
Object Detection and Segmentation
using Region-based Deep Learning

Architectures

Master Thesis

Muhammad Waleed Zafar
December 14, 2018

Supervisors:
Prof. Dr.-Ing. Gernot A. Fink
Fernando Moya Rueda, M.Sc.

Fakultät für Informatik - LS XII
Technische Universität Dortmund
http://patrec.cs.uni-dortmund.de

C O N T E N T S

1 introduction 5

1.1 Structure 6

2 fundamentals 7

2.1 Basics of Machine Learning 7

2.2 Deep Learning 8

2.3 Convolutional Neural Networks (CNNs) 9

2.4 Operations of a CNN 11

2.4.1 Convolutional Layer 11

2.4.2 Pooling Layer 12

2.4.3 Fully-Connected Layer 13

2.4.4 Activation Function 14

2.4.4.1 Rectified Linear Unit (ReLU) 14

2.4.4.2 Leaky Rectified Linear Unit (Leaky ReLU) 14

2.4.4.3 Sigmoid Function 14

2.4.4.4 Hyperbolic Tangent Function 15

2.4.4.5 Heaviside Step Function 15

2.5 Training of a CNN 15

2.5.1 Loss Function 15

2.5.1.1 Total Mean Squared Error (TMSE) 16

2.5.1.2 Cross Entropy Loss (CEL) 17

2.5.1.3 Softmax Loss 17

2.5.2 Learning with gradient descent 17

2.6 Object Detection 19

2.7 Instance Segmentation 20

2.8 Important Object Detection and Segmentation Concepts 21

2.8.1 Region of Interest (RoI) 21

2.8.2 Intersection over Union (IoU) 22

2.8.3 Non-Maxium Suppression (NMS) 23

2.8.4 Bounding-box regression (bounding-box refinement) 23

3 related work 25

3.1 Classical Methods 25

3.1.1 Histogram of Oriented Gradients (HOG) 26

3.1.2 Scale Invariant Feature Transform (SIFT) 27

2 contents

3.1.3 OverFeat (Sliding Window Approach) 28

3.2 Region-based Convolution Neural Network (R-CNN) 29

3.3 Fast Region-based Convolution Neural Network (Fast R-CNN) 29

4 methods 33

4.1 Evaluation Metrics 33

4.1.1 Precision 34

4.1.2 Recall 34

4.1.3 Precision-Recall curve 34

4.1.4 Average Precision (AP) 35

4.1.5 Mean Average Precision (mAP) 36

4.2 Faster Region-based Convolution Neural Network (Faster R-CNN) 36

4.2.1 Region Proposal Network (RPN) 37

4.2.2 Anchors 38

4.2.3 Loss Function 39

4.2.4 Training Procedure 41

4.2.4.1 Alternate Training 41

4.2.4.2 Approximate Joint Training 41

4.2.4.3 Non-Approximate Joint Training 41

4.2.4.4 4-Step Alternating Training 42

4.3 Mask Region-based Convolution Neural Network (Mask R-CNN) 42

4.3.1 RoIPool vs RoIAlign 43

4.3.2 Loss Function 44

5 experiments 47

5.1 Datasets 47

5.1.1 PASCAL Visual Object Classes (PASCAL VOC) 47

5.1.2 Microsoft Common Objects in COntext (MS COCO) 48

5.2 Experimental setup 48

5.3 Backbone Architectures 49

5.3.1 VGG-16 49

5.3.2 Residual Deep Neural Networks (ResNet 50, 101, 152) 50

5.4 Notable Modifications 51

5.5 Faster R-CNN with different backbone architectures 53

5.6 Faster R-CNN with different IoU scales and object sizes 54

5.7 Faster R-CNN with different number of training/testing time propos-
als 55

5.8 Faster R-CNN with Original RoI Pooling method 57

5.9 Mask R-CNN with different backbone architectures 57

contents 3

6 conclusion 61

6.1 Future Work 62

1
I N T R O D U C T I O N

Computer systems need to understand a visual scene in order to perform various
tasks. Humans, equipped with senses, can effectively and subconsciously interpret
visual information to make informed decisions. However, for computer systems this
means crossing the semantic gap between the pixel level information and human’s
perception of visual information. Computer vision bridges this gap.

Extracting higher level semantic information from images is one the most funda-
mental and challenging problems in computer vision. Image recognition, object de-
tection, and instance segmentation are the broad categorizations of computer vision.
Recognition also referred to as classification problem, is the process of identifying
and validating objects in an image and classifying them into certain classes. Detec-
tion, however, is the process of identifying and labeling multiple relevant objects in
a single image or video frame, together with a rough estimation of the location and
the size of that object. Instance segmentation is the combination of classical object
detection tasks with semantic segmentation, where the goal is to classify each pixel
into a fixed set of categories without differentiating object instances.

Prior to the application of deep neural networks for object detection and segmen-
tation tasks, classic object detection frameworks were mainly based on extracting
feature descriptors such as Histograms of Orientated Gradients (HOG) [DT05], Viola-
Jones algorithm [VJS05], and Scale-Invariant Feature Transform (SIFT) [Low99]. These
classic object detectors relied heavily on hand-coded features.

With significant advances in deep learning methods, fast and accurate object detec-
tion systems are rising in demand. Over the past few years, considerable efforts has
been invested in the augmentation of Convolutional Neural Networks (CNNs) to pro-
pose regions which encapsulate objects of interest in a single image. Such networks
are called region-based deep neural networks. The work presented in this thesis
is concerned with the analysis of performance of state-of-the-art region-based deep
neural networks. These networks are comprised of three basic modules: region pro-
posal generation, classification, and bounding-box regression. Initial region-based
models for object detection such as Region-based Convolutional Neural Network
(R-CNN) [GDDM14] and Fast Region-based Convolutional Neural Network (Fast R-
CNN) [Gir15] deployed external algorithms for the task of region proposal generation.
Selective Search [UVDSGS13], Category-Independent Object Proposals [EH10], Con-

6 introduction

strained Parametric Min-Cuts (CPMC) [CS11], Multi-Scale Combinatorial Grouping
[APTB+

14], Edge Box Detection [ZD14] etc. are few examples of such external al-
gorithms. Once, these algorithms propose such regions, multi-layer Convolutional
Neural Networks (CNNs) are employed to compute highly discriminative features
in each region, and then classifiers are trained to label the relevant objects in those
regions.

Even though the initial region-based object detectors were intuitive, they had a
bottleneck in terms of running time. With the increase of data volume and computa-
tional resources, faster and robust detection techniques became a requirement. Hence,
Faster Region-based Convolutional Neural Network (Faster R-CNN) [RHGS15] and
Mask Region-based Convolutional Neural Network (Mask R-CNN) [HGDG17] were
developed. These models do not require any external algorithm for the region pro-
posal generation task. Instead, they utilize convolutional layers of the network for
region proposal generation, reducing its marginal cost and making the detection even
faster.

The objective of this thesis is to analyze the performance of state-of-the-art region-
based deep neural architectures for object detection and instance segmentation using
different backbone architectures and other notable modifications. The work presented
in this thesis is also concerned with finding a speed-accuracy trade-off for said object
detection and segmentation frameworks in order to detect and segment objects with
higher detection rate and accuracy.

1.1 structure

Chapter 1 provides a brief introduction to the theoretical background of machine
learning and explains the fundamental concepts associated with deep learning for
object detection and segmentation. In chapter 2, a brief history of classical object
detection methods is presented along with the modern history of object detection
and segmentation. The third chapter explains the related work that combines Con-
volutional Neural Networks (CNNs) with region proposal generators. The methods
adopted in the thesis are presented in the fourth chapter. Chapter 5 is dedicated
to the experimental evaluation along with the analysis of results. Finally, chapter 6

provides the conclusion and possible future work.

2
F U N D A M E N TA L S

In this work, region-based deep learning architectures are explored. The theoretical
background necessary for understanding the fundamental concepts and terminolo-
gies associated with deep learning for object detection and instance segmentation
will be provided in this chapter. First, the basics of machine learning will be dis-
cussed in section 2.1 followed by deep learning in section 2.2. section 2.3 discusses
the history, development and operation of Convolutional Neural Networks (CNNs).
Finally, the fundamentals of region-based deep neural networks will be discussed in
section 2.8.

2.1 basics of machine learning

The term ”machine learning” was first used by Arthur Samuel in 1959. He defined
it as ”a field of study that gives the ability to the computer to learn without being
explicitly programmed”. By this definition, machine learning can be thought of as
a plethora of algorithms that ’learn’ to recognize patterns in a set of training data
without being explicitly programmed to do so. Generally, the learning can be of
two types: supervised and unsupervised. The key difference between both types
is that supervised learning requires the labeled data to train the algorithms, while
unsupervised learning does not require the data with historical labels. Goodfellow et
al. [GBCB16] define unsupervised learning as a technique of implicitly or explicitly
learning the probability distribution p(x) by observing several examples of a random
vector x.

artificial neural networks (anns)
Artificial Neural Networks (ANNs) are

the class of machine learning algorithms, which are highly inspired by the opera-
tions of the biological nervous system. An ANN is comprised of a large number of
small inter-connected units (known as neurons). An artificial neuron (Figure 2.1.1),
first introduced by Warren McCulloch and Walter Pitts in 1943 [MP43], is the basic

8 fundamentals

unit of an ANN. The neuron is activated if the sum of the binary inputs is greater
than threshold θ. For threshold θ > 0, the activation function f is defined as

f(x1, ..., xn) =

1 if
∑n
i=1 xi > θ .

0 otherwise
(2.1.1)

These neurons are generally segmented into multiple layers. An input layer takes
information as a multidimensional vector and distributes it to a series of hidden
layers. The information is then transformed and disseminated (parameterized by
the trainable parameters i.e. weights and biases) across the hidden layers. Finally,
the last layer outputs some abstract features of the input information. An ANN
optimizes these trainable features through a differentiable loss function, with the aim
of improving the likeness of the target labels and the predictions generated by the
ANN.

The basic structure of an ANN is shown in Figure 2.1.2.

Figure 2.1.1: A McCulloch-Pitts neuron [Cas]

2.2 deep learning

Deep learning can be considered as a part of a broader family of machine learning,
which allows the computer systems to transform simpler concepts into more abstract
and complex concepts. [GBCB16]. Deep learning models, more colloquially known
as deep neural networks, deploy multiple hidden layers to exploit the unknown struc-
ture in the input distribution to discover composite representations.

2.3 convolutional neural networks (cnns) 9

Figure 2.1.2: A three-layered Artificial Neural Network (ANN), comprised of an input layer, a
hidden layer, and an output layer [ON15]

Multi-layer deep neural networks have been around since the 1980s, but in recent
years, the advancements in powerful computation and availability of larger datasets
have increased the popularity of deep neural networks. With the arrival of graphics
processing units, the training of deep neural networks with greater efficiency has
become a reality. In contrast to the classical pattern recognition systems, the deep
learning minimizes the need of hand-crafted machine learning solutions by a large
amount.

2.3 convolutional neural networks (cnns)

Convolutional Neural Networks (CNNs) are the most impressive form of Artificial
Neural Network (ANNs). CNNs are the key component of deep learning, which are
primarily used to solve the difficult image-driven pattern recognition tasks [ON15].

The basic idea of CNN was inspired by a feature of the animal visual cortex called
receptive field [Fuk88]. Receptive fields act as detectors that are sensitive to certain

10 fundamentals

types of stimulus, for example, edges. In image processing, the same kind of visible
effects can be produced by convolution filtering [Fuk88].

A typical CNN is constructed by the repetition of three basic types of layers, namely
convolutional layers, pooling layers, and fully connected layers. A deep neural net-
work stacks a large number of these layers to perform pattern recognition and detec-
tion related tasks. A simplified CNN architecture for the MNIST [Den12] handwritten
digit image classification is illustrated in Figure 2.3.1.

Figure 2.3.1: An CNN architecture, comprised of five layers [ON15]

Even though, the CNNs have attracted significant amount of attention in recent
years, their history extends back to the 1980s. The first supervised learning algorithm
that used gradient descent (subsection 2.5.2) [RHW86] was created by Rumelhart et al.
in 1986, which was later used by LeCun et al. for the handwritten digits recognition
[LBD+

89]. However, this algorithm suffered from multiple performance issues. One
of the issues was concerned with poor in-built invariance as it failed to handle the
variability in handwriting samples when subjected to translations or distortions. This
led to the creation of a new model with stronger shift invariance which responds
to the hierarchies of local features. This new network was called the Convolutional
Neural Network (CNN)[LBBH98].

CNNs were abandoned rightly after due to the lack of computing power and re-
placed by Support Vector Machines (SVMs). However, the development of powerful
GPUs in last decade has reawakened the hope in the perceptive abilities of CNNs.

2.4 operations of a cnn 11

Now, the CNNs are being used as the default approach to solve many computer
vision problems [GDDM14].

2.4 operations of a cnn

A CNN is comprised of multiple layers of operations, each with their own function.
The CNN takes an image as input and feeds it to the first layer. Feature information
is propagated through the hidden layers. For each layer, the activation functions
perform an element-wise activation to the output produced by the previous layer.
The output of the final layer is then compared against the targeted output. This
process is known as forward pass.

2.4.1 Convolutional Layer

The convolutional layer plays an important role in how CNNs operate. This layer’s
parameters focus on small n× n windows called kernels, filter matrices or simply
filters. Given input data, the convolutional layer convolves each filter or kernel across
the spatial dimensionality of the input to produce a 2D feature map (or an activation
map after computing the activation function). These activation maps can be visual-
ized in Figure 2.4.1

Classically, the convolution operation is defined as an integral that expresses the
amount of overlap of one function g as it is shifted over another function f, given as

(f ∗ g)(t) =
∫∞
−∞ f(τ)g(t− τ)dτ, (2.4.1)

where f and g are the arbitrary continuous functions in domain t. In case of an image,
the convolution operation is defined as a discrete function. The discrete convolution
operation between an image f and a filter matrix g is defined as

f[n] ∗ g[n] =
∞∑

m=−∞ f[m]g[n−m]. (2.4.2)

The feature map is the output matrix h (Equation 2.4.2) obtained by aligning the
filter successively with every sub-image of f (with same dimensions as g) centered on
coordinates x,y.

The convolutional layer of a neural network is a combination of multiple convo-
lutional filters, whose matrix values are treated as neuron parameters. Successive
repetition of the convolutional layers along with some other types of layers (such as
pooling layer) results in a Convolutional Neural Network (CNN) [ON15].

12 fundamentals

(a) Horizontal edges detection

(b) Image sharpening

Figure 2.4.1: Feature maps after convolution filtering
.

2.4.2 Pooling Layer

To add spatial invariance and to make the network more manageable for image pro-
cessing, it is useful to reduce the activation map size. Hence, the pooling operation
of a neural network is utilized to gradually reduce dimensionality of the activation
map. Pooling layer, when applied, reduces the number of parameters and the com-
putational complexity of the model [ON15].

Since the deeper layers of a network require less information about exact spa-
tial locations of features and more filter matrices to recognize multiple high-level
patterns[GBCB16], it is beneficial to reduce the dimensions of the data volume to op-
timize computation time. Introduction of a pooling layer after a convolutional layer
is one way to achieve the aforementioned goal. The most commonly used method of
pooling is max-pooling. Max-pooling outputs the maximum value within a rectangu-

2.4 operations of a cnn 13

lar neighborhood of the activation map[GBCB16]. Another type of pooling is average
pooling that gives the average value of the rectangular neighborhood of the activation
map. The difference between both types with stride 2 is illustrated in Figure 2.4.2.

(a) The maximum value from a 2×2 local neighbourhood is taken as the output of a
max-pooling layer.

(b) The average value from a 2×2 local neighbourhood is taken as the output of an
avg-pooling layer.

Figure 2.4.2: Max-pooling vs average pooling with stride 2

2.4.3 Fully-Connected Layer

Fully-connected layers are the final layers of a CNN that contain a number of neurons,
all connected to each other between two adjacent layers[ON15]. A fully-connected
layer generally acts as a classifier at the end of the CNN and is analogous to a tradi-
tional ANN, as shown in Figure 2.1.2.

14 fundamentals

2.4.4 Activation Function

The activation function φ is applied to the output of a convolution layer to limit
the output of each neuron and to introduce non-linearities to the linear activations
generated by a convolutional layer. Few examples of some of the popular activation
functions used in neural networks for classification and detection tasks are given as
follows:

2.4.4.1 Rectified Linear Unit (ReLU)

Rectified Linear Unit (ReLU) is one of the most commonly used activation function
in deep learning, which is computed as

f(x) = max(0, x). (2.4.3)

ReLU activation functions are quite popular for the creation of a non-linear network
as it is easier to differentiate for back-propagation. Even though the ReLU function
is not differentiable at zero unlike sigmoidal activation function, which has smooth
derivatives, it still converges faster than sigmoid and hyperbolic tangent function.

2.4.4.2 Leaky Rectified Linear Unit (Leaky ReLU)

Leaky ReLU activation function is similar to the ReLU function with one key differ-
ence: the leaky ReLU allows a small positive gradient when the unit is inactive. A
leaky ReLU is computed as

f(x) = max(x,ax). (2.4.4)

2.4.4.3 Sigmoid Function

The Sigmoid function was the most widely-used activation function before ReLU,
which takes real values as input and outputs the values in the range [0, 1]. The
sigmoid function is defined as

σ(x) =
1

1+ e−x
. (2.4.5)

The larger negative input values tend to be closer to 0 while the larger positive inputs
are closer to 1. Sigmoid function is rarely used now as it suffers from the gradient
saturation problems and slower computation. Also, it is not zero centered.

2.5 training of a cnn 15

2.4.4.4 Hyperbolic Tangent Function

Hyperbolic Tangent function or tanh is similar to sigmoid function with a difference
of output, ranging in the interval [−1, 1] instead of [0, 1]. It is defined as

tanh(x) =
2

1+ e−2x
. (2.4.6)

2.4.4.5 Heaviside Step Function

Heaviside step function is a discontinuous activation function which gives the output
of 1 for x > o and 0 otherwise. This activation function, however, can not be used
in deep neural networks. Since deep neural networks use gradient descent with
back-propagation for the training and the back-propagation requires a differentiable
activation function, Heaviside Step function, being non-differentiable at x = 0, can
not be used.

2.5 training of a cnn

The training of a CNN for an image processing task means the calculation of a loss by
comparing the output predictions with the ground-truths (targeted output). During
training, the backward pass is computed. The backward pass can simply be described
as the sensitivity of loss with respect to changes in the network parameters. The main
objective of training a CNN is to minimize the loss function across the training dataset
by modifying the network’s trainable parameters, such as weights and biases, using
the backward passes.

2.5.1 Loss Function

Loss functions are the differentiable functions used to guide the training process of a
neural network. For the training of a CNN for an object detection task, networks are
typically optimized for classification and regression elements. Mathematically, the
loss function maps the network output y and the targeted output ŷ on to a real value
representing the penalty for the inaccuracy of predictions. The most widely-used loss
functions for classification problem are Total Mean Squared Error (TMSE or L2 loss),
Cross Entropy Loss (CEL) and Softmax Loss. For a regression problem, loss functions
may vary from network to network.

16 fundamentals

(a) Sigmoid function (b) Tanh function

(c) Relu function (d) Leaky Relu function

(e) Heaviside step function

Figure 2.4.3: Different activation functions and their graphs

2.5.1.1 Total Mean Squared Error (TMSE)

The Total Mean Squared Error (TMSE) for the network output y and the targeted
output ŷ is defined as

2.5 training of a cnn 17

TMSE =
1

n · l

n∑
i=1

||yi − ŷi||
2, (2.5.1)

where n and l represent the number of training samples and the number of output
neurons respectively. The term ||yi − ŷi|| is the Euclidean distance between y and ŷ.

2.5.1.2 Cross Entropy Loss (CEL)

The cross entropy loss for the network output y and the targeted output ŷ is defined
as

CEL = −
1

N

N∑
i=1

[ŷi logyi + (1− ŷi) log(1− yi)], (2.5.2)

where l is the number of output neurons.

2.5.1.3 Softmax Loss

Softmax loss is one of the most commonly used loss function in CNNs. It takes N-
dimensional vector of real values and transforms it into the vector of real values in the
range (0,1) such that the sum is equal to 1. Given an input matrix Xn,k, the Softmax
loss is defined as

σ(Xn,k) =
e(Xn,k)∑K
j=1 e

(Xn,j)
, (2.5.3)

and the loss is calculated as

L = −
1

N

N∑
n=1

log(
e(Xn,k)∑j=1
K e(Xn,j)

), (2.5.4)

where N is the batch size and K is the number of identities (i.e. class labels).
A detailed description of the loss functions used in this thesis is given in subsec-

tion 4.2.3 and subsection 4.3.2.

2.5.2 Learning with gradient descent

As explained earlier in section 2.5, the main objective of training a CNN is to minimize
the error between the targeted output and the network output by updating its param-
eters during the backward pass. This is done by calculating the analytic gradient of

18 fundamentals

the loss function with respect to the network outputs, and driving the error gradient
backward throughout the network’s layers until the first layer is reached. Hence, this
process is called ”back-propagation of error with gradient descent”[RHW86].

Intuitively, the goal of the training algorithm is to minimize the loss function L of
the network’s parameters i.e. weights w and biases b (L(v) = L(w,b) ≈ 0). In order
to find the minimum of a loss function L, the analytic gradient ∇L is calculated. ∇L
indicates the extent and direction of change in the loss function resulted by changing
convolution parameters (weights w and biases b) by one unit. Gradient descent uses
this information to alter the parameters in such a way that the error ’descends’ to its
minima.

The gradient descent update rule is defined as

vi ← vi − η
∂L

∂vi
(2.5.5)

or

wi ← wi − η
∂L

∂wi
, bi ← bi − η

∂L

∂bi
, (2.5.6)

where η is the learning rate. It is initialized by trial and error and it gradually de-
creases over training iterations. The terms ∂C

∂wi
and ∂C

∂wi
determine the rate of change

of loss function with respect to any weight w and bias b in the network.
Despite its popularity, gradient descent converges very slow at a minimum loss

setting. It often does not achieve convergence at all. To overcome this problem,
momentum [Rud16] is introduced. Momentum helps accelerating gradients vectors in
the right directions, which leads to faster convergence.

It does so by adding a fraction γ of the update vector of the previous step to the
current update vector:

θ′i = γθi − η
∂L

∂θi
, vi ← vi − θ

′
i , (2.5.7)

where γ<1. Another problem of gradient descent is that the gradients for shallow
layers are typically much smaller than the gradients of deeper layers, and the learning
rates should be able to accommodate for this problem. There are several optimization
techniques to tackle such problem. AdaGrad [DHS11] is one of such techniques that
includes an adaptive learning rate, given as

∆vi = −η
1√
r+ δ

� ∂L

∂vi
, vi ← vi +∆vi , (2.5.8)

2.6 object detection 19

where � represents an element-wise multiplication. δ is a constant that avoids the
division by zero, whereas r is the sum of squares of past gradients. It is given as

r← r+ (
∂L

∂vi
� ∂L

∂vi
). (2.5.9)

RMSprop [TH12], an extension of AdaGrad, introduces another parameter ρ that
tackles the problem of AdaGrad’s monotonically decreasing learning rate. The update
rule for AdaGrad with RMSprop becomes

r← ρr+ (1− ρ)(
∂L

∂vi
� ∂L

∂vi
), (2.5.10)

where r is now the weighted sum of squared gradients.
Adaptive Moment Estimation, or Adam [KB14], is another adaptive learning rate op-

timization algorithm. Adam optimizer is one of most commonly used optimizer in
modern deep learning applications. It is a combination of Momentum and RMSprop.

The update rule for Adam optimizer follows

s← ρ1s+ (1− ρ1)
∂L

∂vi
, ŝ← s

1− ρt1
, (2.5.11)

r← ρ2r+ (1− ρ2)(
∂L

∂vi
� ∂L

∂vi
) , r̂← r

1− ρt2
, (2.5.12)

∆vi = −η
ŝ√
r̂+ δ

� ∂L

∂vi
, vi ← vi +∆vi , (2.5.13)

where s and ŝ represent the estimate and its bias correction respectively for the first
momentum, while r and r̂ represent the same for the second momentum. ρ1 and
ρ2 are the decay rates which are usually set to be 0.9 and 0.999 respectively. Empiri-
cally shown, Adam works robustly to the choices of hyperparameters and compares
favorably to other adaptive learning algorithms [GBCB16].

2.6 object detection

Object detection in images is one of the most fundamental and challenging problems
in computer vision. In addition to identifying and validating multiple objects in an
image and classifying them into certain classes, object detection also deals with the lo-
calization problem, together with a rough estimation of their sizes. By this definition,
one may conclude that object detection is concerned with two sub-problems: classi-
fication and regression. The regression problem (also referred to as bounding-box

20 fundamentals

regression) deals with the linear regression of bounding-boxes encapsulating objects
of interest in an image. An ideal bounding-box is an axis-parallel rectangle that
contains all parts of an object. Each bounding-box in an image is associated with a
confidence score that estimates the probability of an object lying within it.

In this work, ’region-based’ deep neural networks are specifically explored for ob-
ject detection and instance segmentation. Typically, there are three basic steps to
a region-based object detection framework. The first step is the regions of interest
(RoI) or region proposals generation (see subsection 2.8.1). An algorithm or a model
such as RPN (see subsection 4.2.1) generates rectangular bounding-boxes in an image
which is the object localization component of an object detector. After region pro-
posals generation, visual features are extracted for each of the bounding-boxes in the
next step. These visual features decide whether a bounding-box contains an object
or not. In the final step, overlapping boxes are combined into a single bounding-
box using an external algorithm such as NMS (see subsection 2.8.3). The classifying
component of the object detector then classifies object within the bounding-box into
a certain class. The region-based object detection and segmentation frameworks are
discussed in greater details in chapter 3 and chapter 4.

2.7 instance segmentation

Intuitively, segmentation is the understanding of an image on the pixel level, where
the goal is to assign the class labels to each pixel in the image.

Unlike semantic segmentation, where each pixel in the image is catogarized, in-
stance segmentation does not label every pixel in the image. Instead, the goal of
instance segmentation is to detect specific objects in an image and create a mask
around the object of interest. Instance segmentation combines classical object detec-
tion tasks (classification of multiple objects and localization using bounding-boxes)
with semantic segmentation where the goal is to classify each pixel into a fixed set of
categories without differentiating object instances.

Figure 2.7.1 illustrates the difference between semantic and instance segmentation.
Semantic segmentation partitions the image into semantically meaningful parts and
classifies each part into one of the pre-determined classes (i.e. balloon, 2.7.1c). In-
stance segmentation, however, segments the image for all individual objects, regard-
less of their association to the same class(2.7.1d).

2.8 important object detection and segmentation concepts 21

(a) Original image (b) Object detection

(c) Semantic segmentation (d) Instance segmentation

Figure 2.7.1: Object detection vs semantic segmentation vs instance segmentation [Abd]

2.8 important object detection and segmentation concepts

In this section, a brief introduction to some of the important concepts used in object
detection is provided.

2.8.1 Region of Interest (RoI)

A region of interest, or more colloquially known as region proposal or bounding-box
proposal, is a rectangular region in an input image that potentially contains an ob-
ject. These proposals can be generated by some external algorithms such as Selective
Search [UVDSGS13], Edge Box detection [ZD14] or by a Region Proposal Network

22 fundamentals

(RPN) [RHGS15] (see subsection 4.2.1).

A bounding-box is represented as a 4 × 1 vector containing its center location,
width, and height (x, y, w, h). Each bounding-box in an image is accompanied by
an objectness or confidence score of how likely the box contains an object.

The difference between two bounding-boxes is usually measured by the L2 distance
of their vector representations (see Figure 2.8.1).

(a) Bounding-box encapsulating an ob-
ject of interest

(b) Offset between two bounding-boxes

Figure 2.8.1: RoI in an image

2.8.2 Intersection over Union (IoU)

Intersection over union (IoU) is a measure based on Jaccard Index [H+
89] that mea-

sures the similarity between predicted bounding-box Bp and the ground truth Bgt. It
simply determines whether a detection is valid (True Positive) or not (False Positive)
and is given by the overlapping area between the predicted bounding-box and the
ground truth bounding-box divided by the area of union between them (Figure 2.8.2).

IoU =
area(Bp ∩Bgt)
area(Bp ∪Bgt)

. (2.8.1)

2.8 important object detection and segmentation concepts 23

Figure 2.8.2: Area of overlap over area of union

2.8.3 Non-Maxium Suppression (NMS)

Non-Maxium Suppression (NMS) is a greedy algorithm used in most modern object
detectors to merge overlapping bounding boxes (or region proposals). It sorts de-
tections by their object confidence scores, takes the highest scoring detection and re-
moves lower-scoring detections which have an IOU greater than a pre-defined thresh-
old (Figure 2.8.3).

2.8.4 Bounding-box regression (bounding-box refinement)

Most of the modern object detectors utilize bounding-box regressors which are trained
to look at an input region and predict the offset ∆(x, y, w, h) between the input re-
gion box and the ground truth box. If there is one regressor for each object class, it
is called class-specific regression, otherwise, it is called class-agnostic (one regressor
for all classes). A bounding-box regressor is often accompanied by a bounding-box
classifier (confidence scorer) to estimate the confidence of object existence in the box.
The classifier can also be class-specific or class-agnostic.

24 fundamentals

(a) Before NMS (b) After NMS

Figure 2.8.3: After applying NMS, only the bounding-boxes with highest confidence score
remain.

3
R E L AT E D W O R K

This chapter provides a brief history of classical object detection methods that uti-
lize Convolutional Neural Networks (CNNs) as well as their modern history. Fur-
thermore, the methods that combine CNNs with region proposal generators will be
briefly discussed. section 3.2 and section 3.3 discuss the fundamentals of region-based
object detection and segmentation frameworks, which have inspired the development
of the approaches presented in this work.

3.1 classical methods

One of the fundamental tasks of computer vision is to enable computers to have the
human-like interpretation of complex visual information. Such an interpretation can
occur at several levels within an image, such as object detection and segmentation.
Object detection is the task of identifying the presence of any instances of a given
object class within an image whereas segmentation is the task of labeling each image
pixel with the object class.

Object detection and segmentation are the most rapidly advancing areas of com-
puter vision. Now, a computer can easily surpass an average human performance in
object detection and segmentation, all thanks to the advanced computing technologies
and large publicly available datasets. Even though, the popularity of aforementioned
computer vision applications has increased drastically in the last decade, its history
extends back to the early 1960s.

Prior to the application of deep neural networks for object detection and segmen-
tation tasks, classic object detection frameworks were mainly based on extracting
feature descriptors, such as Histograms of Orientated Gradients (HOG) [DT05] or
scale-invariant feature transform (SIFT) [Low99] with subsequent classification by a
linear classifier, such as SVM. In this section, these classic methods will be briefly
described.

26 related work

3.1.1 Histogram of Oriented Gradients (HOG)

Histogram of Oriented Gradients (HOG) is a dense feature descriptor for images, de-
veloped by Navneet Dalal et al. [DT05]. The basic idea is that the shape of structures
can be characterized by the distribution of local intensity gradients or edge directions.
HOG method captures these shapes in a region by extracting information about said
gradients.
In practice, HOG first divides an image into a number of overlapping spatial regions
(or blocks). These blocks are also referred to as histogram of oriented gradients (HOG)
descriptors. Each block is then further divided into smaller n× n cells, where each
cell contains a fixed number of gradient orientation bins over n number of pixels in
it. Each pixel in the cell gives a score for a gradient orientation bin proportional to
the gradient magnitude at that pixel (Figure 3.1.2). Once the intensity gradients are
computed for each pixel in the cell, the gradient orientations are quantized into sev-
eral bins.
In order to extract features and to classify regions from sub-images at multiple scales
and aspect ratios, HOG utilizes a ’sliding window’ (subsection 3.1.3) approach. Tiling
these sliding windows with a dense overlapping grid of blocks or HOG descriptors
and using the combined feature vector in a linear classifier such as support vector
machines (SVMs) results in final output (object/non-object classification).

Figure 3.1.1: The detector window is tiled with a grid of overlapping blocks in which HOG
feature vectors are extracted. The combined vectors are fed to a linear SVM for
object/non-object classification. [DT05].

As great HOG was at producing state-of-the-art results in the early 2000s, it lacked
robustness with regard to occlusion and deformations. The accuracy and detection
speed of HOG method were also prohibitive for many applications.

3.1 classical methods 27

(a) Original image (b) HOG features (c) Stable orientations
of HOG features

(d) Cells with high con-
tinuity values.

Figure 3.1.2: Each pixel in an image is replaced with a gradient with a score proportional to
the gradient magnitude at that pixel [Giv].

3.1.2 Scale Invariant Feature Transform (SIFT)

Scale Invariant Feature Transform (SIFT), originally developed by David Lowe in 1999

[Low99], is an image descriptor, which has been extensively used for the person/face
localization and recognition. The SIFT descriptor has been proven to be very useful
in practice for image matching and object recognition under real-world conditions
because of its invariance to translations, rotations, and scaling transformations in the
image domain. The operation of a SIFT descriptor can be divided into the following
steps. The first step is the extraction of key-points or interest points from labeled grey-
level images. These key-points are located in 2D space where the signal’s variation
exceeds some threshold. SIFT extracts these key-points by creating a scale space. This
scale space is obtained by constructing a set of Gaussian-blurred images. Once the
key-points are obtained, a feature vector is computed by finding the histograms of gra-
dient directions in a local neighborhood around each key-point. This creation of fea-
ture vector like descriptor is the second step and a unique aspect of SIFT. In the third

28 related work

step, bad key-points such as edges and low contrast regions are eliminated and an ar-
ray of orientation histograms is computed for the remaining key-points. Any further
calculations are done relative to this orientation histogram which effectively cancels
out the effect of orientation, making it rotation invariant. Finally, with the scale and
rotation invariance in place, a Hough transform is performed to identify the clusters
from a specific object. Next, the probability of a particular feature vector representing
an object in the image is computed. The verification is performed as a least-squares
solution, applied to the parameters obtained from the affine transformation[Low99].

3.1.3 OverFeat (Sliding Window Approach)

Early attempts at object detection using CNN relied heavily on sliding window pro-
cessing. Such methods have proved to be very successful in several domains, in-
cluding face, pedestrian, and text detection. One such network, namely OverFeat
[SEZ+

13], won the ImageNet Large Scale Visual Recognition Challenge 2013 (ILSVRC
2013) [RL13]). Modern region-based object detectors owe their success to Overfeet
which is considered to be the pioneer model of integrating the image classification
and regression tasks into one Convolutional Neural Network. The main idea behind
it is to perform classification at different locations (or regions) on multiple scales of
an image in a sliding window fashion (i.e. by sliding an n×n window on the feature
map obtained by last convolutional layer of the CNN), and to perform bounding-box
regression (explained in subsection 2.8.4) to envelop an object more tightly.

This method first trains a CNN model for the image classification task. Then, it
replaces the top classifier layers with a class-specific regression network and trains
it to refine the boundaries of bounding-boxes at each spatial location. Finally, the
resulting class scores and regressed bounding-boxes are aggregated using a greedy
merging algorithm

Despite the success of such methods, many drawbacks remained. One of the major
drawbacks was the redundancy of the processed windows (only partially containing
an object), which increased the running time by a considerable amount. However,
the idea of object localization (combination of image classification and regression) in
Overfeat has been extended in the modern object detection task (where the idea is to
localize the objects on multiple regions of images).

3.2 region-based convolution neural network (r-cnn) 29

3.2 region-based convolution neural network (r-cnn)

In 2014, the very first region-based object detector was developed by Girshick et. al,
namely Region-based Convolution Neural Network (R-CNN) [GDDM14].

R-CNN model consists of three modules. The first module generates region pro-
posals by scanning the input image for possible objects using an external algorithm.
There are various methods for the region proposals generation such as objectness
[ADF12], Selective Search [UVDSGS13], Category-Independent Object Proposals [EH10],
Constrained Parametric Min-Cuts (CPMC) [CS11], Multi-Scale Combinatorial Group-
ing [APTB+

14] etc. The most commonly used region proposal generation method
is Selective Search algorithm, which bottoms up nearly 2000 category independent
RoIs or region proposals. These region proposals are then warped to match the input
of a large multi-layered Convolutional Neural Network (CNN), which is the second
module of R-CNN. This large CNN extracts a fixed-length feature vector from each
region in an image.

The third module is a set of class-specific linear support vector machines (SVMs).
In this module, feature vectors obtained from the CNN are fed to the said classifier
and the set of classified region proposals are reduced using Non- Maximum Suppres-
sion (NMS). The feature vector is also fed to a linear regressor, leaving the expected
bounding-boxes of objects in the input image. Three modules of an R-CNN are shown
in Figure 3.2.1.

Although, the R-CNN was intuitive, it had few drawbacks. One of the major draw-
backs was the fixed input size of region proposals, surpassed by warping image re-
gions (regardless of its size, location or aspect) to the pre-defined dimensions before
processing by the CNN. Another major drawbacks of R-CNN was its high compu-
tational cost; a result of passing warped sub-images individually through the CNN
(with around 2,000 regions being generated at test time).

3.3 fast region-based convolution neural network (fast r-cnn)

Fast-R-CNN [Gir15] is the first successor of R-CNN, retaining most of the core no-
tions of R-CNN and introducing few refinements. In Fast R-CNN, the main CNN
with multiple convolutional layers is applied to the image for feature detection before
proposing regions. That means it does not require several CNNs over several over-
lapping regions. Also the SVM is replaced with a Softmax layer, thus extending the
neural network for predictions instead of creating a new model (Figure 3.3.1). An-
other refinement was the Region of Interest (RoI) pooling layer (see subsection 4.3.1).

30 related work

Figure 3.2.1: RCNN takes an input image, extracts around 2000 bottom-up region proposals,
computes features for each proposal using a large CNN and then classifies each
region using class-specific linear SVMs [GDDM14].

Fast R-CNN is almost 10× more computationally efficient and accurate than R-CNN
as the region proposals are generated from the feature map instead of the original
image. However, region proposals were still detected with the slow selective search
method.

3.3 fast region-based convolution neural network (fast r-cnn) 31

Figure 3.3.1: An input image and multiple regions of interest (RoIs) are input into a CNN.
Each RoI is first pooled into a fixed-size feature map and then mapped to a
feature vector by fully connected layers (FCs). The network has two output
vectors per RoI: Softmax probabilities and per-class bounding-box regression
offsets. The architecture is trained end-to-end with a multi-task loss [Gir15].

4
M E T H O D S

Previous chapters explained the fundamental concepts necessary to understand the
object detection and the instance segmentation tasks along with their classic and
modern history. This chapter provides the infrastructures and setup used in this
thesis based on the related work. In section 4.1, a brief introduction to the evaluation
matrices used in this work will be given. As explained earlier, this thesis is divided
into two modules: object detection and instance segmentation. The methods and
approaches used for the object detection task as well as the instance segmentation
task will be described in greater detail along with their loss functions and training
schemes in section 4.2 and section 4.3.

4.1 evaluation metrics

In this section, the concepts required to understand the evaluation matrices used in
this work will be briefly explained. The most useful and commonly used evaluation
metric for the task of object detection is called mean Average Precision (mAP). This
evaluation metric is used by most of the modern object detection and instance seg-
mentation frameworks to compare their performances. In order to understand mAP,
it is necessary to first have an intuition of sensitivity and specificity, which are the
statistical measures of the performance of a binary classification test.

Sensitivity is also referred to as the true positive rate or the recall. It measures the
proportion of actual positives that are correctly identified. For object detection task,
declaration of true positives (TP) and false positives (FP) depends on a pre-defined
IoU threshold (see subsection 2.8.2). The IoU threshold is usually set to 50%, 75% or
95%. The true positives (TP) and false positives (FP) are hypothesized as follows:

• True Positive (TP): The proportion of actual positives that are correctly identified
with an IOU > some pre-defined threshold. In the case of object detection, a
true positive (TP) is a correctly-detected object in an image.

• False Positive (FP): The proportion of actual negatives incorrectly identified as
positives with an IOU < some pre-defined threshold. This can be thought of as
a false detection i.e. if an object is detected in an image when there is none.

34 methods

Specificity is also called the true negative rate. The true negatives (TN) and false
negatives (FN) are defined as follows:

• True Negative (TN): The proportion of actual negatives that are correctly identi-
fied i.e. for object detection true negatives (TN)) are the cases where non-object
regions are correctly identified as non-object regions

• False Negative (FN): A case, where a detector fails to detect an object.

4.1.1 Precision

Precision [EVGW+
10] is the ability of a model to identify only the relevant objects,

i.e. the percentage of correct positive predictions. It is given by

Precision =
TP

TP+ FP
=

TP

all detections
. (4.1.1)

4.1.2 Recall

Recall [EVGW+
10] is the ability of a model to find all the relevant cases. It represents

the proportion of the actual positives that are correctly identified. It is given by:

Recall =
TP

TP+ FN
=

TP

all positive cases
. (4.1.2)

4.1.3 Precision-Recall curve

The Precision-Recall curve is one of the most common metrics used to evaluate the
performance of an object detection network.

An object detector of a particular class is considered good if its precision remains
high as recall increases. A good object detector has the ability to identify all the
relevant objects (zero false positives = high precision) and to find all the ground truth
objects (zero false negatives = high recall).

While training an object detector, the number of detected objects increases with
time. Consequently, the number of false positives also increases which results in the
precision drop. This is the reason the precision-recall curve usually starts with the
high precision values and gradually decreases as the object detector tries to retrieve
all ground truth objects.

4.1 evaluation metrics 35

Figure 4.1.1 shows an illustration of a precision-recall curve. The recall value in-
creases as the number of detected object increases. However, the precision value
would drop and rise in a zig-zag fashion.

Figure 4.1.1: An example of a Precision-Recall curve [Hui]

4.1.4 Average Precision (AP)

The Average Precision (AP) is calculated by first smoothing out the zig-zag pattern
of the precision-recall curve and then calculating the area under it. The average
precision can also be used to compare the performances of different detectors.
In practice, a graph is plotted with recall r̂ value in the range (0,1) and the precision
value is replaced with the maximum precision for any recall > r̂.

For example, in the PASCAL Visual Object Classes (VOC) challenge [EVGW+
10] ,

the AP (average precision) is computed by averaging the precision at a set of eleven
equally spaced recall levels i.e. 0, 0.1, 0.2, ..., 1 (see (Figure 4.1.2)).
Mathematically, it can be expressed as

AP =
1

11

∑
rε(0.0...1.0)

APr , (4.1.3)

=
1

11

∑
rε(0.0...1.0)

Pinterp(r) , (4.1.4)

with

36 methods

Figure 4.1.2: The highest precision value (the green curve) at the recall values (0, 0.1, 0.2, . . . ,
0.9 and 1.0) [Hui]

Pinterp(r) = max
r̂>r

p(r̂) , (4.1.5)

where Pinterp(r) is an interpolated precision that takes the maximum precision
over all recalls greater than r. p(r̂) is the measured precision at recall r̂.

4.1.5 Mean Average Precision (mAP)

Mean Average Precision (mAP) is simply the average of AP over all classes. It is often
referred to as AP instead.

The next section explains the Faster R-CNN algorithm which was used for the first
task of this thesis i.e. object detection task.

4.2 faster region-based convolution neural network (faster r-cnn)

Faster Region-based Convolution Neural Network (Faster R-CNN), developed by
Shaoqing Ren et al. in 2016 [RHGS15], is the successor of Fast R-CNN [Gir15].

Despite the success achieved by Fast R-CNN, it still relies on an external algo-
rithm to propose region proposals. The external region proposal generation methods
such as Selective Search [UVDSGS13] algorithm typically rely on inexpensive features,
which is a bottleneck in terms of running time. Selective Search greedily merges su-

4.2 faster region-based convolution neural network (faster r-cnn) 37

per pixels based on engineered low-level features and it takes 2 seconds per image in
a CPU implementation. Edge Boxes [ZD14], another external region proposer showed
a better trade-off between proposal quality and speed, at 0.2 seconds per image. Nev-
ertheless, it still consumes as much running time as the detection network [RHGS15].

Faster R-CNN, in contrast, exploits the feature extractor output for classification
and regression and uses this information to generate region proposals which leads
to an effective solution, namely Region Proposal Networks (RPNs). RPN shares con-
volutional layers with the object detection networks, making proposal computation
nearly cost-free (e.g. 10 ms per image).

4.2.1 Region Proposal Network (RPN)

An RPN is a Fully Convolutional Network (FCN) [LSD15] that simultaneously pre-
dicts object bounds and objectness scores at each position of an image. It is trained
end-to-end specifically for the task of generating high quality region proposals.

RPNs can efficiently bottom-up region proposals with a wide range of scales and
aspect ratios by using “anchor” boxes.

The prevalent networks such as Spatial Pyramid Pooling [RHZS14], Fast R-CNN
[Gir15] and OverFeat [SEZ+

13] etc used the pyramids of images (4.2.1a) or pyra-
mids of filters (4.2.1b), while RPN uses the pyramid of regression references scheme
(4.2.1c), which avoids enumerating images or filters of multiple scales or aspect ratios,
enabling Faster R-CNN to perform better when trained and tested using single-scale
images.
Faster R-CNN can be considered as a unification of a region proposer (RPN) and an
object detector (Fast R-CNN). A training scheme that alternates between fine-tuning
for the region proposal task and then fine-tuning for object detection, while keeping
the proposals fixed results in a unified network with convolutional features that are
shared between both tasks (Figure 4.2.2).

An RPN shares computation with the Fast R-CNN detector by utilizing all the con-
volutional layers of the core CNN. This could be thought of as a Fully Convolutional
Network (FCN) [LSD15]. An RPN takes an image as input and outputs a set of rectan-
gular object proposals, each associated with an objectness score. It does so by taking
an n × n spatial window of feature map from the last shared convolutional layer
and by sliding a small network over it (as illustrated in Figure 4.2.3). Each sliding
window is then mapped to a lower-dimensional feature map, which is further fed

38 methods

(a) Pyramids of images and feature maps

(b) Pyramids of filters with multiple scales/sizes (c) Pyramids of reference boxes in the regression
functions

Figure 4.2.1: Different schemes for addressing multiple scales and aspect ratios [RHGS15]

into two sibling fully-connected layers: a bounding-box regression layer (reg) and a
bounding-box classification layer (cls).

4.2.2 Anchors

For each sliding-window location, k number of region proposals are predicted simul-
taneously (see Figure 4.2.3). These k number of proposals are referred to as anchors.
For three aspect ratios 1:1, 1:2 and 2:1 (as per original implementation) each sliding
window yields a total of k = 9 anchors.

The reg layer has 4k outputs (its center location and its height and width) and the
cls layer has 2k scores (probability of a proposal containing an object or not). For a
convolutional feature map of a size W ×H, there are (W ×H)× k anchors in total.

4.2 faster region-based convolution neural network (faster r-cnn) 39

Figure 4.2.2: Faster R-CNN represented as a single unified network for object detection
[RHGS15]

4.2.3 Loss Function

Each anchor is assigned a binary class label (of being an object or not). An anchor is
assigned a positive label when it has either the highest IoU overlap with a ground-
truth box, or an IoU overlap higher than 0.7 with any ground-truth box. It is also
possible that a single ground-truth box may assign positive labels to multiple an-
chors. The first condition is adopted in some rare cases where the second condition
fails to find any positive sample.

Likewise, when an anchor has an IoU ratio lower than 0.3 for all ground-truth
boxes, it is assigned a negative label.

40 methods

Figure 4.2.3: Working of an RPN [RHGS15]

With these definitions, the loss function for an image is defined as

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi,pi∗) + λ
1

Nreg

∑
i

pi∗Lreg(ti, ti∗). (4.2.1)

Here, i is the index of an anchor in a mini-batch. pi is the predicted probability
of anchor i being an object whereas p∗ is the ground-truth label which is 1 for a
positive anchor, and 0 for the negative one. ti is a vector representing the 4 parame-
terized coordinates of the predicted bounding-box, and t∗i represents coordinates of
the ground-truth box associated with a positive anchor.
Lcls is the log loss over two classes (object vs not object) for classification whereas

Lreg represents the regression loss. The term pi ∗ Lreg indicates that the regression
loss is activated only for positive anchors and is disabled otherwise.

The classification loss is normalized by Ncls, which is the mini-batch size, and the
regression loss by the number of anchor locations Nreg. The regression loss is also
weighted by a balancing parameter λ. For bounding-box regression, the 4 coordinates
are calculated as

4.2 faster region-based convolution neural network (faster r-cnn) 41

tx = (x−xa)/wa , ty = (y−ya)/ha , (4.2.2)

tw = log(w/wa) , th = log(h/ha) , (4.2.3)

t∗x = (x∗−xa)/wa , t∗y = (y∗−ya)/ha , (4.2.4)

t∗w = log(w∗/wa) , t∗h = log(h∗/ha) , (4.2.5)

where x, y, w, and h indicate the anchor box’s center coordinates and its width and
height. Variables x, xa, and x∗ are for the predicted box, anchor box, and ground-
truth box respectively (likewise for y, w, h) [RHGS15].

4.2.4 Training Procedure

In this section, the training procedure for Faster R-CNN as a unified network is ex-
plained, where computation is shared between the RPN and the object detector e.g.
Fast R-CNN.

Both RPN and the object detector (Fast R-CNN) can be trained independently. To
take advantage of shared computation, a method is required that allows sharing con-
volutional layers between two networks. A Faster R-CNN network can be trained in
following ways:

4.2.4.1 Alternate Training

In this iterative approach, RPN is first trained to propose region proposals, which are
then used to train the detector. The tuned object detection network is then used to
initialize RPN again.

4.2.4.2 Approximate Joint Training

This approach merges RPN and Fast R-CNN networks into one unified network as
shown in Figure 4.2.2. During training of the detector, the forward pass generates re-
gion proposals which are treated as fixed, pre-computed proposals and the backward
propagated signals from both the RPN loss and the Fast R-CNN loss are combined for
the shared layers. This approach, however, ignores the derivative w.r.t. the proposal
boxes’ coordinates that are also network’s responses.

4.2.4.3 Non-Approximate Joint Training

Since the bounding-boxes that are predicted by as RPN are also functions of the input
and the above approach ignores the gradients w.r.t. the bounding-boxes’ coordinates,

42 methods

an extra layer is required. This layer is called RoIPool layer (will be explained later in
subsection 4.3.1) and it is differentiable w.r.t. the bounding-boxes’ coordinates. The
rest training procedure is same as the above approach.

4.2.4.4 4-Step Alternating Training

The work presented in this thesis uses a 4-Step alternating training approach to learn
shared features via alternating optimization. In the first step, the RPN is initialized
with ImageNet pre-trained weights and fine-tuned end-to-end for the region proposal
generation task. In the second step, a separate detection network (also initialized with
the ImageNet pre-trained weights) is trained using the proposals generated by step
1. The two networks do not share convolutional layers until this point. In the third
step, the detection network initializes the RPN, but the shared convolutional layers
are fixed and only the layers unique to RPN are fine-tuned. Finally, keeping the
shared convolutional layers fixed, the unique layers of the detector (Fast R-CNN) are
fine-tuned. Hence, both networks share the same convolutional layers resulting into
a unified network [RHGS15].

The second module of this thesis is called instance segmentation task, which com-
bines classical object detection tasks (classification of multiple objects and localization
using bounding-boxes) with semantic segmentation where the goal is to classify each
pixel into a fixed set of categories without differentiating object instances. The method
used for instance segmentation task is called Mask R-CNN which is explained as fol-
lows:

4.3 mask region-based convolution neural network (mask r-cnn)

Mask Region-based Convolution Neural Network (Mask R-CNN) [HGDG17] can be
considered as an extension of the Faster R-CNN. Mask R-CNN adds a small overhead
to the Faster R-CNN by adding an extra branch for predicting an object mask in
parallel with the existing branches for classification and bounding-box regression
(Figure 4.3.1).

Mask R-CNN follows the same two-stage training procedure as Faster R-CNN. The
first stage (region proposal generation via RPN) is identical to Faster R-CNN, how-
ever, in the second stage, Mask R-CNN outputs a binary mask for each RoI along
with class prediction and bounding-box regression. The masks are produced by us-
ing up-sampling and deconvolutional layers to resize the output feature map to its
original image dimensions.

4.3 mask region-based convolution neural network (mask r-cnn) 43

Figure 4.3.1: Mask R-CNN for instance segmentation[HGDG17]
.

Mask R-CNN uses the RoIAlign (subsection 4.3.1) layer instead of RoIPool layer.
The difference between two layers (i.e. RoI pooling approaches) is explained in the
next section. Since the Faster R-CNN was not designed for pixel-to-pixel alignment
between the network inputs and outputs, it performs coarse spatial quantization for
feature extraction which is fine for just classification task. However, the misalignment
caused by RoIPool creates an offset for object’s binary mask. To fix the misalignment,
Mask R-CNN uses the RoIAlign which is quantization-free.

4.3.1 RoIPool vs RoIAlign

The prevalent networks such as Fast R-CNN and Faster R-CNN used RoI pooling
method for the purpose of speeding up training/testing process. Fast R-CNN applied
the ROI pooling method to allow only one forward/backward pass for multiple RoIs
in one input image.

The RoIPool takes two inputs: a fixed-size feature map obtained after several con-
volutions and max-pooling operations and an N× 4 matrix representing a list of RoIs,
whereN is a number of RoIs. This matrix includes the coordinates of the region along
with its height and width (x,y,h,w).

Multiple RoIs in an image are of different sizes. For each RoI of size h×w, the
RoIPool takes a section of the corresponding input feature map and scales it to size

44 methods

H×W. This scaling is done by max-pooling. (The max-pool kernel is [h/H], [w/W]
respectively). RoI pooling allows the network to forward the image just once for
different scaled RoIs.

Incorporating RoIPool layer in Mask R-CNN has a downside as it involves two
steps of coordinates quantization: from the original image to feature map and from
feature map to RoI feature. Those quantizations cause a huge loss of location preci-
sion. Therefore Mask R-CNN replaces the RoIPool layer with the RoIAlign layer as
the RoI pooling method. RoIAlign removes those two quantizations and manipulate
coordinates on continuous domain, which increase the location accuracy greatly.

Figure 4.3.2 shows that the RoIAlign computes the exact values of the input features
at four regularly sampled locations using bilinear interpolation in each RoI bin, and
aggregate the result (using max or average). No quantization is performed on any
coordinates involved in the RoI, its bins, or the sampling points.

Figure 4.3.2: A feature map with 5× 5 bins is mapped to an RoI of 2× 2 bins (the dots repre-
sent the 4 sampling points in each bin) [HGDG17]

.

4.3.2 Loss Function

The multi-task loss for each sampled RoI is defined as

L = Lcls + Lreg + Lmask. (4.3.1)

4.3 mask region-based convolution neural network (mask r-cnn) 45

The classification loss Lcls and the regression loss Lreg in Equation 4.3.1 are identi-
cal to those defined in Equation 4.2.1 for Faster R-CNN. The mask loss Lmask is the
average binary cross-entropy loss, only including k-th mask if the RoI is associated
with the ground truth class k. It has the dimension of Km2 for each RoI (K binary
masks of resolution m×m, one for each of the K classes). Since the model is trying
to learn a mask for each class, there is no competition among classes for generating
masks.
The Mask R-CNN adopts the same 4-step training scheme as Faster R-CNN for train-
ing.

The next chapter discusses the implementation details and the experimental setup
for the methods described above. Additionally, the modifications made to these net-
works will also be characterized, giving motivation for these changes. The datasets
used for the training and testing will be described along with the evaluation metrics
used to quantify the results.

5
E X P E R I M E N T S

This chapter provides further description of the experimental setup and implementa-
tion details of the proposed methods for object detection and segmentation along with
problems encountered during experiments and the conclusions drawn from them.
The parameters of the proposed experimental setup will also be justified in this chap-
ter. Additionally, the modifications made to the networks will also be characterized,
giving motivation for these changes in section 5.4. The section 5.1 gives a descrip-
tion of the datasets on which the experiments have been conducted. Finally, different
methods will be compared and evaluated using the selected threshold values and
results from the presented methods will be discussed.

5.1 datasets

The performance of deep neural networks in object detection relies on a large amount
of training data along with the computing power. Collecting and annotating a dataset
of sufficient size is a hectic and time taking process. Therefore, most research in
object detection and segmentation is performed on publicly available datasets. There
are several such datasets that serve the purpose. The standard benchmark datasets
(PASCAL VOC [EVGW+

10] and MS COCO [LMB+
14]) were selected for the work in

this thesis as they provide diversity and support multiple object categories.

5.1.1 PASCAL Visual Object Classes (PASCAL VOC)

The Pascal Visual Object Classes (VOC) [EVGW+
10] is a publicly available dataset of

images together with ground truth annotation and standardized evaluation software.
It supports five types of challenges: classification, detection, segmentation, action
classification, and person layout. For the work presented in this thesis, two different
versions of PASCAL VOC were used i.e. PASCAL VOC 2007 and PASCAL VOC 2012.
Both versions were used separately as well as in combination to train the networks.
It contains around 10k images for training and around 5k images for testing and val-
idation, categorized among 20 daily life object.
The PASCAL VOC dataset by default supports the evaluation metric for mean Aver-

48 experiments

age Precision (mAP) at IoU = 0.50 (which is referred to as AP50 in MS COCO dataset).
The main motivation behind using this dataset was to select the best backbone archi-
tecture for the models and to provide the base for further evaluation on MS COCO
dataset (subsection 5.1.2).

5.1.2 Microsoft Common Objects in COntext (MS COCO)

Microsoft Common Objects in Context (MS COCO) [LMB+
14] is another publicly

available dataset, widely used for object detection and segmentation task. MS COCO
is relatively much larger dataset which consists of around 200k labeled images, con-
taining 1.5 million object instances and categorizing them among 80 different cate-
gories. In addition, it provides an option to calculate the mean Average Precision
(mAP) for the objects at different IoU scales and for the objects of different sizes as
well (see Table 5.1.1).

5.2 experimental setup

Both region proposal networks and object detection/segmentation networks were
trained and tested on images of a single scale (i.e. 1000× 600 pixels for Faster R-CNN
and 1000 × 800 for Mask R-CNN). For Mask R-CNN, the rescaled images of scale
600× 400 were used (reason explained in section 5.4). As original implementation of
Faster R-CNN [RHGS15] suggests that the image pyramid or feature pyramid is not
required to produce regions of multiple scales, hence only a single scale for images
was considered in this work. For anchors, three aspect ratios of 1:1, 1:2 and 2:1 (k=9

anchors per sliding window of 3 x 3) and three scales with box areas of 1282, 2562 and
5122 pixels were chosen. The anchor boxes that cross with image boundaries were
neglected during training. In general, there are roughly 20,000 anchors for a 1000 x
600 image (i.e. 1000 x 600 x 9 ≈ 20000). After ignoring cross-boundary anchors, about
6000 anchor boxes per image are left. Including cross-boundary anchors in training
produces large training error resulting in not converging. While training RPN, some
proposals highly overlap each other. So, the Non-Maximum Suppression (NMS) was
applied on proposals based on their cls scores to reduce redundancy. IoU=0.7 was
chosen for NMS resulting in final 2000 proposals. Different settings for train-time
and test-time proposals and three different RoI pooling methods namely RoIPool,
RoIPool and crop_and_resize (explained in section 5.4) were also used. A detailed
comparison is given in Table 5.7.1 and Table 5.9.1.

5.3 backbone architectures 49

AP at different IoU values

AP AP averaged over interval IoU=[0.50 0.95] (primary challenge metric)

AP50 AP at IoU=0.50 (PASCAL VOC metric)

AP75 AP at IoU=0.75 (strict metric)

AP across scales

APsmall AP for small objects (area < 322)

APmedium AP for medium objects (322 < area < 962)

APlarge AP for large objects (area > 962)

Table 5.1.1: Average precision across different scales

Two different version of PASCAL VOC dataset (i.e. 2007 and 2012) were used for
the experiments. The main motive behind using the PASCAL VOC dataset was to
select the best-performing backbone architecture for Faster R-CNN. Further exper-
iments with Faster R-CNN and Mask R-CNN were carried out with selected best-
performing backbone architectures on MS COCO dataset for further evaluation. All
these experiments were carried out using Nvidia GeForce GTX 1080 GPU.

5.3 backbone architectures

Multiple backbone neural network architecture were used in this thesis. This section
provides a brief introduction of these backbone architectures. Selection of the best
architecture will be justified later.

5.3.1 VGG-16

VGG is a Convolutional Neural Network model proposed by K. Simonyan and A.
Zisserman [SZ14]. In the original implementation of Faster R-CNN, VGG-16 was
used as the baseline backbone architecture. This deep neural network consists of
thirteen convolutional layers along with three fully connected layers.

In this thesis, VGG-16 network was used as a reference for the training of Faster R-
CNN. The modifications made to this specific backbone architecture will be explained
later in section 5.4. An illustration of the architecture is shown in Figure 5.3.1.

The kernel height and width for all the convolutional layers in VGG-16 is same
(i.e. 3). They also share the same stride and the same zero padding (i.e. 1). The

50 experiments

pooling layers have a grid size of 2× 2 with stride = 2. VGG-16 backbone for Faster
R-CNN uses ReLU as the activation function (Equation 2.4.3), and Softmax as the loss
function (Equation 2.5.4).

Figure 5.3.1: Macroarchitecture of VGG-16 [Cor]

5.3.2 Residual Deep Neural Networks (ResNet 50, 101, 152)

Residual deep neural network (ResNet) models were introduced in 2015 by He et al.
[HZRS16]. ResNet models have boosted the performance of many computer vision
applications due to their powerful representational ability.

Deep neural networks are prone to over-fitting because of their massive layers.
Hence, making neural networks deeper is a common trend in the research commu-
nity.

However, increasing network depth by simply stacking layers together might result
in notorious vanishing gradient problem. As the gradient is back-propagated to ear-
lier layers, repeated multiplication may make the gradient infinitely small resulting in
the rapid performance degradation. The solution to this problem is ”Deep Residual
learning framework”.

The deep residual networks consist of sequentially stacked residual blocks. Fig-
ure 5.3.2 shows the difference between a plain block and a residual block. Instead of
learning a direct mapping of x → y using function H(x) which is a few stacked non-

5.4 notable modifications 51

linear layers (Figure 5.3.2, a), the author [HZRS16] introduces the ”identity shortcut
connections” (Figure 5.3.2, b) and defines a residual function as

F(x) = H(x) − x , (5.3.1)

or

H(x) = F(x) + x , (5.3.2)

with F(x) being the stacked non-linear layers and x the identity function (input =
output). The author suggests [HZRS16] that it is easier to optimize the residual map-
ping function F(x) than to optimize the original, unreferenced mapping H(x).

(a) Plain block. (b) Residual block.

Figure 5.3.2: Identity mapping in Residual blocks

In this thesis, three different variants of ResNet models were used, namely ResNet
50, ResNet 101 and ResNet 152. A detailed comparison of three architectures is given
in Table 5.3.1. Building blocks are shown in brackets, with the numbers of blocks
stacked. Down-sampling is performed by conv3_1, conv4_1, and conv5_1 with a
stride of 2 [HZRS16].

5.4 notable modifications

In this thesis, the implementation of Faster R-CNN and Mask R-CNN adopted the
default end-to-end training/testing scheme as the original implementation. Learning

52 experiments

layer name output size ResNet 50 ResNet 101 ResNet 152

conv1 112 x 112 7 x 7, 64, stride 2

conv2_x 56 x 56

3 x 3 max pool, stride 2
1x1, 64

3x3, 64

1x1, 256

 x 3

1x1, 64

3x3, 64

1x1, 256

 x3

1x1, 64

3x3, 64

1x1, 256

 x 3

conv3_x 28 x 28

1x1, 128

3x3, 128

1x1, 512

 x 4

1x1, 128

3x3, 128

1x1, 512

 x 4

1x1, 128

3x3, 128

1x1, 512

 x 8

conv4_x 14 x 14

1x1, 256

3x3, 256

1x1, 1024

 x 6

1x1, 256

3x3, 256

1x1, 1024

 x 23

1x1, 256

3x3, 256

1x1, 1024

 x 36

conv5_x 7 x 7

1x1, 512

3x3, 512

1x1, 2048

 x 3

1x1, 512

3x3, 512

1x1, 2048

 x 3

1x1, 512

3x3, 512

1x1, 2048

 x 3
1 x 1 average pool, 1000-d fc, softmax

Table 5.3.1: ResNet 50, 101 and 152 architectures [HZRS16]

rate was set to be 0.001 for first 50k iterations for PASCAL VOC dataset and 350k
for MS COCO and then it was reduced to 0.0001 for rest of the iterations. The first
notable modification followed [HRS+

17]. The crop_and_resize operator (ported from
Tensorflow to Pytorch) was used instead of RoIPool as the RoI pooling method for
Faster R-CNN. The crop_and_resize operator extracts crops from the input RoIs and
resizes them using nearest neighbor sampling to a common output size of 14× 14 and
then max-pools them to 7× 7 to match the input of fully connected layer. Secondly,
instead of N = 2 images and R = 128 RoIs per image, N = 1 image and R = 256

RoIs were used during a single forward/backward pass. By doing this, it avoids the
gradient accumulation across multiple batches which slows down the training and
requires extra operators in Pytorch. The original implementations of Faster R-CNN
and Mask R-CNN ignored the small proposals (< 16 pixels in height or width in

5.5 faster r-cnn with different backbone architectures 53

the original scale). The third modification is concerned with keeping such proposals.
This step proved to be helpful for the detection of smaller objects.

Another notable modification in Faster R-CNN is concerned with the replacement
of baseline backbone architecture VGG-16 with ResNet models (ResNet 50, 101, 152).
For Mask R-CNN, the initial experiments with the same hyper-parameter settings as
the original implementation were carried out. However, the RoIAlign layer as RoI
pooling method requires much more GPU memory consumption than it was avail-
able for experimentation. The reason behind this problem is that the RoIAlign layer
does not perform quantization, instead performs two steps of bilinear interpolation
(from the original image to the feature map and from feature map to the RoI feature)
to manipulate coordinates on the continuous domain. To find the solution to this
problem, RPN batch size was reduced from R = 256 to R = 64 (keeping N = 1) along
with the image scale (from 1000× 600 to 600× 400). The Mask R-CNN model with
ResNet 101 backbone did not perform well and the mAP dropped by a considerable
amount due to the smaller RPN batch size. Due to the smaller RPN batch size, several
top-ranked anchor boxes were discarded resulting in huge mAP drop. Mask R-CNN
with crop_and_resize as RoI pooling method, however, showed comparable results. A
detailed comparison for the Mask R-CNN is given in Table 5.9.1.

5.5 faster r-cnn with different backbone architectures

As a start, the experiments were conducted with Faster R-CNN and PASCAL VOC
2007 dataset. The shared convolutional layers were initialized with the pre-trained
ImageNet weights. Other layers were randomly initialized by drawing weights from
a zero-mean Gaussian distribution with standard deviation 0.01. Models were also
trained from scratch (without using pre-trained ImageNet weights). Table 5.5.1 shows
that the re-implementation of Faster R-CNN using baseline model VGG-16 with afore-
mentioned modifications outperformed the original implementation which achieved
the mAP of 69.9 with the detection rate of just 5 fps. The re-implementation of
Faster R-CNN with VGG-16 backbone and crop_and_resize RoI pooling method per-
formed almost 3 times faster achieving the mAP of 70.69 when trained using Ima-
geNet weights. Also, this re-implementation of Faster R-CNN with VGG-16 back-
bone was done without gradients accumulation (i.e. N = 1 image per GPU). Faster
R-CNN with ResNet models performed even better than VGG-16 architecture, how-
ever, the detection rate dropped. Increasing the layers in ResNet models results in
higher mAP but detection becomes slower. The ResNet 152 achieves the highest mAP
75.59 on PASCAL VOC 2007.

54 experiments

Backbone architecture From Scratch Pre-Trained Detection Rate

VGG16 (original) n/a 69.9 5fps

VGG16 (modified) 71.02 70.69 14 fps

ResNet 50 67.86 74.15 8 fps

ResNet 101 74.21 75.09 7.5 fps

ResNet 152 75.57 75.59 6.6 fps

Table 5.5.1: Faster R-CNN with different backbones trained on PASCAL VOC training set 2007

and validated on PASCAL VOC validation set 2007

In the next experiment, the Faster R-CNN with the two best-performing backbone
architectures in terms of accuracy and detection rate were trained on a combined
PASCAL VOC training set (2007+ 2012). The networks were validated on PASCAL
VOC validation set 2012 and tested on PASCAL VOC validation set 2007. The Faster
R-CNN was able to achieve the highest mAP of 79.8 with ResNet 101 backbone with
the detection rate of 7.5 fps.

Backbone architecture Validation mAP Test mAP Detection Rate

ResNet 101 88.63 79.8 7.5 fps

ResNet 152 86.7 78.84 6 fps

Table 5.5.2: Faster R-CNN trained on PASCAL VOC training set 2007+2012 and tested on
PASCAL VOC validation set 2007. The number of iterations increased from 70k
to 110k.

5.6 faster r-cnn with different iou scales and object sizes

Further experimentation with Faster R-CNN was done on MS COCO dataset. MS
COCO dataset provides an option to evaluate the mAP for different IoU scales. The
mAP averaged for IoU ε [0.5 : 0.05 : 0.95] (COCO’s standard metric), the mAP at IoU
= 0.75 and the mAP at IoU = 0.5 (PASCAL VOC’s metric) were calculated. In addition,
the mAP for objects of different sizes (APS, APM, and APL) was also evaluated (see
Table 5.1.1). The Faster R-CNN with ResNet 101 and ResNet 152 backbone architec-
tures was able to outperform the baseline model with VGG-16 backbone (Table 5.6.1).

The mAP at all IoU scales improved by a considerable amount (i.e. 10 - 13%). Note
that, the re-implementation of Faster R-CNN includes the RoI pooling method of

5.7 faster r-cnn with different number of training/testing time proposals 55

Backbone architecture AP AP50 AP75 APS APM APL Detection rate

VGG16 (original) 21.9 42.7 30.1 n/a n/a n/a n/a

ResNet 101 31.7 52.0 33.8 13.3 36.3 48.1 5.2 fps

ResNet 152 32.0 52.9 34.5 12.5 36.0 48.5 3.8 fps

Table 5.6.1: Faster RCNN with different backbone architectures trained on MS COCO 2014

dataset

crop_and_resize instead of RoIPool on MS COCO dataset as well. . As it can be seen
from Table 5.6.1 that the Faster R-CNN with ResNet 152 backbone showed slightly
better results than the one with ResNet 101. However, when it comes to the objects
of smaller size and medium size (i.e. under 962 pixels) ResNet 101 outperforms
ResNet 152 backbone. In addition it gives better detection result of 5.2 fps. So, as a
speed-accuracy trade-off, ResNet 101 was selected as the final backbone architecture
and the experiments were performed with different settings for further evaluations.
Figure 5.6.1 shows the evaluation of losses for the Faster R-CNN with ResNet 101

backbone trained on MS COCO 2014 dataset. Figure 5.6.1 (a) and Figure 5.6.1 (b)
represent the bounding box regression loss and the classification loss for region pro-
posal generator (RPN) respectively. Figure 5.6.1 (c) and Figure 5.6.1 (d) represent the
bounding-box regression loss and the classification loss for the detector. The total
average loss for unified network is shown in Figure 5.6.1 (e).

5.7 faster r-cnn with different number of training/testing time

proposals

Next, the experiments were performed on the Faster R-CNN with different RoI pool-
ing methods, NMS activation and different number of training/testing time propos-
als. First, the model was trained without Non-Maximum Suppression (NMS). NMS
is kept off at test time as well. Without NMS, the RPN outputs 6000 region proposals
during training and 2000 proposals at test time instead of 2000 and 300. As it can
be seen in Table 5.7.1 the mAP droped by a considerable amount at all scales. It
was conjectured that the reason of this gap is due the fact that without NMS each
object is associated with multiple anchor boxes and multiple region proposals con-
sequently. As a result, repetitive region proposals generate larger classification error.
It was analyzed that this property mainly is attributed to the cls term of the RPN.
In the next experiment, the NMS was kept on while training but disabled at test

56 experiments

(a) RPN bounding-box loss (b) RPN cross entropy loss

(c) Bounding-box loss (d) Cross entropy loss

(e) Total Average Loss

Figure 5.6.1: Faster R-CNN with ResNet 101 backbone trained on MS COCO 2014 dataset.
Total number of iterations is 490k. Learning rate is 0.001 for first 350k iterations
and 0.0001 for the rest. RoI pooling method is crop_and_resize.

5.8 faster r-cnn with original roi pooling method 57

time. The model showed comparable results with 2000 test time proposals instead
of 300 proposals indicating that the top-ranked RPN proposals are accurate and it
does not harm the detection mAP significantly. However, fewer proposals reduce the
region-wise fully-connected layers’ cost yielding better detection rate.

RoI pooling
method

NMS Train-time
proposals

Test-time
proposals

AP AP50 AP75 APS APM APL

crop_and
_resize

On 2000 300 31.7 52.0 33.8 13.3 36.3 48.1

crop_and
_resize

Off 6000 2000 10.2 29.9 11.8 0.9 0.13 27.1

crop_and
_resize

On 2000 2000 31.4 52.0 33.6 14.0 36.0 47.4

RoIPool On 2000 300 22.2 48.4 16.7 11.0 26.6 30.9

Table 5.7.1: Faster RCNN (ResNet 101 Backbone) under different hyper-parameter settings

5.8 faster r-cnn with original roi pooling method

Next, an experiment was set up with the original RoI pooling method for the Faster
R-CNN using RoIPool layer instead of the modified crop_and_resize layer keeping
other hyper-parameters fixed. The results obtained from this experiment verified that
the object detector with modified RoI pooling layer (i.e. crop_and_resize) performs
better than the one with with original RoIpool by a considerable amount. The mAP
for the objects of smaller size (APS) specifically dropped by ∼15%. It is conjectured
that this is due to the fact that original RoIPool involves two steps of coordinates
quantization: from the original image to feature map and from feature map to RoI
feature. Those quantizations cause a huge loss of information, specifically in case of
objects of smaller size (under the area of 322 pixels).

5.9 mask r-cnn with different backbone architectures

In the next experiment, the Mask R-CNN was trained with the two best perform-
ing backbone architecture (deducted from the performance of Faster R-CNN) on MS
COCO dataset. The original implementation of Mask R-CNN uses ResNet 101 and

58 experiments

ResNeXt 101 backbone architectures as baseline. The original implementation was
done on Tesla M40 8 GPU machine (16GB per GPU with a batch size of 2 images per
GPU). The re-implementation of Mask R-CNN with same hyper-parameters was not
possible due to the limitations of computation power. As the available setup (Nvidia
GTX1080 3 GPU machine with 8GB per GPU) is not powerful enough to perform
the two steps of bilinear interpolation for R=256 RoIs per image of 1000× 800 scale.
In addition, one forward pass of the Mask R-CNN includes deconvolution and un-
pooling operations to assign class labels to each pixel of the original image which
requires additional memory for computation. To find the solution of said problems,
the first experiment was conducted with the reduced image scale of 600× 400 instead
of 1000× 800 and the reduced RPN batch size of 64 instead of 256. The mini-batch
size was also reduced from N = 2 to N = 1 image per GPU. As it can be seen from
Table 5.9.1, the Mask R-CNN with both ResNet 101 and ResNet 152 failed to replicate
the results and the mAP dropped by a large amount.

Backbone
architec-
ture

RoI
pooling
method

Image
scale

RPN
batch
size R

AP AP50 AP75 APS APM APL

ResNet 101

(original)
RoIAlign 1000×800 256 33.1 54.9 34.8 12.1 35.6 51.1

ResNeXT
101

(original)

RoIAlign 1000×800 256 37.1 60.0 39.4 16.9 39.9 53.5

ResNet 101 RoIAlign 600×400 64 24.1 37.2 25.9 0.39 21.8 48.4

ResNet 152 RoIAlign 600×400 64 19.8 30.9 21.0 0.19 14.5 44.1

ResNet 101 crop_and
_resize

1000×800 256 31.2 51.7 32.5 11.9 35.2 48.5

Table 5.9.1: Mask R-CNN with different backbone architectures trained on MS COCO 2014

dataset

As the deconvolutional network is an integral part of Mask R-CNN which is es-
sential to produce masks of the objects, it cannot be compromised. However, the
RoI pooling method could be replaced to deal with memory consumption issue. In
the next experiment, The Mask R-CNN was incorporated with crop_and_resize layer
from Faster R-CNN and replaced the RoIAlign layer. By replacing RoIAlign with
crop_and_resize, the two steps of bilinear intorpolation can be avoided, which re-

5.9 mask r-cnn with different backbone architectures 59

duces the memory consumption. With crop_and_resize as RoI pooling method, the
Mask R-CNN was able to train on the original scale of images and the original RPN
batch size. The Mask R-CNN model with ResNet 101 backbone architecture and
crop_and_resize as RoI pooling method shows comparable results. It was able to
achieve mAP of 51.7% on AP50 scale. In case of objects of smaller sizes (APS and
APM), the Mask R-CNN with crop_and_resize was able to show very close results
as the baseline model with ResNet 101 backbone architecture. In terms of detection
rate, the Mask R-CNN with crop_and_resize performed at 4.2 fps as compared to
the original implementation which has the detection rate of 5 fps with ResNet 101

backbone.

6
C O N C L U S I O N

The goal of this thesis was to analyze the performance of state-of-the-art region-based
deep learning architectures for object detection and instance segmentation using dif-
ferent backbone architectures along with other modifications and also finding a speed-
accuracy trade-off for said object detection and segmentation frameworks in order to
detect and segment objects with higher detection rate and accuracy.

Two such frameworks were explored for said tasks, namely Faster Region-based
Convolutional Neural Network (Faster R-CNN) and Mask Region-based Convolu-
tional Neural Network (Mask R-CNN). Both frameworks consist of two basic mod-
ules: a region proposal generator (i.e. RPN) and a detector. The Region Proposal
Network (RPN) shares computation with the detector by utilizing the convolutional
layers of the core CNN. The implementation of both Faster R-CNN and Mask R-CNN
followed a 4-Step alternating training approach, where the RPN was first initialized
with ImageNet pre-trained weights and fine-tuned end-to-end for the region proposal
generation task followed by the training of a separate detection network using the pro-
posals generated in the first step. The detection network then initialized the RPN, but
the shared convolutional layers were fixed and only the layers unique to RPN were
fine-tuned. Finally, keeping the shared convolutional layers fixed, the unique layers
of the detector were fine-tuned. Hence, both networks shared the same convolutional
layers resulting in a unified network. The Mask R-CNN, in addition, performs the
deconvlolution operation that assigns class labels to each pixel of the original image.
The Faster R-CNN was first re-implemented with the baseline backbone architecture
VGG-16. The re-implementation was done with crop_and_resize RoI pooling method,
where the input RoIs were cropped and resized using nearest neighbor sampling
to a common outputs size of 14 × 14 and then max-pooled to the final 7 × 7 RoI
feature. This RoI pooling method enabled the Faster R-CNN to outperform origi-
nal implementation on the PASCAL VOC 2007 dataset. The re-implementation of
Faster R-CNN with VGG-16 backbone achieved the mAP of 70.69% with the detec-
tion rate of 14 fps, which is nearly three times faster than the original implementation
(i.e. 5 fps). The Faster R-CNN was then implemented using deep residual networks
(ResNets). The Faster R-CNN with three different ResNet backbone architecture (i.e
ResNet 50, 101, and 152) achieved the mAP of 74.15, 75.09, and 75.59 on the PASCAL
VOC 2007 data set. It was concluded that going deeper with ResNet architecture

62 conclusion

reduces the detection rate. The backbone architecture ResNet 101 with the detection
rate of 7.5 fps was then selected as a speed-accuracy trade-off for further evaluation
on MS COCO dataset. The Faster R-CNN was also implemented with the original
RoI pooling method (using RoIPool layer), which verifies that removing quantization
while mapping from original image to RoI feature improves mAP by a considerable
amount.
The RoI aligning method (RoIAlign layer), by Mask R-CNN also avoids the quan-
tization. The main difference between RoIAlign and crop_and_resize is that the
crop_and_resize still max-pools from 14× 14 RoI feature to 7× 7 window (input to
the FC layer), while RoIAlign manipulates the coordinates on continuous domain and
computes the exact values of the input feature using bilinear interpolation to map it
to 7× 7 window. However, the two steps of bilinear interpolation (from input to fea-
ture map and from feature map to RoI feature) for R = 256 RoIs per image requires a
lot of computation and a powerful GPU is required for that. Instead, we incorporated
crop_and_resize from Faster R-CNN to the Mask R-CNN. The Mask R-CNN with
ResNet 101 backbone re-implementation was able to show the comparable results. It
was able to achieve the mAP at scales of AP = 31.2, AP50 = 51.7, and AP75 = 32.5
(as compared to the original implementation = 33.1, 54.9, and 34.8). One drawback
of crop_and_resize operator could be the small offset in object masks. As this oper-
ator includes one step of quantization from RoI feature to 7×7 common input. The
information loss could effect the deconvolution operation, resulting in small offset
between output mask and ground-truth mask.

6.1 future work

There are various aspects that can be considered for future work. Mask R-CNN
framework could be extended to estimate human poses when adapted for key-points
detection. Instead of detecting and segmenting a human as an object, if Mask R-CNN
is trained to predict key-points (e.g K number of masks for each key-point e.g. left
hand, right foot etc), the desired task can be achieved. Another possible future work
for Faster R-CNN and Mask R-CNN could be the comprehension of natural language
expressions referring to particular objects within an image (e.g ”The man in black
jacket” or ”A window on the left”). This could be done by focusing on incorporating
better measures of visual context into said models. Referring expression datasets are
still under development, however, there are relatively smaller datasets available e.g.
refCOCO that can serve the purpose.

B I B L I O G R A P H Y

[Abd] Waleed Abdulla, Splash of color: Instance segmentation with mask r-cnn
and tensorflow., https://engineering.matterport.com/splash-of-

color-instance-segmentation-with-mask-r-cnn-and-tensorflow-

7c761e238b46/, Accessed: 2018-12-09.

[ADF12] Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari, Measuring the
objectness of image windows, IEEE transactions on pattern analysis and
machine intelligence 34 (2012), no. 11, 2189–2202.

[APTB+
14] Pablo Arbeláez, Jordi Pont-Tuset, Jonathan T Barron, Ferran Marques,

and Jitendra Malik, Multiscale combinatorial grouping, Proceedings of
the IEEE conference on computer vision and pattern recognition, 2014,
pp. 328–335.

[Cas] Alex Castrounis, Artificial intelligence, deep learning, and neural net-
works, explained, https://www.kdnuggets.com/2016/10/artificial-

intelligence-deep-learning-neural-networks-explained.html/,
Accessed: 2018-12-03.

[Cor] Matthieu Cord, A brief report of the Heuritech Deep Learning Meetup
kernel description, https://blog.heuritech.com/2016/02/29/a-brief-

report-of-the-heuritech-deep-learning-meetup-5/, Accessed:
2018-11-21.

[CS11] Joao Carreira and Cristian Sminchisescu, Cpmc: Automatic object segmen-
tation using constrained parametric min-cuts, IEEE Transactions on Pattern
Analysis & Machine Intelligence (2011), no. 7, 1312–1328.

[DDS+
09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei,

Imagenet: A large-scale hierarchical image database, Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, IEEE, 2009,
pp. 248–255.

[Den12] Li Deng, The mnist database of handwritten digit images for machine learning
research [best of the web], IEEE Signal Processing Magazine 29 (2012),
no. 6, 141–142.

https://engineering.matterport.com/splash-of-color-instance-segmentation-with-mask-r-cnn-and-tensorflow-7c761e238b46/
https://engineering.matterport.com/splash-of-color-instance-segmentation-with-mask-r-cnn-and-tensorflow-7c761e238b46/
https://engineering.matterport.com/splash-of-color-instance-segmentation-with-mask-r-cnn-and-tensorflow-7c761e238b46/
https://www.kdnuggets.com/2016/10/artificial-intelligence-deep-learning-neural-networks-explained.html/
https://www.kdnuggets.com/2016/10/artificial-intelligence-deep-learning-neural-networks-explained.html/
https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/
https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/

64 bibliography

[DHS11] John Duchi, Elad Hazan, and Yoram Singer, Adaptive subgradient meth-
ods for online learning and stochastic optimization, Journal of Machine
Learning Research 12 (2011), no. Jul, 2121–2159.

[DT05] Navneet Dalal and Bill Triggs, Histograms of oriented gradients for human
detection, Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, vol. 1, IEEE, 2005, pp. 886–893.

[EH10] Ian Endres and Derek Hoiem, Category independent object proposals, Eu-
ropean Conference on Computer Vision, Springer, 2010, pp. 575–588.

[EVGW+
10] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn,

and Andrew Zisserman, The pascal visual object classes (voc) challenge,
International journal of computer vision 88 (2010), no. 2, 303–338.

[Fuk88] Kunihiko Fukushima, Neocognitron: A hierarchical neural network capable
of visual pattern recognition., Neural networks 1 (1988), no. 2, 119–130.

[GBCB16] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio,
Deep learning, vol. 1, MIT press Cambridge, 2016.

[GDDM14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik, Rich
feature hierarchies for accurate object detection and semantic segmentation,
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[Gir15] Ross Girshick, Fast r-cnn, Proceedings of the IEEE international confer-
ence on computer vision, 2015, pp. 1440–1448.

[Giv] Sketchable histograms of oriented gradients for object
detection, https://www.semanticscholar.org/paper/

Sketchable-Histograms-of-Oriented-Gradients-for-Given/

d4881f8794acc300cce436a4d60f46d040a3af99/, Accessed: 2018-12-
09.

[H+
89] Lieve Hamers et al., Similarity measures in scientometric research: The

jaccard index versus salton’s cosine formula., Information Processing and
Management 25 (1989), no. 3, 315–18.

[HAGM14] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik,
Simultaneous detection and segmentation, European Conference on Com-
puter Vision, Springer, 2014, pp. 297–312.

https://www.semanticscholar.org/paper/Sketchable-Histograms-of-Oriented-Gradients-for-Given/d4881f8794acc300cce436a4d60f46d040a3af99/
https://www.semanticscholar.org/paper/Sketchable-Histograms-of-Oriented-Gradients-for-Given/d4881f8794acc300cce436a4d60f46d040a3af99/
https://www.semanticscholar.org/paper/Sketchable-Histograms-of-Oriented-Gradients-for-Given/d4881f8794acc300cce436a4d60f46d040a3af99/

bibliography 65

[HGDG17] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick, Mask
r-cnn, Computer Vision (ICCV), 2017 IEEE International Conference on,
IEEE, 2017, pp. 2980–2988.

[HRS+
17] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Ko-

rattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio
Guadarrama, et al., Speed/accuracy trade-offs for modern convolutional ob-
ject detectors, IEEE CVPR, vol. 4, 2017.

[Hui] Jonathan Hui, map (mean average precision) for object detection.,
https://medium.com/@jonathan_hui/map-mean-average-precision-

for-object-detection-45c121a31173/, Accessed: 2018-11-21.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep residual
learning for image recognition, Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[KB14] Diederik P Kingma and Jimmy Ba, Adam: A method for stochastic opti-
mization, arXiv preprint arXiv:1412.6980 (2014).

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, Imagenet classi-
fication with deep convolutional neural networks, Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner,
Gradient-based learning applied to document recognition, Proceedings of the
IEEE 86 (1998), no. 11, 2278–2324.

[LBD+
89] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,

Richard E Howard, Wayne Hubbard, and Lawrence D Jackel, Backprop-
agation applied to handwritten zip code recognition, Neural computation 1
(1989), no. 4, 541–551.

[LK15] Fei-Fei Li and Andrej Karpathy, Convolutional neural networks for visual
recognition, 2015.

[LMB+
14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-

ona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick, Microsoft
coco: Common objects in context, European conference on computer vi-
sion, Springer, 2014, pp. 740–755.

https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173/
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173/

66 bibliography

[Low99] David G Lowe, Object recognition from local scale-invariant features, Com-
puter vision, 1999. The proceedings of the seventh IEEE international
conference on, vol. 2, Ieee, 1999, pp. 1150–1157.

[LSD15] Jonathan Long, Evan Shelhamer, and Trevor Darrell, Fully convolutional
networks for semantic segmentation, Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 3431–3440.

[MH80] David Marr and Ellen Hildreth, Theory of edge detection, Proc. R. Soc.
Lond. B 207 (1980), no. 1167, 187–217.

[MP43] Warren S McCulloch and Walter Pitts, A logical calculus of the ideas imma-
nent in nervous activity, The bulletin of mathematical biophysics 5 (1943),
no. 4, 115–133.

[ON15] Keiron O’Shea and Ryan Nash, An introduction to convolutional neural
networks, arXiv preprint arXiv:1511.08458 (2015).

[RHGS15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, Faster r-cnn:
Towards real-time object detection with region proposal networks, Advances
in neural information processing systems, 2015, pp. 91–99.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams, Learning
representations by back-propagating errors, nature 323 (1986), no. 6088, 533.

[RHZS14] Shaoqing Ren, Kaiming He, Xiangyu Zhang, and Jian Sun, Spatial pyra-
mid pooling in deep convolutional networks for visual recognition, European
conference on computer vision, Springer, 2014, pp. 346–361.

[RL13] J Krause A Berg Russakovsky, J Deng and F Li, Ilsvrc-2013, URL
http://www.imagenet.org/challenges/LSVRC/2013 (2013).

[Rud16] Sebastian Ruder, An overview of gradient descent optimization algorithms,
arXiv preprint arXiv:1609.04747 (2016).

[SEZ+
13] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob

Fergus, and Yann LeCun, Overfeat: Integrated recognition, localization
and detection using convolutional networks, arXiv preprint arXiv:1312.6229

(2013).

[SZ14] Karen Simonyan and Andrew Zisserman, Very deep convolutional net-
works for large-scale image recognition, arXiv preprint arXiv:1409.1556

(2014).

bibliography 67

[TH12] Tijmen Tieleman and Geoffrey Hinton, Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude, COURSERA: Neural
networks for machine learning 4 (2012), no. 2, 26–31.

[UVDSGS13] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and
Arnold WM Smeulders, Selective search for object recognition, Interna-
tional journal of computer vision 104 (2013), no. 2, 154–171.

[VJS05] Paul Viola, Michael J Jones, and Daniel Snow, Detecting pedestrians us-
ing patterns of motion and appearance, International Journal of Computer
Vision 63 (2005), no. 2, 153–161.

[ZD14] C Lawrence Zitnick and Piotr Dollár, Edge boxes: Locating object proposals
from edges, European conference on computer vision, Springer, 2014,
pp. 391–405.

Eidesstattliche Versicherung

______________________________ ____________________

Name, Vorname Matr.-Nr.

__________________________ _______________________

Ort, Datum Unterschrift

Belehrung:

Wer vorsätzlich gegen eine die Täuschung über Prüfungsleistungen betreffende Regelung einer

Hochschulprüfungsordnung verstößt und/oder eine falsche eidesstattliche Versicherung abgibt,

handelt ordnungswidrig. Die Ordnungswidrigkeit kann mit einer Geldbuße von bis zu 50.000,00 €

geahndet werden. Zuständige Verwaltungsbehörde für die Verfolgung und Ahndung von Ord-

nungswidrigkeiten ist der Kanzler/die Kanzlerin der Technischen Universität Dortmund. Im Falle

eines mehrfachen oder sonstigen schwerwiegenden Täuschungsversuches kann der Prüfling

zudem exmatrikuliert werden. (§ 63 Abs. 5 Hochschulgesetz - HG -)

Die Technische Universität Dortmund wird gfls. elektronische Vergleichswerkzeuge (wie z.B. die

Software „turnitin“) zur Überprüfung von Ordnungswidrigkeiten in Prüfungsverfahren nutzen.

Die oben stehende Belehrung habe ich zur Kenntnis genommen:

_____________________________ _________________________

Ort, Datum Unterschrift

Ich versichere hiermit an Eides statt, dass ich die vorliegende Masterarbeit mit dem Titel
''Object Detection and Segmentation using Region-based Deep Learning Architectures''
selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen

als die angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate
kenntlich gemacht. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde

Zafar, Muhammad Waleed 0178994

vorgelegen.

bibliography 69

——————————————————————-

	1 Introduction
	1.1 Structure

	2 Fundamentals
	2.1 Basics of Machine Learning
	2.2 Deep Learning
	2.3 Convolutional Neural Networks (CNNs)
	2.4 Operations of a CNN
	2.4.1 Convolutional Layer
	2.4.2 Pooling Layer
	2.4.3 Fully-Connected Layer
	2.4.4 Activation Function
	2.4.4.1 Rectified Linear Unit (ReLU)
	2.4.4.2 Leaky Rectified Linear Unit (Leaky ReLU)
	2.4.4.3 Sigmoid Function
	2.4.4.4 Hyperbolic Tangent Function
	2.4.4.5 Heaviside Step Function

	2.5 Training of a CNN
	2.5.1 Loss Function
	2.5.1.1 Total Mean Squared Error (TMSE)
	2.5.1.2 Cross Entropy Loss (CEL)
	2.5.1.3 Softmax Loss

	2.5.2 Learning with gradient descent

	2.6 Object Detection
	2.7 Instance Segmentation
	2.8 Important Object Detection and Segmentation Concepts
	2.8.1 Region of Interest (RoI)
	2.8.2 Intersection over Union (IoU)
	2.8.3 Non-Maxium Suppression (NMS)
	2.8.4 Bounding-box regression (bounding-box refinement)

	3 Related Work
	3.1 Classical Methods
	3.1.1 Histogram of Oriented Gradients (HOG)
	3.1.2 Scale Invariant Feature Transform (SIFT)
	3.1.3 OverFeat (Sliding Window Approach)

	3.2 Region-based Convolution Neural Network (R-CNN)
	3.3 Fast Region-based Convolution Neural Network (Fast R-CNN)

	4 Methods
	4.1 Evaluation Metrics
	4.1.1 Precision
	4.1.2 Recall
	4.1.3 Precision-Recall curve
	4.1.4 Average Precision (AP)
	4.1.5 Mean Average Precision (mAP)

	4.2 Faster Region-based Convolution Neural Network (Faster R-CNN)
	4.2.1 Region Proposal Network (RPN)
	4.2.2 Anchors
	4.2.3 Loss Function
	4.2.4 Training Procedure
	4.2.4.1 Alternate Training
	4.2.4.2 Approximate Joint Training
	4.2.4.3 Non-Approximate Joint Training
	4.2.4.4 4-Step Alternating Training

	4.3 Mask Region-based Convolution Neural Network (Mask R-CNN)
	4.3.1 RoIPool vs RoIAlign
	4.3.2 Loss Function

	5 Experiments
	5.1 Datasets
	5.1.1 PASCAL Visual Object Classes (PASCAL VOC)
	5.1.2 Microsoft Common Objects in COntext (MS COCO)

	5.2 Experimental setup
	5.3 Backbone Architectures
	5.3.1 VGG-16
	5.3.2 Residual Deep Neural Networks (ResNet 50, 101, 152)

	5.4 Notable Modifications
	5.5 Faster R-CNN with different backbone architectures
	5.6 Faster R-CNN with different IoU scales and object sizes
	5.7 Faster R-CNN with different number of training/testing time proposals
	5.8 Faster R-CNN with Original RoI Pooling method
	5.9 Mask R-CNN with different backbone architectures

	6 Conclusion
	6.1 Future Work

