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1
I N T R O D U C T I O N

The human gait cycle is a biometric that remains untapped for person identification
and verification applications. Unlike its counterparts, fingerprint and retina-scan
recognition systems, gait cycles are sensitive to the changes in clothing, terrain, fatigue,
environment and idiosyncrasies. Consequently, creating a reference model or template
for an individual including all possible variations is not easy; for example, researchers
have explored vision-based person identification using gait for security applications.
Gait-based person identification for high accuracy applications, such as crime control
and detection in high security, public areas, were deemed difficult due to the camera
angle, occlusion, obtrusion, clothing, and the realistic scenario of multiple individuals
being within a frame. However, low-priority applications, such as identification in a
health care system, are presumed to be feasible.

One could consider Inertial Measurement Units (IMU) or infrared sensors as alterna-
tive data acquisition methods to overcome the limitations of obtrusion and occlusion
of vision-based data acquisition. Interestingly, IMU sensors are extensively used
in the field of human activity recognition (HAR). HAR is highly researched due to
its possible applications in logistic environments, clinical diagnosis and monitoring
systems for elderly care. Furthermore, HAR using IMU sensors is widely used for
daily activity monitoring. IMUs in smartwatches and smartphones are used to acquire
motion data to log daily activities, such as step count, sleep duration, and running
duration to promote a healthier lifestyle. As a result, a massive set of IMU data with
varied clothing, terrain and environment is available for each individual.

The gait cycle is the repetitive movement of the body, as seen when performing
activities such as walking and running. Given that gait is a biometric, it is interesting
to analyse whether the general body movements of an individual would contain
a unique signature that could function as an identity. Here, signature refers to
movement patterns ingrained in how the individual performs general activities such
as holding, waving and walking. Neural networks and a large amount of data available
facilitate the exploration of general body motion for person identification. However,
the possibility of person identification using motion data collected from IMU sensors
raises privacy concerns. For instance, the motion information collected from the IMU
sensors of smartphones and smartwatches are often stored in third-party memory
locations. The data storage is necessary to facilitate future analysis and developments
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4 introduction

specific to user requirements. Consequently, given a scenario that the data is hacked
and the individuals can be identified based on the motion data, privacy will be
compromised.

Similarly, IMU sensors are used for activity recognition in a logistic environment to
optimise the order-picking process by ©MotionMiners GMBH [MM] and ©Iterate Labs
Inc [IT]. These companies prefer IMU-based data acquisition methods over videos
to maintain the employees’ privacy. Privacy is mandated by the European Union’s
General Data Protection Regulation [Cou16]. The Official Journal of European Union
Regulations Directive 95/46/EC § 1.24, 1.26, and 1.28 (2016) — state that given a
situation where the identity is not given, but there is a possibility of re-identification
based on any small publicly available excerpts; data privacy is considered breached.
Thus, raising the question, "Is person identification possible with IMU-based motion
data created for HAR?".

Research by [GRS+
20] and [EBL18] suggests the possibility of general body motion-

based person identification. Thus, we need to analyse the data to identify the features
that contain identity information. Further, methods to either mask or to delete the
features that facilitate identification so that the HAR data is devoid of identity must be
designed. In addition, it is of interest to analyse whether soft-biometric characteristics
such as age, gender and height can be analysed from the data. The study could lead to
an understanding of the effect of soft-biometrics and the subject’s individuality on the
data created for HAR experiments. Furthermore, developing attribute representation
with soft-biometrics can facilitate categorisation and transfer learning of human motion
data. Thus, this study can address data privacy concerns and draw out methods to
improve HAR data collection.

This thesis aims to be the preliminary work towards identifying the impact of
individual motion signature on the HAR dataset and the possibility of masking or
deleting identity. As a result, this thesis first explores person identification using
general motion information from IMU data. As the experimental results are expected
to be dataset-specific, various datasets must be explored to devise a conclusive state-
ment. Further, the thesis will scrutinize the impact of activities on identification
accuracy. Next, the possibility to model soft biometrics as attribute representation
will be examined. HAR has popularly experimented on Neural Networks such as
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).
Following the lead, the experiments of this thesis will be performed on CNN and
RNN. A comparison of the methods will be performed, following which the network
with better performance will be utilised for further experiments.

The thesis is structured as follows. Chapter: 2 will explain the fundamental concepts
of the networks used in this thesis. In addition, the chapter will explain biometrics and
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HAR. The previous research on person identification using motion information will be
explored in Chapter: 3. The chapter will encase a discussion on the research gaps that
were identified in this field. Chapter: 4 will elaborate on the networks and the training
methods. Further, attribute representation will be formulated from soft biometrics.
The experiments and results will be illustrated in Chapter: 5. Finally, Chapter: 6 will
elucidate the conclusions derived from the experiments and results. In addition, future
works required in this field following the thesis will be discussed.





2
F U N D A M E N TA L S

Human activity recognition (HAR) is the process of recognising the physical activities
performed by a human using machine learning methods, as explained in Sec: 2.5. HAR
is an area of interest for logistics and surveillance companies. Logistics companies use
HAR methods to analyse human ergonomics in the order picking process to improve
picking time. Ergonomics is the study of human interaction with its environment
and is applied by companies to improve the working condition of the employees; for
example, the ©Motion-Miner GmbH [MM] uses Inertial Measurement Unit (IMU)
data from the sensors attached to the body of employee to analyse the activities and
performance time. Then, Motion Miners recommend changes to the work environment
to improve employee performance. IMU data is preferred as it is said to maintain
the employee’s privacy and reduce any source of discomfort of being monitored
by another individual. Instead of labelling the data for each activity, a method of
automatic recognition of the activity is preferred. Machine Learning (ML) algorithms
can be used to facilitate HAR. Often, researchers in this field have considered Artificial
Neural Networks (ANN) (see Sec: 2.1) for HAR classifications, as seen in [NRR+

20],
[ZLC+

17], [MGF+
18] and [GLR+

17].
HAR research requires dedicated datasets. IMU-based HAR datasets such as

[CSC+
13] and [RS12b] consists of activities of daily living, whereas [NRR+

20] consists
of activities performed in a logistic environment. From these datasets, it can be seen
that walking is a common labelled activity. Interestingly, walking or gait is a biometric
(see Sec: 2.4) [JRP04]. As per [GRS+

20], person re-identification can be achieved using
IMU recordings of gait. Thus, raising the question, can general body motion recordings
from IMUs of subjects performing activities, such as cycling, sleeping and handling,
be used to identify an individual. Given the possibility that IMU data can be used to
identify individuals, privacy would be compromised. Thus, companies such as Motion
Miners would have to identify a method to mask or delete the identity information in
the IMU data to ensure employee privacy. Consequently, we need to experiment on
the possibilities of person identification using motion information from IMU sensors.

[EBL18] has given an overview of how activities of daily living affect person identifi-
cation. The experiments were conducted on statistical features extracted from the data.
Furthermore, the authors focused on classifiers such as Support Vector Machine (SVM),
K-Nearest Neighbour (KNN) and Decision Tree. However, it is interesting to explore
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8 fundamentals

how features will be learned by Convolution Neural Network (CNN) (see Sec: 2.2) for
person identification. CNN variants have been a popular choice in HAR classification.
Another variation of ANN is the Recurrent Neural Network (RNN) (see Sec: 2.3), such
as Long-Short Term Memory (LSTM) (see Sec: 2.3.1) and Gated Recurrent Units (GRU)
(see Sec: 2.3.2). [GRS+

20] considered RNNs for person re-identification. However, the
author of this thesis explores the possibilities of using CNN for person identification.

This thesis attempts to use the IMU dataset and CNN-based networks created
for HAR to explore person identification. Further, the thesis shall investigate the
impact of activities on identification accuracy. Consequently, we shall explore the
aforementioned terms to facilitate a fundamental understanding of the experiments
and the results. In particular, ANN (Sec: 2.1), CNN (Sec: 2.2), RNN (Sec: 2.3), biometric
(Sec: 2.4) and HAR (Sec: 2.5).

2.1 artificial neural network

The ability of a system to acquire sensory information and extract patterns is known
as machine learning (ML) [GBC16]. Logistic regression, naive Bayes and ANN are
examples of ML algorithms. ANNs are desirable as computational models because of
their capability to approximate unknown functions [PP18]. Conceptually, they mimic
a Biological Neural Network (BNN).

As shown in Fig: 2.1.1, a unit of ANN can be represented with dendrites, a neuron
and an axon. Each dendrite node acts as an input point. The input could be from
another artificial neuron or direct sensory input [AH17]. The input can be referred to
as xi, where i is the dendrite in consideration of n dendrites to the artificial neuron.
The information from each dendrite may vary in strength or importance and can be
represented as synaptic weights or input weights wi. As a result, the input to a neuron
can be represented as w1x1 +w2x2 + .... +wnxn [Gup13]. The neuron is activated
based on whether the input to the neuron satisfies a threshold value θ. Therefore, the
threshold function, Eq: 2.1.1, is known as an activation function a(.) (see Sec: 2.1.2).
The neuron output can be then accessed through the axon.

a(x) =

1, if x > θ

0, if x < θ
(2.1.1)

Using the ANN unit, hierarchical multilayered structures called networks can be
created to solve complex problems. ANNs can be categorised as Feedforward Neural
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Figure 2.1.1: Artificial Neural Network [Cha18]

Networks or Recurrent Neural Networks (RNN) based on the direction of the flow
of information through the network [PP18]. Given that the flow of information is
unilateral, the network is referred to as Feedforward Neural Network. When the
information from a later layer of the multilayered structure is communicated to a
previous layer, forming a loop, the Neural Network is called RNN.

At its inception, one of the significant issues of ANN was the modelling of the input
weights for general application-based problems [Roj96], [Gup13]. Such problem-based
learning and adaptation of network parameters require a learning algorithm [Roj96].
Consequently, three major learning paradigms were considered: Supervised Learning,
Unsupervised Learning, and Reinforcement Learning [Gup13]. For this thesis, we
are focused on supervised learning. In supervised learning, we expect the Neural
Network to learn a generalised solution to the problem with the help of annotated
samples.

2.1.1 Perceptron and Multilayer Perceptron

A learning algorithm was first introduced for the perceptron. As shown in Fig: 2.1.2, the
perceptron model is designed similar to the ANN unit mentioned in Sec: 2.1. However,
it accepts real inputs, x ∈ [0, 1] ⊂ R. Further, the weights are real and can be learnt with
a numerical algorithm. The inputs are first summated as w1x1 +w2x2 + ... +w5x5.
Next, the perceptron is activated, provided the summation crosses the threshold
value. The threshold activation function is similar to that of an ANN. The output
y of the perceptron will be either 0 or 1. As shown in Fig: 2.1.3, the perceptron
functions as a classifier by linearly separating the input space [Roj96]. The parameters
of the line separating the input space are learned by performing classification trial
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and error correction on a training set. The training set consists of the inputs xi to
the perceptron and the expected classification y∗i . The expected classification y∗i is
expressed as 1 to denote a positive example and 0 to denote a negative example.
This method of learning is called Perceptron Learning. The classification error is the
difference/distance between the prediction yi of the perceptron and the expected
classification y∗i . Often, the error is quantified as yi − y∗i . Learning is achieved by
updating the weights of the perceptron when the input is wrongly classified. The
weight update is achieved by the Eq: 2.1.2. Note that t refers to the iteration, and i
refers to a weight out of n weights.

w(t+1),i =

wt,i + x, if x belongs to positive example

wt,i − x, if x belongs to a negative example
(2.1.2)

Figure 2.1.2: Perceptron [Roj96]. xi are the inputs, wi are the synaptic weights, and y is the
output. Σ symbolises summation and the step symbol represents the threshold
activation function.

Due to the linearity in classifications, non-linear problems such as the XOR, Fig: 2.1.3,
parity, and connectivity problems cannot be solved using a single perceptron [MP88].
However, they can be solved using a multilayer perceptron (MLP). A multilayer
perceptron is a fully connected feedforward network, as shown in Fig: 2.1.4. The MLP
usually consists of three types of layers; the input layer, the hidden layer and the
output layer. The number of neurons in the input layer is dependent on the number
of inputs. There can be more than one hidden layer. The number of neurons in the
hidden layers depends on the chosen architecture and the problem to be solved. MLP
helps to solve problems such as XOR by separating the input space with multiple lines
to introduce non-linearity.



2.1 artificial neural network 11

1

1

0

0

AND OR NAND NOR XOR

Figure 2.1.3: Boolean operations such as AND, OR, NAND and NOR can be linearly separated
using a single perceptron in input space. XOR cannot be linearly separated in
input space using a single perceptron [RUD21]

Figure 2.1.4: Multilayer Perceptron [GBC16]. xi stands for inputs, hi stands for hidden layer
neurons and y represents output. w and W represents the synaptic weights
between different layers [GBC16].

Backpropagation algorithms can train MLP. The backpropagation algorithm attempts
to find the combination of weights that minimises the classification error [Roj96]. It
uses gradient descent to achieve error minimisation (see Sec: 2.1.3). The backpropa-
gation algorithm has two phases. The first phase is called the forward pass. During
the forward pass, the MLP performs classification on the input data. Further, the
classification error E, Eq: 2.1.3, is calculated from the output [Roj96]. Here, p is the
number of data in the training set. The next phase is called the backward pass. In
this phase, the error is propagated back into the MLP by calculating the gradient of
the error with respect to the weights as ∂E

∂wi
. Next, the weights are updated with the
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negative gradient (see Sec: 2.1.3). The process is expected to reduce the classification
error by re-adjusting the weights of the MLP.

E =
1

2

p∑
i=1

‖yi − y∗i‖2 (2.1.3)

Gradient descent (see Sec: 2.1.3) is defined only for continuous and differentiable
functions [Cha18]. The presence of a threshold activation function in a perceptron
implies that the error function is not differentiable. Hence, the threshold activation
function in the multilayer perceptron must be replaced with a continuous activation
function (see Sec: 2.1.2).

2.1.2 Activation Function

The Sigmoid function, Sc : R → (0, 1), Eq: 2.1.4, is a continuous function used as
an alternative to the threshold function. It is differentiable, as seen in Eq: 2.1.4 and
Fig: 2.1.5.

a(x) = Sc(x) =
1

1+ e−cx
a ′(x) = S ′c(x) =

e−x

(1+ e−x)2
(2.1.4)
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Figure 2.1.5: Sigmoid function and the derivative [AH17]

However, there are a few drawbacks of using the sigmoid function as an activation
function. The first drawback is the non-zero centre. When gradient descent is per-
formed on the sigmoid function during backpropagation, the result’s sign depends
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on the neuron output. As a result, the gradient updates could move away from the
desired value during some iteration. Thus, the convergence would be slow [AH17].
Furthermore, a zero-centred function is required to maintain the activation within
a region of interest to increase convergence speed. Thus, the non-zero center of the
sigmoid activation function leads to slow convergence. The next drawback is the issue
of vanishing gradient in the multilayered network. As the error propagates back into
the early layers of the multilayered network, the gradient tends to become small and
eventually vanishes. Consequently, the early layers of the network will fail to learn
any useful information about the classification. As shown in Fig: 2.1.4, the vanishing
gradient is caused by the saturation of large input values |x| to zero or one [AH17].
Only inputs close to zero (in the x-axis) will have a gradient with a relatively large
amplitude, as can be recognised from Fig: 2.1.5.

The hyperbolic tangent was introduced as an activation function, tanh(x) : R →
[−1, 1] with Eq: 2.1.5, to overcome the drawback of the non-zero center found in
the sigmoid activation function. However, the function still suffered from vanishing
gradient problem as the amplitude of the derivative was relatively large only for input
values close to zero, as seen in Fig: 2.1.6

a(x) = tanh(x) =
1− e−x

1+ e−x
a ′(x) = tanh ′(x) = 1− tanh(x)2 (2.1.5)
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Figure 2.1.6: Hyperbolic tangent and the derivative [AH17]

To mitigate the issue of vanishing gradient, Rectified Linear Unit (ReLU), Eq: 2.1.6,
was introduced as an activation function. Since the function does not saturate in the
range of [0,∞), a gradient of larger amplitude can be obtained. As a result, ReLU
does not suffer from vanishing gradient [AH17]. However, ReLU may produce dead
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neurons during training. This property occurs when the weights of a neuron are
always negative. Consequently, the neuron is not activated for any sample in the
dataset. Although dead neurons may affect the accuracy of the network, removing
dead neurons results in a computationally efficient network. Modifications to ReLU,
such as leaky ReLU and exponential ReLU, have been identified to overcome dead
neurons. However, in practice, ReLU has been an efficient and highly favoured
activation function [AH17].

a(x) = relu(x) = max(0, x) a ′(x) = relu ′(x) =

0, if x < 0

1, if x > 0
(2.1.6)
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Figure 2.1.7: Rectified Linear Unit and the derivative [AH17]

As can be noticed with the discussion above, choosing an appropriate activation
function for the network is an arduous effort in neural network design [Cha18].

2.1.3 Gradient Descent

As seen in Sec: 2.1.1, gradient descent is a vital part of the backpropagation algorithm.
Gradient descent is an optimisation algorithm, which attempts to find the minimum
of the error function E, Eq: 2.1.3 with respect to the weights [Roj96]. The gradient of
E can be represented as ∇E as seen in Eq: 2.1.7, where n is the number of weights
in the network. Further, weights are updated using the negative of the gradient, as
shown in Eq: 2.1.8 [Roj96]. η refers to the learning rate, which defines the step size
taken in the minimum gradient direction. In addition, the learning rate can be defined
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as the constant that controls the extent to which the gradient affects the weight update
[Rud16].

∇E = (
∂E

∂w1
,
∂E

∂w2
, ...,

∂E

∂wn
) (2.1.7)

w(t+1),i ← wt,i − η∇E (2.1.8)

There are three types of gradient descent algorithms. The first type, Gradient
Descent, computes the gradient of the error function for all the training data and
performs a single update. The number of updates will be equal to the number of
epochs. Epoch refers to the number of times the neural network sees the complete
training dataset. Thus, gradient descent can be slow and inconvenient for large
datasets. Further, this method does not allow online updates of the model. The online
update refers to the update of the network’s weights after the training of a sample or
a set of samples.

The second type is called stochastic gradient descent (SGD). Here, an update of the
parameters occurs after the gradient of each training sample of the dataset has been
calculated. As a result, SGD can perform online learning. Furthermore, the conver-
gence to the minimum is said to be faster [Rud16]. However, the frequent updates
imply that the convergence to the minimum is sensitive to noisy data. Although noisy
data may prove detrimental to convergence, there exists a possibility that SGD has
landed onto a better local minimum. An appropriate learning rate can control the
impact of noisy data [Rud16].

The third type, Mini-batch Stochastic Gradient Descent, consists of the best features
from gradient descent and SGD. Here, the dataset is split into small batches. An
update of the parameters occur after the gradient of the data of a mini-batch has been
calculated. Thus, the effect of noisy data, as seen in SGD, is reduced. Furthermore,
mini-batch SGD can achieve stable yet fast convergence.

There exists a trade-off between the speed of convergence and the precision of
convergence. The appropriate method is chosen based on the amount of data. Various
gradient descent optimisation algorithms are present among the Deep Learning com-
munity, such as Adagrad, RMSProp, and Adam. These methods attempt to accelerate
convergence by introducing momentum and adaptive learning rate during updates
[Rud16]. Root Mean Square Propagation (RMSProp) is of interest to this thesis. RM-
SProp achieves fast convergence by adapting the learning rate of the parameters based
on the sign of consecutive gradients.
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2.2 convolutional neural network

A convolution is a linear mathematical operation where the input signal/image is
convolved with a filter, as shown in Fig: 2.2.1. The output of a convolution is referred
to as a feature map [GBC16]. Examples of convolution include the Sobel filter for
detecting edges in an image and the convolution operation for smoothing signals.

Figure 2.2.1: Example of convolution [GBC16]

The Convolutional Neural Network (CNN) came to popularity when its architec-
ture succeeded at ImageNet challenges in 2011 [Cha18]. A typical CNN consists of
convolutional layers, pooling layers and fully connected layers. A convolutional layer
consists of convolutional filters that are convolved with the input to the layer. The
pooling layer consists of filters that down-sample the feature maps created by the
convolutional layer. Two popular pooling layer filters are max-pooling and average-
pooling. Different CNN architectures have a varying number of convolutional layers
interlaid with pooling layers. Based on the data, some researchers avoid pooling layers
in the CNN architecture [NRR+

20]. The final layers of the network are usually fully
connected. The fully connected layers are the same as the MLP mentioned in Sec: 2.1.1.

Similar to ANN, an activation function is applied on the feature maps created by
convolution layers to introduce non-linearity. ReLU is the preferred activation function
within the network. CNNs are mainly used for segmentation and classification
purposes. Consequently, the final layer of a CNN consists of a softmax activation
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function, Eq: 2.2.1. z refers to the features from the final fully connected layer. K refers
to the number of classes. The result of a softmax activation function layer can be
considered the probability that the input belongs to a specific class. As a result, the
sum of the output values of each class totals to one. This property can be analysed
from the Eq: 2.2.1.

σi(z) =
ezi

ΣK
j=1e

zj
(2.2.1)

Figure 2.2.2: LeNet architecture [LBBH98]

The Cross-Entropy Loss (CEloss) function is the preferred method to calculate the
loss on the outputs of the softmax activation function. The CEloss is also called Log
Loss, Eq: 2.2.2. Here, yi denotes whether the prediction is the same as the label.
If the prediction and the label are the same, then yi = 1, and for other labels, the
yi = 0. Essentially, the CEloss simplifies the calculation of the derivative of the
softmax function σi(z) as σi(z)(1− σi(z)). The simplification can be attributed to their
formulation from the probability distribution. As a result, the Cross-Entropy Loss
function is preferred when the softmax activation function is in use.

CEloss = −ΣK
i=1yilog(σ(z)) (2.2.2)

A popular example of CNN is the LeNet-5, Fig: 2.2.2. As shown in the figure, the
convolutional layers are interlaid with sub-sampling/pooling layers. The final set of
layers are fully connected multilayer perceptrons [LBBH98]. This network has the
general structure that is followed by most variations of CNN.

A CNN has fewer parameters in comparison to an ANN [Cha18]. This feature of
CNN is attributed to the filters. A convolutional layer can have k filters. These filters
slide over the input of the layer to create a feature map. Thus, each filter learns a
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particular feature based on different parts of the input through convolution operation.
This process is referred to as parameter sharing and accounts for the reduction in
memory consumption [GBC16]. The initial layers of the CNN focus on extracting
primitive features of the data. The filters in the later layers attempt to extract complex
features based on the primitive features extracted [Cha18].

Though the CNN application examples are more towards image classification, they
can be employed on temporal, spatial, or spatio-temporal data [Cha18]. However, the
data needs to be shaped into a grid-like topology [GBC16]. For example, time-series
data can be considered as a 1-D grid. As a result, a CNN is not constrained by the
data’s dimensionality or depth/channels [GBC16].

2.2.1 Convolutional Neural Networks for Time-Series Data

Time-series data can be defined as recordings of a series of observations in relation
to time [ZLC+

17]. Examples are Inertial Measurement Unit (IMU) data, electrocar-
diogram (ECG), and price of stocks. As per [ZLC+

17], there are three methods of
classification: model-based, distance-based and feature-based. In model-based clas-
sification, each class has a model determined from the training set. Further, the
time-series data is compared with each of the class models to achieve classification. In
the distance-based method, a distance definition has to be identified. The similarity is
evaluated with methods such as K-NN or SVM. The third method is the feature-based
classification. The main goal is to achieve dimensionality reduction. As a result, a set
of features representing the time-series data is extracted. CNN is one such method
capable of extracting deep features from raw time-series data [ZLC+

17].
There are two types of time-series data: univariate and multivariate [ZLC+

14].
In univariate time-series data, only one data point is assigned to a timestamp. An
example is the recording of the heartbeat of an individual. Whereas in multivariate
time-series data, multiple data points are assigned to a single timestamp. As a result,
one can refer to multivariate time-series data as a combination of univariate data
with the same timestamp. Because of this feature, the sensors must be synchronised
while recording the measurements for a multivariate dataset. An example is the IMU
sensor recording, where each timestamp is linked to three data points - Accelerometer,
Gyroscope, and Magnetometer measurements. Each of these sensors has axes (x, y
and z), referred to as channels.

As mentioned in Sec: 2, this thesis is focused on applying CNNs on multivariate
time-series IMU data to perform classification. To perform a convolution, we need to
first extract a fixed number of frames from the time-series data. The sliding window
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approach can be applied to the time-series data to extract frames of fixed temporal
length. The temporal length can also be referred to as window size. It is recommended
to have overlapping windows [DSGS19]. The overlapping windows ensure that the
network will have more data windows to learn from. Fig: 2.2.3 visualises the steps
involved in applying CNN on time-series data.

Figure 2.2.3: Example of Time-series Convolution Neural Network process flow [GLR+
17]

Figure 2.2.4: Example of Time-Series Convolutional Neural Network Architecture[YNS+15]

Fig: 2.2.4 shows an example of a deep CNN for multi-channel time-series data,
explored in [YNS+

15]. The first step shows the application of a sliding window to
extract two-dimensional data of window size r and D channels. Next, the authors
convolved the extracted windows with a kernel of size 1x5. This process resulted in 50
feature maps, with each feature map of size Dx26, as shown in the figure. The notation
m@Dxn can be read as m feature maps of shape Dxn. The authors use the ReLU
activation function. Max-pooling layers were utilised in this network. The features
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maps of the third convolutional layer, as shown in Fig: 2.2.4, is combined into one
dimension in the unification layer. The final layer is a fully connected MLP layer with
softmax activation (see Sec: 2.2) for classification [YNS+

15].
The architecture can be understood intuitively. The feature maps provide a local

representation of the data based on each channel. The fully connected layers give a
global view of the data with respect to the local representations.

A convolution can be applied on each sensor separately or all sensors simultane-
ously [GLR+

17]. In the former approach, each sensor data is evaluated separately
with independent convolutional filters. Further, fully connected layers attempt to
identify the correlations between different sensors. In the latter approach, the same
convolutional filters evaluate the data from all the sensors. These filters identify the
correlation among sensors. In [GLR+

17], an architecture where the data of multiple
IMUs are processed separately has been proposed, as shown in Fig: 2.2.5. According
to the authors, this method provides robustness against slightly asynchronous IMUs.

Figure 2.2.5: CNN-IMU [GLR+
17]
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2.2.2 Early and Late Fusion Methods

Human activity recognition (see Sec: 2.5) research often involves multiple sensors
placed on the human body. The goal is to find the best method of extracting informa-
tion from the data to achieve enhanced classification.

According to the authors of [DTC17], two main data fusion methods are used in
multiple sensors data: early-fusion and late-fusion. Early-fusion aims to aggregate all
the IMU information at the input of the deep CNN. Thus, resulting in high dimensional
input data. The early-fusion method cannot process data if one sensor is defective and
gives incomplete measurements. However, the late-fusion method trains the network
separately with each sensor data. The classification scores generated by the individual
networks are then fused to obtained the final classification score. Thus, even if one
sensor fails and provides inaccurate classification, the overall classification accuracy is
not affected [DTC17].

Figure 2.2.6: Data Fusion methods [MSR+
17]

[DTC17] mentions three levels of abstraction in information fusion. The first level
is data level fusion, the second is feature level fusion, and the third is model score
fusion. Data fusion can occur at different stages of the network for multivariate data,
as given in [MSR+

17]. As shown in Fig: 2.2.6, early-fusion, sensor-based late fusion,
channel-based late fusion, and shared filters hybrid fusion are the possible multivariate
sensor fusion techniques.

The early-fusion method fuses all channels into one dimension in the first convo-
lutional layer of the CNN. As a result, the number of parameters to be learned is
small compared to the other fusion methods. Furthermore, this method requires less
computation time. In sensor-based late fusion, the data is split based on the sensors.
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Each sensor has designated convolutional layers. The feature maps are fused after the
end of the convolutional layers. Channel-based late fusion is similar to sensor-based
late fusion. However, each channel is handled separately. This method has the highest
number of parameters. The final method, shared filters hybrid fusion, uses the same
filters for all the channels. Though it looks similar to the early-fusion method, the
distinguishing factor is the filter dimensionality and the number of parameters. There
are fewer parameters than in the early-fusion method. As per, [MSR+

17] and [DTC17],
late fusion methods perform better than early-fusion methods as the convolution filters
are tailored to a specific sensor or channel. Furthermore, in late-fusion, the filters
have a small focus area that enables the extraction of descriptive features [MSR+

17].
In conclusion, late-fusion methods are preferred for multi-sensor, multi-channel data
types such as IMU.

2.3 recurrent neural network

Recurrent Neural Networks can also be referred to as Auto-Associative or Feedback
Networks. As mentioned in Sec: 2.1, RNNs have cyclic internal connections. As a result,
RNN supports dynamic-temporal behaviour [PP18] and are applied to sequential data.
The cyclic nature supports the storage and reuse of information. As a result, RNNs
are said to have memory.

Computational graphs are beneficial to understand the structure of a sequence of
computations. In Fig: 2.3.1, the RNN is presented as a computational graph. Let there
be a simple RNN structure, with input node x, hidden layer h, and output layer o. L is
the loss calculated from the output o of the network and the desired output y for the
input x, W is the weight matrix that propagates the hidden layer’s output back to the
hidden layer for the next iteration. When the network is unfolded for a finite number
of iterations, we get the computational graph, Fig: 2.3.1. The unfolded RNN can be
considered a feed-forward network for each input in time. Thus, the backpropagation
algorithm applied in an RNN is called backpropagation through time (BPTT) [Roj96].
It is to be noted that, because of BPTT, the parameters are shared across the network
structure [GBC16].

The RNN BPTT can encounter the vanishing gradient issue. To mitigate the issue,
refined variants of RNNs have been identified. As per [GBC16], for practical purposes,
gated RNNs have been effective. Two such prominent gated RNNs are the Long-Short
Term Memory (LSTM) (see Sec: 2.3.1) and Gated Recurrent Units (GRU) (see Sec: 2.3.2).
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Figure 2.3.1: Unfolding of RNN to form a computational graph [GBC16]

2.3.1 Long - Short Term Memory

An LSTM preserves the activations of the hidden nodes from an earlier point in time
[CC19]. This property is achieved by introducing self-loops with gated learn-able
weights [GBC16]. Thus, the hidden nodes act as memory units that can be updated,
erased or read [OR16]. In addition, the gated hidden nodes tackle the vanishing
gradient issue.

Here, the gated hidden unit can be called an LSTM cell. An LSTM cell typically
consists of a memory cell ct, an input gate it, an output gate ot, and a forget gate
ft. The three gates use the sigmoid activation function to enable gating [CC19]. The
forget gate, Eq: 2.3.2, decides which information must be retained. The decision is
dependent on the previous output, current input and the weights associated with the
neurons. The input gate, Eq: 2.3.1, decides which new input is relevant to be stored
in the memory cell. The output gate, Eq: 2.3.4, is responsible for deciding the output
based on the memory cell information. The input and past values bias the output. The
memory of past activations, referred to as a hidden value, is denoted as ht−1 [OR16].
Let the input from a sequence at a time t be denoted as at. Based on Fig: 2.3.2, the
following LSTM block equations can be identified for performing an update - Eq: 2.3.1,
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Figure 2.3.2: LSTM cell [OR16]

2.3.2, 2.3.3, 2.3.4, and 2.3.5. The notations in bold represent vectors. The layer notation
is avoided to improve readability [OR16].

it = σi(Waiat + Whiht−1 + Wcict−1 + bi) (2.3.1)

ft = σf(Wafat + Whfht−1 + Wcfct−1 + bf) (2.3.2)

ct = ftct−1 + itσc(Wacat + Whcht−1 + bc) (2.3.3)

ot = σo(Waoat + Whoht−1 + Wcoct + bo) (2.3.4)

ht = otσh(ct) (2.3.5)

Here, i, f, o and c represent the input gate, forget gate, output gate and cell activation
vectors. As mentioned earlier, the gates are controlled by sigmoid activations (σ). As a
result, they are limited to the output value of zero or one. Thus, the gating signals
need to be expressed as vector equations [DS17]. These vectors have the same size as
vector h. Weight matrices are Wai, Whi, Wci, Waf, Whf, Wcf, Wac, Whc, Wao, Who,
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and Wco. Their subscripts represent the nodes that they connect and direction of flow.
For example, Wai represents the flow of information from the input to the input gate
matrix. bi, bf, bc, and bo are bias vectors [OR16].

LSTMs are a popular solution for applications with real-world sequences such as
handwriting recognition, speech recognition, and machine translation. [GBC16]

2.3.2 Gated Recurrent Units

Though similar to LSTMs, GRUs are simple and fast to train. These properties can be
credited to the reduced number of parameters by eliminating the memory cell found
in the LSTM cell [Roj96]. The gates in GRU are called reset gate and update gate.
The update gate replaces the functionality of the input and the forget gate found in
the LSTMs [Roj96]. The update gate maintains information from the past that proves
helpful for classification. The reset gate decides how much of the past information is
retained [GRS+

20]. As a result, it replaces the forget gate and output gate functionality
of the LSTM [Roj96]. Unlike the LSTM, a GRU does not have a separate internal
memory. Essentially, the GRU, similar to the LSTM, is based on the idea of partially
resetting hidden states.

The structure of the GRU cell is as shown in Fig: 2.3.3. The reset gate and update
gate are represented by the Eq: 2.3.6 and 2.3.7, respectively. Eq: 2.3.8 and 2.3.9 present
the previous activation’s hidden states and the current hidden activations.

Figure 2.3.3: Gated Recurrent Unit (GRU) cell with marked reset gate and update gate
[GRS+20]
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rt = σ(Wxrxt +Whrht−1 + br) (2.3.6)

zt = σ(Wxzxt +Whzht−1 + bz) (2.3.7)

h̃t = tanh(Wxhxt +Whh(rt � ht−1) + bh) (2.3.8)

ht = zt � ht−1 + (1− zt)� h̃t (2.3.9)

Here, r stands for reset gate, and z represents update gate. � stands for element-wise
multiplication. h̃t represents previous activation’s hidden states, while h represents
current hidden activations. σ(.) stands for sigmoid activation function. Changes to the
gating equation can create variations of GRU [DS17].

2.4 biometric

Any physical and/or behavioural quality that can help uniquely identify an individual
is called a biometric. When these characteristics are used for automatic recognition, it
is referred to as Biometric recognition [JRP04]. Biometric characteristics are human
physiological and/or behavioural characteristics that are universal, distinct, permanent,
and collectable. Based on these requirements, a few popular biometrics are DNA, face,
finger-print, gait, iris, retina, signature, and voice. For robust biometric recognition
systems, performance, acceptability, and circumvention need to be considered.

At its core, a biometric system is a pattern recognition system. As a result, it follows
a given sequence of functions. Firstly, few samples of the biometric data have to be
collected from the individual. Next, features have to be extracted from the samples. A
template is created for the individual based on the features extracted from the samples.
Templates of multiple individuals will be stored in the template database. Given a test
biometric sample for identification, features will be extracted from the test sample and
be compared against the template database. Therefore, a biometric system would have
four modules: sensor module, feature extraction module, matched module, and the
system database module. In case of verification, the biometric system tries to confirm



2.5 human activity recognition 27

an identity claim. Whereas in identification, the system attempts to find a matching
template from the database [JRP04].

For this thesis, gait as a biometric is of interest. Gait is the cyclic movement of our
legs while walking [BL05]. It is a spatio-temporal biometric. Though gait may not
be very distinct in all cases, it supports verification applications where the security is
insignificant. It is difficult to gather a gait template covering footwear, terrain, fatigue,
and injury variation [BL05]. Furthermore, gait’s long-term relevance as a biometric is
questionable because of body weight fluctuations, injuries and changes in the sense of
balance. However, gait data can be acquired as images, videos, optical Motion Capture
(oMoCap), electromyography, or IMU data. As a result, it is one of the most collectable
biometric alongside signature, face thermogram, and hand geometry [JRP04].

2.5 human activity recognition

Physical activity can be defined as any movement produced by the skeletal muscles
that lead to energy expenditure [CPC85]. The process of recognising human activity
through computer vision methods can be referred to as HAR. Activities may include
human locomotion such as walking and jogging or daily activities such as cooking and
cleaning. The activities may include human interaction with the surroundings. Human
to human interaction can be handshakes or boxing, while brushing teeth, cutting
vegetables, and picking up a box can be examples of human to object interaction.

The activities can be considered as classes. There are two types of class variations:
intra and inter-class variation. When the actors perform the same activity with different
mannerisms, it leads to intra-class variations. Often in real-world scenarios, intra-class
variations are significant [KF18]. In specific scenarios, two different activities may
have the same body movements. For example, drinking or eating has the same hand
movement as smoking. This type of variation is referred to as inter-class variation.
Inter and intra-class variations can often cause confusion while recognising the activity
with computer vision [KF18].

Videos, motion capture systems, and IMUs can gather human activity data. Often,
the data is labelled with the activity to support supervised learning methods [NRR+

20].
The labelling process, also called the annotation process of the HAR dataset, is an
arduous process. Some popular labelled human activity datasets are Opportunity
[CSC+

13], PAMAP2 [RS12b], KTH dataset [SLC04], UT Interaction dataset [RA09],
and UCF sports dataset [RAS08].
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2.5.1 Attribute Representation

Attributes can provide semantic or discriminative information about the data [FEHF09].
For example, the semantic description could be about the scenes or objects in an image
or the object’s shape, colour, or size for object detection [RF18].

Attribute learning supports intra and inter-class classifications [FEHF09]. As men-
tioned in Sec: 2.5, inter and intra-class misclassifications are common in HAR. Thus,
by representing the classes with attributes, one can verify the correctness of the classifi-
cation with the help of attribute representation. For example, the activities — pushing
a cart and gait cycle — can be differentiated by analysing the hand’s position. Given
that the hand attribute is positive, the class pushing cart can be selected. Further,
given a case where the class is not identifiable or unique, attributes could help with
approximate classification. According to [RF18], attributes can reduce annotation
requirements in unbalanced or large datasets. In addition, attribute representation
supports zero-shot and transfer learning.

The authors in [RF18] implemented an attrCNN-LSTM, attrCNN, and attrCNN-IMU
networks to learn HAR attributes, with the final layer consisting of a sigmoid activation
function Eq: 2.1.4. The number of neurons in the final layer depends on the number of
attributes. Here, the attributes are represented as a vector of 0s and 1s. Consequently,
the Binary Cross-Entropy loss (BCEloss) function Eq: 2.5.1 is preferred to calculate
the loss [NRR+

20]. Here, n is the number of samples, y is the label, and p is the
probability of positive prediction.

BCE = −
1

n

n∑
i=1

−yilog(pi) − (1− yi)log(1− pi) (2.5.1)
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Chapter: 1 and Chapter: 2 discuss IMU sensor datasets for HAR (see Sec: 2.5) research.
HAR has found application in logistics, as mentioned in Chapter: 2 and in medical
care services; for example, Ambient Assisted Living (AAL) and early detection and
monitoring of diseases such as Parkinson’s. Further, we discussed gait as a biomet-
ric and the ease of gait data acquisition. In addition, we discussed the possibility
of subjects’ identity-based classification using HAR datasets. Having covered the
elementary topics related to this thesis, we now answer the question, what are the
prominent researches and conclusions derived in gait-based person identification and
soft biometrics using vision and IMU data.

Firstly, we discuss the researches on gait as a biometric (Sec: 3.1). This section
highlights the methods for extracting gait data and their limitations. Using IMU
data of human body movement, we can either classify individuals based on their soft
biometrics (see Sec: 3.2.1) such as age and gender, or classify the IMU data based
on subject identity (see Sec: 3.2.2). Thus, in Sec: 3.2, we discuss how IMU data is
used to determine soft biometrics and person identity. Body movements have been
used to create attribute representations of HAR activities (see Sec: 2.5.1). We explore
the research works of attribute representation in HAR in Sec: 3.4. It is expected that
using guidelines obtained from attribute representation in HAR, soft biometrics can be
modelled as attribute representation for person identification. Concluding the chapter
in Sec: 3.5, we discuss the key points, observations and inferences, limitations and
future research ideas.

3.1 gait as a biometric

Gait as a biometric is in its nascent stage due to complications caused by variation
in terrain, footwear, fatigue, and injury [BL05]. Gait has both coordinated and cyclic
nature of motion, as shown in Fig: 3.1.1. When the foot is swung forward, as shown
in the image, the leg is said to be in the swing phase. Otherwise, when the foot is in
contact with the ground, the pose is referred to as stance [GRS+

20]. The gait cycle is a
combination of swing and stance phases. Gait duration can be split into a half cycle
- step or a full cycle - stride. Step refers to the heel strike of one leg followed by the

29
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other (swing). Stride refers to the heel strike of one leg, followed by the heel strike of
the same leg (swing and stance) [GRS+

20].

Figure 3.1.1: Gait cycle [BL05]. R refers to right leg and L refers to left leg.

In their study to understand how humans observe gait motion, psychologists found
that humans look for frequency entrainment, phase locking, and physical plausibility
[BL05]. To elaborate, given images of dots arranged in a particular shape and a
particular movement, as shown in Fig: 3.1.2, humans tend to analyse whether there is
a frequency found in the movement of the dots reflecting the movement of different
parts of the body, i.e., hands and legs, to confirm that the dot image represents a
human gait motion. Given a common frequency, the feature is referred to as frequency
entrainment. Further, we analyse the pose formed by the position of the dots. If
the poses of the dot image repeat cyclically, then the dot image sequence is said to
be phase-locked. Humans look for phase-locked movements to identify human gait
motion. Physical plausibility indicates whether the cyclic motion viewed is physically
possible by the human body. Humans comprehend physical plausibility based on
their physical capabilities and previous experiences. In computer vision, physical
plausibility cannot be a criterion for gait recognition. However, frequency and phase
are features that can be used for recognition. As per [AC99], machines interpret human
motion based on: motion analysis, including human body parts, movement tracking
from a single view or multiple camera perspectives, and human activity recognition
from an image sequence. At its core, these methods consider oscillations of the body
shape, joint trajectory, self-similarity, and pixels, to obtain frequency and phase [BL05].

Based on the gait acquisition method, there are three categories, machine vision,
floor sensor, and wearable sensors. The authors of [Gaf07] have used the term machine
vision to denote video-camera based data acquisition method. The advantage of
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Figure 3.1.2: Experiment conducted by psychologists to understand how humans perceive gait.
The dot structure shows a human movement [BL05].

machine vision based gait acquisition is the possibility to acquire data from large
distances without requiring the subject’s cooperation and awareness [SJAS18]. Thus,
the method is of interest in surveillance and forensics [Gaf07], [SJAS18]. According to
[SJAS18], vision-based data can be classified as marker-based or marker-free. Marker-
free methods refer to video-camera based data acquisition. The Optical Motion Capture
(OMoCap) system is an example of a marker-based data acquisition system. Here, the
subjects have reflective markers or sensors at particular body joints to facilitate motion
capture. Marker-based data acquisition systems are used for clinical gait analysis.

In the floor sensor-based method, force plates are installed to measure gait-related
features such as heel strike, stride, and cadence [Gaf07]. Though this method is
non-obtrusive and can support localisation within a building, it is limited to laboratory
environments. It is not easy to maintain these sensors in home environments due
to their sensitive nature. As mentioned in [Yun11], the circuits tend to get damaged
when exposed to water.

The final method of gait data acquisition mentioned in [Gaf07] is wearable sensors;
for example, smartphones and IMUs. These sensors can be placed on various locations
of the human body, for example, on the waist, wrist, chest, and lower part of the
legs. Authors in [Gaf07] suggest that wearable sensor-based gait can be utilised for
authentication on mobile devices that store financial or private data.

There are two main approaches for interpreting and extracting gait features. They are
model-based and model-free approaches. In the model-free approach, the shape and
motion of the silhouette extracted from the videos after segmentation are used to obtain
gait features. Consequently, the method is also referred to as holistic/appearance-
based approach [SJAS18]. In a model-based approach, the subject’s physical model
is designed from measurable body components, such as joint angle patterns, joint
trajectories, height and stride length, prior to data acquisition. The model can be
either a 3-D model or a structural model. In the structural model, the geometrical and



32 related work

structural properties of the subject, such as gait period, step length, and stride length,
are used for gait recognition. The 3-D model is designed from hip and thigh rotation
patterns, motion trajectories, and orientation of limps. The presence of the prior model
signifies that the model-based approach can be view-invariant, scale-invariant and
unaffected by noise. Consequently, a model-based approach is robust and preferred
for practical applications [SJAS18].

The model-free approach can be sub-categorised as statistical and spatio-temporal
methods. In the statistical method, the silhouette’s shape and motion patterns are
used for recognition [SJAS18]; for example, the velocity moments is used to describe
the silhouette’s motion features and Gait Energy Image (GEI) can be used to analyse
the silhouette shape. A spatio-temporal method uses space and time information from
video sequences to perform gait recognition [SJAS18]. Space information refers to the
appearance of the subject based on clothing variations, while time information refers
to the dynamic features of gait such as walking speed. In this method, the motion
features, e.g., speed, stride length and stance duration, are extracted and used for
recognition using methods such as the Bayesian decision approach. The model-free
spatio-temporal approach is affected by camera orientation and appearance variations.
However, this method is favourable because of its low computational complexity
[SJAS18].

Analysis of gait in itself has various applications. Athletic performance analysis,
man-machine interfaces, and content-based image storage and retrieval are few areas
of interest [AC99]. Further, gait is used for soft biometric (see Sec: 3.2.1) and clinical
analysis. Examples of soft biometrics are age and gender classification or estimation. In
clinical analysis, qualitative measures such as cadence, gait speed, and step length are
used to analyse ageing and to diagnose diseases. Research on patients with rheumatoid
arthritis and Parkinson’s disease has shown that gait analysis is an effective diagnostic
technique [SJAS18].

3.1.1 Vision-Based Person Identification

Vision-based person identification is desirable for surveillance applications. Authors in
[SJAS18] mention that gait features can be extracted without the subject’s cooperation
from a distance of 10m or more. Further, gait feature extraction is possible with
low-resolution video sequences.

One of the primary methods considered for identification is silhouette analysis.
Silhouettes are affected by shape information. As a result, clothing plays a massive
role in same-subject identification [WTNH03]. In addition, silhouette analysis is
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affected by the viewing angle of the camera. When using a single video camera,
the silhouette analysis is limited to one camera viewing angle. However, based on
the subject’s position with respect to the video camera, the viewing angle can vary.
Thus, to facilitate silhouette analysis, a method to generalise the viewing angle is
required. The authors in [WTNH03] suggested a multi-camera-based tracking system
to overcome the issue.

In [HB05], a method called Gait Energy Image (GEI) was proposed to visualize
human motion in a single template or reference image rather than a sequence of
templates or reference images. The GEI is the time-normalised accumulative energy
image of space-normalised silhouette images of human walking during a complete gait
cycle. This spatio-temporal representation considers statistical gait features, such as
frequency and phase, from real and synthetic references to generate training templates.
The synthetic references are created by distorting the real frequency and phase values.
When individual recognition is to be performed, the individual’s gait is converted into
a GEI and compared with the training template. Benefits of GEI include preservation
of template storage memory, reduced computation time, and reduced sensitivity to
silhouette noise in each frame. However, GEI still suffered from the issues of multiple
viewing angles and missing frames caused by obtrusion.

Another method for gait feature extraction is non-linear machine learning, as
shown in [EA07]. Firstly, we extract the binarised silhouette of the subject for few
frames. Then, we take four projections of the silhouette and find the correlation of
the projections of the frame with the projections of its consecutive frames. Further,
the correlated outputs are normalised. Next, a symmetric average filter is applied
to smooth the normalised outputs. This output is a 2-D image, referred to as a gait
pattern. The gait frequency can be obtained through auto-correlation of the gait
pattern. The gait patterns have to be created for the subjects gait motion at different
speeds. These frames are used for the training procedure. However, the gait patterns
are transformed to the frequency domain to achieve translation invariance before
applying the Principal Component Analysis (PCA). PCA extracts the gait features
from the gait patterns. These gait features can be used as a template to compare with
the features of the test gait data [EA07].

[LJZ09] is a survey on the different gait recognition methods and the future work
required in vision-based gait recognition. The authors pointed out that the gait
datasets had a limited number of subjects leading to difficulty in generalisation. Most
datasets have only 200 subjects. As a result, the performance evaluation is restricted.
Furthermore, most datasets consider a single moving subject in the frame. Therefore,
evaluation of the methods in real scenarios does not take place. Based on the research
trend identified, the authors concluded that 3-D prior modelling of the subject’s
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physical characteristics and multiple-camera employment would be the future research
direction. Furthermore, research in the field of spatio-temporal gait features was
recommended. Finally, the authors emphasised the need for a more extensive gait
database with complex environments.

The authors of [HWZ+
12] proposed a method based on optical flow for gait recog-

nition and tracking of subject gait in video-based surveillance. In silhouette-based
model-free approaches, background subtraction is the first step towards extracting the
gait features. However, extracting silhouettes when the background is cluttered can be
tricky. Optical flow method does not require background subtraction. Consequently,
optical flow methods are expected to help in gait feature extraction in the case of
cluttered background. Local Binary Pattern (LBP) flow was utilised to encode the
optical flow information. Further, each individual was assigned a single Hidden
Markov Model (HMM) representation of gait dynamics. The recognition could then
be achieved either through a model-based approach or an exemplar-based approach.
The model-based approach uses a training set to create a statistical model for each
subject present in the training set. Further, the method compares the likelihood with
the test data [HWZ+

12]. In contrast, the exemplar method retains each training data
and considers the distance measure between each training data from the set to the
test data. Averaging and dynamic time wrapping (DTW) methods are used to find
the distance measure. Consequently, the exemplar method is expensive in time and
storage. Thus, the model-based approach was said to be efficient [HWZ+

12].
The majority of the works in vision-based recognition were focused on using

HMM or PCA for classification. However, [WBR16] considered 3-D deep CNN for
gait recognition with dataset consisting of multiple views. Thus, implementing the
recommendation of multiple camera employment in [LJZ09]. The 3-D deep CNN
architecture uses 3x3x3 convolutional filters in each of the seven convolutional layers.
Consequently, detection of movements in all directions is expected to be possible
[WBR16]. To overcome the challenge of viewing angle, colour, and variation in
walking conditions, the 3-D deep CNN was trained with competitive datasets, such
as CMU Motion of Body (MoBo), USF Gait-based Human ID Challenge and Casia-B.
The datasets had instances of varying clothing, walking speed, and multiple-viewing
angles. The authors provided optical flow data as an input along with the grey-scale
image to ensure colour invariance. The generalisation of gait features across the
different viewing angles was achieved with a CNN. However, the authors proposed
experimentation with larger datasets to ensure over-fitting has not occurred.
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3.2 imu based classification

3.2.1 Soft Biometrics

In comparison to video-based person identification, IMU-based person identification
is a relatively new research area. Interest in this area began with the understanding
that gait analysis provides effective disease diagnosis, as mentioned in Sec: 3.1.

Authors in [SNM+
12] created a dataset using a biometric suit with wearable sensors,

named Intelligent Gait Oscillation Detector (IGOD). The dataset is expected to support
gait parameter study, which could be further extended to person identification and
walking troubles detection. The suit measured oscillations from eight joints of the
human body, specifically knees, hips, elbows, and shoulders. The study analysed the
variation in gait oscillation to gait speed as well as gender. The authors identified that
analysing the oscillations could determine soft biometric features such as height range
and gender.

The focus of [RVKW15] is purely on soft biometrics. 26 subjects were classified
based on gender, age, and height using dataset obtained from a single IMU sensor. The
IMU data was initially segmented into strides and classified with Random Forest (RF).
Here, RF method was preferred based on the results provided by the previous works
in this field. An exciting aspect of this research is the dataset. The dataset consists
of readings taken with the subject walking on hard surfaces with shoes and without
shoes and soft surfaces without shoes. Furthermore, while performing soft biometric
classification, the authors brought in restrictions to the training set based on age and
height. The restrictions are referred to as sub-groups in Table: 3.2.1. The thresholds
selected for creating sub-groups ensures a balanced population in all classes. The
authors concluded that a single step recorded from smartphones and smartwatches
can be used to reveal personal information such as gender, height and age [RVKW15].

3.2.2 Person Identification

IMU sensors support the application of gait-based person identification and verification
in human-robot interaction. The authors of [ZKL+

13] explored the possibilities of
identifying the robot interaction partner through the gait data obtained from a single
wearable sensor attached to the pelvis. Bayes classifier was applied to classify the
individual. However, the dataset created by the authors consisted of gait data from 20

participants from three IMU sensors. The IMU sensors were placed at the pelvis, right
ankle and thorax. [ZKL+

13] uses the data from the IMU placed at the pelvis for stride
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Classifications Gender Age Height (Hgt in cm)

Classes
Male

Female

Age <40

40 <Age <50

50 6 Age

Hgt <170

170 <Hgt <180

180 6 Hgt

Sub-Groups

Male:

Age 6 40

Age >40

Female:

Age 6 50

Age >50

Male:

Hgt 6 180

Hgt >180

Female:

Hgt 6 170

Hgt >170

Table 3.2.1: Groups and sub-groups of classifications considered in [RVKW15]

segmentation and person identification. The IMU placed on the ankle was used to
validate the stride segmentation. The proposed identification first splits the raw data
into a single stride and performs classification using Bayes. The stride segmentation
was given high priority in this research. To elaborate, the authors experimented with
stride segmentation on data of subjects walking on a straight path, big circular path
and small circle. It was found that the stride segmentation algorithm is ineffective
on the walking data over a small circular path. Instead of using a single stride for
testing, the authors suggested including a voting system by considering three strides.
A classification accuracy of 99.3% was achieved on the dataset with the proposed
method.

A perspective on cycle extraction, spectro-temporal 2-D expansion and representa-
tion of gait cycles, deep CNN, and multi-layer sensor fusion for person identification
using gait was provided by authors in [DTC17]. IMU data was collected from five
sensors placed on the human body, namely the chest, lower back, right-hand wrist,
right knee, and right ankle. As part of data pre-processing, the data was passed
through a Butterworth bandpass filter to extract the frequency range of 0.5− 3.5Hz.
Further, the orientation invariance was achieved by considering the square root of
the squared sum of the value along each axis. First, the ankle sensor was used to
mark the gait cycles based on peak values to extract gait cycles. Then, the same
markers are applied to all sensor data to extract the gait cycles. Next, the input data is
mapped onto a time-frequency space using time-frequency distribution. Further, the
instantaneous frequency is estimated. The instantaneous frequency can be identified
on the time-frequency representation as ridges [DTC17]. Further, the time-frequency
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representations are given as input to the deep CNN to perform gait classification. The
authors used the time-frequency representation to avoid manual feature extraction.
Manual feature extraction is said to be prone to error and subjectivity [DTC17]. The
authors recommend using the late fusion method of deep CNN, stating better accuracy,
given that any of the IMU turns out to be defective or noisy. [DTC17] achieved 91%
subject identification accuracy on the proposed method.

[EBL18] provides a different perspective. The authors considered a dataset of 20
daily human activities instead of restricting to gait data; for example, daily activities
include stirring, washing dishes, and office-work activities. The dataset was created
from six IMU sensors, placed on both wrists, dominant upper arm, thigh, chest and
ankle positions of 18 subjects. The experiments were performed on classifiers such
as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), Neural Network
(NN), Decision Tree and their types. The authors have listed the classifiers that
provided the best results in [EBL18]. Unlike in [DTC17], the focus remained on
statistical features. Features such as mean, standard deviations, and magnitude were
extracted from the data by considering segments extracted using a sliding window
approach. The sliding window considered a window size of 2 seconds with 50%
overlap. The authors identified that sedentary activities had a higher classification rate.
In addition, a combination of accelerometer, magnetometer, and gyroscope provided
better results than the sensors individually. A striking result from the experiments is a
depreciating relationship between classification success and the number of sensors.
Another conclusion is that all subjects are not equally identifiable.

A simple Neural Network was used for classification in [CDHG20]. The authors
collected IMU data from the wrist position of 50 subjects while performing 100 seconds
of natural walking tests. Gait motions performed by individuals can be very similar.
However, variations can be found in the gait characteristics due to the individual’s
height, weight, arm length, and personal habits [CDHG20]. The authors analysed
the characteristics of rotation angle difference, location difference, and the inertial
difference of the wrist to obtain a 24-dimensional human wrist gait feature data model
[CDHG20]. Next, the selected 24 dimensional feature values are trained on a Neural
Network. The method achieved an accuracy rate of 97.65% and was recommended for
identity and security authentications [CDHG20].

Another instance where Neural Network was considered is [GRS+
20]. Unlike

[CDHG20], [GRS+
20] does not try to extract features from the data. Instead, the

input data is split into either stride or gait data. Further, the split windows are fed to
four DNNs: Gated Recurrent Unit (GRU), CuDNNGRU, Long-Short Term Memory
(LSTM), and CuDNNLSTM. CuDNN refers to Nvidia’s GPU accelerated library for
implementing DNNs. GRU and LSTM were implemented on Tensorflow. The data was
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obtained from the IMU and smartphone sensors placed on the chest of 86 randomly
selected subjects. The data were recorded at a sampling rate of 75Hz. The subjects
performed gait activity on various surfaces, for example, carpet, grass, tiles and asphalt.
The hyperparameters were set for all the models at learning rate 0.001, batch size 32
and epoch 30. The networks were trained with categorical cross-entropy loss function
and adam optimizer. The authors found that CuDNNGRU performed better than the
other models. The model achieved 87.15% and 86.23% accuracy on step and stride
data, respectively. The CNN network achieved 69.05% and 76.04% on step and stride
data, respectively. The re-identification was further evaluated by considering age and
gender restrictions. To elaborate, the subjects were grouped based on their age and
gender. Data of each group were used to train networks. The networks achieved high
classification accuracies.

One point of interest is that the step data performed better than the stride data
[GRS+

20]. A step is defined as the heel strike of one foot followed by the heel strike
of the other foot. Stride constitutes two heel strikes from one foot. Previous research
concluded that during a normal human walk, the step frequency is between 1-2Hz.
Stride frequency is expected to be twice the step frequency. Contrary to the network
size paradigm in HAR, the authors noted that increasing the network size and epoch
number provided better results. The authors identified the optimal network parameters
as 512 neurons, 0.001 learning rate, dropout of 0.5 and epoch 30. A point of interest
is that the authors have raised privacy concerns, considering the high accuracy with
which identification can be achieved with IMU data.

3.3 imu based activity recognition

Considering how activity recognition applications function successfully using IMU
data obtained from smartphones and smart-watches, we can say that stable versions of
HAR classifiers are available for applications. Datasets such as Opportunity [CSC+

13]
and PAMAP2 [RS12b] are now considered trademark datasets in the field of HAR.
[HHP16] has utilised the datasets mentioned above and the Daphnet Gait dataset
as a trademark to conduct verifiable experimentation. Architectures such as CNNs,
RNNs such as LSTMs, and bi-directional LSTMs were experimented upon using these
datasets. The authors tabulated the percentage effect of architecture, learning rates,
regularisation and iterations on the overall model variance was evaluated. Experiments
were conducted on CNN with learning rates ranging from 0.001− 0.00001. The authors
found that learning rates had an overall effect of about 25− 50% of model variances.
Interestingly, the specific influence of hyperparameters can be found on the dataset; for
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example, the experiments suggest that PAMAP2 requires correct learning parameters,
while, Opportunity is dependent on the architecture. Through experiments, authors
identified that for HAR, usage of shallow networks is recommended.

The network of interest for this thesis is the CNN-IMU network. It was concep-
tualised by [GLR+

17] and then further explored by [MGF+
18]. CNN-IMU is ideal

for processing time-series data from multiple IMUs, as mentioned in Sec: 2.2.1. It
follows the late-fusion (see Sec: 2.2.2) method. Initially, each sensor has a branch of
convolutional and max-pooling layers (depending on the dataset). These layers extract
the temporal-local features of the given data. Further, through a fully connected MLP
layer, the local information from the parallel branches is collected and processed to
create a global representation. Finally, this information is used for classification using a
softmax layer. As a result, CNN-IMU is robust against slightly asynchronous data and
is more descriptive. As a proof of concept, the architecture was tested on Opportunity
and PAMAP2 datasets. The results obtained were in favour of the CNN-IMU network,
in that the architecture outperformed the state-of-the-art on the mentioned datasets
[MGF+

18].

3.4 human activity-based attribute representation

The prospect of utilising attribute representation to denote HAR was explored by au-
thors in [RF18]. Since body movements have particular patterns, the authors reasoned
that representing the action classes by the details of coarse human actions would be
beneficial; for example, the class handedness can be further explained as left hand,
right hand, and both. Furthermore, this method could tackle complications caused by
inter-class and intra-class variability and class imbalance, as seen in Sec: 2.5.1. The
authors tested the method on three deep network architectures: CNN, deepConvLSTM,
and CNN-IMU. The final softmax layer of these networks was replaced with a sigmoid
layer to support attribute representation. The sigmoid layer is preferred for attribute
representation as each attribute is represented with a binary value. Meaning, each
attribute representation can be represented as a string of zeros and ones.

[RSH+
18] explains the procedure to create an attribute representation for HAR.

Here, the authors have presented attribute representation for HAR in a logistics envi-
ronment. The authors recommend creating representations that would be semantically
understandable for humans. Furthermore, a representation that can be utilised on
different HAR datasets was said to be desirable. The authors found that attribute
representation could perform at par or even better than classes. Furthermore, rep-
resentations with a lower number of attributes were found to have a slightly better
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performance. In addition, it was found that given a semantic relation between the
attributes and activities, the performance improved further.

3.5 discussion

Though person identification with gait information started with vision-based gait
surveillance, the lack of an appropriate dataset impeded its advancements. Further-
more, obtrusion and occlusion are dominant hindrances. The presence of smartphones
and smartwatches has seen exceptional growth in IMU data compared to vision data.
The advancements have facilitated the development of HAR applications with greater
accuracy. Similarly, IMU data is expected to boost person identification applications.
As a result, the past years have seen more research in this field.

As can be noticed, except for [EBL18], almost all the previous works are focused
on gait data. However, data from smartphones and smartwatches are usually a
combination of varied activities. It would be ideal to analyse person identification
accuracy on datasets that have features of data from smartphones and smartwatches.
Experimentation on these datasets will help to observe how varied activities improve
or deteriorate person identification. In addition, the privacy concerns associated with
the data can be addressed.

The previous works in this field were focused on extracting hand-modelled features
for training classifiers such as SVM, KNN and RF. As discussed in [DTC17], hand-
modelled features could be erroneous and subjective. As a result, classifiers such as
CNN are desirable. The convolutional layers of the CNN are capable of extracting
relevant features from the input data to facilitate appropriate classification.

An exception to the trend of using hand-modelled features is [GRS+
20], where

the training was on segmented gait data without specific feature extraction methods.
However, the networks considered were RNNs. Thus, the performance comparison
of time-series multi-sensor multi-channel IMU data on time-series CNN-IMU and
time-series deepCNNLSTM networks is desirable.

Based on experiments, [GRS+
20] had concluded that step data had better accuracy

than stride data. The difference between the step and stride data is the segmentation
window length. It would be interesting to see whether similar segmentation would
facilitate identification on general body movement data.

Ideally, a comparison of the method mentioned above with the dataset of [GRS+
20],

and [EBL18] would have been an appropriate proof of concept. However, the datasets
were unavailable. Hence, the author of this thesis has considered trademarking with
OPPORTUNITY and PAMAP2 datasets, as shown in [RF18]. Though the number of
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subjects is less in these datasets, the subject’s identification and the impact of various
activities on identity can be evaluated. Furthermore, the data acquisition methods
found in these datasets are different. Consequently, the impact of data acquisition
methods on identity classification can be explored.

Taking inspiration from [RVKW15], [RF18] and [RSH+
18], consideration of soft-

biometrics as attributes for person identification would be an intriguing experiment.
The groupings and sub-groupings considered in [RVKW15] can be used to develop an
attribute representation, as shown in [RSH+

18].
Authors of [GRS+

20], [EBL18] and [RVKW15] have raised privacy concerns in the
case of IMU-based gait recognition. However, research towards understanding the
finer aspects that facilitates person identification from IMU data was not found. It
would be interesting to analyse which features of the IMU motion data are relevant to
the neural network to perform identification.
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As discussed in Sec: 3.5, most previous works on person identification using gait data
focus on hand-modelled feature extraction methods and classical classifiers. Authors of
[EBL18], have experimented on the impact of activities on person identification using
IMU data. However, the authors have opted for hand-modelled features. Furthermore,
the data used do not have the properties of a HAR dataset or data extracted from
smartwatches or smartphones. Consequently, general body motion-based person
identification using IMU data and related privacy concerns are yet to be addressed.

The benefit of using DNNs such as CNN lies in its capability to extract relevant
features from the input data to facilitate classification. Therefore, experiments need
to be conducted on HAR datasets to analyse person identification using DNNs.
Analysing the features that facilitated identification as learned by the models could
lead to methods for masking/deleting identity from IMU datasets while maintaining
HAR.

From [EBL18] we know that some activities facilitate person identification better
than few other activities. However, the authors trained the ML algorithms on data of
individuals performing a specific activity. Thus, the impact of activities on identity,
with networks trained on data of individuals performing various activities, needs to be
analysed. It would be interesting to see whether identity can generalise over activities.

Finally, designing soft biometrics as attribute representation needs to be explored.
The designed attribute representation could facilitate an understanding of how certain
body characteristics affect identification. In addition, the experiments may give an
insight into the impact of an individual signature on HAR.

Research in these areas is expected to function as the preliminary work towards dis-
covering the features that facilitate person identification and the impact of individual
motion signatures on the HAR dataset.

To solve the problems mentioned above, this thesis has chosen the following method.
Firstly, DNNs designed for multi-sensor multi-channel time-series IMU data are used
for experimentation. In specific, CNN-IMU and deepCNNLSTM networks. Secondly,
HAR datasets will be experimented upon to shift the focus from gait-based person
identification to general body motion-based person identification. As a result, the
accuracy Acc of identification given a particular activity can be evaluated. Thirdly,
to enable the possibility of comparison and bench-marking, only publicly available
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datasets, such as LARa [NRR+
20], Opportunity [CSC+

13], and PAMAP2 [RS12b],
have been considered. Finally, attribute representations are designed based on soft
biometrics. The attribute representation can be used for generalised grouping of the
subjects and transfer learning.

Sec: 4.1 of this chapter explains the architecture and training of the DNNs. In Sec: 4.2,
the attribute representation will be designed from the soft-biometrics. Further, the
modifications to the network for achieving attribute representation will be discussed.

4.1 deep learning for identification

This section introduces the deep networks designed for multi-sensor, multi-channel
time-series data to achieve person identification using motion information obtained
from IMU sensors. The two networks of interest are CNN-IMU and deepCNNLSTM.
To facilitate feature extraction, the networks have convolutional layers at their initial
layers. Both the networks follow late fusion architecture. Hence, each sensor is adapted
with a branch of convolutional layers.

The distinction between the networks lies in the layers following the convolutional
layers. If the subsequent layers are fully connected MLP layers, the network is called
the CNN-IMU network. The CNN-IMU network was discussed in Sec: 2.2.2. Given,
the layers following the convolutional layers are LSTM layers; the network is referred
to as deepCNNLSTM. Table: 4.1.1 presents these architectures.

CNN-IMU ||Conv ||Conv ||Conv ||Conv ||FC Concat FC FC Softmax

deepCNNLSTM ||Conv ||Conv ||Conv ||Conv Concat LSTM LSTM FC Softmax

Table 4.1.1: Comparison of network layers between CNN-IMU and deepCNNLSTM. || denotes
that the layers have parallel blocks. Conv refers to the convolutional layer. FC
implies a fully connected MLP layer, and Concat stands for concatenation. All the
layers consider the ReLU activation function.

In Sec: 2.2.2, it was discussed that late fusion methods are preferred while consider-
ing data from multiple sensors. The late fusion method allows convolutional filters to
extract descriptive features as the focus area is dimentionsionally less. The networks
follow sensor-based late fusion. A branch of convolutional layers processes each IMU
sensor. Each branch has four convolutional layers, as visualised in Fig: 4.1.1.

IMU sensors consist of an accelerometer, gyroscope and magnetometer. Each of
these devices has multiple channels based on its axes, as discussed in Sec: 2.2.1. These
channels are represented as n in Fig: 4.1.1. w stands for the window size, which is
dependant on the sliding window process (see Sec: 2.2.1). The convolution filter size
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IMU 1

IMU 5

n x w

n x w

1− 64

1− 64

64− 64

64− 64

64− 64

64− 64

64− 64

64− 64

Figure 4.1.1: Visualisation of the parallel blocks of convolutional layers for each IMU. Each
IMU input has n channels of w window size. The first convolution layer has one
input channel and 64 output channels as depicted. The rest three convolutional
layers have 64 input channels and 64 output channels. The filter size (5x1) is
constant in all convolutional layers.

is set to 5x1. Similarly, the stride is set to 1x1. The first layer has one input channel
and 64 output channels. The rest three layers have 64 input channels and 64 output
channels. No pooling layers were considered in these architectures. The rest of the
layers are specific to the type of network, as shown in Table: 4.1.1.

The CNN-IMU network has a fully connected layer attached to each block. The
outputs from the fully connected layer of the parallel blocks are concatenated. Further,
the concatenated outputs are passed through an MLP. ReLU is the preferred activation
function of these layers. The final fully connected layer has a softmax activation
function to support the classification of identity.

In the deepCNNLSTM network, the output of the parallel convolution blocks are
concatenated and passed through two layers of LSTM. Similar to CNN-IMU, the
final fully connected layer has a Softmax activation function to facilitate identity
classification.

Based on the functionality of the networks, the activation function of the final layer
varies. Given that the network is expected to perform identity classification, the final
activation function will be a Softmax activation function. The Sigmoid activation
function is used in the final layer to facilitate attribute representation.

Training

As mentioned in Sec: 2.2, Softmax, Eq: 2.2.1, output shows the probability that the
input belongs to a particular class. As a result, softmax is the preferred activation
function for solving classification problems. Loss is calculated with the Cross-Entropy
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Loss function, Eq: 2.2.2. Sec: 2.1.3 had introduced gradient descent. Here, the concept
of optimisation algorithms was introduced. The two proposed networks use the
RMSProp optimisation algorithm to ensure fast convergence. The method adapts
the learning rate (see Sec: 2.1.3) according to the variation in gradient in consecutive
iterations. When the variation is large, the learning rate is reduced. Consequently, the
amount of the parameter update is reduced. Whereas, when the variation is small, the
learning rate increases to ensure convergence at a fast rate.

Neural networks have to classify unseen data after being subjected to supervised
training on training data. Implying that the network should be able to generalise.
When the network fails to classify unseen data but shows good classification on the
training data, the issue is referred to as over-fitting. There are various methods to
avoid over-fitting, e.g., early stopping, data augmentation and dropout. The data
augmentation method used in this thesis is the addition of Gaussian noise (mean
µ = 0 and standard deviation σ = 0.01) to sensor samples. This method was used by
[MGF+

18] and [GLR+
17], to simulate sensor inaccuracies. Furthermore, the networks

consider dropout to avoid over-fitting. Dropout is the process of leaving out few
neurons of a layer at random during training. The process essentially modifies the
network architecture. However, dropout has been effective in improving generalisation.

4.2 attributes representation

Attribute representation was introduced as the semantic description of a scene or an
object in Sec: 2.5.1. Sec: 3.2.1 discusses that soft-biometric features can be obtained
from human-body movements. Consequently, soft biometrics can be used to describe
or categorise an individual [SNM+

12]. Thus, it can act as the attribute representation
of an individual.

From [RSH+
18] and [RVKW15], two sets of attribute representations were designed

based on the LARa dataset recording protocol [NRR+
20]. A snippet of the LARa

dataset recording protocol is presented in Table: 4.2.1. The protocol presents the
gender, age, weight, height and handedness of each subject. As all the subjects
are right-handed, handedness cannot be considered as an attribute in LARa dataset.
Table: 3.2.1 presents an example of sub-categorisations that can be performed on
soft biometrics. A similar sub-categorisation on soft biometrics is performed on the
LARa subjects (Table: 4.2.1), as shown in Fig: 4.2.1. Type 1 attribute representation
splits each soft biometric into two categories. For example, the soft biometric height
can be categorised as either 6 170cm or > 170cm . However, the Type 2 attribute
representation splits the soft biometrics into three categories. It must be ensured
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Role
Sex

[F/M]
Age

Weight

[kg]

Height

[cm]

Handedness

[L/R]

Subject 07 M 23 65 177 R

Subject 08 F 51 68 168 R

Subject 09 M 35 100 172 R

Subject 10 M 49 97 181 R

Subject 11 F 47 66 175 R

Subject 12 F 23 48 163 R

Subject 13 F 25 54 163 R

Subject 14 M 54 90 177 R

Table 4.2.1: Example of Recording Protocol of LARa dataset [NRR+
20]. F/M stands for

Female/Male. L/R stands for Left /Right

that the splits are meaningful. To elaborate, care must be given that the sub-category
contains variations that the network can learn.

Attribute Representation

Type 1 Type 2

Gender Age Weight HeightGender Age Weight Height

F M 640 >40 670 >70 6170 >170 630 30-40 >40 660 60-80 >80 6170 170-180 >180F M

Figure 4.2.1: Soft biometric sub-categorisation for creating attribute representation. F stands
for female, and M stands for male. Weight is measured in kg, and Height is
measured in cm.

The attribute representations are tabulated, as shown in Table: 4.2.2 and Table: 4.2.3.
The tables follow the format of the attribute representation table presented in [RSH+

18].
The point of interest is that few subjects have the same set of attribute representations.
In Table: 4.2.2, subject 3 and 7 have the same attribute representation. Similarly, subject
5 and 6 have the same attribute representation in Tables: 4.2.2 and 4.2.3. As a result,
each attribute representation will be considered a center point, and the subjects will be
allocated to each center based on their representation. Fig: 4.2.2 visualises the process.
The figure draws the example from Table: 4.2.2.
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TYPE 1

Gender Age Weight Height

Subject F/M 6 40/ > 40 6 70/ > 70 6 170/ > 170

0 1 0 0 1

1 0 1 0 0

2 1 0 1 1

3 1 1 1 1

4 0 1 0 1

5 0 0 0 0

6 0 0 0 0

7 1 1 1 1

Table 4.2.2: Type 1 Attribute Representation. F/M refers to Female/Male. Weight is measured
in kg, and Height is measured in cm.

1 1 1 1

0 0 0 0

1 0 0 1

0 1 0 0Subject 3 Subject 7

Subject 5

Subject 6

Subject 0

Subject 1

Figure 4.2.2: Visualisation of attribute representation space. Each subject is allocated to the
center based on their respective attribute representation. The example is drawn
from Type 1 attribute representation, Table: 4.2.2.

To facilitate attribute representation learning, the final layer of the CNN-IMU
network has a sigmoid activation function (see Sec: 2.1.2), as shown in [MF18]. Conse-
quently, BCEloss Eq: 2.5.1, is the preferred loss function [NRR+

20], as mentioned in
Sec: 4.2.

The accuracy Acc, Eq: 5.3.1, of each attribute will be calculated to evaluate the quality
of attribute classification. To find the predicted center of the attribute representation,
two methods can be considered. The first method is the Nearest Neighbour Approach.
Here, the distance between each prediction and the centers are calculated. The
prediction is assigned to the center with the least distance. The second method is
the Binary Cross-Entropy Loss (BCEloss) approach. In this method, the negative
average log of probabilities of the attributes in the representation is calculated, as
shown in Eq: 2.5.1. The calculated value is the deviation of the prediction from the



4.2 attributes representation 49

TYPE 2

Gender Age Weight Height

Subject F/M 6 30 30-40 > 40 6 60 60-80 > 80 6 170 170-180 >180

0 1 1 0 0 0 1 0 0 1 0

1 0 0 0 1 0 1 0 1 0 0

2 1 0 1 0 0 0 1 0 1 0

3 1 0 0 1 0 0 1 0 0 1

4 0 0 0 1 0 1 0 0 1 0

5 0 1 0 0 1 0 0 1 0 0

6 0 1 0 0 1 0 0 1 0 0

7 1 0 0 1 0 0 1 0 1 0

Table 4.2.3: Type 2 Attribute Representation. F/M refers to Female/Male. Weight is measured
in kg, and Height is measured in cm.

expected representation. Thus, the BCEloss approach can evaluate the proximity of
the predicted center to the desired center. Similar to the Nearest Neighbour Approach,
the prediction then represents the center it is most similar to.
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E X P E R I M E N T S

In Sec: 3.5 and Sec: 4, we discussed the shortcomings in person identification and the
research gaps this thesis attempts to address. This chapter focuses on the experiments
and the results. Most of the experiments are focused on the CNN-IMU network (see
Sec: 4.1) in combination with the LARa dataset (see Sec: 5.1.1). It is to be noted that
the attribute representations designed in Sec: 4.2 is based on the recording protocol
of LARa [NRR+

20]. Consequently, the concept of attribute representation will be
primarily tested on the LARa dataset applied on the CNN-IMU network. Further,
based on the results from the primary experiments, the deepCNNLSTM network and
datasets such as OPPORTUNITY (see Sec: 5.1.2), PAMAP2 (see Sec: 5.1.3), and Order
Picking dataset (see Sec: 5.1.4) will be experimented upon.

We first introduce the datasets in Sec: 5.1. The differences between the datasets
will be discussed in Sec: 5.1.5. It is expected that such a comparison, in terms of
number of IMUs, IMU placement, number of subjects, and amount of data, will
help to understand the results better. Next, the experiments are enlisted in Sec: 5.2.
Sec: 5.3 explains the evaluation metrics. Finally, the results will be discussed in Sec: 5.4.
The results are categorised into three main sections. The first section focuses on the
accuracy of person identification on a given dataset and given network. The results of
the impact of activities on person identification are discussed in the second section.
Next, the two attribute representations designed in Sec: 4.2, and their performances
are evaluated. This section will further analyse the impact of activities on attribute
representation. Finally, additional experiments and research will be presented in
Sec: 5.5.

5.1 dataset

Sec: 3.5 discussed the prominence of using publicly available datasets to facilitate
benchmarking. Thus, popular HAR datasets are experimented with to analyse the
uniqueness of the general body motion of an individual. Each dataset is unique in
the type and number of sensors, subjects performing activities, and the activities. It
is expected that such varied datasets will illustrate the impact of data acquisition
methods on identity within the data. Furthermore, analysing the variations in dataset

51



52 experiments

creation and their impact on identity would help to create a protocol for HAR dataset
creation devoid of data privacy concerns. Consequently, this section introduces each
dataset based on the aspects mentioned above. Furthermore, the pre-processing steps
and their rationale are discussed.

5.1.1 LARa

The LARa dataset stands for Logistic Activity Recognition Challenge [NRR+
20]. The

dataset was created at the Innovationlab Hybrid Services in Logistics at the TU
Dortmund University [NRMR+

20]. The dataset consists of an Optical Motion Capture
System (OMoCap), IMUs, and RGB camera data. Three logistic scenarios were
depicted: two picking and one packing scenario. The scenarios were enacted by 14
subjects, resulting in 758 minutes of recordings. The dataset was labelled offline by 12
annotators.

The OMoCap system captures activities by mapping the movement of the reflective
markers attached to the body with the help of infrared cameras. As shown in Fig: 5.1.1,
the marker suit consists of 39 reflective markers attached to the human body. The
arena of data creation has 40 infrared cameras sampled at 200fps. Consequently, the
OMoCap dataset consists of 126 channels of motion information.

Six MbientLab IMUs (MetaMotionRL) were considered with a sampling rate of
100Hz. They were placed on both wrists, chest, waist, and ankles. Each IMU
consist of 3-axis Accelerometer (Scale:±2g −±16g, Resolution: 16bits), 3-axis Gy-
roscope (Scale:±125◦/s − ±2000◦/s, Resolution: 16bits) and 3-axis Magnetometer
(Scale: ±1300µT(x,y− axis),±2500µT(z− axis)range, Resolution: 16bits) readings.
However, the authors have only provided the accelerometer and gyroscope measure-
ments of five IMUs. The logistics lab is a controlled environment. As a result, no
variations in the magnetic field was found. Hence, the authors did not include the
magnetometer recordings in the dataset. It was found that the IMU placed at the waist
showed a high amount of noise. As a result, the readings of this IMU was not included
in the dataset. Consequently, 30 sensor channels of motion information are available
for performing experiments.

From the 14 subjects, only eight subjects have IMU-based recorded data, [NRMR+
20].

As this thesis is focused on IMU data, only subjects with IMU data will be selected
for experimentation. Each subject had participated in a total of 30 recordings of
two minutes each. Of the 30 recording, the subjects participated in two recordings
of Scenario 1, 14 recordings of Scenario 2, and 14 recordings of Scenario 3. The 30
recordings of an individual were conducted within a day. As a result, the bodysuit
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Figure 5.1.1: OMoCap on-body marker placements [NRMR+
20]

was not removed from the individual’s body once the recording sessions began.
Furthermore, the recording protocol consists of before and after recording images
of the individuals to map the dislocations of the markers and sensors. To help with
synchronisation, each two-minute recording begins with a synchronisation gesture to
indicate the beginning of the session. The subjects were given breaks between each
recording session. However, they were mandated not to take off the suit during the
breaks.

Unfortunately, it was found that a few of the recordings had to be removed because
of noise and loss of data. As a result, all the subjects do not have an equal number of
recordings for each Scenario. Two extreme cases worth mentioning are that of Subject
11 and Subject 12. The recordings 16-30 are missing for Subject 11. Consequently,
Subject 11 do not have any Scenario 3 recordings. Subject 12 do not have recordings
1-10. Therefore, the subject does not have Scenario 1 recordings and only six recordings
from Scenario 2.

The Scenarios are mentioned to help identify the type of activities present in the
recording. For example, Scenario 1 and 2 are comprised of pushing a cart, handling and
walking activities. In terms of body movement, this scenario is composed of activities
that require whole-body movements. The difference between the two scenarios is in
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the layout of the logistic environment [NRR+
20]. Scenario 3 is dedicated to packaging

activities. The recordings consist of upper body movement and a few walking activities.
The scenario does not have any pushing cart activities.

The subjects of interest are shown in Table: 4.2.1. The LARa recording protocol
provided the information [NRMR+

20].
The authors have considered eight activity classes based on logistics scenarios.

Namely, standing, walking, cart, handling (upwards), handling (centered), handling
(downwards), synchronization and none [NRR+

20].
The activities can be represented as attributes. Attribute representation is expected

to provide a coarse-semantic description of the activities [NRR+
20]. The authors

considered 19 attributes [RSH+
18]. However, the activity attributes are not within the

interest of this thesis and thus, not explored further.

Pre-processing

Category Subjects eluded No: of Classes T-V-T split Scenarios

A 12 7 5-1-1 2

B 11 7 6-1-1 2 and 3

C 11 and 12 6 8-2-2 2 and 3

D 10, 11 and 12 5 11-3-3 2 and 3

Table 5.1.1: LARa data is split into sub-categories for experimentation. T-V-T refers to the
Train-Validation-Test split of the recordings.

LARa dataset is considered the primary dataset of this thesis. Consequently, the
dataset has been extensively experimented. Pre-processing methods are specific to the
experiment. The OMoCap and IMU data are used for experimentation. Furthermore,
OMoCap experimental results are considered as a benchmark for IMU experimental
results.

To tackle the absence of scenarios in few subjects mentioned in Sec: 5.1.1, the dataset
was split into four categories, as shown in Table: 5.1.1. This split is implemented on
the IMU and OMoCap data.

The IMU and OMoCap readings have a varying range for each sensor channel.
For example, the accelerometer reading may range from −2g to +2g, whereas the
gyroscope reading may range from −125◦/s to +125◦/s. Channel-normalisation is the
process where the values are normalised to a value between 0 and 1. Normalisation can
be achieved with the Eq: 5.1.1. Here, a refers to the value that needs to be normalised.
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min and max refers to the minimum and maximum value of the sensor channel,
respectively. Channel-normalisation is recommended for the OMoCap and IMU data
while training a neural network, as it accelerates the learning process. This feature can
be attributed to the constricted input space.

anorm =
a−min

max−min
(5.1.1)

When placing an IMU on an individual, a bias may be induced in the sensor
readings based on their physical features or movement. Furthermore, the bias may
contribute to person identification. To test this hypothesis, networks were trained with
both non-channel-normalised and channel-normalised IMU data. The results of the
experiments are presented in Sec: 5.4.1.

To compare the person identification accuracy of IMU data to OMoCap data, the
IMU and OMoCap data were both channel-normalised and null labels were removed.
The Null labels are the erroneous or irrelevant activities found in the OMoCap data
while performing annotation. Furthermore, the OMoCap data was down-sampled to
100Hz to match the frequency of IMU data.

As per [GRS+
20], step data of gait gives better person identification than stride data.

Step refers to heal strike of one foot followed by the heal strike of the other foot. Stride
refers to the consecutive heal strikes of the same foot [GRS+

20]. Step typically has a
frequency of 1-2Hz. Consequently, the authors of [GRS+

20] considered a window size
of 100 for IMU data sampled at 75Hz. Similarly, we have considered a sliding window
size of 100 and a stride size of 12. As a result, each window overlaps the previous
window by 88%.

5.1.2 OPPORTUNITY

The OPPORTUNITY dataset [opp10] is focused on achieving human activity recogni-
tion from wearables, objects and ambient sensors [RCR+

10]. This dataset was created
to help benchmark HAR algorithms. Consequently, numerous sensors were used for
data creation. In the category of body-worn sensors, seven IMUs, 12 3-axis accelera-
tion sensors, and four 3-axis localization information were used. Further, 12 3-axis
accelerations were used as object sensors and eight 3- axis acceleration sensors were
used as Ambient sensors. The recording took place within a laboratory environment.

The dataset is comprised of a total of six recordings from each of the four participants.
Of the six recordings, five consists of the natural execution of Activities of Daily Living
(ADL). The sixth recording is a scripted sequence of activities, referred to as the drill.
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The activities were labelled during the recording sessions. Each ADL run typically
lasted for 15-25 minutes. The subjects were given a break of 10 to 20 minutes after
each run, during which the data was copied, battery levels checked, and appropriate
system behaviour ensured. The drill runs were of 20 to 35 minutes duration [RCR+

10].
To facilitate context-based learning, the scenarios were annotated at different levels.

There are low-level labels for 13 actions to 23 objects. 17 mid-level gesture classes
and four high-level activity classes. For this thesis, we are interested in the mid-level
gesture classes and high-level activity classes. The high-level activities are stand, walk,
sit and lie. The mid-level gestures considered are open/close door1, open/close door2,
open/close fridge, open/close dishwasher, open/close drawer1, open/close drawer2,
open/close drawer3, clean table, drink cup, and toggle switch.

Figure 5.1.2: Motion Jacket [opp10]

The IMU sensors are placed on the subjects with the help of a motion jacket, as
shown in Fig: 5.1.2. This jacket has inner sleeves or sensor layers, where the sensors
can be placed. Consequently, it ensures unrestricted body movement. The jacket
consists of five Xsens inertial units, placed at the subject’s mid-back, lower and upper
arms. These sensors have a sampling frequency of 30Hz [opp10]. In addition, there
are 12 accelerometers placed on the body. These accelerometers have a frequency of
32Hz. Furthermore, two IMU sensors are placed on the toes of both feet, referred to as
Inertiacube3. These sensors include a gyroscope, magnetometer, and accelerometer.
These IMU sensors were sampled at a frequency of 40Hz. Consequently, a total of
113 sensor channels are considered for experimentation, based on the seven IMUs
and 12 accelerometers. Fig: 5.1.3 presents the on-body placement of the IMUs and
accelerometers, respectively.

A downside of the OPPORTUNITY dataset is that it does not provide the subject
information. Consequently, attempting soft biometrics-based attribute representation
is not feasible for this dataset.
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Figure 5.1.3: Sensor placement on the subject body [CSC+
13]

Pre-Processing

As mentioned in Sec: 5.1.2, OPPORTUNITY is a sensor abundant dataset. Consequently,
one can hypothesis a high accuracy rate of person identification. Furthermore, we
are interested in the impact of locomotion and gesture activities on identification.
Consequently, we have considered 113 sensor channels for training the network to
recognise identity while analysing the activities.

As part of pre-processing, the dataset was normalised, Eq: 5.1.1. A sliding window
size of 100 with a stride of 12 was considered. Though the sliding window size is
not per [GRS+

20], it was hypothesised that the sensor channel abundance would
compensate for any lapses caused by the window size. To confirm the hypothesis, the
dataset experimented with a window size of 24 and stride of 12.

5.1.3 Pamap2

PAMAP stands for Physical Activity Monitoring dataset [pam12]. The dataset consists
of 18 activities of daily living and postures. The recordings were obtained from nine
subjects wearing three IMUs and a heart rate monitor. The IMU sensors are Colibri
Wireless IMUs from Trivisio. The IMU sensors are placed on three body locations: the
chest, wrist of the dominant arm, and ankle of the dominant side. Each IMU sensor
consists of two 3-axis MEMS accelerometers (Scale: ±16g/± 6g, Resolution: 13bit),
a 3-axis MEMS gyroscope (Scale: ±1500◦/s, Resolution: 13bit), a 3-axis magneto-
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resistive magnetic sensor (Scale: ±400µT , Resolution: 12bit), and a temperature sensor
(◦C). All sensors were sampled at 100Hz. The heart rate information is obtained
from BM-CS5SR HR-monitor and sampled at 9Hz. Consequently, there are 40 sensor
channels for experimentation.

The dataset was not created in a laboratory environment to accommodate activities
such as running and ascending stairs. Consequently, a battery pack with a battery life
of 6 hours and a data collection companion unit - Viliv S5 UMPC (Intel Atom Z520

1.33GHz CPU and 1GB RAM) was made use of. These were stored in a custom bag
attached to the subject’s body. The labelling of the activities was performed online
using an application [RS12a].

Of the nine participants, eight are male, and one participant is female, of age
27.22± 3.31years and BMI of 25.11± 2.62kgm−2. One left-handed individual was
present amongst the subjects. Similar to the LARa dataset recording protocol, the
PAMAP2 has a subject information table facilitating attribute representation, as shown
in Table: 5.1.2.

Subject ID
Sex

[F/M]
Age

Weight

[kg]

Height

[cm]

Handedness

[L/R]

101 M 27 83 182 R

102 F 25 78 169 R

103 M 31 92 187 R

104 M 24 95 194 R

105 M 26 73 180 R

106 M 26 69 183 R

107 M 23 86 173 R

108 M 32 87 179 L

109 M 31 65 168 R

Table 5.1.2: PAMAP2 Subject Information [pam12]. F/M stands for Female/Male. L/R stands
for Left/Right.

The protocol includes basic activities such as walking, running, cycling, and Nordic
walking, postures such as lying, sitting and standing, and everyday activities including
ascending and descending stairs, ironing, vacuum cleaning, and rope jumping. The
optional activities that the subjects can choose to perform are watching TV, computer
work, driving a car, folding laundry, house cleaning, and playing soccer. It was noticed
that all the subjects did not mandatorily perform the 12 basic activities. For example,
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the recording of Subject 109 mainly consists of optional activities. Rope jumping was
the lone activity performed amongst the 12 basic activities.

Altogether, there are over ten hours of data, of which eight hours are labelled. The
performed activities summary lists the activities performed by each subject and the
duration of each activity in seconds.

A major issue found in the PAMAP recording is extensive data loss. Long data
recording duration and the complexity of the activities can be attributed to the data
loss. However, the authors of [RS12a] have specifically associated data loss with two
main reasons: wireless data loss and fragile set up. The Colibri IMUs are wireless
sensors, thus, accounting for wireless data loss. The activities such as jumping ropes
and running causes mechanical stress on the sensor connections. Consequently, the
wired connections may become loose or disconnected and lead to data loss.

Pre-processing

The major difference between PAMAP and datasets acquired in laboratory environ-
ments such as LARa and OPPORTUNITY lies in the continuity of data collection.
The PAMAP2 dataset did not stop recording during transient actions like waiting for
equipment setup or movement from one activity location to another. These activities
were classified as activityID 0 as per the recording protocol. Consequently, it is recom-
mended to remove data of this label. Furthermore, data associated with watching TV,
computer work, driving car, folding laundry, house cleaning, and playing soccer has
been removed. These activities are removed as most of the subjects do not perform
these activities. For example, looking into the performed activities summary, one
can see that except for subject 1, no other subject has performed the same activity.
As a result, 12 activities are in focus. Namely, rope jumping, lying, sitting, standing,
walking, running, cycling, Nordic walk, ascending stairs, descending stairs, vacuum
cleaning, and ironing.

A matter of concern is the amount of data on the subject 109. Of the considered
activities, subject 109 only performs the activity jumping rope. Thus, the person
identification results of subject 109 is interesting.

According to the recording protocol, the data dropping was indicated with NaN.
Consequently, to fill in the data, the data points are rewritten as 0. Furthermore, the
data were normalised based on the Eq: 5.1.1. As the recording frequency was 100, the
sliding window size was fixed at 100 with a stride of 12 as mentioned in Sec: 5.1.1.
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5.1.4 Order Picking Dataset

The Order Picking dataset is a HAR dataset for logistics activities created at two
different warehouses. The scenario of warehouse A requires the subject’s interaction
with a paper list for order-picking process guidance, whereas Warehouse B deals with
handheld devices for order-picking process guidance. Each scenario has three subjects
performing seven main activities. Namely, walking, searching, picking, scanning,
info, carrying and acknowledge. In addition, there are two background activities,
unknown-representing irrelevant actions- and sensor flip- marking the beginning and
end of an order line [GLR+

17].
Each subject has three sensors—one sensor on each wrist and one on the chest.

The number of sensors is restricted to ensure unrestricted body movement. Data is
sampled at a rate of 100Hz. Each IMU consist of an accelerometer, gyroscope and
magnetometer. Consequently, there are 27 sensor value readings. There are 10 minutes
of data for warehouse A and 23.30 minutes for warehouse B.

Though the dataset is not publicly available, it can be accessed on request. The
details of the dataset can be found in [MGF+

18] and [GLR+
17]. A disadvantage of the

Order Picking dataset is the lack of recording protocol. Consequently, understanding
the activities and processing methodology was difficult. Furthermore, data is created
with a fixed window size of 100 and a stride of 1. Thus, experiments with varying
window sizes cannot be conducted on this dataset.

Pre-processing

The pre-processing steps for the Order-Picking dataset are quite limited. The dataset
was normalised based on Eq: 5.1.1. Further, the null labels were removed. As men-
tioned earlier, the sliding window size is fixed at 100. In addition, due to the dataset’s
structure, the stride size is fixed at 1. The authors of [GLR+

17] have considered data
augmentation for using the Order Picking dataset. One of the data augmentation
techniques recommended was the re-sampling of sensor values within a window at
random. This process was not performed on the data used for this thesis.

5.1.5 Discussions

Table: 5.1.3 presents a comparison between the datasets discussed.
The LARa and OPPORTUNITY were created in a laboratory environment. Conse-

quently, after each recording, the sensor placement, connections and battery charge
were verified. As a result, these two datasets did not have continuous data acquisition.
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Dataset
No: of

Subjects

No: of

IMUs

No: of

sensor

channels

Additional

sensor

No: of

activities

IMU

placement
Location

LARa 8 5 30 OMoCap 7

Chest, both

wrist & legs
Lab

OPPORTUNITY 4 7 113 Accelerometers
L = 4

G = 17

Chest, both wrist,

arms & legs

Lab -

Kitchen

PAMAP2 9 3 40 Heart monitor 12

Chest, dominant

wrist & ankle
Outdoor

Order-Picking 6 3 27 - 7

Chest & both

wrist
Warehouses

Table 5.1.3: Comparison of the dataset. L stands for Locomotion, and G stands for Gestures
.

Furthermore, both dataset creators gave sufficient break periods to their subjects. The
duration of breaks was mentioned in the recording protocol. The authors of LARa and
OPPORTUNITY have not explicitly mentioned data loss issues. Furthermore, record-
ings with extreme noise content were removed in LARa. As a result, the pre-processing
steps did not require filling in the missing data.

The sequence of activities in the recordings of LARa and OPPORTUNITY repeats.
As a result, any recording taken for testing or validation would consist of all the
activities the dataset was trained on. However, Scenario 3 of LARa does not have Cart
activity, but the rest of the activities of Scenario 3 were similar to Scenario 2.

Unlike the LARa and OPPORTUNITY datasets, the PAMAP2 recording protocol does
not register any break period for the subjects performing the activities. Furthermore,
most of the activities do not repeat. The authors were focused on gathering the
maximum amount of realistic data. Consequently, the sensors recorded transitive
activities such as waiting periods and change of location. However, the transitive
data was not used in the experiments of this thesis as we are not aware of the type
of activities or sensor disturbances that may have taken place during the transitive
periods. In an ideal situation, the transitive data could be considered identity rich
data.

In the Order Picking dataset, it was found that most of the activities were not present
equally in all the recordings. Due to the absence of a recording protocol, further
information regarding the data acquisition process and structure was unavailable. In
addition, it was found that the relation between sensor channel to sensor placement
was not explicitly mentioned. Consequently, a simple CNN network was used to
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process the Order Picking data obtained from three IMUs. The CNN network has four
convolutional layers, no pooling layers and two fully connected MLP layers.

LARa has more IMUs but less number of sensor channels in comparison to PAMAP2.
The reduced number of sensor channels in LARa is attributed to the removal of the
magnetometer readings. Furthermore, the number of subjects in these datasets are
comparative. As a result, it would be interesting to compare the performance of
these datasets specifically. Furthermore, these two datasets provide detailed subject
information, which facilitates attribute representation. The application of the attribute
representations created for LARa onto PAMAP2 was considered but was found not
feasible. In Type 1 attribute representation, the majority of the subjects were found
to have the same attribute representation. Type 2 attribute representation had more
variation in centers; however, there were attributes with no variations. Thus, an
attribute representation with thresholds specific to the PAMAP2 needs to be created
to perform experiments. The issue of transferability of attribute representation onto
a different dataset can be associated with the number of subjects present and the
variation in their characteristics. To facilitate transferability, attribute thresholds need
to be generalised. Furthermore, experimentation on larger datasets is required. The
research can be part of the future work of this thesis.

PAMAP2 and Order-Picking make use of only three IMUs. However, the placement
of the IMUs varies in that the third IMU of PAMAP is placed on the leg, and Order-
picking places it on the non-dominant-hand wrist. Consequently, it is of interest to
compare these two datasets.

Although LARa and Order-picking are associated with logistic activities, the activity
labels vary drastically. The activity and attribute labels of LARa is oriented towards
the postures the subject would be in while performing the activity. In comparison,
the activity labels of Order-picking is focused on the activity that takes place during
order-picking. As a result, LARa labels can be considered a more generalised activity
label for the logistic environment.

Unfortunately, all the datasets do not provide detailed sensor information. Thus, a
comparison of the technology cannot be performed uniformly.

5.2 experiment summary

Exepriment 1 - LARa dataset

Firstly, the LARa dataset was trained on the CNN-IMU network. A major task of
network training is to find the right set of hyperparameters (HP). Hyperparameters
(HP) are a set of variables relating to the neural network model, which can be modified
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to achieve learning. HPs can be classified as mini-batch gradient descent and model
HPs. Examples of model HPs are the number of hidden units, weight initialisation
and activation function. Learning rate (Lr), mini-batch size (mBsize) and epochs
are examples of mini-batch gradient descent HPs. The model HPs are fixed for the
CNN-IMU network. Consequently, the experiments of this thesis are focused on
varying the gradient descent HP. We have considered the Lr = {10−4, 10−5, 10−6} and
mBsize = {50, 100, 200}. Though the epoch was experimented upon, it was maintained
at 10 epochs for most experiments.

Table: 5.1.1 shows the sub-categorisation of the LARa dataset based on the scenarios
and subjects. These sub-categorisations were equally applied on the IMU and OMoCap
datasets. It is expected that the sub-categorisation may help to analyse the effect of
the activities on identification; for example, category C was trained on Scenario 2 and
tested with Scenario 3. Categories B and D were trained on Scenario 2 and 3. However,
the trained network was tested with just Scenario 3. Thus, the experiment is expected
to give an insight into the generalisation of identity over activities.

As mentioned in Sec: 5.1.1, the pre-processing steps may include channel normalisa-
tion and Null label data removal. The various types of pre-processing steps performed
on the dataset can be seen in Fig: 5.2.1. Data types that are compared during an
experiment are colour coded in the figure. Sub-categories of channel normalised OMo-
Cap data which do not include Null label data will be represented as OMoCapC,NN

S ,
where the sub-category label replaces S. C stands for channel-normalised, and NN
means that no Null label data are present in the data. If the sub-script is W, then
the usage of the whole dataset is indicated. Similarly, sub-categorised, non-channel
normalised IMU data, which include Null label data, will be represented as IMUNC,N

S ,
where S can be replaced with the category label. Here, NC represents non-channel
normalised, and N indicate that the data set include data with Null label.

The following are the list of experiments on the sub-categorisation of the LARa
dataset:

• Experiment 1A: Comparison of IMUNC,N
S and IMUC,N

S .

• Experiment 1B: Comparison of IMUC,NN
S and OMoCapC,NN

S .

• Experiment 1C: Comparison of IMUC,NN
W and OMoCapC,NN

W

Experiment 1A is expected to give an insight on the contribution of the sensor
placement on subject identity, as discussed in Sec: 5.1.1. The data labelled as Null were
not removed for the IMU sensor data because the label indicate corrupted OMoCap
data. In LARa, to facilitate annotation, the OMoCap data was viewed as a figure. The
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annotators labeled the frames based on the OMoCap figure movement. Consequently,
if the annotators were not able to understand the activity being performed by the
subjects during annotation due to glitching, crumbling or absence of the OMoCap
figure, the frames were labelled Null. The OMoCap and IMU data are synchronised.
Thus, the labels and markings on OMoCap are applied on IMU data. While training
OMoCap data, the corrupted data have to be deleted. However, corrupted OMoCap
data does not imply that the IMU data is corrupted for the same time frames. Thus,
the data associated with the label was maintained for experiments on IMU data.

LARa

IMUOMoCap

Channel-Normalised Non-Channel-NormalisedChannel-Normalised

without NULL with NULLwith NULL without NULL

Sub-categories Whole data Sub-categories
Sub-categories Whole data

Sub-categories

Figure 5.2.1: Dataset sub-categories. The data that are compared are colour coded.

In Experiment 1C
IMUC,NN

W /OMoCapC,NN
W

, the network was trained on eight subjects’
data.

The results from Experiments 1B
IMUC,NN

S /OMoCapC,NN
S

and 1C
IMUC,NN

W /OMoCapC,NN
W

will be compared with the results of the deepCNNLSTM network. To elaborate:

• Experiment 1D: Comparison of OMoCapC,NN
S and IMUC,NN

S trained on deep-
CNNLSTM with CNN-IMU for the same HPs.

• Experiment 1E: Comparison of OMoCapC,NN
W and IMUC,NN

W trained on deepC-
NNLSTM and CNN-IMU of the same HPs.

These comparisons intend to evaluate the performance of the two networks on the
IMU and OMoCap datasets for similar window size, stride, epochs, mBsize and Lr.

Experiment 2 - Additional Datasets

The focus of Experiment 2 is to train the CNN-IMU network on OPPORTUNITY,
PAMAP2 and Order Picking dataset. The experiments are focused on training the
network with various combinations of Lr and mBsizes to analyse which combi-
nation provides the best classification accuracy. For initial experimentation, Lr =
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{10−4, 10−5, 10−6} and mBsizes = {50, 100, 200} will be considered for 10 epochs.
Given the scenario where the mentioned values do not provide good classification,
alternatives will be explored.

Experiment 2A is the training of CNN-IMU network with OPPORTUNITY dataset.
PAMAP2 dataset training on CNN-IMU is called Experiment 2B, and training on
CNN-IMU with Order-Picking dataset is called Experiment 2C.

Experiment 3 - Impact of Activities

To identify the impact of activities on the identification accuracy during testing, the
ratio of correctly classified windows were recorded with respect to the activity label
of the window. The ratio associated with the positive classifications are denoted as
IOA+

al, Eq: 5.2.1, while negative classifications are denoted as IOA−
al, Eq: 5.2.2. al

refers to the activity label. +/− denotes correct or wrong classifications, respectively.
n+
al refers to the number of windows belonging to al and was correctly classified. n−

al

refers to the number of windows belonging to al but misclassified. The hypothesis was
that if a particular activity inversely affected the training of the network, classification
accuracy during testing will be poor for that particular activity. This experiment was
conducted on the datasets based on their respective activity labels.

IOA+
al =

n+
al

n+
al +n

−
al

(5.2.1)

IOA−
al =

n−
al

n+
al +n

−
al

(5.2.2)

Experiment 3A is associated with LARa activities. OPPORTUNITY activities impact
will be presented in Experiment 3B. Experiment 3C and 3D will present the impact of
activities on the PAMAP2 and Order Picking dataset, respectively.

Experiment 4 - Attribute Representation

The attribute representations were designed for the LARa dataset in Sec: 4.2. The two
types of attribute representation will be tested on the OMoCap and IMU data of LARa
in Experiment 4A. The focus of the experiment is to identify which representation
would perform better. There are two methods for finding centers, namely the Nearest
Neighbour and BCEloss method. Experiments will be conducted on both methods
of finding centers. Next, an experiment by leaving out two subjects while training
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would be performed (Experiment4ALeave−out2subjects). Subject 6 and 7 were left
out during the training of the network for this experiment. The testing phase of
the network was with the test data of subject 6 and 7. Furthermore, leave one
out cross-validation (LOOCV) was performed (Experiment4ALOOCV ). The average
performance over the eight subjects will be considered the final result of how well the
attribute representation types perform. In addition, the average performance of each
attribute can be analysed.

The impact of activities on the attribute representation is to be analysed in Ex-
periment 4B. It would be interesting to analyse whether the impact of activities on
attributes will be similar to that found with identity. The experimental results were
collected at random to get an overall effect of activities on the attribute representation.

5.3 evaluation metrics

The most intuitive method to evaluate the network’s performance is calculating the
accuracy Acc, Eq: 5.3.1. Here, nyc refers to the number of correct predictions and
ny represents the total number of predictions. However, Acc fails to account for the
unbalanced training dataset. Consequently, researchers prefer to quantify and visualise
the classifier’s performance using the Confusion Matrix, Fig: 5.3.1. As mentioned in
the figure, TP stands for true positive, where the prediction yi and the label y∗i are
equal and shows a positive value. When yi and y∗i are equal and negative valued,
it is called true negative (TN). FP stands for false positive, where y∗i and yi are not
equal, and the value of y∗i is negative. The opposite scenario is represented as a false
negative (FN).

TP FP

FN TN
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Figure 5.3.1: Confusion Matrix. TP stands for True Positive. FP for False Positive. FN implies
False Negative. TN stands for True Negative.
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Acc =
nyc

ny

=
TP+ TN

TP+ TN+ FP+ FN

(5.3.1)

Evaluation metrics such as Precision P, Recall R, and F1-score F1 can be derived from
the Confusion matrix. Precision P, Eq: 5.3.2, is the ratio of the number of classifications
that belong to the class and the number of classifications predicted to be of the class.
Recall R, Eq: 5.3.3, is the ratio of the number of correct classifications of the class
and the number of classifications that belong to the class. Precision and recall are
calculated for each class. Evaluating these metrics help to analyse the bias of the
model towards a particular classification. Calculating the F1, Eq: 5.3.4, is ideal when a
balance between precision and recall is expected. F1 is the harmonic mean of precision
and recall. Furthermore, the F1 accounts for the unbalanced dataset. A variation of F1,
called the weighted F1 (wF1), Eq: 5.3.5, is used as an evaluation metric in this thesis.
The difference between F1 and wF1 is the class average calculation in wF1, Eq: 5.3.5.
Here, ni refers to the number of samples of each class, and N is the total number of
samples [MGF+

18].

P =
TP

TP+ FP
(5.3.2)

R =
TP

TP+ FN
(5.3.3)

F1 =
2

1
P + 1

R

(5.3.4)

wF1 =
∑
i

2
ni

N

Pi × Ri
Pi + Ri

(5.3.5)

5.4 results

In this section, we analyse the results of the experiments in Sec: 5.2. Further, we shall
attempt to derive plausible reasons for the experimental outcome. The experimental
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results are categorised into three sections: person identification, the impact of activities,
and attribute representation. Under person identification, we are interested in the
network’s performance and identification accuracy. Results from the four datasets and
the sub-categories will be presented.

The next aspect is the impact of activities on person identification. The experiments
were performed on the datasets based on their respective activity label set. It is of
interest to analyse whether the results will be following the findings presented in
[EBL18]. Further, the attribute representation results for the LARa dataset will be
presented.

5.4.1 Person Identification

LARa

Results of Experiment 1A
IMUNC,N

S /IMUC,N
S

:

The first experimental result is the comparison between IMUNC,N
S and IMUC,N

S on
the CNN-IMU network. The comparison was performed on the four sub-categories
(see Table: 5.1.1). The sub-categories A,B and C performed the best at 10 epochs,
Lr = 0.0001 and mBsize = 50. An average Acc of 85.41% and wF1 of 85.63% was
achieved. The following observations were made on sub-categories A,B and C:

• IMU−,N
A had the least number of training windows - 34318 windows.

• Network trained on IMUC,N
A performed slightly better than the network trained

on IMUNC,N
A by about 2%.

• In sub-category B, the network trained on IMUNC,N
B performed better than

network trained on IMUC,N
B by about 1.2%.

• Networks trained on sub-category C had the worst performance compared to
sub-categories A and B.

• The network trained on IMUC,N
C was the sole experiment that gave an average

Acc greater than 80% at 82.75% in the case of sub-category C.

Networks trained on sub-category C showed poor performance in comparison to
sub-categories A and B. The result was unexpected as sub-category C has more
training windows than sub-categories A and B. On analysing the recordings used for
training and testing, we recognised that sub-category C was trained on Scenario 2,
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while the validation and test were performed on recordings of Scenario 3. In the case
of sub-category A, training, validation and testing were conducted on recordings of
Scenario 2. Similarly, the train-validation-test of sub-category B were on Scenario 3.
Consequently, the poor performance of sub-category C was attributed to the recording
Scenarios of the train-validation-test set. The experiment indicates that the model
cannot generalise identity over activities that were not present in the training set.

Sub-category D showed good performance on the mini-batch sizes and learning
rates. The performance could be attributed to the larger number of training windows.
The network was trained on 52752 training windows. The epoch was fixed at 10.
IMUC,N

D performed slightly better than IMUNC,N
D , as shown in Table: 5.4.1. The Acc

and wF1 are averaged over five train-validation-test cycles. From the table, it can be
identified that the network’s performance is sensitive to the learning rates. While
an average Acc of 94.11% can be achieved with mBsize = 50 and Lr = 0.0001, the
performance degrades to 82.27% of average Acc for Lr = 0.00001.

Norm mBsize Lr Avg Acc (x5) Avg wF1(x5)

No 50 10−4 93.09 ± 0.51 93.12 ± 0.51

No 100 10−4 90.04 ± 0.41 90.03 ± 0.41

No 200 10−4
85.60 ± 0.48 85.55 ± 0.48

Yes 50 10−4 94.11 ± 0.17 94.09 ± 0.17

Yes 100 10−4 92.68 ± 0.15 92.64 ± 0.15

Yes 200 10−4
89.11 ± 0.43 89.09 ± 0.43

Yes 50 10−5
82.27 ± 0.35 82.39 ± 0.34

Table 5.4.1: Comparison of channel-normalised and non-channel-normalised IMU data of
sub-category 4. Acc and wF1 are presented in percentage. (x5) indicate that the
presented values are averaged over five iterations of the experiment.

Based on the experiments, we can conclude that channel-normalised data performs
better than non-channel-normalised data. Consequently, the rest of the experiments
will be performed on channel-normalised data.

Results of Experiment 1B
OMoCapC,NN

S /IMUC,NN
S

:

The performance of the networks trained on subcategories in Experiment 1B showed
similarity to Experiment 1A. To elaborate, the networks trained on sub-categories A,B
and C, performed best at epoch 10, Lr = 0.0001 and mBsize = 50. The average Acc
was at 83.5%. In sub-categories A and B, IMU data performed better than OMoCap.
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However, in sub-category C, OMoCap performed better than IMU data, with about
a 5% difference in accuracy. The performance variation could be attributed to the
training conducted on Scenario 2 while testing performed on Scenario 3. The drastic
difference between OMoCap and IMU performance could be associated with the
greater number of sensor channels present in OMoCap than IMU.

Experimental results of sub-category D were interesting, as the IMU data was found
to perform better than OMoCap with a difference of about 5% for the same HPs.
Furthermore, the results showed that OMoCap data capped at 85.62% average Acc,
while IMU data reached 93.96% of average Acc for the same HPs. Table: 5.4.2 presents
the results of sub-category D, averaged over five train-validation-test cycles. The table
is composed of results that gave an average Acc greater than 80%.

Data Lr mBsize Avg Acc (x5) Avg wF1 (x5)

MoCap 10−4
50 85.62 ± 0.23 83.52 ± 0.39

MoCap 10−4
100 85.49 ± 0.21 83.37 ± 0.31

MoCap 10−5
50 83.90 ± 0.76 81.52 ± 1.35

MoCap 10−5
100 82.13 ± 0.93 80.44 ± 0.87

IMU 10−4 50 93.96 ± 0.03 93.84 ± 0.03

IMU 10−4 100 92.43 ± 0.14 92.38 ± 0.15

IMU 10−4
200 88.41 ± 0.67 88.36 ± 0.66

IMU 10−5
50 81.78 ± 0.72 81.93 ± 0.72

Table 5.4.2: Comparison between CNN-IMU network trained on sub-category D of OMoCap
and IMU data. The Acc and wF1 are presented as percentages. (x5) indicate that
the presented values are averaged over five iterations of the experiment.

From Table: 5.4.2, the drop in IMU performance at Lr = 10−5 can be observed. Fur-
thermore, variation of mBsize does not seem to cause large variations in performance.
However, it is interesting to note that OMoCap performance is comparatively stable
for different mBsizes and Lr. The experiments of mBsize = 200 were not conducted
for OMoCap due to memory issues during training.

From the experiment, it can be concluded that identity classification on IMU data
performs better for small datasets than OMoCap.

Results of Experiment 1C
OMoCapC,NN

W /IMUC,NN
W

:

The following results compare the performance of the CNN-IMU network trained on
OMoCap and IMU data of eight subjects without sub-categorisation. Compared to
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the data considered for the sub-categories experiments, this experiment is conducted
on a larger but unbalanced dataset. It was found that for a epoch 10, Lr = 10−4 and
wBsize = 100, the CNN-IMU network trained OMoCap was able to achieve an Acc of
97% and wF1 of 96.89%. However, the network trained on IMU data showed relatively
poor performance. The network attained an Acc of 92.07% and wF1 of 91.99%. The
difference in performance between OMoCap and IMU can be attributed to the larger
number of training windows available for OMoCap. Furthermore, OMoCap data has
comparatively more sensor channels that the network can learn from.

From the results from CNN-IMU network, it can be concluded that the network
performs competitively for epoch 10, Lr = 10−4 and mBsize = 50. In addition,
identification accuracy on OMoCap exceeds IMU data with the increase in data size.

Results of Experiment 1D
OMoCapC,NN

S /IMUC,NN
S

:

The experiments attempt to compare the performance of deepCNNLSTM to CNN-
IMU. Consequently, the network was trained on the sub-categories and whole data
of OMoCap and IMU. The hyper-parameters were, epoch 10, Lr = {10−4, 10−5, 10−6}

and mBsize = {50, 100, 200}.
The performance of the deepCNNLSTM network was found to be poor in compari-

son to that of the CNN-IMU network. Sub-category A did not yield Acc greater than
80% for any hyper-parameter combination of the network trained on OMoCap data.
However, for IMU data, the deepCNNLSTM network performed exceptionally for
epoch 10, Lr = 0.0001 and mBsizes = {50, 100}. Average Acc of 84.09% and 81.13%
were achieved respectively for mBsize = {50, 100} for five train-validation-test cycles.

The epoch 10, mBsize = 50 and Lr = 0.0001 yielded average Acc of 80.33% and
81.55% for Sub-categories B and C of OMoCap data, respectively. The accuracy
presented is an average over five iterations. However, the network trained on IMU data
did not result in any Acc greater than 80% for sub-categories B and C. No definite
conclusions could be derived on the results.

Networks trained on sub-category D performed better than the other three sub-
categories for the OMoCap and IMU data. Table: 5.4.3 shows the network performance,
averaged over five train-test cycles. OMoCap and IMU data does not show much
variation in performance on the deepCNNLSTM network. However, similar to the
CNN-IMU, the IMU data performs slightly better than OMoCap data for the same
HPs in category 4.



72 experiments

Data Lr mBsize Avg Acc (x5) Avg wF1 (x5)

MoCap 10−4
50 88.76 ± 3.75 87.57 ± 4.66

MoCap 10−4
100 87.49 ± 2.26 85.90 ± 2.93

MoCap 10−5
50 87.49 ± 2.87 86.33 ± 3.76

MoCap 10−5
100 87.22 ± 4.03 86.03 ± 4.92

IMU 10−4
50 89.15 ± 0.77 89.20 ± 0.77

IMU 10−4
100 86.19 ± 0.52 86.26 ± 0.50

IMU 10−4
200 81.69 ± 0.79 82.02 ± 0.77

Table 5.4.3: Comparison of OMoCap and IMU sub-category D data performance on deepC-
NNLSTM network. The Acc and wF1 are presented as percentages. (x5) indicate
that the values presented are average of five iterations of the experiment.

Results of Experiment 1E
OMoCapC,NN

W /IMUC,NN
W

:

The deepCNNLSTM was trained on the OMoCap and IMU data without sub-categorisation
for epochs 10, Lr = 0.0001 and mBsize = 100. OMoCap data obtained an average
Acc of 93.88%, while IMU achieved 87.40%. Consequently, it can be concluded that
the overall performance of the CNN-IMU network on the datasets and sub-categories
is better than the performance of deepCNNLSTM. The consecutive experiments are
conducted on the CNN-IMU network.

Results of Experiment 2AOPPORTUNITY :

It was hypothesised in Sec: 5.1.2, that due to the sensor-rich nature of the OPPOR-
TUNITY dataset, there is a possibility of achieving high Acc and wF1 rates. The
results confirmed the hypothesis. The CNN-IMU was trained with epochs = {5, 10},
mBsize = {25, 100}, and Lr = {10−4, 10−5, 10−6}. An Acc andwF1 of 99% was achieved
for mBsizes = {25, 100}, of Lr = 0.0001 with epochs 5 and 10. Similar to LARa IMU
data, it was noticed that reducing the Lr to 10−6 deteriorated the performance of the
CNN-IMU network. However, the Acc remained greater than 90%. Experiments were
conducted with a sliding window size w = {24, 100} and stride 12. It was found that
the window size did not bring forth any difference. 30 experiments were conducted in
all. An average Acc of 96.03% and average wF1 of 95.84% was achieved.
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Results of Experiment 2BPAMAP2:

Initially, each recording of the individuals was split into the train-validation-test
set without considering their activities. The results on the dataset were abysmal
irrespective of the Lr, mBsize, window size, stride, and removal of subject 9. The
maximum Acc was 57.2% for Lr = 0.0001, mBsize = 50, epoch 50 and without subject
109.

A new set was created to investigate whether the poor identification performance
was related to the distribution of activities throughout the train-validation-test set.
The new set first sorted the frames with respect to the activity labels and then split
the frames into train-validation-test set at 64% − 18% − 18%. It was found that the
new set could perform better and provide better accuracy, as shown in Table: 5.4.4.
The experiments are for epoch 10. Subject 109 was included in the experiment. The
average over five experiments are presented.

Lr mBsize Avg Acc (x5) Avg wF1 (x5)

10−3 50 91.01 ± 1.11 90.98 ± 1.14

10−3
100 88.03 ± 1.46 87.92 ± 1.49

10−3
200 84.47 ± 1.29 84.51 ± 1.32

10−4 50 90.35 ± 0.61 90.36 ± 0.61

10−4
100 85.03 ± 0.43 84.98 ± 0.43

Table 5.4.4: Person Identification results of CNN-IMU network on PAMAP2. The Acc and wF1
are presented as percentages. (x5) indicate that the values are averaged over five
iterations of the experiment.

The data was found to be extremely sensitive to the Lr. When experimented with
Lr = 0.00001, the Acc dropped to 51.74%, for mBsize = 50 and epoch 10.

After comparing the PAMAP2 results with the IMU results of LARa (Experiment
1C

OMoCapC,NN
W /IMUC,NN

W
), it can be said that the performance of LARa is better than

PAMAP2 at Lr = 0.0001, mBsize = 100 and epoch 10. However, considering that the
PAMAP2 has only three IMU sensors attached to the body, in contrast to the five
IMU sensors in LARa, PAMAP2 shows favourable results. In addition, the experiment
re-enforces the fact that the model cannot generalise over activities it was not trained
on.
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Results of Experiment 2COrderPicking:

Similar to PAMAP2, the dataset was initially split into a train-validation-test set
without considering the activities. As the results were poor, the train-validation-test
split was performed by considering the activities. However, unlike PAMAP2, no
improvement was observed irrespective of the Lr, mBsize and epoch. The maximum
Acc was 52.23% at Lr = 0.0001, mBsize = 200 and epoch 5.

No conclusive statements can be made on the poor results obtained. However, it
can be hypothesised that the small dataset and IMU placement may be the reasons for
the poor performance.

To ensure that the CNN architecture did not cause the performance degradation,
PAMAP2 was trained on CNN. As PAMAP2 and Order Picking have a similar number
of IMUs and data structure, it was expected that if CNN architecture performed poorly
compared to CNN-IMU for the same HPs, the architecture could be indicted. However,
PAMAP2 trained on CNN performed similarly to CNN-IMU. Thus, the architecture
can be ruled out from being the cause of the poor performance.

5.4.2 Impact of Activities

Results of Experiment 3ALARa:

The LARa dataset has seven main activities, excluding the Null label. The frames
labelled as Null are removed from the dataset due to the erroneous OMoCap data.
Ten experiments of the CNN-IMU network were selected at random. The networks
were trained on four sub-categories and whole OMoCap and IMU data. By selecting
the experiments at random, we expect to analyse the overall effect of activities on the
identity. The average IOAal over ten experimental results is presented in Table: 5.4.5.

It was interesting to note that the activities that contain gait cycles performed better
than activities with upper body movement. Pushing cart activity achieved an average
Acc of 93.37% of 10 experiments. Handling downwards has the lowest classification
Acc at 66.74%. Handling center and handling up have an average Acc of 83.08% and
82.18% respectively.

Results of Experiment 3BOPPORTUNITY :

OPPORTUNITY has two sets of activity labels: locomotion and gesture. Ten classi-
fication experiments were chosen at random where the IOAal was calculated. The
averaged IOAals for locomotion and gesture activities are presented in Table: 5.4.6
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Activity IOA+
al IOA−

al

Walking 87.67 ± 12.23 12.31 ± 12.23

Cart 93.37 ± 6.37 6.62 ± 6.37

Handling cen 83.08 ± 8.02 16.90 ± 8.02

Handling down 66.74 ± 22.58 33.24 ± 22.58

Handling up 82.187 ± 13.27 17.803 ± 13.27

Standing 89.21 ± 8.90 10.77 ± 8.90

Synch 85.02 ± 9.48 14.97 ± 9.48

Table 5.4.5: Impact of activities on LARa dataset. The values are presented as a percentage.

and 5.4.7, respectively. Table: 5.4.6 shows the activity labels related to locomotion.
Interestingly, the windows with minimal body movements obtain a higher rate of
correct identification, similar to the experimental results of [EBL18]. The windows
with stand locomotion had the least correct window classification.

Activities None Stand Walk Lie Sit

IOA+
al 98.64 ± 1.68 92.42 ± 3.93 97.69 ± 2.83 98.04 ± 5.72 98.82 ± 2.53

IOA−
al 1.36 ± 1.68 7.58 ± 3.93 2.31 ± 2.83 1.96 ± 5.72 1.18 ± 2.53

Table 5.4.6: Impact of locomotion activities on OPPORTUNITY dataset. Values are presented
as percentages.

The impact of gestures on classification is presented in Table: 5.4.7. The presented
values are an average of ten experiments. Almost all the gestures show good accuracy.
CloseDishWasher and CloseDoor1 are the two gestures that have performed relatively
poor. No conclusive reason can be hypothesised for their poor performances without
further experimentation. During this thesis, the videos of the activities were not
analysed. Hence, examining the video recordings of the data might help to identify
the reason for the relatively weak performance of CloseDishWasher and CloseDoor1

activities.
The data labelled as Null were not removed from the OPPORTUNITY dataset for

both gesture and locomotion sets. In the OPPORTUNITY dataset, the Null label refers
to activities that do not belong to the labels explicitly mentioned. Consequently, it
is interesting to note that the Null label shows high classification accuracy in both
scenarios.
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Activities OD1 OD2 ODW ODw1 ODw2 ODw3

IOA+
al 96.7 ± 2.73 99.74 ± 0.49 98.74 ± 1.57 91.84 ± 8.70 98.81 ± 1.26 97.28 ± 3.35

IOA−
al 3.29 ± 2.73 0.26 ± 0.49 1.26 ± 1.57 8.16 ± 8.70 1.18 ± 1.26 2.71 ± 3.35

Activities CDW CD1 CD2 CDw1 CDw2 CDw3

IOA+
al 78.12 ± 30.05 89.37 ± 31.41 98.96 ± 1.17 95.92 ± 4.32 96.96 ± 3.23 92.24 ± 9.09

IOA−
al 21.88 ± 30.05 10.63 ± 31.41 1.04 ± 1.17 4.08 ± 4.32 3.04 ± 3.23 7.76 ± 9.09

Activities CF None CT OF Toggle DC

IOA+
al 99.25 ± 0.87 98.75 ± 3.48 95.19 ± 6.24 97.86 ± 2.52 93.89 ± 6.45 91.97 ± 7.45

IOA−
al 0.75 ± 0.87 6.09 ± 3.48 4.81 ± 6.24 2.14 ± 2.52 6.09 ± 6.45 8.31 ± 7.35

Table 5.4.7: Impact of gesture activities on OPPORTUNITY dataset. Values are represented
as percentages. ODx refers to the OpenDoor gesture, and x stands for the door
number. CDx represents CloseDoor. ODW and CDW stand for OpenDishWasher
and CloseDishWasher, respectively. ODwx and CDwx, respectively, represent
OpenDrawer and CloseDrawer. OF and CF denote OpenFridge and CloseFridge
gestures. Gesture CleanTable is abbreviated as CT. DrinkCup gesture is denoted as
DC.

Results of Experiment 3CPAMAP2:

The PAMAP2 dataset has 18 activity types available in its recordings. Six of the
activities in this dataset are optional. Seven experiments with good identification
accuracies were selected. Table: 5.4.8 presents the impact of the 12 main activities on
the identity classification, averaged over seven experimental results.

Of the four basic activities - walking, running, cycling and Nordic walk - cycling
activity shows a poor classification rate. Nordic walk and walking, which are essen-
tially gait activities, perform better than all other activity classes. Lying, sitting and
standing are classified as postures. In general, the classification rate of postures is
low. However, standing posture has a relatively higher positive classification rate. This
finding negates the conclusion of [EBL18], that activities with little body movement
have high identification accuracy.

Identical to the findings in [EBL18], the classification accuracy of vacuuming activity
was the worst performance. It was mentioned that activities with tools that make
noise or cause vibrations could impact the sensors. Thus, leading to poor classification
accuracy. The difference between the type of tools can be seen in vacuuming and
ironing activities. Ironing has better classification accuracy.
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Activity IOA+
al IOA−

al

Rope Jumping 83.74 ± 6.81 16.26 ± 6.81

Lying 74.72 ± 26.85 25.27 ± 26.85

Sitting 75.58 ± 13.97 24.42 ± 13.97

Standing 78.73 ± 14.46 21.27 ± 14.46

Walking 85.65 ± 19.15 14.35 ± 19.16

Running 77.41 ± 12.76 22.58 ± 12.76

Cycling 68.64 ± 22.18 31.36 ± 22.18

Nordic Walk 87.23 ± 13.98 12.77 ± 13.98

Ascending Stairs 74.09 ± 22.46 25.9 ± 22.46

Descending Stairs 66.64 ± 24.77 33.36 ± 24.77

Vaccuming 49.39 ± 19.84 50.59 ± 19.84

Ironing 74.91 ± 22.71 25.09 ± 22.71

Table 5.4.8: Impact of activities on PAMAP2 dataset. Values are presented as a percentage.

Interestingly, rope jumping has shown good performance. It was expected that the
large body movements produced while jumping could induce noise and misplacement
in the sensors. Thus, deteriorating the identification accuracy. However, Rope jumping
has shown accuracy rates equivalent to the gait activities. One anomaly of the
entire dataset is descending stairs activities. Though ascending stairs has an average
performance, descending stairs has a similar performance to that of cycling. It is
unclear why two activities that show cyclic body movement showed accuracy rates
worse than that of posture activities.

Results of Experiment 3DOrderPicking:

Though, in general, the performance of identity classification is unsatisfactory, the
impact of activities were recorded for five experiments. As the creators of the dataset
recommended, data labelled as Null were not considered in these experiments. The
average accuracy of identity classification concerning the activities is presented in
Table: 5.4.9.

Activities classified as Unknown has shown the highest performance, followed by
Flip. Though the performance of a walking activity is above average, it is exceeded
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Activity IOA+
al IOA−

al

Unknown 97.51 ± 5.57 2.49 ± 5.57

Flip 69.52 ± 3.79 30.48 ± 3.79

Walk 51.51 ± 0.98 48.39 ± 0.98

Search 14.81 ± 6.69 85.19 ± 6.69

Pick 47.38 ± 1.95 52.63 ± 1.95

Scan 67.2 ± 2.71 32.79 ± 2.71

Info 68.08 ± 0.82 31.92 ± 0.82

Carry 42.8 ± 5.09 57.19 ± 5.09

Ack 8.84 ± 2.53 91.15 ± 2.53

Table 5.4.9: Impact of activities of Order Picking dataset. Values are presented as percentages.
Ack stands for Acknowledge.

by scanning and information checking activities. Acknowledge activity has the worst
performance.

As mentioned, the person identification on the Order Picking dataset was exorbi-
tantly poor with respect to the performance of the other three datasets. As a result, it
may not be advisable to make conclusions on the impact of activities with the results
given in Table: 5.4.9.

It is to be noted that the Null label and Unknown label are not the same. Null label
in Order picking refers to erroneous data, while Unknown label refers to activities that
are not relevant for logistic activities. The activities under the Unknown label were
not explored further due to the absence of a recording protocol.

5.4.3 Attribute Representation

Results of Experiment 4A:

The attribute representations designed in Sec: 4.2 is evaluated in this section. The
centers were found with the Nearest Neighbour method and BCEloss method. The
experiments were conducted on the whole data of eight subjects of the OMoCap and
IMU. The HPs used for training the CNN-IMU network were: epoch 10, Lr = 0.0001
and mBsize = 100.
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Results of Attribute Representation Type 1:

The result of the Type 1 attribute representation on the OMoCap and IMU data, with
the Nearest Neighbour method for finding centers, is presented in Table: 5.4.10. It is
interesting to note that though the individual attribute classification is accurate, the
attribute representation classification to the center has poor performance.

Data Acc wF1
Gender Age Weight Height

M/F 6 40/ > 40 6 70/ > 70 6 170/ > 170

MoCap 60.03 53.11 99.30 98.40 98.13 98.97

IMU 47.53 33.14 92.70 92.33 93.19 92.52

Table 5.4.10: Type 1 attribute representation results with the Nearest Neighbour method.
Values are presented as percentages. M/F represents Male/Female.

Each individual attribute label y∗i is presented in a binary form {0, 1}. However,
the classification prediction yi is a value between 0 and 1. The threshold is set at
0.5. Consequently, the yi has to be rounded. However, while considering the Nearest
Neighbour method, we do not round the individual attributes. The predictions yi are
considered to be points in a multi-dimensional space. Thus, making the classification
to the right center a difficult process.

To overcome this limitation, the Nearest Neighbour method can be replaced with
BCEloss. The results are presented in Table: 5.4.11. As expected, a huge variation is
seen in Acc and wF1 of BCEloss method in comparison to the Nearest Neighbour
method. The accuracy in finding the centers is now comparable to the attribute
accuracy.

Data Acc wF1
Gender Age Weight Height

M/F 6 40/ > 40 6 70/ > 70 6 170/ > 170

MoCap 96.69 96.68 99.57 97.86 98.31 99.05

IMU 89.53 89.37 93.58 93.20 94.07 93.04

Table 5.4.11: Type 1 attribute representation results with BCEloss method. Values are presented
as percentages. M/F represents Male/Female.

In both methods, it can be seen that OMoCap consistently performs better than
IMU data. The difference in performance can be attributed to the number of sensor
channels. From Tables: 5.4.10 and 5.4.11, the performance of gender attribute is seen
to be consistently high. The height attribute shows the next best performance.
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Results of Attribute Representation Type 2:

The major difference between the attribute representations, Type 1 and Type 2, lies
in the dimensionality of the attribute representations. The impact of dimensionality
can be seen while using the Nearest Neighbour method. Table: 5.4.12 shows the Type
2 attribute representation results with the Nearest Neighbour method for OMoCap
and IMU data. Compared to the results found in Type 1 attribute representation
with Nearest Neighbour, it can be seen that the accuracy in finding the centers has
increased. This performance can be credited to the increased dimensionality of the
Type 2 attribute representation.

Data Acc wF1
Gender Age Weight Height

M/F 6 30 30-40 > 40 40-60 60-80 > 80 6 170 170-180 >180

MoCap 95.81 95.83 98.63 98.68 99.97 98.46 99.24 97.61 97.68 98.48 97.94 99.11

IMU 89.05 88.95 93.40 93.52 98.10 93.31 93.77 94.65 93.90 93.27 92.10 96.17

Table 5.4.12: Type 2 attribute representation results with the Nearest Neighbour method.
Values are presented as percentages. M/F represents Male/Female

OMoCap data has performed better than IMU data. No specific trend could be
identified from the attribute results presented.

The results of the BCEloss method is presented in Table: 5.4.13. The Acc and wF1
of BCEloss and Nearest Neighbour methods were found to be comparable. The
performance of the individual attributes are similar to the performance found in
Table: 5.4.12.

Data Acc wF1
Gender Age Weight Height

M/F 6 30 30-40 > 40 40-60 60-80 > 80 6 170 170-180 >180

MoCap 95.32 95.29 98.28 98.54 1 98.22 99.28 96.65 96.86 98.57 97.97 98.89

IMU 88.76 88.58 93.34 93.35 98.10 93.20 93.62 94.77 93.81 93.08 92.05 96.38

Table 5.4.13: Type 2 attribute representation results with BCEloss method. Values are presented
as percentages. M/F represents Male/Female.

On close examination of the attributes, it was noticed that attributes such as
Age(30−40) and Height(>180), which showcased high performance, do not contain
many variations in training data. To elaborate, in the case of Age(30−40), of the eight
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individuals, only one individual was of the range 30− 40. As a result, the network
does not have much variation to learn from. To understand any underlying trend, it is
recommended to reiterate the experiments with a larger dataset, with more variations.

Attribute Representation Experiment Leaving Out Two Subjects:

It can be noticed from Table: 4.2.2 and 4.2.3 representations that few subjects share
the same attribute representation. Consequently, it is interesting to know whether the
network can correctly place the attributes on individuals it has not seen before. As
the focus is on individual attributes and not the center, we experimented using the
Nearest Neighbour method.

The recordings of subjects 6 and 7 were removed from the training set and were
only used for testing. The data of this format was created using the OMoCap and
IMU data. The CNN-IMU network was trained with HPs: epoch 10, Lr = 0.0001
and mBsize = 100. The result for Type 1 and Type 2 attribute representations are
presented in Table:5.4.14 and 5.4.15, respectively.

Gender Age Weight Height
Data Acc wF1

M/F 6 40/ > 40 6 70/ > 70 6 170/ > 170

MoCap 0.0 0.0 95.28 15.14 48.5 95.44

IMU 00.15 00.31 59.07 53.18 60.29 52.91

Table 5.4.14: Type 1 attribute representation leaving out two subjects. Experimental result of
testing on subject 6 and 7. Values are presented as percentage. M/F represents
Male/Female.

The attribute representations of both subjects 6 and 7 are present in the training set
of Type 1 attribute representation. From Table: 5.4.14, it can be seen that OMoCap
performs better than IMU data. Further, the attributes, Gender and Height, perform
the best in the case of OMoCap. In contrast, Gender and Weight perform best in the
case of IMU data.

In Type 2 attribute representation, only subject 6’s representation are present in the
training set. Similar to the results of Type 1, OMoCap data performed better than
the IMU, Table: 5.4.15. The performance difference can be linked to the number of
sensor channels. Further, Height and Gender attributes perform the best in the case of
OMoCap data. Meanwhile, Weight and Gender attributes perform best in the case of
IMU data.
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Gender Age Weight Height
Data Acc wF1

M/F 6 30 30-40 > 40 40-60 60-80 > 80 6 170 170-180 >180

MoCap 4.66 8.49 86.94 22.69 100 24.26 57.70 3.09 48.53 95.17 95.28 100

IMU 9.60 16.63 56.68 58.12 70.38 54.88 55.46 86.73 60.45 52.33 51.48 64.33

Table 5.4.15: Type 2 attribute representation leaving out two subjects. Experimental result of
testing on subject 6 and 7. Values are presented as percentage. M/F represents
Male/Female.

Attribute Representation Experiment Leave One Out Cross-Validation Method:

To achieve a comprehensive understanding of the attributes performance, Leave One
Out Cross Validation (LOOCV) was performed. The CNN-IMU network was trained
eight times by leaving out one subject and testing the network with the left-out subject.
The average of eight iterations will be presented here. The HPs used were: epoch 10,
Lr = 0.0001 and mBsize = 100. The experiments were conducted using the Nearest
Neighbour and BCEloss method.

Data MoCap IMU

Acc 2.57 ± 5.47 2.31 ± 4.18Attributes

wF1 4.58 ± 9.42 4.24 ± 7.49

Gender M/F 77.51 ± 34.47 54.48 ± 21.63

Age 6 40/ > 40 34.02 ± 41.81 32.51 ± 25.61

Weight 6 70/ > 70 68.53 ± 39.36 50.67 ± 18.02

Height 6 170/ > 170 71.25 ± 33.97 55.85 ± 33.49

Table 5.4.16: LOOCV on Type 1 attribute representation using the Nearest Neighbour method.
The values presented are average of eight experimental results. The values are
presented as percentages. M/F refers to Male or Female.

Table: 5.4.16 presents the LOOCV average performance of Type 1 attribute represen-
tation with the centers evaluated using the Nearest Neighbour method. As expected,
the Acc and wF1 averages are poor. Consistently, OMoCap performs better than
the IMU data. Gender and Height attributes perform the best with OMoCap data.
Interestingly, IMU follows the same trend as OMoCap and shows a better classification
average Acc for Gender and Height attributes.
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Contrary to expectation, the BCEloss method for finding centers performed poorly.
The individual attribute representation accuracy values were similar to that of Nearest
Neighbour. Consequently, the results are not presented here.

Data MoCap IMU

Acc 13.15 ± 31.95 3.06 ± 4.91Attributes

wF1 15.0 ± 33.5 5.57 ± 8.83

Gender M/F 87.21 ± 14.71 53.72 ± 24.36

6 30 55.63 ± 43.3 49.87 ± 26.12

30-40 76.99 ± 42.39 69.95 ± 30.46Age

> 40 33.37 ± 42.62 36.07 ± 23.55

40-60 75.28 ± 38.49 52.09 ± 36.02

60-80 47.22 ± 44.38 48.47 ± 41.02Weight

> 80 72.37 ± 40.89 50.93 ± 15.85

6 170 83.35 ± 23.79 58.92 ± 32.79

170-180 58.33 ± 41.97 46.32 ± 22.41Height

>180 74.85 ± 46.2 74.89 ± 32.1

Table 5.4.17: LOOCV on Type 2 attribute representation using the Nearest Neighbour method.
The values presented are average of eight experimental results. Values are
presented as percentages. M/F represents Male/Female.

Table: 5.4.17 presents the LOOCV results on Type 2 attribute representation with
the Nearest Neighbour method for finding centers. The average Acc of centers was
unsatisfactory. Performance on the OMoCap was better than that on the IMU data.
In Type 2 attribute representation, the performance of Gender and Height attributes
outperforms that of Weight and Age for the OMoCap and IMU data. Similar results
were obtained from the BCEloss method for finding center.

Some interesting points that were analysed during the experimentation are:

• The more the dimensionality of the attribute representation, the more the accu-
racy can be achieved in finding the centers

• If different subjects have the same representation, the classifier merged the two
subjects classifications into one.

• Attribute accuracy was found to be better for OMoCap data than IMU data.
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Results of Experiment 4B:

This section discusses the impact of activities on attribute representation. The experi-
ments follow the format explained in Sec: 5.2 (Experiment 3IOA). We consider five
experiments on IMU data for four sub-categories and the whole data. A distinction
between Type 1 and Type 2 attribute representation was not enforced. The result is
presented in Table: 5.4.18.

Activity IOA+
al IOA−

al

Walking 97.94 ± 2.81 2.05 ± 2.81

Cart 97.60 ± 3.14 2.39 ± 3.14

Handling cen 94.14 ± 5.87 5.85 ± 5.87

Handling down 77.42 ± 8.67 22.56 ± 8.67

Handling up 97.21 ± 3.62 2.78 ± 3.62

Standing 93.42 ± 3.78 6.56 ± 3.78

Synch 96.99 ± 4.22 3.0 ± 4.22

Table 5.4.18: Impact of activity on attribute representation. Values are presented as percentages.

Walking and cart activities have high classification accuracy. Interestingly, handling
up activity has a similarly high classification ratio. Similar to the result of Experiment
3ALARa, handling down has the least classification accuracy.

Based on the results, the activities with upper body movements, such as synchroni-
sation, handling up and handling center, shows better classification results for attribute
representation. This better performance of upper body activities is a deviation from
the performance shown in identity classification, where the activities did not perform
as well as the activities with gait.

5.5 layer-wise relevance propagation

From the experimental results of Sec: 5.4, we concluded that person identification is
feasible with IMU-based motion information. Furthermore, we analysed the impact of
activities and the dataset on the identification accuracy. Though these experiments
gave an overview of how the number of sensors and type of activities affect person
identification, we were not able to identify data specific features or motion signatures
that help the network to identify the individual. A CNN has the ability to extract innate
features from the data to facilitate classification with the help of the convolutional filters.
However, accessing these features of the data learnt by the convolutional filters are
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difficult. The branch of research that facilitates human-understandable interpretation
and explanation of non-linear ML algorithm’s behaviour is called Explainable Artificial
Intelligence (XAI) [SML+

21]. XAI methods applied on Neural Networks trained on
human motion datasets can help identify the data features that contribute to person
identification.

According to [SML+
21], there are various techniques for explaining the predictions

of the network based on the input data, namely, gradient-based techniques, occlusion
analysis and layer-wise relevance propagation (LRP). This thesis attempted at layer-
wise relevance propagation (LRP) [MLB+

17]. LRP can be derived from deep Taylor
decomposition. Here, the contribution of the neurons to the solution/classification is
traced back into the network. Each neuron of a layer receives a relevance score. The
relevance score accounts for the contribution of the neuron to the final solution. The
total relevance score of a layer will be equal to that of the previous layer, following
Kirchhoff’s law of conservation. Fig: 5.5.1 visually explains the steps followed by the
LRP method.

Figure 5.5.1: Visualisation of layer-wise relevance propagation [MLB+
17].

LRP is mainly applied on Neural Networks [MBL+
19] after they have completed

training and can achieve good classification accuracy. Firstly, the trained network
is tested with a sample. During the forward pass of the test sample, the activation
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of each neuron of every layer is recorded. In the relevance propagation phase, the
activation obtained for the class of interest in the final layer is maintained as the
relevance score. The relevance score of the final layer is propagated back into the
network proportional to the neurons’ activation value [MLB+

17]. The backpropagation
of relevance is achieved with deep Taylor decomposition. Following the Kirchhoff’s
law of conservation, the relevance of a neuron j (Rj) in the lower layer will be the
summation of the proportional neuron activation that contributed information to the
neuron k in the consecutive layer. Thus, propagation of relevance from neurons in
the top layer to a neuron in the lower layer will follow the Eq: 5.5.1. Here, j and k
refers to two neurons in consecutive layers, R refers to relevance, and zjk decides the
contribution of neuron j that facilitated in the activation of neuron k. The denominator
helps to achieve conservation as per Kirchoff’s law [MBL+

19]. Finally, the relevance is
mapped onto the input image and represented as a heat map.

Rj =
∑
k

zjk

Σjzjk
Rk (5.5.1)

Based on the type of layer, various propagation rules can be applied. Few prominent
propagation rules are: Basic rule (LRP-0) Eq: 5.5.2, Epsilon rule (LRP-ε) Eq: 5.5.3,
and Gamma Rule (LRP-γ) Eq: 5.5.4 [MBL+

19]. Where, aj refers to the lower layer
activation, wjk refers to the synaptic weights and Σ0,j implies that the summation is
over all the lower layer activations.

The LRP-0, Eq: 5.5.2, conducts redistribution of relevance proportional to the neu-
ron’s contribution, which is controlled by the synaptic weights. The rule can be applied
uniformly on the network. However, the rule is susceptible to gradient noise.

Rj =
∑
k

ajwjk

Σ0,jajwjk
Rk (5.5.2)

A modification to the LRP-0 is the LRP-ε rule Eq: 5.5.3. Here, a small positive term
ε is added to the denominator of the function, calculating the relevance score. The
ε term helps to filter gradient noise by absorbing the relevance of weak activations
of neuron k. Thus, increasing the ε value would imply that only strong activations
would be maintained [MBL+

19]. The LRP-ε was used as the propagation rule for this
thesis.

Rj =
∑
k

ajwjk

ε+ Σ0,jajwjk
Rk (5.5.3)
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The LRP-γ, Eq: 5.5.4, favours positive contributions of the neurons over negative
contributions. The term γ controls the amount of favouritism to positive contributions.
Consequently, this rule achieves a stable explanation of the features contributing to
the classification [MBL+

19].

Rj =
∑
k

aj(wjk + γw+
jk)

Σ0,jaj(wjk + γw+
jk)
Rk (5.5.4)

The relevance score can be a positive, zero or negative value. A positive relevance
score is associated with a feature that has contributed to the selection of the class.
Zero relevance score imply that the features do not contribute to the class selection.
A negative relevance score implies that the feature present in the data is indicating
a different class. Features with negative relevance scores lead to misclassification
[MBL+

19].
Here, we applied LRP on OMoCapC,NN

W of LARa dataset trained on a CNN with
HPs: Lr = 10−4, epoch 10 and mBsize = 100, for the purpose of person identification.
The LRP-ε rule was uniformly applied on the CNN layers. The ε value was fixed at
10−9. Fig: 5.5.2 shows the input data and relevance score of each sensor channel of
Subject 1. The frame was correctly classified as Subject 1. The subject was performing
the activity "Standing" in this frame. As mentioned in Sec: 5.1.1, the sliding window
size is 100. As the input data is normalised, their values range from 0 to 1.

(a) Normalised sensor values (b) Relevance graph

Figure 5.5.2: Input and relevance graph of Subject 1. The subject was correctly identified in
this frame. The activity label of the frame was "Standing".

From the Fig: 5.5.2 (b) Relevance graph, it can be seen that many of the sensor
channels have relevance scores close to zero. ε needs to be experimented upon to
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ensure that the relevance of the channels is not gradient noise. The negative relevance
value presented is larger than the positive relevance. Consequently, LRP-γ might be
the appropriate choice of propagation rule to be applied on the network trained with
normalised OMoCap data. Thus, future work using LRP on person identification
needs to experiment on various propagation rules to identify the appropriate relevance
graph.

(a) Head Channels

(b) Left Wrist Channels (c) Left foot Channels

Figure 5.5.3: LRP on subject 1 of LARa dataset. The window was correctly classified as subject
1. The plots show the relevance of the sensor channels of Subject 1 performing
the activity "Standing". (a) presents the relevance of the sensor channels related
to the head. (b) and (c) represent the sensor channels with respect to the left
wrist and left foot.
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OMoCap data has 126 sensor channels. Due to the impracticality of representing all
the sensor channels in a legend, we have selected six sensor channels related to the
head of the subject, left wrist and left foot, and presented their relevances in Fig: 5.5.3.
The relevance presented is from window 947 of the test dataset, Fig: 5.5.2(b). The
highest noticeable relevance present in Fig: 5.5.2 is close to 0.015. The relevance is
associated with the left leg’s translation axis Z, as shown in Fig: 5.5.3(c). This implies
that one of the features or sensor channels that helps the network to predict subject 1
is the movement of the subject along the translation axis Z. The rotational axes Y and
Z of the head have positive relevance on person identification, whereas the translation
axis Z has a negative relevance, Fig: 5.5.3(a). The relevance of the wrist channels are
presented in Fig: 5.5.3(b). The translational axis X shows high negative relevance in
comparison to the other sensor channels.

The input and relevance score of Subject 1 performing the activity "Synchronisation"
is presented in Fig: 5.5.4. The window was correctly classified as subject 1 by the
network. Compared to the activity "Standing", the sensor channels show variation of
sensor values with respect to time in the input graph. As the activity "Synchronisation"
is the waving motion of the hands, the sensor channels associated with the hand are
shown to vary in time. The subject is expected to be standing while performing the
wave. We can see that few of the sensor channel values remain constant in time. These
sensor channels show the coordinates of the leg.

(a) Normalised sensor values (b) Relevance graph

Figure 5.5.4: Input and relevance graph of Subject 1. The subject was correctly identified in
this frame. The activity label of the frames was "Synchronisation"

.
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Similar to Fig: 5.5.3, we have extracted the rotational and translational axes relevances
of the head, left wrist and left foot of the subject 1 for the window 952, as shown in
Fig: 5.5.5. As mentioned, the network was able to classify the subject for this window.

(a) Head Channels

(b) Left Wrist Channels (c) Left foot Channels

Figure 5.5.5: LRP on subject 1 of LARa dataset. The window was correctly classified as subject
1. The plots show the relevance of the sensor channels of Subject 1 performing
the activity "Synchronisation". (a) presents the relevance of the sensor channels
related to the head. (b) and (c) represent the sensor channels with respect to the
left wrist and left foot.

One interesting aspect to notice from the graphs (a) and (b) of Fig: 5.5.5 is that, as
the subject raises the hands to show the synchronisation action, the relevance score of
the wrist rotational axis Z increases. The relevance score of the rotational axes Y and
Z associated with the head decreases simultaneously. This observation could confirm
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the conclusions derived from the Sec: 5.4. That is, activities performed by the subject
influences the person identification and that the network does not generalise identity
over activities. More experiments need to be conducted in this direction to confirm
the understanding.

Though Fig: 5.5.2 and Fig: 5.5.4 represent two different activity classes, a similarity
in the relevance of the sensor channels can be noticed; for example, there are three
sensor channels showing prominent negative relevance in the graphs. Analysing such
trends with respect to the individuals and activity can help draw conclusive statements
on the impact of activity and the sensor positions on the identity classification.

(a) Input of correct classification (b) Relevance of correct classification

(c) Input of incorrect classification (d) Relevance of incorrect classification

Figure 5.5.6: LRP on subject 1 of LARa dataset. The plots show the relevance of the sensor
channels of Subject 1 performing the activity "Cart". (a) and (b) present the input
and relevance of the frame that was correctly classified as subject 1. (c) and (d)

represent the input and relevance of the sensor channels of the frame that was
misclassified as subject 6, though it belonged to subject 1.
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Next, a comparison between a correctly classified window and a misclassified
window is presented in Fig: 5.5.6. The windows belong to subject 1 performing cart
activity. Window 1250 was correctly classified as subject 1; however, window 1307 was
classified as subject 6.

(a) Head channels - CC (b) Head channels -IC

(c) Left Wrist channels - CC (d) Left Wrist channels - IC

Figure 5.5.7: LRP on subject 1 of LARa dataset. The plots show the relevance of the sensor
channels of Subject 1 performing the activity "Cart". A comparison between a
correctly identified window and an incorrectly classified window is presented.
CC refers to correct classification, and IC refers to incorrect classification. (a)

and (b) shows the head channels’ relevance, and (c) and (d) shows the left wrist
channels’ relevance.

When calculating the relevance, we take into account the class with the maximum
final layer activation. The propagation of relevance score takes place with respect to this
class. In Fig: 5.5.6(d), the graph presents the relevance of the sensor that contributed to
the classification of the window as subject 6. Thus, the figure represents the relevance of
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the sensor channels that help the network identify subject 6. Compared to Fig: 5.5.6(b),
the magnitude of relevance values in Fig: 5.5.6(d) is larger. Furthermore, the sequence
of relevance seems to be different. To facilitate better comparison, Fig: 5.5.7 shows the
relevance values of the head and wrist sensor channels.

From Fig: 5.5.7, we can analyse the drastic deviation in the relevance of the two
windows of subject 1. An interesting trend was noticed with respect to the translational
Z axis of the head. Comparing the Fig: 5.5.3(a), Fig: 5.5.5(a), Fig: 5.5.7(a), and (b), we
can see that when the windows were correctly classified as subject 1, the translational
axis Z had a negative relevance. However, in the case of incorrect window classification
as subject 6, translation Z has high positive relevance. This may suggest that the subject
1 and 6 have similar head movement along the Z axis, but the movement is a strong
indicator of subject 6’s identity. Drawing out such similarities may help to tackle
misclassification and achieve high person identification accuracy. To confirm the
observation, more examples have to be analysed and experimented.

From these preliminary experiments and analyses, we can conclude that by applying
LRP on human motion data, we can derive interesting observations and proofs that
support the observations of this thesis. As a result, this thesis recommends LRP as
part of the future work of this thesis.





6
C O N C L U S I O N S

The main goal of this thesis was to explore the possibility of person identification using
motion information obtained from IMU data by training Deep Neural Networks, such
as CNN and RNN. Further, it aimed to analyze the impact of activities contained in
the data on the identification process. In addition, attribute representations designed
from soft biometrics are intended.

The networks of interest were the CNN-IMU and deepCNNLSTM networks. The
networks are designed based on the sensor-based late-fusion method. Consequently,
each IMU sensor is associated with a branch of convolutional layers to extract descrip-
tive features from the sensor channels (e.g., x, y, z axes of accelerometer) to facilitate
identification. Each branch has four convolutional layers. Pooling layers were not used
in these architectures. In the CNN-IMU network, the last layer of the branches is a
fully connected layer. The features of the branches are then concatenated and passed
through an MLP. The classifier layer is activated by the softmax activation function
to facilitate classification. In contrast, the features from the branches of the deepC-
NNLSTM are directly concatenated, and passed through two LSTM layers. However,
similar to CNN-IMU, the classifier layer is activated by the softmax activation function.
LARa, OPPORTUNITY, PAMAP2 and Order Pickings are the four datasets considered
for experimentation.

An individual can be described by their soft biometrics, such as age, gender, height
and handedness. An attribute representation method provides semantic information
of data. Consequently, soft biometrics can be designed to be an attribute representation
of individuals. This thesis designed two datasets specific attribute representation.
The soft biometric details of the subjects were obtained from the LARa dataset’s
recording protocol. The Type 1 attribute representation considered a binary split of
soft biometrics; for example, height soft biometric can be classified as 6 180 or > 180.
The second type of attribute representation has considered more splits; for example,
soft biometric height was split as 6 170, 170-180 and > 180. As a result, the Type 1
attribute representation has four attributes, while the Type 2 attribute representation
has ten attributes. To facilitate attribute representation classification, the final layer of
the CNN-IMU network was activated by the sigmoid activation function.

The attribute representation assigned to an individual is referred to as center. To
calculate the center, two methods were followed; the Nearest Neighbour method

95
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and the Binary Cross-Entropy Loss method. In the Nearest Neighbour method, the
predicted attribute representation is assigned to the nearest center in the attribute
space. In the Binary Cross Entropy loss method, the deviation of the prediction from
the expected representation is calculated. The attribute representation with the most
proximity is assigned as the center.

To identify the better network, the CNN-IMU and deepCNNLSTM networks were
trained on the LARa dataset’s OMoCap and IMU data for similar hyperparameters.
The CNN-IMU network was found to perform classifications with better accuracy in
comparison to deepCNNLSTM for similar hyperparameters. As a result, CNN-IMU
network was used for the rest of the experiments.

The CNN-IMU networks were trained on channel-normalised, and non-channel
normalised IMU data of the LARa dataset. The results pointed that channel-normalised
data performed better than non-channel normalised data. Thus, a conclusion was
derived that the placement biases did not significantly affect identification and that
channel normalisation improved identification accuracy.

The LARa dataset set recordings were grouped based on Scenarios, recordings and
individuals. Four sub-categories were created. The sub-category A excluded the
subject 12 of the LARa dataset. Only recordings of Scenario 2 were present in this
group. Similarly, the sub-category B excluded the subject 11. However, the group
consisted of Scenarios 2 and 3 recordings of the LARa dataset. Both subjects 11 and 12
were excluded from the sub-category C. The sub-category D excluded the subjects
10, 11 and 12. The category had the maximum number of recordings for training.
The sub-categories B, C and D consists of recordings from the Scenario 2 and 3. The
sub-categories were applied on the OMoCap and IMU data, and were trained using the
CNN-IMU network. In few cases, networks trained on the sub-categorised IMU data
performed better than the sub-categorised OMoCap data; for example, the networks
trained with the same hyperparameters on IMU and OMoCap were able to achieve
an average accuracy of 93.96% and 85.62%, respectively. However, when the whole
dataset was considered for training, the network trained on OMoCap performed better
than IMU. The network trained on OMoCap data achieved an average accuracy of
97%, while the network trained on IMU achieved 92.07% average accuracy.

From the experiments performed on the sub-categorised data, it was observed that
networks do not learn to generalise identity over different activities. To elaborate, the
CNN-IMU network was trained with recording of Scenario 2 of the LARa dataset and
tested on recordings of Scenario 3, the networks’ performance dropped compared to
the networks trained on less number of data. Thus, the network cannot identify an
individual present in the training set, if the activity performed by the individual in
the test sample is not present in the training set.
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To benchmark the possibility of person identification with the IMU dataset created
for HAR, identification was experimented on OPPORTUNITY, PAMAP2 and Order
Picking datasets. OPPORTUNITY is a sensor-rich dataset. A CNN-IMU network
trained on the OPPORTUNITY was able to achieve an averaged person identification
accuracy of 96.03% over all experiments. Similarly, a network trained on PAMAP2 was
able to achieve an average accuracy of 91.01%. Furthermore, experiments on PAMAP2

confirmed the observation that networks can not generalise identity over activities.
Person identification on the Order Picking dataset performed poorly. The maximum
accuracy achieved was 52.23% on six subjects. The performance could be attributed to
the low amount of data, and placement of IMUs.

Due to the absence of a recording protocol for the Order Picking dataset, the author
of the thesis was unable to identify the relation between the IMU sensor channel to
the placement of the sensor. Consequently, a CNN network was used to train the
dataset. To ensure that the network chosen has not affected the identification accuracy,
the PAMAP2 was experimented on a CNN. Similar to the Order Picking dataset,
the PAMAP2 consisted of three IMUs. However, unlike CNN trained on the Order
Picking dataset, the CNN trained on the PAMAP2 showed performance similar to
the CNN-IMU network. Hence, ruling out the effect of the network architecture on
identification. The major difference between the PAMAP2 and Order picking is the
placement of IMUs. The IMUs of the Order Picking dataset were placed on both wrists
and chest, unlike in PAMAP2, where the IMUs were placed on the chest, dominant
hand wrist and ankle. Due to the absence of the recording protocol, experiments to
analyse the effect of the sensor placement on person identification were not feasible.

The impact of activities on person identification was tested with the four datasets,
namely, LARa. OPPORTUNITY, PAMAP2 and Order Picking datasets, trained on the
CNN-IMU network. Consistent with the gait-based person identification research,
identification accuracy was favourable for test windows with activities such as walk-
ing, Nordic walk, and pushing cart. This behaviour was observed on the LARa and
PAMAP2 datasets. From the research by [EBL18], activities with less body movements
were observed to have high classification accuracy. OPPORUTNITY dataset’s experi-
mental results had windows with sedentary activities with high person identification
accuracy similar to [EBL18]. Interestingly, experiments on the impact of activities on
attribute representation on LARa dataset showed results similar to [EBL18]. That is, ac-
tivities with small body movements were found to have higher attribute representation
accuracy than activities with large body movements.

Of the two types of attribute representations, the attribute representation with
larger dimensionality had better performance. In particular, the Type 2 attribute
representation had higher accuracy while calculating the centers of the individual.



98 conclusions

The Binary Cross-Entropy Loss method for finding the centers performed better than
the Nearest Neighbour approach. Gender and height soft biometrics consistently
provided exceptional results during experiments with both OMoCap and IMU data.
The performance can account for the swing movement of the body during gait. The
experiments collectively pointed towards the necessity of a larger dataset for attribute
representation.

The soft biometric split for creating attribute representations was specific to the
LARa dataset. Attempting to apply the same attribute representation on another
dataset may not be feasible. To elaborate, when applied on different datasets, attribute
representation may have attributes with no variation. Consequently, the network will
not be able to learn any useful information with respect to the attribute. Thus, research
is needed to create attribute representations transferable to different datasets.

To obtain an interpretable explanation of the features learnt by the network, the
Explainable Artificial Intelligence (XAI) method, layer-wise relevance propagation
(LRP) was explored. LRP is capable of visualising the features the neural network
expect within the input data to support classification. LRP was implemented on a
CNN network, trained on the OMoCap data of LARa dataset. The LRP-ε rule was
applied on all layers of the CNN. The LRP was applied on the test windows of subject
1 of the LARa dataset. The value of negative relevances were found to be greater than
the positive relevances in few frames. Furthermore, the relevance graph was found
to be noisy. Consequently, future experiments are recommended by varying the ε
value of the LRP-ε. In addition, the authors recommend experiments on different
propagation rule or combination of propagation rules as part of future work. From the
brief analysis of the subject 1 frames, it was identified that, experiments on LRP can
deliver proofs for the observations and conclusions derived in this thesis with respect
to person identification and impact of activities on identification accuracy.

6.1 future work

The thesis established the possibility of person identification using motion informa-
tion. The future work is the analysis of the features learned by the Neural Network.
Identifying the features that facilitated the network to perform person identification,
would help in masking or deleting the feature to ensure privacy or in identifying
the impact of subject identity on HAR. This thesis implemented the LRP on a CNN
trained on OMoCap data of LARa, using the LRP-ε rule on all layers of the CNN.
The relevance of few windows were presented and analysed. However, analysing
few individual windows is not sufficient to have a comprehensive understanding of
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the features. Consequently, methods to facilitate group analysis, such as relevance
pooling and Spectral Relevance Analysis (SpRAy) [SML+

21], need to be implemented.
Furthermore, an implementation of LRP on a CNN-IMU network with the help of
[ANS+

21] needs to be attempted. This step would help to analyse and cross-verify
the experimental results obtained in this thesis. In addition, the LRP propagation
rules have to be experimented upon. This thesis applied LRP-ε rule on all the lay-
ers, however, [MBL+

19] has recommended attempting combination of propagation
rules to achieve the optimal feature explanation. [ANS+

21] provides frameworks
for implementing LRP on custom networks and analysing LRP on datasets. These
frameworks are expected to help carry out the relevance analysis in a structured
manner. Consequently, experimentation on these frameworks is a direction this thesis
would recommend.

[EBL18] mentions that few subjects are easily identifiable than others. That is, few
subjects have prominent action signatures. The uniqueness and identifiability of these
individuals can be associated with their idiosyncrasies. The motion signatures can
be further explored by analysing the features that support identification using the
LRP method. In addition, the impact of individual motion signatures on HAR can be
researched.

Soft biometrics-based attribute representation needs to be explored further. The
primary effort required in the direction of attribute representation using soft biometrics
is the creation of a larger dataset. The dataset has to be inclusive of larger variations
in soft biometric characteristics and ranges. To elaborate, when considering the soft
biometric age, the dataset must ideally have individuals from a wider age range. Thus,
the attribute thresholds for creating soft biometric splits must be revisited. A method
for obtaining transferable attribute representation based on soft biometrics have to be
designed.

The thesis confirmed the impact of activities on identities and soft biometric attribute
representations. Future research may constitute the impact of the identities on activities,
in specific, on HAR datasets.
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