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MOTIVATION

1.1 MOTIVATION AND PROBLEM STATEMENT

The widespread adoption of digital technologies in the late 20th century marked a
significant transition in the way documents are created and stored. However, this
technological shift also left behind an enormous legacy: vast collections of handwritten
historical documents (such as death certificates that predate the digital era) remain
largely unprocessed and difficult to access for systematic analysis. These documents
contain invaluable information about past societies, economies, and demographic pat-
terns, but their handwritten nature creates major obstacles for large-scale digitization
and analysis.

Historical documents such as census records and tax registers contain detailed infor-
mation that can reveal long-term social trends, economic patterns, and demographic
changes. For historians and demographers, these sources provide unique insight into
the behavior of the population, the patterns of mortality, and the social structures
of the past communities. However, extracting this information has traditionally re-
quired extensive manual labor, creating a significant bottleneck in historical research
productivity.

The Portuguese death certificates® from the city of Porto, covering the period from
1834 to 1910, provide a compelling example of these archival challenges. These
certificates represent a rich dataset for understanding mortality patterns and public
health trends in Portugal of the 19th century. Each certificate contains structured
information including personal details of the deceased, dates of death, causes of
mortality, poverty status, and family relationships - data that could significantly
advance our understanding of historical disease patterns and demographic transitions.

Despite their research value, manually annotating these documents presents con-
siderable practical challenges. Current estimates show that processing a single year’s
worth of death certificates requires approximately six months of dedicated annotation
work. This time-consuming manual process not only slows down research, but also
represents an inefficient use of scholarly resources that could be better directed toward
higher-level analytical tasks and historical interpretation.

Thttps://ciencia.iscte-iul.pt/projects/files/46310
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MOTIVATION

1.2 AUTOMATED INFORMATION EXTRACTION

Automating the extraction of structured information from handwritten historical
records requires methods that can reliably convert complex document images into
machine-readable data. Over the years, two main paradigms have emerged for this
task: traditional handwriting text recognition (HTR) pipelines based on segmentation,
and more recent segmentation-free approaches. The following subsections outline
their principles and challenges, and motivate the choice of the model for this thesis.

1.2.1 Traditional HTR and its challenges

The usual approach for similar annotation tasks was to break the task into two stages:
Document Layout Analysis (DLA), where the text lines or words are segmented, and
Handwritten Text Recognition (HTR), which generates transcriptions by mapping
the parts from the DLA stage to predefined words and sentences. In practice, this
also means that two separate models need to be trained and maintained, one for
segmentation and one for recognition, each requiring its own annotated training
data. This approach, however, has yet another disadvantage: if the segmentation was
wrong, the entire process will be wrong because the second stage relies directly on
it. Furthermore, relying on the output of DLA task can sometimes be a disadvantage,
as the layout itself can help the model predict what text is at this position. Those
problems can be better seen in documents with nested structures like table of contents
for example. As we do not only want to recognize what sections we have, but also the
relationship between sections and subsections.

1.2.2 Segmentation-Free Approaches

To address those limitations, segmentation-free approaches have been an interesting
alternative in the field of HTR. These approaches merge the two steps (document
layout and text recognition) into one end-to-end process, benefiting from the fact that
layout and text can actually strengthen each other.

In Segmentation-free paradigms, neural architectures such as encoder-decoder
models absorb all the contextual information from the document, including where
they position and their relative structure. By skipping the segmentation stage, these
methods can better handle complex document structure and can actually penalize the
wrong layout recognition, in comparison to the traditional models, that had no access
to the layout component.



1.3 OBJECTIVES OF THE THESIS

They can be divided into models for just parsing the layout and text, and models for
extracting specific information from the documents like the birthday of the decreased
in the Portuguese death certificates.

Those models shine at most with complex layout structures like the table of content
example or even the proposed Portuguese death certificates. Models using this strategy
learn to focus on relevant parts of the document automatically, allowing more flexible
recognition across different document types and layouts.

1.3 OBJECTIVES OF THE THESIS

The Portuguese death certificates have many challenges such as irregular handwriting,
nested structures, and diverse layouts. Therefore, the choice of modeling paradigm
is crucial. Segmentation-based models, while established, risk cascading errors and
struggle with the variability of historical records. Segmentation-free approaches, by
contrast, integrate layout and text in a single process and are therefore better suited to
documents where structure and content are tightly interwoven.

As a result, this thesis takes segmentation-free models as its starting point and inves-
tigates how well they can support historians in extracting structured information from
historical death records. In particular, it evaluates the performance of DonuT [Kim+22]
model, which has been designed for, among other purposes, end-to-end document
information extraction. Otherwise, the thesis has some other secondary objects as:

1. Training Strategy Comparison: Comparing how well the model performs when
trained on multiple tasks sequentially versus individual tasks.

2. Preprocessing Effects: How eliminating irrelevant parts can affect the perfor-
mance on some tasks.

3. Resources for Future Research: Developing Donut-formatted datasets from
which future work can benefit.

The main research questions that are going to be addressed are:

RQ1 How accurately can DonuT [Kim+22] extract key information (names, dates, or
causes of death) from this specific dataset?

RQ2 Does the model work better for this task when trained on multiple tasks or a
single task?

RQ3 Is pre-processing necessary?



MOTIVATION

1.4 THESIS STRUCTURE

In the next five chapters, the segmentation-free recognition of Portuguese death cer-
tificates is going to be systematically addressed. Chapter 2 presents the fundamental
concepts of handwritten text recognition, neural networks, transformers, and visual
document understanding, establishing the theoretical background. Chapter 3 reviews
related work, focusing on some other models and their applications. Chapter 4 details
the methodology, including the model architecture, training process, and output pars-
ing strategies. Chapter 5 describes the experiments, covering the dataset, evaluation
metrics, experimental setup, baseline, core experiments, and result analysis. Finally,
Chapter 6 concludes with a summary, key findings, limitations, and suggestions for
future work, providing a comprehensive closure to the study.



FUNDAMENTALS

This chapter explains the fundamentals needed to understand the method used in
chapter 4. The theoretical foundations in this chapter are primarily based on Bishop
and Bishop [BB23] and lecture materials from [Fin25], with additional sources cited
where applicable.

2.1 HANDWRITTEN TEXT RECOGNITION

Handwritten Text Recognition (HTR) belongs to the broader field of pattern recog-
nition, which deals with the automatic processing and analysis of patterns in data.
In the context of HTR, the goal is to convert images containing handwritten text
into machine-readable digital text, enabling automated processing of handwritten
documents.

The fundamental challenge in HTR lies in the variability of handwriting styles,
document quality, and layout complexity. Unlike printed text recognition, handwritten
text exhibits significant variations between different writers and even within the same
writer’s text, making automated recognition a complex computational problem.

Formally, HTR can be defined as learning a mapping function:

fo:J— 8" (2.1.1)

where J = RH*WXC represents the space of input images with height H, width W,

and C channels, § denotes the set of possible characters, and 8§* represents sequences
of characters from this set.

For document understanding tasks, this basic formulation can be extended to include
question-answering capabilities:

fo:IxQ — 8" (2.1.2)

where Q represents the space of questions about the document content. A specific
instantiation of this formulation is Information Extraction (IE), where the task is to
extract structured information from documents. The question-answering formulation
naturally accommodates IE tasks by treating field identifiers as queries, enabling the
extraction of predefined attributes from unstructured documents.
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The model is trained to minimize the empirical loss over a dataset D = {(I, si)}}l]
(or {(Ii, qi, si)}{\’:1 for question-answering):

N
£(0) = 5 3 tfo(Li) 50 (2.1)

i=1

The function fg in Equation 2.1.1 can be realized through various computational
approaches, with neural networks being particularly effective for learning complex
mappings from visual data to textual outputs. The following sections examine the
neural network architectures and components that enable such learning.

2.2 NEURAL NETWORKS

Neural networks have proven particularly effective for pattern recognition tasks in
computer vision, making them well-suited for handwritten text recognition and
document understanding. By learning hierarchical features from raw data such as
pixel intensities in document images, they can identify complex patterns like varying
handwriting styles without explicit feature engineering.

2.2.1  Basic Neural Network Components

Artificial Neurons

The fundamental building block of a neural network is the artificial neuron, which com-
putes a weighted sum of its inputs and applies a nonlinear transformation. Formally,
a neuron computes:

n
Yy=o0 (Zwixi—i-b)
i=1

where x; are inputs, w; are weights representing the strength of each connection, b is
the bias term that shifts the decision threshold, and o is an activation function that
introduces nonlinearity.

The weights w; determine how strongly each input influences the neuron’s output,
while the bias b allows the neuron to activate even when all inputs are zero. Without
the activation function o, the neuron would perform only linear transformations,
severely limiting the network’s representational capacity.



2.2 NEURAL NETWORKS

Activation Functions

Activation functions introduce nonlinearity into neural networks, enabling them to
model complex patterns and relationships. Common activation functions include:
ReLU (Rectified Linear Unit):

o(z) = max(0,z)

ReLU outputs zero for negative inputs and the input value for positive inputs. This
function is computationally efficient and helps mitigate the vanishing gradient problem
during training.

Sigmoid Function:

B 1
C14ez

o(z)

The sigmoid function maps any real number to the range (0, 1), making it useful for
binary classification tasks where outputs can be interpreted as probabilities.

Softmax Function: For multi-class classification, the softmax function converts a
vector of real numbers into a probability distribution:

e~
Zf:] e

where K is the number of classes. The softmax ensures that all outputs sum to 1 and
can be interpreted as class probabilities.

softmax(zi) =

Multi-Layer Architecture

Neurons are organized into layers, forming a network where each layer transforms
its input and passes the result to subsequent layers as illustrated in Figure 2.2.1. A
feedforward neural network with L layers implements the function:

fo(x) = oM (w(L)G(L—n ( ey (w“)x+b(”) ) +b(U)
where:
* x € R™ is the input vector
e 0= {W“),b“)]\lL:1 are the learnable parameters

e Wl € RM*™-1 g the weight matrix of layer 1
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Figure 2.2.1: An example three-layer neural network

e bl) € R™ is the bias vector of layer 1
e oY is the activation function applied element-wise
¢ ny is the number of neurons in layer 1

Each layer extracts increasingly abstract patterns: early layers might detect edges and
simple patterns, while deeper layers combine these into more complex representations
such as character shapes or word structures.

2.2.2  Input and Output Representations

One-Hot Encoding

For classification tasks, categorical labels must be converted into numerical representa-
tions. One-hot encoding represents each class as a binary vector where exactly one
element is 1 and all others are o. For a vocabulary of size V, each character or token is
represented as:

v 1 ifj=1
e; €{0,1} where e;[j] =
0 otherwise

This representation allows neural networks to process discrete categorical data while
maintaining the property that no ordering relationship is implied between different
categories.



2.2 NEURAL NETWORKS

Softmax for Probability Distributions

In multi-class classification problems such as character recognition, the network’s
final layer typically uses softmax activation to produce a probability distribution over
possible classes. Given logits z € R¥ from the final layer, softmax produces:

e~t

ZJK:1 e”

p = softmax(z) where p; =
The resulting probability vector p satisfies Zf:1 pi = 1 and pi > 0, making it
suitable for representing confidence in class predictions.

2.2.3 Training Procedure

Training a neural network involves iteratively adjusting the network parameters
to minimize prediction errors on a given dataset. This optimization process uses
gradient-based methods to find parameter values that best approximate the desired
input-output mapping.

Loss Functions and Gradient Descent

N

Given a training dataset D = {(xi,yi)};,

empirical risk:

the training objective is to minimize the

N

30) = 5, > £lfolxi),y0)

i=1

where £ is a loss function that measures the discrepancy between predicted and
target outputs. For example, Mean Squared Error is commonly used:

M
L
LMsE = 3 Z(d]’ *f]! 1?2
j=1

where d; is the desired output and f).(L}
the output layer.

To minimize this objective, parameters are updated iteratively using gradient de-
scent:

is the actual network output for neuron j in

Bt+1 =0t —mVed(64)

11



12 FUNDAMENTALS

where 1 > 0 is the learning rate that controls the step size. The learning rate is
typically initialized to a larger value (e.g., n = 1.0) and gradually decreased during
training to achieve finer convergence to local optima.

Backpropagation Algorithm

Computing gradients VoJ(0) efficiently requires the backpropagation algorithm,

which applies the chain rule to propagate error signals backward through the network.
For a weight WS ) connecting neuron i in layer 1 — 1 to neuron j in layer 1, the

gradient is:

1 1
ot o of) oyY
owl!  ofY oy owy

B i

where y ]m is the pre-activation (weighted sum) of neuron j in layer L.

To compute these gradients efficiently, we introduce the local error 6)m = aaf”’
yA

)
which simplifies the calculations by reusing intermediate results. For the output layer
(L =L), this local error combines the loss gradient with the activation derivative:

o _ oL of
bt oyt

When using sigmoid activation functions, this expression simplifies to:
(L) o oDy (L) g (D)
6]. = —(d; f]. ) f]. (1 f]. )

For hidden layers (1 < L), the local error is computed by propagating errors backward
from the subsequent layer:

M(I-H)
n_ (L) g1 | ) (1
57 = D w8 (115
k=1

With these local errors computed, the weight update rule becomes:

wil) (b sVt

i Wi
The complete backpropagation process operates in three phases. First, a forward

pass computes network outputs layer by layer. Next, a backward pass computes the
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local errors 6).(” starting from the output layer and moving toward the input layers.
Finally, these local errors are used to update the weights according to the rule above.
This process repeats until convergence or a maximum number of iterations is reached.

The backpropagation algorithm enables efficient gradient computation by reusing
intermediate calculations and avoiding redundant computations across the network
layers.

2.3 TRANSFORMERS

The Transformer architecture [Vas+23] represents a fundamental shift in sequence
processing with attention-based computations that enable parallel processing and
improved modeling of long-range dependencies. Transformers have become the
foundation for many state-of-the-art models in natural language processing and
computer vision, including the document understanding model employed in this
thesis.

2.3.1 Input Representation

Before examining the attention mechanisms that define transformer architectures,
we must establish how raw data is converted into the vector representations that
transformers operate on. This section details the three key components of transformer
input representation: tokenization, embeddings, and positional encoding.

Tokenization

Tokenization converts raw text into discrete units that can be processed by neural
networks. Let:

* Y be a finite alphabet of characters
* V be a finite set of tokens, called the vocabulary

* M: £* — 2V be a splitting procedure that maps a string to a set of possible
token sequences

The tokenization function T : £* — V* is defined as:

T(s) = argmaxF(t)
tEM(s)

13
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where s € I* is the input string, F : V* — R is a scoring function, and t =
(t1,t2,...,tm) is the resulting sequence of token indices from V.

The tokenization process addresses vocabulary size constraints by decomposing
words into subword units. This approach handles rare words and out-of-vocabulary
terms more effectively than word-level tokenization.

Embeddings

Token IDs are mapped to continuous vector representations via a learnable embedding
matrix E € RP*V, where D is the embedding dimension and V is the vocabulary size:

vn = Ex,

where x,, is the one-hot encoded token ID and v,, € RP is the resulting vector
representation.

The embedding matrix E is learned during training, allowing the model to discover
semantic relationships between tokens. Tokens with similar meanings or functions
tend to be closer in the vector space, enabling the model to generalize across related
concepts.

Positional Embeddings

Transformer architectures process all input positions simultaneously, lacking the
inherent positional awareness of recurrent models. To incorporate sequence order
information, positional encodings are added to token embeddings.

Sinusoidal positional encodings r € RN*P are computed as:

: i i
Ti2) =S j/p ) TR T COS ajri/p
u u?

where U is a hyperparameter (typically 10,000), i € {1,..., N} indexes the sequence
position, and j € {0,...,D/2 — 1} indexes the embedding dimension.

The positional encoding alternates between sine and cosine functions across embed-
ding dimensions. Even dimensions (2j) use sine functions with different frequencies,
while odd dimensions (2j + 1) use cosine functions with corresponding frequencies.
Each dimension pair (2j,2j + 1) represents a different frequency, with lower-indexed
dimensions encoding faster-changing patterns and higher-indexed dimensions en-
coding slower-changing patterns. This creates a unique positional signature for each
sequence position.
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Figure 2.3.1: Sinusoidal positional encoding visualization. Left figure: Individual encoding
functions for different embedding dimensions. Right figure: Heat map showing
positional encoding values across positions and dimensions.

This encoding scheme has several important properties. It is deterministic, requiring
no learnable parameters. All values remain bounded in [-1, 1], and the model can learn
to attend based on relative distances between positions. Additionally, the sinusoidal
structure allows the model to handle sequences longer than those seen during training.

The final input representation combines token embeddings with positional encod-
ings:

X=[vi+r1,v2+12,...,VN +IN]

2.3.2 Attention Mechanisms

The core innovation of transformer architectures lies in their attention mechanisms,
which enable models to dynamically focus on relevant parts of the input sequence
when processing each element. This section examines the mathematical formulation
and computational properties of self-attention.

15
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Scaled Dot-Product Self-Attention

Self-attention mechanisms compute representations by relating different positions
within a single sequence. Given a data matrix X € RN*P representing N input vectors
with D-dimensional features, the self-attention mechanism computes an output matrix
Y € RNxDv,

The mechanism is parameterized by three learnable weight matrices:

* Query weights: W9 € RP*Dx
* Key weights: Wk € RP*Dx
* Value weights: WY € RP*Dv
where Dy and D, are the dimensions of the key/query and value representations,
respectively.
The attention computation proceeds as follows:
1. Linear Projections:
Q=XWI, K=XWK V=XW"
where Q,K € RN*Px and V € RN*Pv,

2. Attention Score Computation:

>
( \% [: k

where A € RN*N contains attention weights. The dot product QK™ measures
similarity between queries and keys, while the scaling factor /Dy prevents the
dot products from growing too large and pushing the softmax function into
saturation regions.

3. Weighted Value Aggregation:
Y =AV

where Y € RN*DPv represents the attention-weighted combination of value
vectors.

The complete self-attention (illustrated in Figure 2.3.2) operation can be expressed as:

Attention(Q, K, V) = Softmax (QKT> A%
- VD
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Figure 2.3.2: Scaled Dot-Product Attention mechanism. Input X is projected into query (Q),
key (K), and value (V) matrices. Attention is computed as softmax(QK' /v/dy)
applied to V, producing output Y [BB23].

Multi-Head Self-Attention

Multi-head attention extends the single attention mechanism by computing multi-
ple attention functions in parallel, each focusing on different aspects of the input
relationships.

Given input X € RN*D the multi-head self-attention mechanism employs H parallel
attention heads, each with its own parameter matrices W, WX € RP*Px and WY, €
IRD xD, .

For each head h € {1,...,H}:
head;, = Attention(XW;, XW§, XWY,)
The outputs from all heads are concatenated and linearly transformed:
Y = Concat(heady, ..., heady )W° (2.3.1)

where W° € RHDPvxD g a learned output projection matrix.

This architecture allows all heads to compute simultaneously, enabling parallel
processing. Each head can learn different attention patterns, allowing the model to
capture diverse relationships in the data. The presence of multiple attention paths also
helps stabilize gradients during training, reducing optimization difficulties.

17
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2.3.3 Transformer layer

The transformer layer combines multi-head attention with feed-forward processing
through residual connections and layer normalization. A transformer layer outputs a
matrix Y:

Y = LayerNorm(Z + FFNN(Z)) (2.3.2)

X

MLP

A

Z

l add & norm |<-

multi-head
self-attention

Figure 2.3.3: Single transformer layer architecture. Input X passes through multi-head self-

attention, followed by a residual connection and layer normalization to produce Z.
This is then processed by a feed-forward network (MLP), with another residual
connection and layer normalization producing the final output X [BB23].

as illustrated in Figure 2.3.3 where:

X € RN*D is the input matrix
Z = LayerNorm/(X + MultiHead (X))
Y € RN*D s the final layer output

LayerNorm normalizes activations along the feature dimension, stabilizing train-
ing

FFNN is a feed-forward network applied independently to each position
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This design enables parallel processing while modeling complex sequence relation-
ships.

2.3.4 Encoder-Decoder Model

One variation is the encoder-decoder transformer, which excels in sequence-to-sequence
tasks such as text translation. This architecture consists of two components that work
together: an encoder that processes the input sequence and a decoder that generates
the output sequence.

QOutput
Probabilities

Add & Norm

Feed
Forward
J
(Add & Norm J<~
A6\ Ny Mult-Head
Attention
Nx
Nix Add & Norm
Add & Norm Maskod
Multi-Head Multi-Head
Attention Attention
it L
. J N\ —
Positional A Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 2.3.4: The Transformer model architecture. The encoder (left) processes input sequences
through N stacked layers of multi-head self-attention and feed-forward net-
works. The decoder (right) generates outputs autoregressively using masked
self-attention, cross-attention to encoder outputs, and feed-forward networks. A
final linear layer and softmax produce output probabilities over the vocabulary.
Positional encodings are added to input embeddings in both stacks [Vas+23].

19
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The encoder processes the input sequence X € RN*P through L stacked transformer
layers, producing a context-aware representation Z € RN*P. This representation
captures the complete input context and serves as the foundation for output generation.

The decoder then generates the output sequence using the encoder representation
Z and previously generated tokens. Each decoder layer contains three main com-
ponents. First, masked self-attention prevents positions from attending to future
positions, ensuring that predictions depend only on previously generated tokens and
maintaining the autoregressive property necessary for sequential generation. Second,
cross-attention allows the decoder to access the encoder’s output, with queries coming
from the decoder while keys and values come from the encoder representation Z.
Finally, a feed-forward network is applied as in standard transformer layers.

This architecture (Figure 2.3.4) enables parallel processing during training while
maintaining autoregressive generation, addressing fundamental limitations of se-
quential models. The original transformer [Vas+23] demonstrated that attention
mechanisms alone could achieve state-of-the-art results while significantly reducing
training time through parallelization.

2.3.5 Vision Transformer

Dosovitskiy et al. [Dos+21] demonstrated that transformer architectures, originally
designed for sequential text data, can be applied to image classification with minimal
architectural modifications by treating images as sequences of patches.

While images already possess a mathematical representation I € RH*W*C  directly
feeding pixel values to transformers would be computationally prohibitive due to the
quadratic complexity of self-attention with respect to sequence length.

To address this, the image is divided into N = HP—\QV non-overlapping patches of
size P x P. Each patch is flattened into a vector of length P2C and linearly projected
to dimension D, forming the sequence X € RNXD A learnable classification token
[CLS] is prepended to the sequence to aggregate information for the final classification
decision.
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Figure 2.3.5: Vision Transformer architecture for image classification. The input image is
divided into non-overlapping patches, which are flattened and linearly embedded.
Learned positional encodings are added to preserve spatial information, and
a learnable [CLS] token is prepended to the sequence. The resulting patch
embeddings are processed by a transformer encoder, with the [CLS] token’s
output used for final classification [BB23].

This approach (Figure 2.3.5) enables transformers to process images using the
same attention mechanisms developed for text, requiring only the addition of patch
extraction and positional embeddings specific to spatial data.






RELATED WORK

The advent of deep learning has revolutionized handwritten text recognition (HTR), en-
abling the processing of complex visual data like historical documents during training.
Early deep learning approaches relied on recurrent neural networks (RNNs) [GSo8]
and convolutional-recurrent hybrid [SBY15] architectures to handle the sequential
and spatial nature of handwritten text. However, the introduction of transformer
architectures [Vas+23] fundamentally changed sequence modeling by enabling parallel
processing and superior long-range dependency capture through attention mecha-
nisms.

This chapter examines transformer-based models that have advanced HTR and
document understanding, tracing the evolution from encoder-decoder architectures to
multimodal vision-language models. Each approach addresses specific limitations of
its predecessors while introducing new capabilities relevant to processing historical
documents like Portuguese death certificates.

3.1 TROCR: TRANSFORMER-BASED OPTICAL CHARACTER RECOGNITION

Transformer-based Optical Character Recognition [Li+22] advanced HTR by extending
the separation of visual understanding and sequence generation first seen in CRNN.
This approach leverages transformers to overcome RNN limitations, offering a robust
solution for handwritten and printed text recognition.

Architecture: Vision Encoder and Language Decoder

TrOCR builds on CRNN's principle of distinct visual and sequential tasks, replacing
CNNs with a vision transformer (e.g., BEiT [Bao+22]) as the encoder to extract features
from raw images, and a language transformer (e.g., RoBERTa [Liu+19]) as the decoder
to generate text sequences. Both encoder and decoder employ transformer architectures
with self-attention mechanisms. The encoder processes the entire image in parallel
through patch-based attention, capturing spatial hierarchies, while the decoder uses
attention to predict character sequences end-to-end in an autoregressive manner. Pre-
training on synthetic data enhances its adaptability, making it segmentation-free and
efficient for variable-length text. The pipeline is illustrated in Figure 3.1.1.

23



24

RELATED WORK

A key contribution of TrOCR is demonstrating that standard, pre-trained vision
transformers can be directly applied to HTR without domain-specific architectural
adaptations. Unlike prior approaches that relied on specialized CNN backbones or task-
specific inductive biases, TrOCR uses vanilla ViT encoders (e.g., BEiT) with minimal
modifications of simply treating text images as sequences of patches. This architectural
simplicity proves that general-purpose transformer models, when properly pre-trained,
can achieve state-of-the-art results on HTR tasks without requiring custom designs
for the handwriting domain. This transferability represents a significant shift from
domain-engineered architectures to more generic, scalable solutions.

Performance Impact

TrOCR demonstrated significant improvements on benchmarks like IAM and RIMES
[Gro+o09], outperforming traditional OCR systems with its transformer-based approach.
Its ability to handle diverse scripts and noisy historical texts marks a leap forward,
establishing transformers as a new standard in HTR.

Relevance and Challenges

TrOCR’s relevance lies in its segmentation-free processing of raw images, enabling
extraction of text fields like names or dates. However, its focus on word-level outputs
limits layout understanding, and reliance on pre-trained models requires fine-tuning
for domain-specific documents. These constraints suggest a need for models which
integrate full-page context and structured representations.

Outputs

AREREE e (1] zclfense] el _oe][_vco]fon] o] [s]teos

Feed Forward
x N

Feed Forward
" Multi-Head Attention xN
Masked Multi-Head Attention

Encoder Decoder
EEEEEE - EEEEE. eos [t Evse]E o hcojon]~ua|[[s]
mgggmg !E‘@ljilpauh Outputs (shifted right)

Embedding
1 Flatten

e e Tar el ona0ore] |LICENSEE OF MCDONALD’S]

Image Patches Input Image

Multi-Head Attention

Figure 3.1.1: The architecture of TrOCR [Li+22].
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3.2 DAN: DOCUMENT ATTENTION NETWORK - LAYOUT UNDERSTANDING EVO-
LUTION

Document Attention Network (DAN) [CCP23] extends transformer-based HTR from
word-level recognition to full-page documents, building on the need for layout context
beyond TrOCR'’s capabilities.

Architecture and Full-page Recognition Approach

DAN advances the separation of visual and sequential processing with a Fully Con-
volutional Network (FCN) encoder and transformer decoder, tailored for complex
document layouts. In contrast to vision transformers that compute global attention
across image patches, DAN employs an FCN encoder to better model local spatial
dependencies inherent in document images. The FCN processes entire pages, gener-
ating dense feature maps that preserve spatial relationships and capture positional
links between text elements. The transformer decoder uses attention to focus dynami-
cally across the spatial feature map, enabling recognition of irregular layouts without
pre-segmentation; a significant step from line-based approaches. The architecture is
illustrated in Figure 3.2.1.

XML-like Structured Output
DAN generates XML-like output that captures both text and layout for structured
representation. For example, it can produce:

<text_line>Patient Name: Jodo Silva</text_line>
<text_line>Date of Death: March 15, 1869</text_line>

A more comprehensive example can be seen in Figure 3.2.2.

Performance on Complex Document Layouts

DAN excels on RIMES [Gro+09] and READ [Tos+18] 2016 datasets, handling full-page
and double-page documents with irregular layouts and multiple columns. Its end-to-
end training eliminates error propagation, showcasing the flexibility of attention-based
processing for variable structures.

Limitations and Path to Vision-Language Models

Despite its layout focus, DAN targets handwritten text recognition, requiring task-
specific training and lacking semantic understanding across document elements.
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Figure 3.2.1: The DAN architecture is made up of an FCN encoder, for the extraction of 2D
features f,p, and a transformer-based decoder for the recurrent prediction of
the character/layout tokens y(. At each iteration t, the model computes the
representation o¢ of the current character/layout token to recognize ¥+, based on
the flattened features f;p and on the previous predictions. Positional encoding is
added to these two modalities to preserve the spatial information through the
transformer’s attention mechanism [CCP23].

This suggests a need for vision-language models that integrate spatial and semantic
capabilities.

3.3 LAYOUTLMV2: MULTI-MODAL PRE-TRAINING FOR VISUALLY-RICH DOCU-
MENT UNDERSTANDING

While DAN demonstrated the effectiveness of full-page processing for handwritten
text recognition through OCR-free approaches, a parallel line of research explored
multimodal document understanding by combining visual, textual, and layout infor-
mation.

LayoutLMv2 [Xu+20] represents this alternative direction, focusing on information
extraction from visually rich documents through the integration of multiple modalities.
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Figure 3.2.2: An example of structured output from DAN [CCP23].

Architecture: Multimodal Transformer Encoder

LayoutLMv2 uses a single transformer encoder that combines three modalities: image
patches (extracted using a CNN or vision transformer), text tokens (from OCR), and
2D layout positions (bounding boxes). These inputs are aligned by the encoder using
self-attention, and positional embeddings are used to capture spatial relationships, as
illustrated in Figure 3.3.1.

LayoutLMv2's unified encoder, in contrast to DAN’s FCN-Transformer split for
recognition, has been pre-trained on sizable datasets like IIT-CDIP [Lew+06] with
goals like text-image matching and masked visual-language modeling (predicting
masked text/image regions).

Challenges and Limitations

Despite its improvements, LayoutLMv2 still uses bounding boxes and text generated by
OCR as inputs, which could lead to errors in old, deteriorated documents where OCR
isn’t working. Its robustness for raw, unprocessed scans is limited by this dependency
and the requirement for substantial pre-training resources. Additionally, compared
to decoder-based models, its encoder-only design is less optimized for generative
outputs. These drawbacks emphasize the necessity of completely OCR-free, end-to-end
methods like Donut [Kim+22], which improve upon multimodal transformers but
do away with preprocessing for domain-specific fine-tuning in tasks like certificate
extraction.
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Figure 3.3.1: An illustration of the model architecture and pre-training strategies for Lay-
outLMv2 [Xu+20].

3.4 DESSURT: DOCUMENT END TO END SELF SUPERVISED UNDERSTANDING AND
RECOGNITION TRANSFORMER

Document End to End Self Supervised Understanding and Recognition Transformer
(DESSURT) [Dav+22] represents a significant departure from the two stage approaches
of the LayoutLM family by eliminating the dependency on external OCR models
entirely. This unified architecture performs both text recognition and document
understanding in a single forward pass, addressing fundamental limitations of encoder
only transformer approaches.

Architecture: Unified Recognition and Understanding

DESSURT employs a novel three stream architecture processing visual tokens, query
tokens, and autoregressive response tokens simultaneously. Unlike LayoutLMv2"s
encoder-only design that requires precomputed OCR tokens, DESSURT’s visual en-
coder (a modified CNN followed by Swin [Liu+21] transformer layers) directly pro-
cesses document images while implicitly learning text recognition. The query stream
encodes task specifications using standard transformer attention, while the response
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stream generates arbitrary text output autoregressively through cross-attention to both
visual and query features. The architecture is illustrated in Figure 3.4.1.
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Figure 3.4.1: The DESSURT architecture with three token streams: visual tokens encoding
document images, query tokens specifying tasks, and response tokens generating
arbitrary text output [Dav+22].

Flexible Task Adaptation and Output Generation

A key innovation of DESSURT is its ability to generate arbitrary text output rather than
being constrained to token level predictions like the LayoutLM family. By accepting
task specific query strings, the model adapts to diverse document understanding tasks
without architectural modifications, from question answering and form parsing to
full page handwriting recognition and named entity recognition. This flexibility is
demonstrated across different dataset task combinations including DocVQA [MK]20],
FUNSD [JET19], NAF [Dav+19], and IAM [MBo2] datasets, with the model achieving
competitive performance despite being a single unified architecture.

End to End Training Strategy

DESSURT’s pretraining employs a multi-dataset curriculum including IIT CDIP doc-
uments [Lew+06], synthetic Wikipedia text, synthetic handwriting, and synthetic
forms with diverse tasks like text infilling, reading, and parsing. This comprehensive
pretraining enables the model to learn both recognition and understanding jointly.
The elimination of external OCR dependencies is particularly valuable for challenging
domains like historical handwritten documents where OCR quality is poor. The
model achieves 4.8% CER on IAM full page recognition and successfully processes the
historical NAF dataset containing mixed printed and handwritten text.
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Limitations and Trade offs

While DESSURT’s unified architecture offers flexibility and eliminates OCR depen-
dencies, it comes with computational costs. The model has 127M parameters and
requires processing full document images at 1152x768 resolution. Performance on
some tasks lags behind specialized two stage approaches; for instance, achieving 63.2
ANLS on DocVQA compared to LayoutLMv2’s 78.1. These limitations suggest that
while end to end approaches offer architectural elegance and flexibility, task specific
optimization through specialized pipelines may still yield superior performance for
certain applications.

3.5 FULL-PAGE PROCESSING AT SCALE: THE SOCFACE PROJECT

The Socface project [Boi+24] demonstrates the practical viability of full-page OCR-free
approaches for historical administrative records at unprecedented scale, providing
empirical validation for the document understanding paradigm discussed in previous
sections.

Project Scope and Challenges

The Socface project processes handwritten French census lists from 1836 to 1936,
encompassing approximately 30 million images distributed across 100 departmental
archives throughout France. These census documents present challenges characteristic
of historical administrative records: 19th-century handwriting variability, evolving
document templates across decades, physical degradation, and complex tabular layouts
organizing individuals into household units.

The scale and diversity of the documents, combined with variations in table tem-
plates across census years (columns changed order and content, preservation quality
varied substantially), made traditional multi-stage approaches impractical. Managing
separate models for different document layouts or time periods would require main-
taining dozens of specialized processing chains, motivating the adoption of a unified
full-page recognition approach.

Full-Page Recognition Implementation

The project applied the DAN full-page architecture to French census documents,
adapting its XML-like output format to capture both individual information and
household structure simultaneously. Rather than developing a new model, the work
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demonstrates how existing full-page architectures can be fine-tuned for domain-specific
structured extraction tasks through careful ground truth formatting.

The adaptation employed specialized tokens to categorize extracted information:
each piece of data is preceded by a token indicating its semantic type (surname, first-
name, occupation, age, etc.). Critically, the labeling scheme distinguishes household
heads with a unique token, enabling automatic reconstruction of household units from
the sequential output. This encoding allows a single forward pass through the page to
extract all individual attributes while simultaneously inferring household groupings
without requiring separate segmentation or classification stages.

This approach leverages the key advantage of full-page processing: the model can
attend to contextual markers (ditto marks, brackets spanning multiple rows, positional
cues) that would be lost in segmentation-based pipelines where documents are split
before recognition. The decoder learns to interpret both textual content and structural
organization simultaneously.

Results and Scale Achievement

The model was trained on only 100 manually annotated census pages, achieving F1
scores ranging from 70% to 98% across different information categories (names, ages,
occupations, household positions). This data efficiency demonstrates that full-page
models can transfer effectively to new historical document domains with limited
supervision.

The processing pipeline successfully handled 450,000 images in under 8 days using
distributed computing resources, demonstrating both computational efficiency and
robustness across the considerable diversity of document formats and handwriting
styles present in the archival collection. The single model processed all template
variants and time periods without requiring layout-specific configuration or retraining.

Implications for Full-Page Approaches

The Socface project provides empirical validation that full-page OCR-free recognition
can handle real-world archival variability at production scale. The successful pro-
cessing of documents spanning a century, with substantial evolution in table formats
(Figure 3.5.1), confirms that end-to-end architectures adapt to structural variations
through training rather than requiring manual template engineering for each document
type.

The ability to simultaneously recognize text and reconstruct hierarchical relation-
ships within a single processing stage eliminates error propagation from multi-stage

31



32 RELATED WORK

ST

SRERAREEEER
SGLINL O

FrFE bR R | |

i
I

SRR

TETHEF T TH TR

Is
TN
I

Fr
L

(3

|
(R

T

1l

LR
ERRERE
[

1836 1886 1936

Figure 3.5.1: Evolution of French census table formats from 1836 to 1936, showing variations
in column organization, information categories, and document quality across
different years (adapted from [Boi+24]). A single full-page model successfully
processed all template variants without layout-specific modifications.

pipelines where segmentation failures corrupt subsequent extraction steps. The Socface
deployment demonstrates that this integrated approach scales to millions of docu-
ments while maintaining acceptable accuracy, supporting the viability of OCR-free
full-page models for historical document understanding tasks requiring structured
information extraction from tabular layouts.
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From word-level outputs in TrOCR to layout-focused recognition in DAN and multi-
modal querying in LayoutLMv2, the development of transformer-based models, as
described in the related work, has improved document understanding and handwritten
text recognition (HTR). However, these methods frequently rely on optical charac-
ter recognition (OCR) preprocessing, which restricts their applicability to historical
documents.

This study leverages the Document Understanding Transformer DonuT [Kim+22],
an OCR-free model that takes end-to-end processing to the next level, acting as a
unified "big black box" that transforms raw document images directly into structured
information outputs. This section offers a thorough overview of its architecture,
training paradigm, and evaluation framework, setting the stage for its use in the
experiments that follow.

4.1 MODEL ARCHITECTURE

Donut’s architecture follows a sequence-to-sequence framework, consisting of a vision
encoder for visual feature extraction and a language decoder for text generation, that
also receives a prompt. This design enables the model to process raw images and
generate structured outputs without OCR, representing a significant advancement in
document understanding.

4.1.1  Encoder

The encoder in Donut is based on the Swin Transformer [Liu+21], a hierarchical vision
transformer that processes raw document images into visual tokens. Standard Vision
Transformers (ViT) compute global self-attention across all image patches, resulting
in quadratic computational complexity with respect to image resolution, which is
a significant limitation for high-resolution documents. Swin Transformer addresses
this by introducing a hierarchical representation and a shifted window self-attention
mechanism, which reduces computational complexity to linear with image size while
maintaining strong modeling power.
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The Swin Transformer begins by dividing the input image into non-overlapping
patches, treating them as tokens. After that, it employs a multi-step procedure that, like
the hierarchical feature extraction in CNNs, combines patches at each stage to produce
lower-resolution feature maps, enabling it to handle scale variations in documents,
such as varying font sizes or layout variations.

The key innovation is the shifted window self-attention, which computes attention
locally within non-overlapping windows to achieve efficiency. In each layer, attention
is computed only within these fixed, non-overlapping window boundaries. However,
to enable communication between different spatial regions, consecutive layers use
different window partitioning schemes: the windows are shifted spatially, creating
new groupings of patches as illustrated in Figure 4.1.1. This shifting strategy allows
information to flow across the entire image without requiring global attention com-
putation, as patches that were in different windows in one layer can be grouped
together in the next layer. The approach maintains linear complexity while ensuring
cross-window connectivity, making it suitable for high-resolution documents.

4.1.2  Decoder

The decoder in Donut is a BART [Lew+19] autoregressive transformer that generates
text sequences based on the encoder’s visual tokens and a prompt. The decoder uses a
left-to-right generation process, where each token is predicted conditioned on previous
tokens and the visual input. This setup allows Donut to produce structured outputs
as XML-like tagged sequences, which are subsequently converted to JSON format for
practical use.

The BART decoder employs multi-head self-attention and cross-attention mech-
anisms to integrate the encoder’s features with the generated sequence. During
generation, it uses teacher-forcing in training, where the ground-truth tokens are fed
as input.

4.2 TRAINING PROCESS

Donut’s training is divided into two steps:
1. Pre-training to be able to read, or better said: recognize characters.

2. Task-specific adaption as the model is capable of different tasks.
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Layer 1 Layer 1+1

A local window to
perform self-attention

v

A patch

Figure 4.1.1: An illustration of the shifted window approach for computing self-attention in
the proposed Swin Transformer [Liu+21] architecture. In layer 1 (left), a regular
window partitioning scheme is adopted, and self-attention is computed within
each window. In the next layer 1+ 1 (right), the window partitioning is shifted,
resulting in new windows. The self-attention computation in the new windows
crosses the boundaries of the previous windows in layer 1, providing connections
among them.

4.2.1  Pre-Training For OCR

In this phase, the goal is for the model, given some pixels, to predict the next char-
acter(s). The objective of this phase is to minimize the cross-entropy loss function.
One could say that the model in this phase is trained to associate the shape of certain
words with their corresponding characters.

To account for the various differences in people’s handwritten text, the model is
trained on the IIT-CDIP dataset [Lew+06]. While this dataset is already large, it lacks
non-Latin characters such as Chinese or Japanese.

Therefore, 2 million synthetic data samples were introduced using the SynthDoG
method [Kim+22]. These samples include text in Japanese, Korean, English, and
Chinese, 0.5 million each.

4.2.2  Task-specific Adaption

After the model has learned character recognition through pre-training, it is then
trained to extract structured information from documents. In contrast to the pre-
training phase which uses unlabeled or synthetically generated documents, this step
requires task-specific labeled data where each document is annotated with the target
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information to be extracted. However, it does not require as much data as the pre-
training phase.

As Donut is capable of performing multiple tasks, the data is labeled according
to the specific task. Task-specific prompts are fed to the decoder to help the model
understand what should be generated:

¢ <docvga> for visual question answering followed by the target question
* <parsing> for parsing the whole document
* <class> for classification of a document.

Different keywords could have been used.

4.3 ADAPTATION TO PORTUGUESE DEATH CERTIFICATES

Applying Donut to the Portuguese death certificates required several domain-specific
adaptations to bridge the gap between the model’s original training format and the
structure of the available annotations.

4.3.1  Data Format Conversion

The original annotations were provided as an Excel spreadsheet mapping image
filenames to extracted field values. To make this data compatible with Donut’s training
pipeline, the tabular annotations were converted into the DocVQA question-answering
format expected by the model.

For each image, the annotation was transformed into a JSON structure:

{
"ground_truth": "{"gt_parses": [
{"question": "What is $(value_to_extract)",
"answer": "$(answer)"}
13"
}

This structure follows Donut’s question-answering paradigm, where each field
extraction task is framed as a question about the document content.
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4.3.2  Task-Specific Prompt Design

Following Donut’s task-specific adaptation approach (Subsection 4.2.2), the model
receives a prompt combining the task token with the specific question:

<s_docvga><s_question>What is parog_cert</s_question><s_answer>

The decoder then generates the answer token sequence, terminated by the closing
tags:

Campanhd</s_answer></s_docvga>

Field-specific questions were formulated for each of the seven core information
fields that will be described in Section 5.1.

4.4 DATA FLOW THROUGH THE MODEL

This section outlines the data flow through Donut, detailing how inputs are formatted
and processed into structured outputs.

4.4.1 Input Format for the model

The data flow begins, of course, with preparation of raw document images, where they
are padded to preserve aspect ratios. Then a task-specific string is fed to the decoder
after tokenization as discussed in 4.2.2, along with the encoded visual features from
the encoder.

4.4.2  Output Format

Based on the input, the decoder generates a sequence of tokens formatted as a tag-
based structure using XML-like opening and closing tags. This approach enables the
model to handle nested layouts effectively. Following the Transformer architecture,
the generated output serves as a continuation of the input. Therefore, when the input
includes a token like <parsing>, the output is expected to end with a corresponding
closing tag, such as </parsing>.
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4.4.3 JSON-Conversion

After the sequence is generated, it is then post-processed into JSON format, making it
suitable for practical applications. Since the output is already in an XML-like format, it
can be easily converted to JSON using regular expressions.

Missing opening or closing tags are simply ignored and treated as unrecognized. For
example, the sequence <name>someName</name><age>55 would produce the following
JSON output: {"name": "someName"}.

Input Image and Prompt Donut & Output Sequence Converted JSON

{ "class":"receipt" }

20,000

| transformer
encoder

<class>receipt</class>
</classification>

14,000</answer></vga>

<item><name>3002-Kyoto Choco {"items": [{"name": "3002-Kyoto Choco Mochi",
Mochi</name>+ «+ </parsing> count’: 2,

“unitprice": 14000, ..}], ... }

{ "question™: "what s the price of choco mochi?",
"answer": "14,000" }

<classification>

<vga><question>what is the price
of choco mochi?</question><answer>

transformer
decoder

Figure 4.4.1: The pipeline of Donut [Kim+22]. The encoder maps a given document image into
embeddings. With the encoded embeddings, the decoder generates a sequence
of tokens that can be converted into a target type of information in a structured
form
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This chapter presents a comprehensive experimental evaluation of the Donut model
for automated information extraction from historical Portuguese death certificates. The
primary objective is to assess the model’s capability to extract core information fields
from handwritten 19th-century documents under various training configurations and
preprocessing strategies.

Before conducting the main experiments, a baseline evaluation assesses the pre-
trained model’s zero-shot performance without any fine-tuning. Three experiments
then investigate different training approaches. Single-field extraction evaluates per-
formance when fine-tuning independently on each core field. Sequential training
explores whether training on related fields in sequence improves extraction through
transfer learning. Cropping experiments investigate whether focusing on relevant
document regions improves extraction quality when images are downsampled to the
model’s fixed input resolution.

5.1 DATASET

The dataset consists of Portuguese death certificates from the Porto municipality,
covering the period from January 1869 to January 1870. These historical documents are
part of the Porto District Archive (Arquivo Distrital do Porto) collection, specifically
from the Porto Civil Government fond, under the section of Assistance and Public
Health.

It consists of 2,123 death certificate images from the Porto municipality covering
January 1869 to January 1870. Of these, 1,635 certificates (77%) have been transcribed
and are used in this work. The remaining certificates were excluded due to illegibility
caused by physical degradation such as tears, water damage, or severe fading.

The death certificates follow printed form templates with handwritten entries. Two
main form layouts exist:

¢ Form 1: Smaller horizontal format as in Figure 5.1.1.

¢ Form 2: Larger vertical format with two variants (2a and 2b) as illustrated in
figure 5.1.2.
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CERTIDAO DE OBITO

Concelho_ou_bairro

Figure 5.1.1: Example horizontal death certificate with colored bounding boxes marking core
fields: parish name (light blue), date of death (dark orange), name (dark green),
birthplace (purple), age (yellow), cause of death (orange), and poverty status
(white).

Despite layout differences, all forms contain identical information fields in Por-
tuguese.

The dataset of 1,635 transcribed certificates was split into training (60%), valida-
tion (20%), and test (20%) sets using a systematic sampling approach. To ensure
representative distribution across the temporal sequence of documents, the split was
performed by partitioning every consecutive group of five certificates: the first three
were assigned to the training set, the fourth to the validation set, and the fifth to the
test set. This sequential partitioning strategy maintains the chronological distribution
of documents across all splits while preventing data leakage between sets

This work focuses exclusively on the seven core information fields in table 5.1.1
identified as most important for historical research purposes.

5.2 EVALUATION METRICS

In our Information Extraction task, which involves extracting structured information
from document images framed as question-answer pairs, we employ two primary
metrics to assess model performance: Macro-F1 and Accuracy. These metrics are
tailored to handle the JSON-formatted outputs, accounting for nested structures and
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Figure 5.1.2: Two different shapes of the vertical death certificates.

multiple field extractions per image. The ground truth is provided as a list of QA
parses :

{"gt_parses": [{"question" : "What is paroq_cert", "answer" : "Cedofeita"},...]}

representing key-value extractions. Model predictions are generated via prompts con-
catenating multiple <s_docvga><s_question>g</s_question><s_answer> sequences,
with outputs parsed into JSON dictionaries for evaluation.
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Table 5.1.1: Core information fields extracted from death certificates.

Field Description

Parish name Parish where death occurred

Name Full name of deceased (may include pronoun)
Age Age of deceased in years

Birthplace Place of birth

Date of death  Date when death occurred
Cause of death Maedical cause(s) of death

Poverty status ~ Economic status indicator

5.2.1 Macro-F1

The Macro-F1 score measures field extraction quality by comparing predicted and
ground truth key-value pairs at the document level. This metric follows the standard
evaluation protocol used in DocVQA tasks and the Donut framework.

Computation Process

For each document, keys are normalized by sorting by length then alphabetically and
also converting single values to lists of single elements. Afterwards, the predicted and
ground truth JSON structures are flattened into sets of (key, value) pairs. For example,
{"menu": [{"price": [10.5, 12.0]}, 1} becomes the pairs (menu.price, 10.5),
(menu.price, 12.0).

For each document, we compute:

* True Positives (TP): Matching (key, value) pairs between prediction and ground
truth

* False Positives (FP): Predicted pairs not in ground truth
* False Negatives (FN): Ground truth pairs missing from prediction

The per-document F1 score is:

2xTP
2xXTP+FP+FN

F]doc =



5.2 EVALUATION METRICS

The final Macro-F1 is the arithmetic mean across all documents:
1N
Macro-F1 = N ; Flaoc,

The values of the metrics are in the range [0, 1] where o is worst. This metric is
useful for evaluating extraction quality as it handles partial matches: a prediction that
gets the key correct but value wrong receives partial credit, unlike strict exact-match
accuracy.

5.2.2 Tree Edit Distance (TED)-based accuracy

The Tree Edit Distance (TED) based accuracy metric evaluates both structural and
content similarity by representing JSON outputs as labeled trees. This metric follows
the standard evaluation protocol used in DocVQA tasks and the Donut framework.

Computation Process

For each document, the predicted and ground truth JSON structures are normalized
(as in Macro-F1) converted into labeled trees. Dictionary keys become nodes, with
their values as child nodes; lists of dictionaries are represented as multiple child nodes
under a <subtree> nodes, and primitive values are marked <leaf> nodes.

For example, consider the JSON:
{"menu": [{"item": ‘"burger", "price": [10.5, 12.0]1}, {"item": "fries"}1}
Its tree representation is shown in Figure 5.2.1.

The TED quantifies the minimum cost of operations to transform the predicted tree
into the ground truth tree:

¢ Updates: String edit distance for leaf nodes; 1 for mismatched non-leaf labels (o
if matching)

¢ Insertions/Deletions: Label length for leaves; 1 for non-leaves
The normalized TED (nTED) is:

TED(pred, gt)

e

The per-document accuracy is:

Accgo. = max(1 —nTED,0)
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<root>
menu
/\
<subtree> <subtree>
/\ ‘
item price item

\ TN \

<leaf>burger  <leaf>10.5 <leaf>12.0 <leaf>fries

Figure 5.2.1: Tree representation of the JSON {"menu": [{"item": ‘“burger", "price":
[10.5, 12.01}, {"item": "fries"}1}.

The final TED-based accuracy is the arithmetic mean across all documents:

N
1
TED-Acc = - D Accqor

i=1

The metric yields values between 0 and 1, where 0 is worst. This metric is useful for
evaluating extraction quality as it penalizes hierarchical mismatches (e.g., incorrect
nesting or list orders) alongside content errors, providing a more comprehensive
assessment than flat metrics like Macro-F1.

5.3 EXPERIMENTAL SETUP
5.3.1 Hardware Configuration
All experiments were conducted on a single NVIDIA GeForce RTX 3070 GPU. Due to

memory constraints, input resolution and batch size were adjusted from the original
Donut training configuration.



5.3 EXPERIMENTAL SETUP

5.3.2 Training Configuration

Training was performed by fine-tuning the pre-trained Donut model®, which had been
previously trained on the DocVQA [MK]20] dataset. Following sections will reference
this checkpoint as DocVQA checkpoint. The training hyperparameters were adapted
from the original Donut configuration® with the following key modifications:

Thttps://huggingface.co/naver-clova-ix/donut-base- finetuned-docvga accessed on 02.08.2025.
2https://github.com/clovaai/donut/blob/master/config/train_docvqa.yaml
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Model Input:

¢ Input resolution: 640 x 320 pixels (reduced from 2560 x 1920 to accommodate
GPU memory)

Training Hyperparameters:

Batch size: 1 (training and validation)
* Maximum epochs: 12

¢ Warmup steps: 10% of total training steps

Early stopping patience: 3 epochs
* Gradient clipping: maximum gradient norm of 1.0

Training Strategy: Validation was performed after each epoch, with early stopping
triggered if validation performance did not improve for 3 consecutive epochs. The
model checkpoint with the best validation performance was retained for testing.

5.4 BASELINE PERFORMANCE

To establish a performance baseline, the pre-trained Donut DocVQA checkpoint was
evaluated directly on the test set without any fine-tuning on the Portuguese death
certificates. This checkpoint had been trained on the DocVQA [MK]J20] dataset, which
consists primarily of modern English documents with varied layouts and question
types.

When applied to extract core fields such as parish name, deceased name, age,
birthplace, date of death, cause of death, and poverty status from the Portuguese
historical certificates; the model achieved 0% accuracy for both TED-based accuracy
and Macro-F1 metrics across all fields.

This complete failure is attributable to several domain mismatches:

¢ Language barrier: The model was trained exclusively on English, Japanese and
Chinese documents, while the death certificates contain 19th-century Portuguese
text with archaic vocabulary and spelling conventions.

* Historical handwriting: The certificates feature cursive handwriting styles
characteristic of the 1860s, which differ substantially from the modern printed
and handwritten text in DocVQA.



5.5 SINGLE-FIELD EXTRACTION

* Document degradation: Physical deterioration including fading, staining, and
paper damage significantly affects text legibility.

These results demonstrate that despite Donut’s strong performance on modern docu-
ment understanding tasks, direct transfer to historical Portuguese documents requires
domain-specific fine-tuning.

5.5 SINGLE-FIELD EXTRACTION

Following the baseline evaluation, the pre-trained Donut checkpoint was fine-tuned
independently on each core field using the training split, then evaluated on the
corresponding test split. This approach allows assessment of field-specific extraction
difficulty and model adaptability to different information types within the documents.

5.5.1 Experimental Design

For each core field, a separate fine-tuning experiment was conducted:

1. Each training sample consisted of a single question-answer pair targeting the
specific field

2. Fine-tuning was performed using the configuration described in Section 5.3

3. The best checkpoint based on validation performance was selected for test
evaluation

5.5.2  Results and Analysis

Table 5.5.1 presents the TED-based accuracy and Macro-F1 scores for each field
extraction task.

Table 5.5.1: Single-field extraction performance after fine-tuning on individual core fields.

Field TED Accuracy Macro-F1
Parish name 98% 49%
Birthplace 60% 30%
Poverty status 55% 28%

Name 6% 3%
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Parish name achieved the highest performance (98% TED accuracy), likely due to
the limited vocabulary of parish names (only 12 values) within Porto municipality and
their consistent spatial positioning within the certificate layout.

Birthplace and poverty status demonstrated moderate performance (55-60% TED
accuracy), suggesting that the model can learn to extract these fields with reasonable
accuracy despite handwriting variability and document degradation.

Name extraction exhibited dramatically lower performance (6% TED accuracy),
representing a near-complete failure. This poor performance is attributable to severe
class imbalance in the dataset, as illustrated in Figure 5.5.1. The distribution is
heavily dominated by a small set of common names: "Maria" alone accounts for
approximately 14% of all samples, while "Anténio", "José", "Manuel", and "Joaquina"
together with "Maria" represent the majority of training examples. In stark contrast,
the vast majority of names in the dataset appear with extremely low frequency, most
occurring at most three times in the training data, with many appearing only twice
or once. This extreme long-tail distribution prevents the model from learning robust
name extraction patterns, as it lacks sufficient examples to generalize beyond the most
frequent names. The model essentially memorizes the common names, but fails to
recognize the orthographic and spatial patterns that would enable extraction of rare or
previously unseen names.

14%
12%

10%

X
X

Frequency

2
X

4%

2%

0%-

FLEL L FE \L;o K bee ES {&Q R

@ O 2 .& O @ RIS
SIS ERSIR NN bo‘ef’ FF e ro"o\ & & Q )
WE P T & 1y RPN S \VQ\K‘&O(?( ISIRSESIE SIS S
v ~ S ((@Q \@Q RS » ‘(,\7;(\ Aol ’DQ@ & &S o> V\+

First Name

Figure 5.5.1: Distribution of first names in the dataset showing severe class imbalance. The
top five names (Maria, Anténio, José, Manuel, Joaquina) dominate the dataset,
while the majority of names appear three times or fewer. Y-axis shows frequency
as proportion of total samples.
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The substantial performance gap between fields demonstrates that extraction dif-
ficulty varies significantly based on vocabulary diversity and training example fre-
quency, with high-cardinality fields like names requiring substantially larger datasets
or alternative training strategies.

56 MULTI-FIELD SEQUENTIAL TRAINING

To examine how to effectively prompt and fine-tune an integrated model like Donut,
an experiment was conducted using sequential fine-tuning. The hypothesis was that
training the model on multiple fields sequentially might improve performance through
exposure to more document variations and potentially shared visual patterns.

5.6.1 Experimental Design

The model was fine-tuned in two stages:

1. Fine-tuning on parish name extraction using the parish name training split

2. Continued fine-tuning on name extraction using the name training split

Both fields were then evaluated on their respective test splits after the complete
two-stage training process.

5.6.2  Results and Analysis

Table 5.6.1 presents the performance comparison between sequential training and
single-field training approaches.

Table 5.6.1: Sequential training performance compared to single-field baseline.

Field TED Accuracy (Sequential) TED Accuracy (Single-field)
Parish name 67% 98%
Name 6% 6%

Sequential training yielded no measurable improvement over single-field training
for either field, as shown in Table 5.6.1. Parish name performance degraded substan-
tially from the single-field of the last experiment, while name extraction performance
remained unchanged, showing no benefit from prior parish name training. This ab-
sence of performance gains, combined with the degradation in parish name extraction,
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suggests that sequential training on related extraction tasks did not lead to improved
generalization between them and may have introduced negative transfer effects.

The lack of transfer can be attributed to persistent data imbalance issues. Exposing
the model to additional training data through parish name fine-tuning does not
address the fundamental class imbalance problem in name extraction. The model still
lacks sufficient examples of rare names to generalize effectively, and simply increasing
overall document exposure through sequential training cannot compensate for the
extreme long-tail distribution of names in the dataset.

Furthermore, these results highlight limitations of the sequential training approach
itself. Simple sequential fine-tuning may fail to create shared representations between
tasks, as the model appears to treat each field extraction as an independent problem
rather than learning transferable visual or linguistic patterns. Alternative approaches
such as multi-task learning with simultaneous training on both fields might yield
different results by encouraging the development of shared feature representations.
These findings indicate that field-specific challenges, particularly severe class imbal-
ance, cannot be overcome simply by increasing overall training exposure through
sequential training on related fields.

5.7 PREPROCESSING: DOCUMENT CROPPING

To investigate whether reducing irrelevant visual information could improve extraction
performance, particularly for the poorly performing name field, experiments were
conducted using cropped document images that focus on the upper region containing
core information fields.

5.7.1  Cropping Methodology

A fixed cropping strategy was applied to all documents: 20% removed from the left
edge and 50% removed from the bottom.

The motivation for testing this cropping approach was to investigate whether
removing irrelevant document regions might improve the quality and legibility of
handwriting when images are scaled down to the fixed input resolution of 640x320
pixels. By reducing the visual field to focus on relevant content, cropping could
potentially preserve more fine-grained details of the handwritten text that would
otherwise be lost during downsampling of full documents.

This specific cropping ratio was selected to retain the upper portion of the certificates
where parish name, deceased name, birthplace, age, and date of death fields are lo-
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cated, while removing the lower section containing boilerplate text and administrative
information. The cropping parameters were found to work consistently across both
horizontal (Form 1) and vertical (Form 2a/2b) document layouts.

Figure 5.7.1 illustrates the effect of cropping on a sample certificate, with colored
boxes indicating the locations of parish name (blue) and deceased name (green) fields.
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Figure 5.7.1: Death certificate before (left) and after (right) cropping. Blue box indicates parish
name field location, green box indicates deceased name field location. The
cropping removes 20% from left and 50% from bottom while preserving the core
information fields in the upper region.

5.7.2  Results and Analysis

Three experimental configurations were evaluated to assess the impact of cropping on
model performance:

* Models fine-tuned on cropped images and evaluated on cropped test images

* Models fine-tuned on cropped images and evaluated on full uncropped test
images

* Models fine-tuned on uncropped images (from Section 5.5) and evaluated on
cropped test images
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Name Field Experiments

Table 5.7.1 presents the performance of name extraction with cropped training across
different testing formats.

Table 5.7.1: Impact of image cropping on name extraction performance.

Training Format Testing Format TED Accuracy

Cropped Cropped 6%
Cropped Uncropped 6%
Uncropped Uncropped 6% (Table 5.6.1)
Uncropped Cropped 6%

The model was fine-tuned using cropped images for name extraction and evaluated
on both cropped and uncropped test images. No improvement was observed over the
baseline single-field performance, regardless of whether test images were cropped.

This result suggests that the fundamental challenge of extreme class imbalance
cannot be addressed through spatial focus alone. Reducing the visual field does not
help the model generalize to rare names that lack sufficient training examples.

Parish Name Experiments

Table 5.7.2 presents the performance of parish name extraction across different crop-
ping configurations. The results reveal strong sensitivity to training-testing format
mismatches, with the most dramatic degradation occurring when models trained on
full documents are tested on cropped images.

Table 5.7.2: Impact of image cropping on parish name extraction performance.

Training Format Testing Format TED Accuracy Macro-F1
Uncropped Uncropped 98% (Table 5.6.1) 49% (Table 5.6.1)
Cropped Cropped 88% 44%
Cropped Uncropped 66% 33%
Uncropped Cropped 22% 11%

The cropping experiments reveal several important findings about the model’s
behavior. Most notably, the results demonstrate strong spatial context dependence:
when the test-time image format mismatches the training format, performance drops
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dramatically. For the parish name field, accuracy plummets from 98% to 22% when
a model trained on full documents is tested on cropped images. This indicates that
Donut learns strong spatial priors about field locations within the document layout,
and removing spatial context at test time violates these learned expectations, which
indicates that data augmentation may have benefited the training.

This spatial dependence manifests asymmetrically across training configurations.
Models trained on cropped images retain some ability to handle full documents
(degrading to 66% accuracy), while models trained on full documents cannot adapt
to unexpected cropping at test time (collapsing to 22% accuracy). This asymmetry
suggests that exposure to the full document layout during training provides more
robust spatial representations than training on cropped images alone.

Even when training and testing conditions remain consistent, cropping introduces
modest performance degradation for high-performing fields. Parish name extraction
decreases from 98% to 88% accuracy when both training and testing use cropped
images, suggesting that broader document context provides subtle but useful cues for
extraction that are lost when the visual field is reduced.

Importantly, cropping provided no benefit for the challenging name extraction field,
confirming that data scarcity and class imbalance are the fundamental limitations
rather than spatial distraction from irrelevant document regions. These results demon-
strate that preprocessing strategies like cropping do not address the core challenges
of historical document processing and that maintaining consistency between training
and deployment conditions is critical for model performance.
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6.1 SUMMARY

This thesis investigated the application of segmentation-free transformer-based models
for extracting structured information from historical Portuguese death certificates.
Specifically, it evaluated the Donut model’s capacity to perform end-to-end infor-
mation extraction from handwritten 19th-century administrative documents without
requiring optical character recognition preprocessing or layout segmentation. The
experimental results demonstrate both the potential and current limitations of ap-
plying pre-trained document understanding models to historical archival materials.
The baseline evaluation confirmed that direct transfer from modern documents to
historical Portuguese certificates is infeasible, with the pre-trained model achieving 0%
accuracy across all extraction tasks. This complete failure underscores the substantial
domain gap between current document understanding benchmarks and degraded
historical handwriting.

Domain-specific fine-tuning yielded highly variable results depending on field char-
acteristics. Parish name extraction achieved 98% TED-based accuracy, demonstrating
that Donut can successfully learn extraction patterns when vocabulary is constrained
and spatial positioning is consistent. Birthplace and poverty status showed moderate
performance (55-60% accuracy), indicating the model can handle fields with greater
variability given sufficient training data. However, name extraction exhibited near-
complete failure (6% accuracy), revealing a critical limitation: severe class imbalance
in the training data fundamentally prevents the model from generalizing beyond
frequently occurring values.

The analysis identified class imbalance as the primary barrier to successful extrac-
tion of high-cardinality fields. The extreme long-tail distribution of personal names
prevents the model from learning generalizable orthographic and spatial patterns. This
finding has significant implications for applying deep learning to historical records,
where many fields naturally exhibit high cardinality and sparse distributions.

Sequential training experiments found no evidence of knowledge transfer between
related extraction tasks, suggesting that simple curriculum learning approaches cannot
compensate for fundamental data scarcity issues.

55



56

CONCLUSION AND OUTLOOK

Similarly, document cropping experiments revealed that the model develops strong
spatial context dependencies during training, with performance degrading dramati-
cally when test-time image formats differ from training conditions. Notably, cropping
provided no benefit for challenging fields, confirming that data distribution rather
than spatial distraction constitutes the limiting factor.

These results establish that while OCR-free transformer models represent a promis-
ing direction for historical document processing, their effectiveness depends critically
on training data characteristics. Fields with limited vocabularies and consistent for-
matting can be extracted reliably with modest training sets, while high-cardinality
tields require substantially larger and more balanced datasets to achieve acceptable
performance.

6.2 LIMITATIONS

Several limitations constrain the generalizability and completeness of this work. The
dataset encompasses only 1,635 transcribed certificates from a single municipality
(Porto) covering January 1869 to January 1870, limiting both the volume of training
data and the diversity of handwriting styles, document conditions, and administrative
practices represented. GPU memory constraints necessitated reducing input resolu-
tion from 2560x1920 to 640x320 pixels, potentially degrading the model’s ability to
discriminate fine-grained handwriting details.

63 SUGGESTIONS FOR FUTURE WORK

Several directions could address the identified limitations and advance segmentation-
free processing of Portuguese death certificates. The most critical need is mitigating
class imbalance for personal names in death certificates. Synthetic data generation
could augment the training set by rendering additional Portuguese name variations in
19th-century handwriting styles, replicating rare names to balance their representation
against frequently occurring names like Maria, Anténio, and José.

Alternatively, strategic oversampling of underrepresented names or class-balanced
batch sampling during training may improve model generalization to names ap-
pearing only once or twice in the original dataset. The training paradigm warrants
reconsideration for certificate processing. Rather than framing extraction as single
question-answer pairs, adopting a multi-answer format where each certificate provides
ground truth for all seven fields simultaneously could enable the model to develop
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shared representations across related information types. This approach may facilitate
knowledge transfer that was absent in the sequential training experiments.






BIBLIOGRAPHY

[Bao+22]

[BB23]

[Boi+24]

[CCP23]

[Dav+19]

[Dav+22]

[Dos+21]

[Fin25]

[Gro+o9]

Hangbo Bao et al. BEiT: BERT Pre-Training of Image Transformers. 2022. arXiv:
2106.08254 [cs.CV]. URL: https://arxiv.org/abs/2106.08254.

Christopher M. Bishop and Hugh Bishop. Deep Learning: Foundations and
Concepts. 1st ed. Springer Cham, 2023. 1SBN: 978-3-031-45467-7. DOI: 10.
1007/978-3-031-45468-4.

Mélodie Boillet et al. The Socface Project: Large-Scale Collection, Processing, and
Analysis of a Century of French Censuses. 2024. arXiv: 2404.18706 [cs.CV].
URL: https://arxiv.org/abs/2404.18706.

Denis Coquenet, Clément Chatelain, and Thierry Paquet. “DAN: A Segmentation-
Free Document Attention Network for Handwritten Document Recogni-
tion”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 45.7

(July 2023), pp. 8227-8243. IsSN: 1939-3539. DOIL: 10.1109/tpami . 2023.
3235826. URL: http://dx.doi.org/10.1109/TPAMI.2023.3235826.

Brian Davis et al. “Deep Visual Template-Free Form Parsing”. In: 2019
International Conference on Document Analysis and Recognition (ICDAR). IEEE,
2019, pp- 134-141. DOIL: 10.1109/ICDAR.2019.00030.

Brian Davis et al. End-to-end Document Recognition and Understanding with
Dessurt. 2022. arXiv: 2203.16618 [cs.CV]. URL: https://arxiv.org/abs/
2203.16618.

Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale. 2021. arXiv: 2010.11929 [cs.CV]. URL: https:
//arxiv.org/abs/2010.11929.

Gernot A. Fink. Skriptum zur Vorlesung “Mustererkennung”. https://
web . patrec. cs. tu-dortmund. de/ lectures /WS25/mustererkennung/
mustererkennung.pdf. Accessed: 2025-10-13. 2025.

Emmanuele Grosicki et al. “Results of the RIMES Evaluation Campaign
for Handwritten Mail Processing”. In: 2009 10th International Conference on
Document Analysis and Recognition. 2009, pp. 941-945. DOL: 10.1109/ICDAR.
2009.224.

59


https://arxiv.org/abs/2106.08254
https://arxiv.org/abs/2106.08254
https://doi.org/10.1007/978-3-031-45468-4
https://doi.org/10.1007/978-3-031-45468-4
https://arxiv.org/abs/2404.18706
https://arxiv.org/abs/2404.18706
https://doi.org/10.1109/tpami.2023.3235826
https://doi.org/10.1109/tpami.2023.3235826
http://dx.doi.org/10.1109/TPAMI.2023.3235826
https://doi.org/10.1109/ICDAR.2019.00030
https://arxiv.org/abs/2203.16618
https://arxiv.org/abs/2203.16618
https://arxiv.org/abs/2203.16618
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://web.patrec.cs.tu-dortmund.de/lectures/WS25/mustererkennung/mustererkennung.pdf
https://web.patrec.cs.tu-dortmund.de/lectures/WS25/mustererkennung/mustererkennung.pdf
https://web.patrec.cs.tu-dortmund.de/lectures/WS25/mustererkennung/mustererkennung.pdf
https://doi.org/10.1109/ICDAR.2009.224
https://doi.org/10.1109/ICDAR.2009.224

60

BIBLIOGRAPHY

[GSo8]

[JET19]

[Kim+22]

[Lew+06]

[Lew+19]

[Li+22]

[Liu+19]

[Liu+21]

[MBoz2]

[MK]J20]

Alex Graves and Jirgen Schmidhuber. “Offline Handwriting Recognition
with Multidimensional Recurrent Neural Networks”. In: Advances in Neural
Information Processing Systems. Ed. by D. Koller et al. Vol. 21. Curran
Associates, Inc., 2008. URL: https://proceedings.neurips. cc/paper_
files /paper /2008 / file/66368270ffd51418ec58bd793f2d9blb - Paper .
pdf.

Guillaume Jaume, Hazim Kemal Ekenel, and Jean-Philippe Thiran. “FUNSD:
A Dataset for Form Understanding in Noisy Scanned Documents”. In: 2019
International Conference on Document Analysis and Recognition Workshops (IC-
DARW). Vol. 2. IEEE, 2019, pp. 1-6. DOI: 10.1109/ICDARW.2019.10029.

Geewook Kim et al. OCR-free Document Understanding Transformer. 2022.
arXiv: 2111.15664 [cs.LG]. URL: https://arxiv.org/abs/2111.15664.

D. Lewis et al. “Building a test collection for complex document infor-
mation processing”. In: Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. SI-
GIR ’06. Seattle, Washington, USA: Association for Computing Machinery,
2006, pp. 665—666. ISBN: 1595933697. DOI: 10.1145/1148170.1148307. URL:
https://doi.org/10.1145/1148170.1148307.

Mike Lewis et al. BART: Denoising Sequence-to-Sequence Pre-training for
Natural Language Generation, Translation, and Comprehension. 2019. arXiv:
1910.13461 [cs.CL].

Minghao Li et al. TrOCR: Transformer-based Optical Character Recognition
with Pre-trained Models. 2022. arXiv: 2109 . 10282 [cs.CL]. URL: https:
//arxiv.org/abs/2109.10282.

Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach.
2019. arXiv: 1907 .11692 [cs.CL]. URL: https://arxiv.org/abs/1907.
11692.

Ze Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted
Windows. 2021. arXiv: 2103.14030 [cs.CV].

U.-V. Marti and H. Bunke. “The IAM-database: an English sentence database
for offline handwriting recognition”. In: International Journal on Document
Analysis and Recognition 5.1 (2002), pp. 39—46. DOI: 10.1007/5100320200071.

Minesh Mathew, Dimosthenis Karatzas, and C. V. Jawahar. DocVQA: A
Dataset for VQA on Document Images. 2020. arXiv: 2007.00398 [cs.CV].


https://proceedings.neurips.cc/paper_files/paper/2008/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2008/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2008/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://doi.org/10.1109/ICDARW.2019.10029
https://arxiv.org/abs/2111.15664
https://arxiv.org/abs/2111.15664
https://doi.org/10.1145/1148170.1148307
https://doi.org/10.1145/1148170.1148307
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/2109.10282
https://arxiv.org/abs/2109.10282
https://arxiv.org/abs/2109.10282
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2103.14030
https://doi.org/10.1007/s100320200071
https://arxiv.org/abs/2007.00398

[SBY15]

[Tos+18]

[Vas+23]

[Xu+20]

BIBLIOGRAPHY

Baoguang Shi, Xiang Bai, and Cong Yao. An End-to-End Trainable Neural
Network for Image-based Sequence Recognition and Its Application to Scene Text
Recognition. 2015. arXiv: 1507.05717 [cs.CV]. URL: https://arxiv.org/
abs/1507.05717.

A .H. Toselli et al. HTR Dataset ICFHR 2016 (Version 1.2.0). 2018. DOI: 10.
5281/zenodo.1297399. URL: https://zenodo.org/record/1297399.

Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.03762
[cs.CL]. URL: https://arxiv.org/abs/1706.03762.

Yiheng Xu et al. “LayoutLM: Pre-training of Text and Layout for Doc-
ument Image Understanding”. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD "20.
ACM, Aug. 2020, pp. 1192—-1200. DOIL: 10 .1145/3394486 . 3403172. URL:
http://dx.doi.org/10.1145/3394486.3403172.

61


https://arxiv.org/abs/1507.05717
https://arxiv.org/abs/1507.05717
https://arxiv.org/abs/1507.05717
https://doi.org/10.5281/zenodo.1297399
https://doi.org/10.5281/zenodo.1297399
https://zenodo.org/record/1297399
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1145/3394486.3403172
http://dx.doi.org/10.1145/3394486.3403172

