96.25 95.45 0.47 0.41 0.50

40% 95.20 95.26 94.99 0.60 0.55 0.58

60% 89.68 90.10 89.63 1.33 1.26 1.32

80% 82.94 83.61 82.81 2.41 2.29 2.33

100% 75.54 75.54 75.54 4.06 4.06 4.06

Tabelle 7.0.2: Exakte Werte von SeqAcc (%) und mCER (%) des Donut-DC2 Modells bei un-
terschiedlichen Trainingsanteilen (20%, 50%, 80%) im Vergleich der Konfidenz-
metriken T2M, MIN und MULT aus Experiment 5.4.3. Die Auswertung erfolgt
auf sukzessiven Teilmengen des Testdatensatzes (10%, 20%, 40%, 60%, 80%, 100%),
die nach absteigendem Konfidenzwert sortiert wurden.

anhang 61

Abg.
Daten

Precision RER

T2M MIN MULT t2M MIN MULT

10% 98.9 99.6 98.9 97.9 99.2 97.9

20% 99.2 99.6 99.0 97.1 98.4 96.2

30% 99.4 99.6 99.3 97.1 97.6 96.2

40% 99.5 99.5 99.2 96.3 96.3 94.7

50% 99.3 99.1 99.1 94.2 92.3 92.3

60% 98.8 98.8 98.8 87.6 88.3 88.5

70% 98.1 98.1 98.2 78.3 77.3 79.2

80% 97.2 96.4 97.3 63.4 52.5 65.4

90% 95.7 95.4 95.9 39.1 31.8 41.7

100% 93.8 93.8 93.8 0.0 0.0 0.0

Tabelle 7.0.3: Die exakten Werte von Precision (%) und Relative Error Reduction (%) über
verschiedene Konfidenzschwellenwerte aus Experiment 5.4.4.

L I T E R AT U RV E R Z E I C H N I S

[AAS20] Ajit, Arohan ; Acharya, Koustav ; Samanta, Abhishek: A Review of Convolu-
tional Neural Networks. In: 2020 International Conference on Emerging Trends in
Information Technology and Engineering (ic-ETITE), 2020, S. 1–5

[ACM+
15] Afzal, Muhammad Z. ; Capobianco, Samuele ; Malik, Muhammad I. ; Marinai,

Simone ; Breuel, Thomas M. ; Dengel, Andreas ; Liwicki, Marcus: Deepdocclas-
sifier: Document classification with deep Convolutional Neural Network. In: 2015
13th International Conference on Document Analysis and Recognition (ICDAR), 2015,
S. 1111–1115

[Agg23] Aggarwal, Charu C.: Neural Networks and Deep Learning. Springer Cham, 2023.
ISSN 1611–3349

[Arc] Archives, Arolsen: Mehr Wissen über Displaced Persons.
https://arolsen-archives.org/blick-in-die-sammlung/
nachkriegsakten-zu-displaced-persons/, . – Accessed: 2025-07-
21

[BB08] Bertolami, Roman ; Bunke, Horst: Hidden Markov model-based ensemble
methods for offline handwritten text line recognition. In: Pattern Recognition 41

(2008), Nr. 11, S. 3452–3460. – ISSN 0031–3203

[BCB16] Bahdanau, Dzmitry ; Cho, Kyunghyun ; Bengio, Yoshua: Neural Machine Transla-
tion by Jointly Learning to Align and Translate. https://arxiv.org/abs/1409.
0473. Version: 2016

[BCKW15] Blundell, Charles ; Cornebise, Julien ; Kavukcuoglu, Koray ; Wierstra,
Daan: Weight Uncertainty in Neural Networks. https://arxiv.org/abs/1505.
05424. Version: 2015

[BCN18] Bottou, Léon ; Curtis, Frank E. ; Nocedal, Jorge: Optimization Methods for Large-
Scale Machine Learning. https://arxiv.org/abs/1606.04838. Version: 2018

[BCSS23] Blecher, Lukas ; Cucurull, Guillem ; Scialom, Thomas ; Stojnic, Robert:
Nougat: Neural Optical Understanding for Academic Documents. 2023

[Bis06] In: Bishop, Christopher: Pattern Recognition and Machine Learning. Bd. 16. 2006, S.
140–155

[BKH16] Ba, Jimmy L. ; Kiros, Jamie R. ; Hinton, Geoffrey E.: Layer Normalization.
https://arxiv.org/abs/1607.06450. Version: 2016

63

https://arolsen-archives.org/blick-in-die-sammlung/nachkriegsakten-zu-displaced-persons/
https://arolsen-archives.org/blick-in-die-sammlung/nachkriegsakten-zu-displaced-persons/
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1505.05424
https://arxiv.org/abs/1505.05424
https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/1607.06450

64 literaturverzeichnis

[BM17] Bluche, Théodore ; Messina, Ronaldo: Gated Convolutional Recurrent Neural
Networks for Multilingual Handwriting Recognition. In: 2017 14th IAPR Inter-
national Conference on Document Analysis and Recognition (ICDAR) Bd. 01, 2017, S.
646–651

[Bot10] Bottou, Léon: Large-Scale Machine Learning with Stochastic Gradient Descent.
In: Lechevallier, Yves (Hrsg.) ; Saporta, Gilbert (Hrsg.): Proceedings of COMP-
STAT’2010. Heidelberg : Physica-Verlag HD, 2010. – ISBN 978–3–7908–2604–3, S.
177–186

[BRM+
20] Boroş, Emanuela ; Romero, Verónica ; Maarand, Martin ; Zenklová, Kateřina

; Křečková, Jitka ; Vidal, Enrique ; Stutzmann, Dominique ; Kermorvant,
Christopher: A comparison of sequential and combined approaches for named
entity recognition in a corpus of handwritten medieval charters. In: 2020 17th
International Conference on Frontiers in Handwriting Recognition (ICFHR), 2020, S.
79–84

[BSF94] Bengio, Y. ; Simard, P. ; Frasconi, P.: Learning long-term dependencies with
gradient descent is difficult. In: IEEE Transactions on Neural Networks 5 (1994), Nr.
2, S. 157–166

[CCP23a] Coquenet, Denis ; Chatelain, Clément ; Paquet, Thierry: DAN: A Segmentation-
Free Document Attention Network for Handwritten Document Recognition. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (2023), Juli, Nr. 7,
S. 8227–8243. – ISSN 1939–3539

[CCP23b] Coquenet, Denis ; Chatelain, Clément ; Paquet, Thierry: Faster DAN: Multi-
target Queries with Document Positional Encoding for End-to-End Handwritten
Document Recognition. In: Document Analysis and Recognition - ICDAR 2023,
Springer Nature Switzerland, 2023. – ISBN 9783031416859, S. 182–199

[CMB23] Christopher M. Bishop, Hugh B.: In: Deep Learning: Foundations and Concepts,
Springer Cham, 2023. – ISBN 978–3–031–45468–4, S. 198–286

[CSZ09] Chapelle, O. ; Scholkopf, B. ; Zien, A. Eds.: Semi-Supervised Learning (Chapel-
le, O. et al., Eds.; 2006) [Book reviews]. In: IEEE Transactions on Neural Networks
20 (2009), Nr. 3, S. 542–542

[CTBH+
19] Corbière, Charles ; Thome, Nicolas ; Bar-Hen, Avner ; Cord, Matthieu ; Pérez,

Patrick: Addressing Failure Prediction by Learning Model Confidence. https://
arxiv.org/abs/1910.04851. Version: 2019

[DBK+
21] Dosovitskiy, Alexey ; Beyer, Lucas ; Kolesnikov, Alexander ; Weissenborn,

Dirk ; Zhai, Xiaohua ; Unterthiner, Thomas ; Dehghani, Mostafa ; Minderer,
Matthias ; Heigold, Georg ; Gelly, Sylvain ; Uszkoreit, Jakob ; Houlsby, Neil:
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. https:
//arxiv.org/abs/2010.11929. Version: 2021

https://arxiv.org/abs/1910.04851
https://arxiv.org/abs/1910.04851
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929

literaturverzeichnis 65

[DCLT19] Devlin, Jacob ; Chang, Ming-Wei ; Lee, Kenton ; Toutanova, Kristina: BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In: Burstein, Jill (Hrsg.) ; Doran, Christy (Hrsg.) ; Solorio, Thamar (Hrsg.):
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers). Minneapolis, Minnesota : Association for Computational Linguistics, Juni
2019, S. 4171–4186

[DFO20] Deisenroth, Marc P. ; Faisal, A A. ; Ong, Cheng S.: Mathematics for machine
learning. Cambridge University Press, 2020

[DJS+22] Dahl, Christian M. ; Johansen, Torben S. D. ; Sørensen, Emil N. ; Westermann,
Christian E. ; Wittrock, Simon F.: DARE: A large-scale handwritten date recognition
system. https://arxiv.org/abs/2210.00503. Version: 2022

[DL13] Damianou, Andreas C. ; Lawrence, Neil D.: Deep Gaussian Processes. https:
//arxiv.org/abs/1211.0358. Version: 2013

[DMP+
22] Davis, Brian ; Morse, Bryan ; Price, Bryan ; Tensmeyer, Chris ; Wigington,

Curtis ; Morariu, Vlad: End-to-end Document Recognition and Understanding with
Dessurt. 2022

[DSS08] In: Dhingra, Kapil D. ; Sanyal, Sudip ; Sharma, Pramod K.: A Robust OCR for
Degraded Documents. Boston, MA : Springer US, 2008. – ISBN 978–0–387–74938–9,
S. 497–509

[FB14] In: Frinken, Volkmar ; Bunke, Horst: Continuous Handwritten Script Recognition.
London : Springer London, 2014. – ISBN 978–0–85729–859–1, S. 391–425

[FRB+
17] Fornés, Alicia ; Romero, Verónica ; Baró, Arnau ; Toledo, Juan I. ; Sánchez,

Joan A. ; Vidal, Enrique ; Lladós, Josep: ICDAR2017 Competition on Information
Extraction in Historical Handwritten Records. In: 2017 14th IAPR International
Conference on Document Analysis and Recognition (ICDAR) Bd. 01, 2017, S. 1389–1394

[GBC16] Goodfellow, Ian ; Bengio, Yoshua ; Courville, Aaron: Deep Learning. MIT
Press, 2016. – http://www.deeplearningbook.org

[GFGS06] Graves, Alex ; Fernández, Santiago ; Gomez, Faustino ; Schmidhuber, Jürgen:
Connectionist temporal classification: labelling unsegmented sequence data with
recurrent neural networks. In: Proceedings of the 23rd International Conference on
Machine Learning. New York, NY, USA : Association for Computing Machinery,
2006 (ICML ’06). – ISBN 1595933832, S. 369–376

[GG16] Gal, Yarin ; Ghahramani, Zoubin: Dropout as a Bayesian Approximation: Repre-
senting Model Uncertainty in Deep Learning. https://arxiv.org/abs/1506.
02142. Version: 2016

[GPSW17] Guo, Chuan ; Pleiss, Geoff ; Sun, Yu ; Weinberger, Kilian Q.: On Calibration of Mo-
dern Neural Networks. https://arxiv.org/abs/1706.04599. Version: 2017

https://arxiv.org/abs/2210.00503
https://arxiv.org/abs/1211.0358
https://arxiv.org/abs/1211.0358
http://www.deeplearningbook.org
https://arxiv.org/abs/1506.02142
https://arxiv.org/abs/1506.02142
https://arxiv.org/abs/1706.04599

66 literaturverzeichnis

[gQL+
19] guo, He ; Qin, Xiameng ; Liu, Jiaming ; Han, Junyu ; Liu, Jingtuo ; Ding,

Errui: EATEN: Entity-aware Attention for Single Shot Visual Text Extraction. https:
//arxiv.org/abs/1909.09380. Version: 2019

[HG18] Hendrycks, Dan ; Gimpel, Kevin: A Baseline for Detecting Misclassified and Out-
of-Distribution Examples in Neural Networks. https://arxiv.org/abs/1610.
02136. Version: 2018

[HG23] Hendrycks, Dan ; Gimpel, Kevin: Gaussian Error Linear Units (GELUs). https:
//arxiv.org/abs/1606.08415. Version: 2023

[HLC+
22] Huang, Yupan ; Lv, Tengchao ; Cui, Lei ; Lu, Yutong ; Wei, Furu: LayoutLMv3:

Pre-training for Document AI with Unified Text and Image Masking. New
York, NY, USA : Association for Computing Machinery, 2022 (MM ’22). – ISBN
9781450392037, S. 4083–4091

[HZRS16] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Deep Residual
Learning for Image Recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016

[IK23] Iwana, Brian K. ; Kusuda, Akihiro: Vision Conformer: Incorporating Convolu-
tions into Vision Transformer Layers. https://arxiv.org/abs/2304.13991.
Version: 2023

[JKGG18] Jiang, Heinrich ; Kim, Been ; Guan, Melody Y. ; Gupta, Maya: To Trust Or Not To
Trust A Classifier. https://arxiv.org/abs/1805.11783. Version: 2018

[KB17] Kingma, Diederik P. ; Ba, Jimmy: Adam: A Method for Stochastic Optimization.
https://arxiv.org/abs/1412.6980. Version: 2017

[Ket17] Ketkar, Nikhil: Deep learning with Python. Apress Berkeley, CA, 2017. – ISBN
978–1–4842–2765–7

[KG17] Kendall, Alex ; Gal, Yarin: What Uncertainties Do We Need in Bayesian De-
ep Learning for Computer Vision? https://arxiv.org/abs/1703.04977.
Version: 2017

[KHY+
22] Kim, Geewook ; Hong, Teakgyu ; Yim, Moonbin ; Nam, JeongYeon ; Park,

Jinyoung ; Yim, Jinyeong ; Hwang, Wonseok ; Yun, Sangdoo ; Han, Dongyoon ;
Park, Seunghyun: OCR-Free Document Understanding Transformer. In: Avidan,
Shai (Hrsg.) ; Brostow, Gabriel (Hrsg.) ; Cissé, Moustapha (Hrsg.) ; Farinella,
Giovanni M. (Hrsg.) ; Hassner, Tal (Hrsg.): Computer Vision – ECCV 2022. Cham :
Springer Nature Switzerland, 2022. – ISBN 978–3–031–19815–1, S. 498–517

[KKY+
14] Kang, Le ; Kumar, Jayant ; Ye, Peng ; Li, Yi ; Doermann, David: Convolutional

Neural Networks for Document Image Classification. In: 2014 22nd International
Conference on Pattern Recognition, 2014, S. 3168–3172

https://arxiv.org/abs/1909.09380
https://arxiv.org/abs/1909.09380
https://arxiv.org/abs/1610.02136
https://arxiv.org/abs/1610.02136
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/2304.13991
https://arxiv.org/abs/1805.11783
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1703.04977

literaturverzeichnis 67

[KNH+
22] Khan, Salman ; Naseer, Muzammal ; Hayat, Munawar ; Zamir, Syed W. ;

Khan, Fahad S. ; Shah, Mubarak: Transformers in Vision: A Survey. In: ACM
Computing Surveys 54 (2022), Januar, Nr. 10s, 1–41. http://dx.doi.org/10.
1145/3505244. – ISSN 1557–7341

[LB98] LeCun, Yann ; Bengio, Yoshua: Convolutional networks for images, speech, and
time series. In: The handbook of brain theory and neural networks (1998)

[Lem12] Lemaréchal, Claude: Cauchy and the gradient method. In: Doc Math Extra 251

(2012), Nr. 254, S. 10

[LGG+
20] Liu, Yinhan ; Gu, Jiatao ; Goyal, Naman ; Li, Xian ; Edunov, Sergey ; Ghaz-

vininejad, Marjan ; Lewis, Mike ; Zettlemoyer, Luke: Multilingual Denoising
Pre-training for Neural Machine Translation. https://arxiv.org/abs/2001.
08210. Version: 2020

[LLC+
21] Liu, Ze ; Lin, Yutong ; Cao, Yue ; Hu, Han ; Wei, Yixuan ; Zhang, Zheng ; Lin,

Stephen ; Guo, Baining: Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. In: 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), 2021, S. 9992–10002

[LLG+
19] Lewis, Mike ; Liu, Yinhan ; Goyal, Naman ; Ghazvininejad, Marjan ; Mohamed,

Abdelrahman ; Levy, Omer ; Stoyanov, Ves ; Zettlemoyer, Luke: BART: Denoising
Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and
Comprehension. 2019

[MCCD13] Mikolov, Tomas ; Chen, Kai ; Corrado, Greg ; Dean, Jeffrey: Efficient Estimation
of Word Representations in Vector Space. https://arxiv.org/abs/1301.3781.
Version: 2013

[MLEY+
00] Morita, M.E. ; Letelier, E. ; El Yacoubi, A. ; Bortolozzi, F. ; Sabourin, R.:

Recognition of handwritten dates on bank checks using an HMM approach. In:
Proceedings 13th Brazilian Symposium on Computer Graphics and Image Processing
(Cat. No.PR00878), 2000, S. 113–120

[MSC+
13] Mikolov, Tomas ; Sutskever, Ilya ; Chen, Kai ; Corrado, Greg ; Dean, Jeffrey:

Distributed Representations of Words and Phrases and their Compositionality. https:
//arxiv.org/abs/1310.4546. Version: 2013

[NP20] Nicolson, Aaron ; Paliwal, Kuldip K.: Masked multi-head self-attention for
causal speech enhancement. In: Speech Communication 125 (2020), S. 80–96. – ISSN
0167–6393

[OBK+
24] Okamoto, Yamato ; Baek, Youngmin ; Kim, Geewook ; Nakao, Ryota ; Kim,

DongHyun ; Yim, Moon B. ; Park, Seunghyun ; Lee, Bado: CREPE: Coordinate-
Aware End-to-End Document Parser. https://arxiv.org/abs/2405.00260.
Version: 2024

http://dx.doi.org/10.1145/3505244
http://dx.doi.org/10.1145/3505244
https://arxiv.org/abs/2001.08210
https://arxiv.org/abs/2001.08210
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/2405.00260

68 literaturverzeichnis

[ON15] O’Shea, Keiron ; Nash, Ryan: An Introduction to Convolutional Neural Networks.
https://arxiv.org/abs/1511.08458. Version: 2015

[Pla00] Platt, John: Probabilistic Outputs for Support Vector Machines and Comparisons
to Regularized Likelihood Methods. In: Adv. Large Margin Classif. 10 (2000), 06

[PNCH15] Pakdaman Naeini, Mahdi ; Cooper, Gregory ; Hauskrecht, Milos: Obtaining
Well Calibrated Probabilities Using Bayesian Binning. In: Proceedings of the AAAI
Conference on Artificial Intelligence 29 (2015), Feb., Nr. 1

[Pow20] Powers, David M. W.: Evaluation: from precision, recall and F-measure to ROC, in-
formedness, markedness and correlation. https://arxiv.org/abs/2010.16061.
Version: 2020

[Pre12] Prechelt, Lutz: Early Stopping — But When? In: Montavon, Grégoire (Hrsg.) ;
Orr, Geneviève B. (Hrsg.) ; Müller, Klaus-Robert (Hrsg.): Neural Networks: Tricks
of the Trade: Second Edition. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. –
ISBN 978–3–642–35289–8, S. 53–67

[PSL+
19] Park, Seunghyun ; Shin, Seung ; Lee, Bado ; Lee, Junyeop ; Surh, Jaeheung ; Seo,

Minjoon ; Lee, Hwalsuk: CORD: A Consolidated Receipt Dataset for Post-OCR
Parsing. (2019)

[Pui17] Puigcerver, Joan: Are Multidimensional Recurrent Layers Really Necessary for
Handwritten Text Recognition? In: 2017 14th IAPR International Conference on
Document Analysis and Recognition (ICDAR) Bd. 1, 2017, S. 67–72

[PV21] Poulos, Jason ; Valle, Rafael: Character-based handwritten text transcription
with attention networks. In: Neural Computing and Applications 33 (2021), Februar,
Nr. 16, S. 10563–10573. – ISSN 1433–3058

[RAS20] Rasamoelina, Andrinandrasana D. ; Adjailia, Fouzia ; Sinčák, Peter: A Review
of Activation Function for Artificial Neural Network. In: 2020 IEEE 18th World
Symposium on Applied Machine Intelligence and Informatics (SAMI), 2020, S. 281–286

[RFS+13] Romero, Verónica ; Fornés, Alicia ; Serrano, Nicolás ; Sánchez, Joan A. ;
Toselli, Alejandro H. ; Frinken, Volkmar ; Vidal, Enrique ; Lladós, Josep:
The ESPOSALLES database: An ancient marriage license corpus for off-line
handwriting recognition. In: Pattern Recognition 46 (2013), Nr. 6, S. 1658–1669. –
ISSN 0031–3203

[RHW86] Rumelhart, David ; Hinton, Geoffrey ; Williams, Ronald: Learning representa-
tions by back-propagating errors, Nature Publishing Group UK London, 1986. –
ISBN 1476–4687

[RNS+18] Radford, Alec ; Narasimhan, Karthik ; Salimans, Tim ; Sutskever, Ilya u. a.:
Improving language understanding by generative pre-training. (2018)

[Rud17] Ruder, Sebastian: An overview of gradient descent optimization algorithms. https:
//arxiv.org/abs/1609.04747. Version: 2017

https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/2010.16061
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747

literaturverzeichnis 69

[RZL17] Ramachandran, Prajit ; Zoph, Barret ; Le, Quoc V.: Searching for Activation
Functions. https://arxiv.org/abs/1710.05941. Version: 2017

[Set09] Settles, Burr: Active learning literature survey. (2009)

[Set12] Settles, Burr: Active Learning. Bd. 6. 2012

[SF17] Sudholt, Sebastian ; Fink, Gernot A.: PHOCNet: A Deep Convolutional Neural
Network for Word Spotting in Handwritten Documents. https://arxiv.org/
abs/1604.00187. Version: 2017

[SHB16] Sennrich, Rico ; Haddow, Barry ; Birch, Alexandra: Neural Machine Translation
of Rare Words with Subword Units. 2016

[SKP97] Svozil, Daniel ; Kvasnicka, Vladimír ; Pospichal, Jirí: Introduction to multi-layer
feed-forward neural networks. In: Chemometrics and Intelligent Laboratory Systems
39 (1997), Nr. 1, S. 43–62. – ISSN 0169–7439

[SN12] Schuster, Mike ; Nakajima, Kaisuke: Japanese and Korean voice search. In: 2012
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2012, S. 5149–5152

[SNBTL20] Sousa Neto, Arthur F. ; Bezerra, Byron Leite D. ; Toselli, Alejandro H. ; Lima,
Estanislau B.: HTR-Flor: A Deep Learning System for Offline Handwritten Text
Recognition. In: 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images
(SIBGRAPI), 2020, S. 54–61

[TWW22] Tunstall, Lewis ; Werra, Leandro von ; Wolf, Thomas: Natural Language
Processing with Transformers: Building Language Applications with Hugging Face.
O’Reilly Media, Incorporated, 2022 https://books.google.ch/books?id=
7hhyzgEACAAJ. – ISBN 1098103246

[VDN16] Voigtlaender, Paul ; Doetsch, Patrick ; Ney, Hermann: Handwriting Recogni-
tion with Large Multidimensional Long Short-Term Memory Recurrent Neural
Networks. In: 2016 15th International Conference on Frontiers in Handwriting Reco-
gnition (ICFHR), 2016, S. 228–233

[VLBM08] Vincent, Pascal ; Larochelle, Hugo ; Bengio, Yoshua ; Manzagol, Pierre-
Antoine: Extracting and composing robust features with denoising autoencoders.
In: Proceedings of the 25th International Conference on Machine Learning. New York,
NY, USA : Association for Computing Machinery, 2008 (ICML ’08). – ISBN
9781605582054, S. 1096–1103

[VSP+
23] Vaswani, Ashish ; Shazeer, Noam ; Parmar, Niki ; Uszkoreit, Jakob ; Jones,

Llion ; Gomez, Aidan N. ; Kaiser, Lukasz ; Polosukhin, Illia: Attention Is All You
Need. 2023

[VWN23] Vries, Wietse de ; Wieling, Martijn ; Nissim, Malvina: DUMB: A Benchmark
for Smart Evaluation of Dutch Models. https://arxiv.org/abs/2305.13026.
Version: 2023

https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1604.00187
https://arxiv.org/abs/1604.00187
https://books.google.ch/books?id=7hhyzgEACAAJ
https://books.google.ch/books?id=7hhyzgEACAAJ
https://arxiv.org/abs/2305.13026

70 literaturverzeichnis

[WTM+
25] Wolf, Fabian ; Tüselmann, Oliver ; Matei, Arthur ; Hennies, Lukas ; Rass,

Christoph ; Fink, Gernot A.: CM1 – A Dataset for Evaluating Few-Shot Information
Extraction with Large Vision Language Models. https://arxiv.org/abs/2505.
04214. Version: 2025

[WXCH17] Wang, Qi ; Xu, Jungang ; Chen, Hong ; He, Ben: Two improved continuous
bag-of-word models. In: 2017 International Joint Conference on Neural Networks
(IJCNN), 2017, S. 2851–2856

[XLC+
20] Xu, Yiheng ; Li, Minghao ; Cui, Lei ; Huang, Shaohan ; Wei, Furu ; Zhou, Ming:

LayoutLM: Pre-training of Text and Layout for Document Image Understanding.
In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery amp; Data Mining, ACM, August 2020 (KDD ’20), S. 1192–1200

[XLC+
21] Xu, Yiheng ; Lv, Tengchao ; Cui, Lei ; Wang, Guoxin ; Lu, Yijuan ; Florencio, Din-

ei ; Zhang, Cha ; Wei, Furu: LayoutXLM: Multimodal Pre-training for Multilingual
Visually-rich Document Understanding. https://arxiv.org/abs/2104.08836.
Version: 2021

[XXL+
22] Xu, Yang ; Xu, Yiheng ; Lv, Tengchao ; Cui, Lei ; Wei, Furu ; Wang, Guoxin ;

Lu, Yijuan ; Florencio, Dinei ; Zhang, Cha ; Che, Wanxiang ; Zhang, Min ;
Zhou, Lidong: LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document
Understanding. https://arxiv.org/abs/2012.14740. Version: 2022

[XZ23] Xiao, Tong ; Zhu, Jingbo: Introduction to Transformers: an NLP Perspective. https:
//arxiv.org/abs/2311.17633. Version: 2023

[ZC88] Zhou ; Chellappa: Computation of optical flow using a neural network. In: IEEE
1988 International Conference on Neural Networks, 1988, S. 71–78 vol.2

[ZE01] Zadrozny, Bianca ; Elkan, Charles: Obtaining calibrated probability estimates
from decision trees and naive Bayesian classifiers. In: Proceedings of the Eighteenth
International Conference on Machine Learning. San Francisco, CA, USA : Morgan
Kaufmann Publishers Inc., 2001 (ICML ’01). – ISBN 1558607781, S. 609–616

[ZE02] Zadrozny, Bianca ; Elkan, Charles: Transforming Classifier Scores into Accurate
Multiclass Probability Estimates. In: Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2002), 08

[Zhu08] Zhu, Xiaojin: Semi-Supervised Learning Literature Survey. In: Comput Sci,
University of Wisconsin-Madison 2 (2008), 07

https://arxiv.org/abs/2505.04214
https://arxiv.org/abs/2505.04214
https://arxiv.org/abs/2104.08836
https://arxiv.org/abs/2012.14740
https://arxiv.org/abs/2311.17633
https://arxiv.org/abs/2311.17633

	1 EINLEITUNG
	2 GRUNDLAGEN
	2.1 Problemdefinition
	2.2 Neuronale Netze
	2.2.1 Feedforward-Netzwerk
	2.2.2 Convolutional Neural Networks
	2.2.3 Optimierung

	2.3 Transformers
	2.3.1 Eingaberepräsentationen
	2.3.2 Attention
	2.3.3 Transformer-Modelle
	2.3.4 Vision Transformers

	3 VERWANDTE ARBEITEN
	3.1 Handschrifterkennung und Informationsextraktion
	3.2 Konfidenzbewertung

	4 METHODIK
	4.1 Modellarchitektur
	4.1.1 SWIN Encoder
	4.1.2 BART Decoder

	4.2 Konfidenzmaße

	5 EVALUATION
	5.1 Datensätze
	5.1.1 Death Certificates 2
	5.1.2 CM1-COVER

	5.2 Evaluationsmetriken
	5.2.1 Mean Character Error Rate
	5.2.2 Sequence Accuracy
	5.2.3 Klassifikationsleistung

	5.3 Trainingsaufbau
	5.4 Ergebnisse
	5.4.1 Reduktion der Trainingsdaten
	5.4.2 Modellsicherheit durch Konfidenzmaße
	5.4.3 Datensatzreduktion & Konfidenzbewertung
	5.4.4 Fehlervermeidung durch Konfidenzschranken

	6 FAZIT
	7 ANHANG

