
Deep Face Recognition

Master Thesis (Revised)

Wilmar Fernando Moya Rueda
May 2, 2017

Supervisors:

Prof. Dr.-Ing. Gernot A. Fink

René Grzeszick, M.Sc.

Fakultät für Informatik

Technische Universität Dortmund

http://www.cs.uni-dortmund.de





C O N T E N T S

1 introduction 3

1.1 Structure 4

2 fundamentals 5

2.1 Artificial Neural Networks 5

2.1.1 Biological Neural Networks 5

2.1.2 Mathematical representation of a neuron 8

2.1.3 Layered-Perceptron and Learning 12

2.1.4 Single Layer Perceptron 13

2.1.5 Activation Function 14

2.1.6 Gradient Descent (GD) 16

2.1.7 BackPropagation 20

2.1.8 Convolutional Neural Networks 23

3 related work 31

3.1 Shallow Methods for face recognition 31

3.1.1 Landmark based 31

3.1.2 EigenFaces 32

3.1.3 FisherFaces 37

3.1.4 Local Binary Pattern 39

3.2 Deep CNNs for vision tasks 42

3.2.1 AlexNet 42

3.2.2 VGG 44

4 method 47

4.1 Deep Face Recognition 47

4.1.1 N-way classification 47

4.1.2 Face Verification 48

4.1.3 L-dimensional metric embedding classifier 48

4.1.4 Empirical Triplet loss 49

4.1.5 Training 49

4.1.6 Testing 50

4.2 Deep Face Recognition discussion 51

4.3 Extentions to Deep Face Recognition network 52

4.3.1 Spatial Pyramid Pooling layer 52

4.3.2 Empirical Triplet loss for partially occluded face-images 54

1



2 Contents

4.3.3 Measurements 54

4.4 Conclusion 56

5 experiments 57

5.1 Datasets 57

5.1.1 Visual Geometry Group Face Dataset 58

5.1.2 Labeled Faces in the Wild dataset 58

5.1.3 YouTube Faces Dataset 59

5.2 Evaluation Metric 60

5.3 Experiments and Results 62

5.3.1 Replication of the original publication 62

5.3.2 Testing on different multicropping configurations 63

5.3.3 Training a CNN with SPP layer 66

5.3.4 Testing on half-occluded face-images 69

5.3.5 Half-max pooling on the last convolutional layer’s output 72

5.3.6 Mirroring the last convolutional layer’s output 73

5.3.7 Mirroring the input images 74

5.3.8 Training triplet loss 77

5.3.9 Testing different occlusion proportions 78

6 conclusions 81



1
I N T R O D U C T I O N

Face recognition is a specific case of object recognition. It has received special atten-
tion in the recent years due to a great variety of applications such as robot-human
interaction, control by gesture, surveillance, security, and people tracking. The idea of
face recognition is to give a computer system the ability of finding and recognizing
human faces fast and precisely in images or videos. Face recognition aspires to work
similar to human perception. Humans identify a big number of known faces, even
after years of separation, or under extreme occlusion conditions, e.g. just by looking
at a small part of a face [TP91]. It is a complex task since faces can have different
colors, poses, expressions, and sizes or they can be affected by illumination variations
or occlusion conditions [AR15]. Today, there are different methods of face recog-
nition: feature-based approaches (low-level analysis, feature analysis, active shape
models) that make explicit use of facial-features such as skin color, facial landmarks or
face geometry [HL01], and image-based approaches (linear subspace models, neural
networks, statistical approaches) [YKA02].

The recent increase in the volume of data and computational resources has led to
the need for fast and scalable recognition techniques. These techniques should be
robust to non-rigid deformations, clutter, occlusion and illumination variations, but, at
the same time, they must be sensitive to variations among faces from different persons.
For these reasons, neural networks have become a surge of interest [TYRW14]. Initially,
shallow regular neural networks could be used for small image sizes, but they would
not scale to deeper networks since a huge amount of parameters would be necessary to
be learnt, which can easily cause overfitting [FFL16]. As a result, Convolutional neural
networks (CNNs) were proposed. In a CNN, neurons in a layer are connected to small
regions of previous layers, which is different to regular neural networks, where all
neurons are connected in a full manner. Besides, CNNs make correct assumptions
about the nature of the images, for example locality of pixel dependencies [AK12]. In
general, CNNs have fewer connections and parameters, they are easier to train, and
they present similar or better performance than the regular neural networks [AK12].
As an extension of the CNNs, deep CNNs were introduced by [AK12] because a big
number of high-resolution images and powerful GPUs are now available. The authors
increased the number of convolutional layers, and they use large receptive fields in
the first convolutional layer. As a result, overfitting, which is inherent to the large size

3



4 introduction

of the model, is avoided and effective results are achieved. In addition, the authors in
[SZ15] continued adding convolutional layers, but they keep the size of the receptive
fields very small (3x3 convolutions) with a stride of 1, throughout the whole network,
which decreases the amount of parameters.

CNNs classify their input into classes; concretely for this thesis, they classify a set
face-images into their identities, or map their input into a compact representation for
verification purposes, where two face-images are compared for answering whether
they show the same identity. Deep CNN architectures are used for solving the
aforementioned tasks, following certain guidelines for training and testing, using
techniques for avoiding overfitting, that were designed for general object recognition.
However, some of the guidelines are not suitable for, specifically, face recognition and
verification purposes. Besides, extreme-occlusion conditions in previous works have
not been completely studied. Benchmark datasets for face recognition and verification
are built on images extracted from Internet, and they might have images presenting
partial occlusion due to glasses, hairstyle changes and make-up. Nevertheless, humans
can obtain enough information for recognition purposes from small portions of faces.

The objective of this thesis is to analyze the performance of deep CNN architectures
for face-verification using face-images under different occlusion conditions, utilizing
different similarity measurements, changing the CNN’s architecture or CNN’s feature
maps, and validating testing procedures, commonly, used in object recognition and
verification.

1.1 structure

The thesis covers in the chapter 2 the fundamentals of neural networks, giving a
small introduction of the biological neuron, its mathematical model, the topology of
connections among neurons (the network), explaining the algorithm of how neural
networks obtain information automatically from data, and, finally, their application
in vision. In the chapter 3, this thesis presents the state of the art in face and object
recognition, describing the basis algorithm that this thesis studies. A discussion of
an specific deep convolutional neural network architecture for face recognition and
verification is described, and the method followed by this thesis is presented in the
chapter 4. Chapter 5 shows the experiments and an analysis of their results. In the
end, the final conclusion is given in chapter 6.



2
F U N D A M E N TA L S

2.1 artificial neural networks

Artificial Neural Networks (ANN) aspire to model the information processing ca-
pabilities of nervous systems of animals, biological neural networks (BNN) [Roj96]
[Kon05], since BNNs have the elementary components of a computing model: storage,
transmission, and processing. In general, neurons collect signals from the environment,
and they transform and process these signals to produce and transmit an adequate
response [Hai14]. Besides, the capability of learning makes them very attractive as a
computational intelligence technique [Kon05]

2.1.1 Biological Neural Networks

Millions of interconnected cells, called neurons, compose the human nervous system.
Each of the neurons is a complex unit that deals with incoming signals, and produces
responses. Fig 2.1.1 shows the general structure of a neuron. Neurons are conformed
by four elements: dendrites, synapses, a cell body and axons. The dendrites are
branches that represent transmission wires for gathering information. They receive
signals at contact regions, termed synapses, coming from other neurons. In the
cell body, organelles take responsibility for the protein synthesis and metabolism
maintenance of the neuron [Hai14]—for example, mitochondrias supply energy—,
and the processing of information takes place producing an output signal. This output
can be an excitation or an inhibition [Roj96], depending on the type of receptors in the
synapses [Hai14]. In the end, the output signal is transmitted via the axon [Roj96].

The neural information processing is a co-action between electrical transmission of
information in the cell and the chemical transmission in the synapses [Roj96]. The
electrical transmission of information in the cell is produced and transmitted at the
cell membrane. The signals are represented by depolarization waves, called action
potentials, in which the internal potential of the cell with respect to the exterior of the
cell increases from its equilibrium potential to a maximal positive potential, and then,
it returns back to its equilibrium state. During the wave, ions of sodium Na+ flow
into the cell, depolarizing it, and then after a short period of time, ions of potassium

5



6 fundamentals

Figure 2.1.1: General structure of a neuron [Roj96]

K+ flow outwards compensating the depolarization or repolarizing the cell. The cell
membrane controls the inwards and outwards of ions, depending on the permeability
for each of the ions. The permeability is determined by the quantity and size of pores
in the cell membrane. Those pores, called ionic channels, have different forms and
charges that allow only specific ions to go in or out [Roj96].

The chemical transmission among cells is a combination of electrical and chemical
processes in the neurons, mostly in the synapses. Synapses are conceived as the
thickening of axons[Roj96]; essentially, they represent the zone where the axons
communicate with other neurons [Hai14]. Synapses consist of three elements: A pre-,
inter-, and post- synaptic elements [Hai14]. The pre-synaptic element or pre-synaptic
terminal has mitochondrias, which provide energy to the neuron, and small vesicles
that contain chemical transmitters. The inter-synaptic element or synaptic gap is the
small space between a pre-synaptic element and an attached cell. In the attached cell,
the post-synaptic element or post-synaptic membrane is located [Hai14]. When an
action potential arrives to the synapse, the pre-synaptic terminal gets depolarized
and the vesicles fuse with the pre-synaptic membrane, which liberate their chemical
transmitters [Hai14]. The chemical transmitters flow into the synaptic gap, hooking
up to the ionic channels of the post-synaptic membrane [Roj96]. Depending on the
kind of the chemical transmitters, the ionic channels are opened, and allow chemical
transmitters to flow inwards the cell’s membrane [Roj96]; this produces an increment
or decrement of the membrane potential or, essentially, the membrane depolarizes
or hyperpolarizes. This de-, hyper- polarization stimulates the inward-flow of more
chemical transmitters, and therefore, the polarization increases or decreases even
more— a kind of positive feedback [Hai14]. As a consequence, they alter the cell’s
potential. If chemical transmitters , mostly ions of sodium, are positive, cell’s potential
will increase and will assist the neuron to cause an action potential, and hence the
neuron will get excited. On the contrary, if the chemical transmitters, mostly ions of



2.1 artificial neural networks 7

chloride, are negative, cell’s potential will decrease, and will hinder the emitting of an
action potential; thus, the synapse will behave as inhibitory synapse [Roj96].

For firing an action potential, the depolarization must rise above a threshold poten-
tial; that is, enough sodium-selective ionic channels must be opened [Roj96]. When few
sodium-selective ionic channels open, the sodium ions start flowing inwards the post-
synaptic membrane, and this membrane becomes depolarized. The threshold potential
comes along when the total inward-flow of sodium ions is greater than the outward-
flow of potassium ions. In that point, the remaining sodium-selective ionic channels
are opened, rising quickly the inward-flow of sodium ions, and increasing still more
the depolarization. When the depolarization reaches a maximum, the sodium-selective
ionic channels close, and the outward-flow of potassium ions repolarizes the membrane
potential [Hai14]. On the other hand, if chloride- or potassium-selective ionic channels
open, negative ions (chloride ions) will flow inwards, or positive ions (potassium ions)
will flow outwards the post-synaptic membrane, and the membrane potential will
decrease moving away from the threshold potential [Hai14]; the probability for firing
an action potential decreases [Roj96].

The rising above the threshold potential, and consequently the firing of an action
potential, could be handled as a combined process among different dendrites. The
dendrites collect action potentials coming from different neurons; that means, chemical
transmitters from pre-synaptic terminals, coming from other neurons, flow into the
post-synaptic membrane—This collection is known as a spatial summation [Roj96]. In
the same way, there exists a temporal summation as the frequency of action potentials
increases, in which case the membrane potentials are also summed, becoming more
effective than unique post-synaptic potentials [Hai14]. These combined summations
control the electric activity in the cell’s body to determine whether the axon fires an
action potential or does not [Hai14]. The quantity of synapses, which are necessary to
fire an action potential, is determined by the number of ionic channels per synapse
opened by pre-synaptic signals—A single synapse or, simultaneously, various synapses
can generate an activation potential in an attached neuron. The number of ionic
channels per synapse represent the synapse’s efficiencies.

The synapse’s efficiencies can be altered by opening more ionic channels, a sort of a
membrane’s permeability modification; in fact, one of the mechanism that neurons use
to learn or store information is altering the synapse’s efficiencies [Roj96] — Neurons,
also, learn by setting new connections among neurons. Neurons use, for example,
NMDA receptors (N-methyl-D-aspartate) as ionic channels that are permeable to
different molecules for increasing the depolarization. Initially, these NMDA receptors
are blocked by magnesium ions. When an action potential arrives to a synapse, the
NMDA receptors lose their magnesium ions, and they become permeable to calcium



8 fundamentals

or sodium ions; in that way, the threshold potential is altered. Therefore, a cell can be
trained to fire easier if a lower threshold potential is set by modifying its membrane’s
permeability [Hai14]. The synapse’s efficiencies are increased when two cells, which
are connected by a synapse, fire. Otherwise, the synapse’s efficiencies are increased
[Kon05].

In the next subsection, the four elements : dendrites, synapses, cell bodies, and
axons are adopted as the minimal structure to model artificial neural networks.

2.1.2 Mathematical representation of a neuron

Mathematically, a neuron can be seen as a unit that activates depending on its inputs
and internal parameters. A neuron has signals that travel along the axons of previous
neurons as its input and are transmitted by synapses [Roj96]. The internal parameters
represent the synapse’s efficiencies of the BNNs (see subsection 2.1.1), which are called
weights [Roj96]. The input signals interact by means of a multiplication with the
weights. In essence, the idea is that these weights are learnable so they can influence
other neurons. This influence can be excitatory with positive-, or inhibitory with
negative-weights [Roj96]. For a cell with n synapses, a synapse i is associated with a
weight wi. In the cell body, the input signals, are summed, as the spatial summation of
the BNNs does (see subsection 2.1.1). For example, if all synapses are activated at the
same time, the total input will be w1 +w2 + ... +wn. If the final summation is above
a threshold value, then the neuron will activate and send a signal along its axon. This
activation is performed by an arbitrary function. In general, a neuron performs a scalar
product between its input and its weights, it adds a bias— a negative threshold—, and
applies a non-linearity activation function f(·) [FFL16], see Figure 2.1.2.

Figure 2.1.2: Mathematical representation of a neuron [Roj96]

An artificial neuron can be considered as a primitive function that is capable of
transforming its input into a defined output. A neuron is, in general, a primitive



2.1 artificial neural networks 9

function of n-arguments producing a numerical output. This primitive function is
split into two components: an integration- or linear excitatory/inhibitory- component,
and an activation function- or non-linear- component [Kon05]. First, the n-arguments
or signals are reduced to single numerical value, a total excitation, by means of
a integration function g(·), a summation. Second, the single value is used by the
activation function ϕ(·) (see subsection 2.1.5) to produce the final output of the
computing unit [Roj96] within a finite range: ϕ[g(·)] [Kon05].

The simplest neuron or unit is the McCulloch-Pitts unit (MCP). It receives and
produces only binary signals, [0, 1]. Fundamentally, it is a logical or boolean mapping
Φ : Bn → B (see Equation 2.1.2) [Roj96]. A MCP seems very limited, but it contains
all necessary features to implement any given logical function of n-arguments, and
to implement automaton [Roj96]. A MCP has n-excitatory signals x1 + x2 + ... + xn,
m-inhibitory signals y1+y2+ ...+ym, all its weights are equal to "1", and its activation
function is the step function [Kon05], a comparison between the summed inputs and
its threshold, as the BNNs do when a total depolarization rises above a threshold
potential (subsection 2.1.1). If at least one of the inhibitory signals is "1", the unit
will be inhibited, see Equation 2.1.1. Otherwise, the total excitation is computed and
compared with a threshold θ, following the Equation 2.1.2 [Roj96].

Φ̄(x1, x2, ..., xn;y1,y2, ...,ym) = Φ(x1, x2, ..., xn)
m∏
j+1

(1− yj) (2.1.1)

Φ(x1, x2, ..., xn) =

1 if
∑n
i=1 xi > θ

0 otherwise
(2.1.2)

For example, the OR, the AND and the NOT functions can be implemented with
MCPs. For the OR function, the MCP has a threshold θ = 1; that is, if there is at
least one input that is excited, the neuron will fire. In the case of an AND function, a
n-input MCP has a threshold equal to the number of inputs, threshold θ = n [Roj96];
that means, if all the n-inputs are excited, the neuron will fire. The MCP computing
the NOT function has one input signal that is, at the same time, its inhibition signal,
and a threshold θ = 0. If a NOT-MCP gets a "1" as input, the output will be "0" due to
the inhibition, see Equation 2.1.1. On the other hand, if the input is "0", the output is
set to "1" following the Equation 2.1.2.

As any logical function is a combination of sums, products and complements by
means of the Boolean algebra—all logical functions can be expressed in two canonical



10 fundamentals

forms: sum of products (when several product-terms are summed) or product of sums
(when several sum-terms are multiplied)[Flo00]— and as the OR, AND, and NOT
logic gates represent, respectively, the summation, the product and the complement
operations [Flo00]. Any logical functions is thus a combination of OR, AND, and
NOT gates. The canonical forms are defined in two steps; first, one computes the
terms (sums or products), and second, one computes the final result by summing
or multiplying the terms. Since these gates can be implemented with MCP units, it
follows that any logical function Φ : Bn → B can be computed with a MCP network, a
connection of multiple artificial neurons of MCP units, of two layers [Roj96] depending
on the canonical expression of the logical function.

The MCP networks are called unweighted networks because they use weights equal
to "1". However, they can model more general networks with relative excitation
and inhibition properties; that is, relative fixed weights [Roj96]. For example, the
Figure 2.1.3 shows a fixed weighted network, which has the primitive function 0.2x1 +
0.4x2 + 0.3x3 > 0.7. The primitive function is equivalent to 2x1 + 4x2 + 3x3 > 7 if one
multiplies by 10 both sides of the function. This primitive function can be computed
by a MCP network with redundant inputs, see Figure 2.1.3 [Roj96].

Figure 2.1.3: Equivalent weighted and unweighted networks [Roj96]

The MCP networks and the fixed weighted networks are logic gates. They are used,
for example, to simulate any finite automaton [Roj96]. However, their topologies and
parameters must be fully specified for any different application. Furthermore, there
are no good algorithms for adapting the parameters and the network topology for
aiming different problems, and their construction is difficult [Roj96]. Nevertheless, the
relative parameters of the fixed weighted networks are relevant. By augmenting the
definition of a MCP neuron with real input signals and non-fixed relative parameters,
Minsky and Papert conceived the simple perceptron, called Minsky-Papert perceptron
(MPP), see Equation 2.1.3 [Kon05]. The main difference between the MCP neuron and
the MPP is that the input signals are a subset of R (x ∈ [0, 1] ⊂ R) and the weights are
not fixed. Being non fixed weights, one implies that weights can be adapted to solve



2.1 artificial neural networks 11

different problems. The adjustment of network parameters is called "learning" [Roj96]
[Kon05].

Φ(x1, x2, ..., xn) =

1 if
∑n
i=1ωixi > θ

0 otherwise
(2.1.3)

A single MPP is a linear classifier— one can see it, also, as a mapping (Φ : Rn → B).
It separates the input space in two subspaces whether the result of the primitive
function is "1" or "0", see (Equation 2.1.3). For example, the MPP computing the
function 0.9x1 + 0.8x2 > 0.6 divides the 2-D space (x1, x2) ∈ R2 in two half-planes. By
isolating x2, one gets x2 > 3

4 −
9
8x1. All the values above the line x2 = 3

4 −
9
8x1 satisfy

the function Φ, so the MPP output is "1". On the other hand, for the values below the
line, the MPP’s output is "0" [Kon05].

One can see the threshold θ as a bias,
∑n
i=1ωixi− θ > 0. In fact, one can extend the

input vector [x1, x2, ..., xn] and the weight vector [ω1,ω2, ...,ωn] of the Equation 2.1.3
such that the threshold is converted to a weight [Kon05]. By extending the vectors,
one can consider the threshold or bias as a weight.

Φ(x) =

1 if ω ′x > 0

0 otherwise
(2.1.4)

with x = x1, x2, ..., xn, 1, and ω = (w1,w2, ...,wn,wn+1), and wn+1 = −θ.

The weights represent the synapse’s efficiencies of BNNs, see subsection 2.1.1. As
the BNNs adapt their synapse’s efficiencies by using NMDA receptors, the MPPs adapt
their weights by means of an learning algorithm. The learning algorithm changes
the weights using a set of positive (P) and negative (N) samples. It starts setting
initial weights at random, and it iterates until the sample’s outputs are all correct. For
adapting or learning the weights of a MPP, one follows:

1. Choose the extended weight vector ω0 at random.

2. Choose an arbitrary extended input vector x ∈ P ∪N, with P being a set of
positive samples; that is, x that produces an output = 1, and N being a set of
negative samples; that is, x that produces an output = 0.

3. Feed x to the MPP.



12 fundamentals

4. If output of MPP is wrong, then change the weights.
if x ∈ P and ω ′tx 6 0 then ωt+1 = ωt + x and t++.
if x ∈ N and ω ′tx > 0 then ωt+1 = ωt − x and t++.
go to 2.

5. If all inputs vectors and outputs are correct, then stop.

In the end, the MPP will separate the input vectors in two classes with weights
describing a line. The weights are changed whenever an extended vector in P or N is
not well classified. The line, essentially, is rotated and translated until it separates the
inputs in the two classes. This learning algorithm adjusts the network’s parameters
(weights) in an optimal manner such that the network reflects the known information
(inputs) and extrapolates to new patterns [Roj96].

When one has convex sets (non-linearly separable regions), one can use many MPPs
in three layers. In the first layers, each of the MPPs computes a linear separation of
the sets (subsets with output "1" or "0")— The MPPs map the input vector to a feature
space[Roj96]. The second layer is an AND MCP for decoding the output of the MPPs
[Kon05], which computes an output value; for example, if MCP outpus are all "1" for
each region. The last layer is an OR MCP that joins the sets.

2.1.3 Layered-Perceptron and Learning

The connection of multiple artificial neurons results in an artificial neural network
(ANN) [Kon05]. ANNs are, in essence, networks of primitive functions. The author in
[Roj96] defines that an ANN, with k neurons, n-dimensional input vector x and m-
dimensional output vector y, is a network function φ evaluated at the point x1 + x2 +
... + xn. The k neurons implement the primitive functions f1 + f2 + ... + fk, which are
use to produce m-dimensional output vector y1+y2+ ...+ym. One can say that ANN
thus behaves as a "mapping machine", capable of modeling a function Φ : Rn → Rm.
The ANN, specifically, does not compute the functionΦ, but it approaches the function
Φ by learning its weights ω based on a training set and a minimization of an objective
function Ep(ω). A training set is a set of sample-tuples (n-dimensional input vectors
x and m-dimensional target vectors t). An objective function Ep(ω) computes the
difference between target vectors t and output vectors y of the ANN in terms of its
weights. After learning, the function Φ will interpolate outputs for new unknown
input vectors recognizing whether a new input vector is similar to the training set
(learned samples) and producing a similar output [Roj96]
The ANNs have different connections or topological configurations; for example, the



2.1 artificial neural networks 13

feed-forward and the feedback topologies [Kon05]. In the feed-forward topologies, the
k neurons are subdivided into l subsets or layers N1,N2, ...,Nl, called hidden layers.
The information flows forwards; that means, nodes in a layer compute some outputs,
and those outputs are then fed as inputs to neurons in posterior layers—the output
from N1 goes as input to N2 and so on [Roj96]. As a result, the computation is well
defined, and there is no need of synchronization. The number of weights between
two layers is the product between the number of neurons n in the first layer and the
number of neurons k in the second layer; that is, the total number of weights between
two layers is mn [Roj96]. In the case of feedback topologies, the ANN have cycles, in
which the output of some neurons at time t are fed back to the same neurons at time
t+ 1, a feedback [Kon05].

2.1.4 Single Layer Perceptron

As a linear classifier, the single-layer perceptron (SLP Figure 2.1.4) is the simplest
feedforward neural network. It separates the input space in two subspaces as a MPP
(see subsection 2.1.2), but it utilizes non-linearity functions as activation functions ϕ(·)
(see subsection 2.1.5) instead of a comparison with a threshold value. Similar to MMPs,
a SLP has a n + 1-dimensional extended-input vector x, and a n + 1-dimensional
extended-weight vector ω.

x0 = +1

x1

x2

x3

xm

ϕ(·)
vk

yk

ωk0 = bkωk1

ωk2

ωk3

ωkm

Figure 2.1.4: Single layer perceptron (SLP) [FFL16]

A SLP implements the primitive function 2.1.5.

Φ(x) = ϕ(ωTx) (2.1.5)



14 fundamentals

with x = [x1, x2, ..., xn, 1]T andω = [ω1,ω2, ...,ωn,ωn+1], and ϕ(·) as the activation
function.

Firstly, a SLP computes a dot product between the extended-input vector x and
the extended-weight vector ω, analogous to the spatial summation of BNNs (see
subsection 2.1.1). Secondly, the neuron computes an output by means of a non-
linearity as the activation function ϕ(·) (see subsection 2.1.5). For adapting the weights
of a SLP, one seeks to minimize an objective function Ep in weight-space. As the
objective function Ep is computed with respect to the weights, one wants, specifically,
the weights for which the objective function is minimal. For that end, a SLP uses an
optimization algorithm, called gradient descend (see subsection 2.1.6).

2.1.5 Activation Function

In the initial examples of MCPs and MPPs, one used the step, a comparison between
the summed inputs and a threshold (see subsection 2.1.2), as the activation function
ϕ(·). However, ANNs utilize non-linearity functions, which take single values and
"squash" them within a finite range [Kon05] by performing a mathematical opera-
tion. The reason for using activation functions is connected with the optimization
algorithm (explained in subsection 2.1.6) for adapting the weights. In essence, the
optimization algorithm requires computations of gradients, and non-linerity functions
are continuous and differentiable [Roj96].

The main non-linearity functions and their derivatives (important for the optimiza-
tion algorithm, see subsection 2.1.6) are [FFL16].

• The sigmoid function: It takes a value and forces it to the range [0, 1] with
interception with y-axis in 0.5. For large negative values, the output becomes "0",
and for large positive values, the output becomes "1".

ϕ(x) = sigmoid(x) =
1

1+ e−x
(2.1.6)

ϕ ′(x) =
e−x

(1+ e−x)2
= ϕ(x) (1−ϕ(x)) (2.1.7)



2.1 artificial neural networks 15

• The tanh function: It takes a value and forces it to the range [−1, 1]. Unlike the
sigmoid, the tanh is zero-centered [FFL16]; in essence, a tanh is a scaled and
translated sigmoid function [Roj96].

ϕ(x) = tanh(x) = 2(sigmoid(x) − 1) =
1− e−x

1+ e−x
(2.1.8)

ϕ ′(x) = tanh ′(x) = (1− tanh2(x)) (2.1.9)

• The ReLU: The Rectified Linear Unit thresholds at zero Figure 2.1.5, proposed by
the authors in [GBB11]. It achieves better performance than the saturating ones,
because the activation function’s response is closer to the biological neuron’s one,
the action potentials see subsection 2.1.1, obtaining sparse output representations
[GBB11]. Besides, using the ReLU is cheaper computationally, since only a subset
of neurons remains active. ReLu controls the number of active neurons, which
become a path between the output and the input; that is, the relation between
the output of activated neurons is linear with respect to the input. This helps,
also, the optimization algorithm, since gradients only flow back on the path of
activated neurons and the remaining ones stay unchanged, see subsection 2.1.6
[GBB11], which supports the conclusion of the authors in [AK12] showing that
the ReLU is faster for training than the saturating non-linearities (Sigmoid and
Tanh).

ϕ(x) = max(0, x) (2.1.10)

ϕ ′(x) =

0 if x 6 0

1 if x > 0
(2.1.11)

• The Leaky ReLU. The function computes a small negative slope α instead of
thresholding to zero as ReLUs.

ϕ(x) =

αx if x < 0

x if x > 0
(2.1.12)



16 fundamentals

f(y) = 0

f(y) = y

y

f(y)

Figure 2.1.5: Rectified Linear Unit [AK12]

ϕ ′(x) =

α if x 6 0

1 if x > 0
(2.1.13)

2.1.6 Gradient Descent (GD)

GD is an optimization algorithm that finds a local minimum of an objective function
by taking steps proportional to the negative gradient of the function. For ANNs, It
repeatedly computes the gradient of an objective function Ep(ω) with respect to the
weights, and it updates the network’s parameters or weights, see equation 2.1.14,
[FFL16].

ωi+1 = ωi − γ∆Ep(ω) (2.1.14)

with ωi the weights of a ANN in step i, ωi+1 the updated weights, γ a constant
parameter, Ep(ω) the objective function, and ∆Ep(ω) equal to.

∆Ep(ω) =
∂Ep(ω)

∂ω
=

[
∂Ep(ω)

∂ω1
,
∂Ep(ω)

∂ω2
, ...,

∂Ep(ω)

∂ωk

]
(2.1.15)

for a k-dimensional weight vector ω
The parameter γ is the step length in the negative gradient direction, called the

learning rate [Roj96]. It is an important parameter since small steps lead to the
expected direction but slowly, and large steps progress faster but it might overshoot
and produce bigger values of Ep(ω) [FFL16]. The objective function Ep(ω) computes
the difference between the target vectors t and the computed output vectors y of an



2.1 artificial neural networks 17

ANN. It can be e.g. the total sum squared error (equation 2.1.16) [Roj96] [LDS+
89] or

the empirical softmax log-loss (equation 2.1.17) [PVZ15].

Ep(ω) =
∑

i=(x,t)∈D

1

2

M∑
m=1

(tmi
− ymi

)2 (2.1.16)

Ep(ω) == −
∑

i=(x,t)∈D

(
e〈ti,xi〉∑

q=(x,t)∈D e
〈tq,xi〉

)
(2.1.17)

The objective function Ep(ω) (Equation 2.1.16 or Equation 2.1.17) is considered
with respect to a training set D (sample-tuples (x, t)). There are three versions of
GD depending on the set D of sample-tuples: It is called simply GD when it takes
the whole sample-tuple set as D. If the GD takes just one random sample-tuple as D
updating the weights sample-tuple by sample-tuple, the GD will be called Stochastic
Gradient Descend. If the GD takes a batch or subset of the sample-tuple set as D
updating the weights just after feeding the batch to the network then the GD will be
called Batch Gradient Descend.

There are, also, other versions of the GD, which add more parameters. For example,
the GD with momentum takes into account previous changes of the weights, see
Equation 2.1.18,

νi+1 = γ1νi − γ2∆Ep(ω)

ωi+1 = ωi + νi+1
(2.1.18)

Or the GD with momentum and weight decay, see Equation 2.1.19. This GD is used
frequently in the networks that this thesis focused.

νi+1 = γ1νi − γ2∆Ep(ω) − γ3γ2ωi

ωi+1 = ωi + νi+1
(2.1.19)

with ωi the weights of a ANN in step i, ωi+1 the updated weights, νi the weight
changes in step i, νi+1 the updated weight changes, γ1 the momentum constant, γ2
the learning rate, γ3 the weight decay, and Ep(ω) the objective function.



18 fundamentals

Example

For a SLP (see subsection 2.1.4) and the total squared error (Equation 2.1.16) as the
objective function Ep(ω) with M = 1, one has:

Ep(ω) =
∑

i=(x,t)∈D

1

2
(ti −ϕ(ω

T
i xi))

2 (2.1.20)

The computation of the gradient ∆Ep(ω) for a set D of sample-tuples (x, t) is:

∂Ep(ω)

∂ω
=

∂

∂ω

 ∑
i=(x,t)∈D

1

2
(ti −ϕ(ω

T
i xi))

2

 (2.1.21)

∂Ep(ω)

∂ω
= −

∑
i=(x,t)∈D

(ti −ϕ(ω
T
i xi))ϕ

′(ωTi xi)xi (2.1.22)

In the Equation 2.1.22, one notices that the gradient of Ep(ω) depends on the
derivative of the activation function or non-linearity ϕ ′(·), see subsection 2.1.5. Thus,
the GD behaves different for each of the non-linearity functions. For example, the
sigmoid saturates at "0" or "1", and its derivative is almost "0". If the gradient is very
small or almost "0", the weights will not change causing that the ANN will not learn
[FFL16].

On the assumption that one takes the derivative of the sigmoid (Equation 2.1.7) as
ϕ ′(·), the final gradient ∆Ep(ω), from Equation 2.1.22, is:

∂Ep(ω)

∂ω
= −

∑
i=(x,t)∈D

(ti − yioutput)yioutput(1− yioutput)xi (2.1.23)

Multilayer Perceptron

A multilayer perceptron (MLP) is an ANN with multiple hidden layers. Its layers are
fully-connected layers since neurons between two layers are completely connected
from each other [FFL16]. The Figure 2.1.6 shows an example of a MLP of 3 layers: n
neurons in the input layer, k neurons in the hidden layer, and m neurons in the output
layer. This MLP has a n-dimensional input vector x, a m-dimensional output vector y,
and a k-dimensional vector z for the output of the hidden neurons. Therefore, it has a



2.1 artificial neural networks 19

kn-dimensional matrix W1 as weights between the hidden layer and the input layer,
and a mk-dimensional matrix W2 as weights between the output layer and the hidden
layer.

Figure 2.1.6: Multi layer perceptron MLP [Roj96]

The MLP in the figure (2.1.6) implements the mapping Φ : Rn → Rm as follows:

z = ϕ(W1 · x) (2.1.24)

y = ϕ(W2 · z) = ϕ(W2 ·ϕ(W1 · x)) (2.1.25)

with x = [x1, x2, ..., xn, 1]T , z = [z1, z2, ..., zk, 1]T , and y = [y1,y2, ...,ym]T .
One notices in the Equation 2.1.25 that the output y is a function composition since

the hidden neuron’s output becomes the input of the last layer neurons. In general,
a MLP represents a chain of function compositions, where output of layers become
inputs of following layers [Roj96], implementing the function Φ. This composition is
important if one wants to update the weights of the MLP for implementing the function
Φ following a training set, because one can not use just the GD (see subsection 2.1.6)
since the hidden neurons do not have target values, as the neurons in the last layer
do (see subsection 2.1.4). However, one can use the chain rule for differentiating a
function composition, and one can implement the GD following the Backpropagation
algorithm (see subsection 2.1.7).



20 fundamentals

2.1.7 BackPropagation

The Backpropagation algorithm uses the GD (subsection 2.1.6) for finding a combi-
nation of weights of a MLP that minimize an objective function [Roj96] such as the
MLP implements the mapping Φ : Rn → Rm. The Backpropagation is divided in
two phases: A forward step and a backward step. In the forward step, sample-tuples
(x, t) are fed to the MLP. The hidden neurons k in the MLP compute their outputs
layer by layer until a final output y is produced. Then, the backward step computes
the gradients with respect to the weights from the final layer to the initial layer—The
gradients are propagated backwards by using successively the chain rule [FFL16]—
and it, finally, updates the weights by taking a fraction of the computed gradient.

Example

For better describing the Backpropagation, one takes the MLP in the Figure 2.1.6,
the total sum squared error (Equation 2.1.16) as the objective function Ep(ω) and a
training set D (sample-tuples (x, t)). First, the MLP sends sample-tuples (x, t) forwards
computing a k-dimensional hidden vector z, and am-dimensional output vector y. The
relations among the three vectors are described in the equations (2.1.24) and (2.1.25).
Second, the Backpropagation implements the backward step; that is, it computes the
gradients for each layer, and it updates the weights following the updating rule of GD
(see Equation 2.1.14). The weight-updates for the MLP are:

W2t+1 =W2t − γ
∂Ep(W1,W2)

∂W2
(2.1.26)

W1t+1 =W1t − γ
∂Ep(W1,W2)

∂W1
(2.1.27)

being W1 a kn-dimensional matrix, and W2 a mk-dimensional matrix.
Each of the weight-update rules has a gradient of the objective function with respect

to each of the weights, in this case all the terms in the matrices W1 and W2. Rewriting
the objective function Ep(ω) (see Equation 2.1.16) in terms of W1 and W2, one has:

Ep(W1,W2) =
∑

i=(x,t)∈D

1

2

M∑
m=1

[tmi
−ϕm(W2 · zi)]2 (2.1.28)



2.1 artificial neural networks 21

Ep(W1,W2) =
∑

i=(x,t)∈D

1

2

M∑
m=1

[tmi
−ϕm(W2 ·ϕ(W1 · xi))]2 (2.1.29)

Based on that, one can see that each of the final neurons adds its quadratic deviation
to the objective function Ep(W1,W2). If we consider each of the quadratic deviations
separately, the gradient of the objective function Equation 2.1.28 with respect to each
of the weights in the matrix W2 will be:

∂Ep(W1,W2)
∂W2

= −
∑

i=(x,t)∈D

(ti − yi)ϕ
′(W2 · zi)zi (2.1.30)

And the gradient of the Equation 2.1.29 with respect to W1 is:

∂Ep(W1,W2)
∂W1

= −
∑

i=(x,t)∈D

M∑
m=1

[(ti − yi)ϕ
′(W2 · zi)W2ϕ ′(W1 · xi)xi]m (2.1.31)

Rewriting the Equation 2.1.31 to Equation 2.1.32, one notice that the factors multi-
plying the vector zi in the Equation 2.1.30 are also present in Equation 2.1.32. This
factors are called local gradients or error signals of layer inputs with respect to layers
outputs [FFL16]. For example, the local gradient of the output-layer is δy.

∂Ep(W1,W2)
∂W1

= −
∑

i=(x,t)∈D

M∑
m=1

[(ti − yi)ϕ
′(W2 · zi)︸ ︷︷ ︸

δy

W2ϕ
′(W1 · xi)xi]m (2.1.32)

The equations (2.1.30 and 2.1.32) are described with respect to local gradients:

∂Ep(W1,W2)
∂W2

= −
∑

i=(x,t)∈D

δyizi (2.1.33)

∂Ep(W1,W2)
∂W1

= −
∑

i=(x,t)∈D

M∑
m=1

[δymiW2mk ]ϕ
′(W1 ·xi)xi = −

∑
i=(x,t)∈D

δzixi (2.1.34)



22 fundamentals

with,

δyi = (ti − yi)ϕ
′(W2 · zi) (2.1.35)

δzi =

M∑
m=1

[δymiW2mk ]ϕ
′(W1 · xi) (2.1.36)

The local gradients are computed by using the derivatives of the activation functions
(see subsection 2.1.5). Since the derivatives of the activation functions are expressed in
terms of their outputs (the neurons outputs), the local gradients are also expressed in
terms of the neurons outputs. Thus, the order of the Backpropagation is relevant: First,
the neurons outputs are computed, and then the gradients. In fact, the Backpropagation
propagates backwards the local gradients or error signals—The gradient of a hidden
layer depends on the gradient of the next layer.

Example local gradients

If one uses the sigmoid as an activation function (Equation 2.1.6), one will have
the same expression as Equation 2.1.23 for each of the neurons. By organizing the
expressions in matrices, the local gradients will become [Roj96]:

δyi = diag(yi)[Imxm − diag(yi)](ti − yi)
′ (2.1.37)

δzi = diag(zi)[Ikxk − diag(zi)]W
′
2δyi (2.1.38)

with,

diagij(v) =

vi i = j

0 otherwise
(2.1.39)

And the weight-updates

W2t+1 =W2t − γδyizi (2.1.40)



2.1 artificial neural networks 23

W1t+1 =W1t − γδzixi (2.1.41)

In general for a MLP with L layers (N1,N2, ...,NL), weight matrices Wl,l+1 for
l = 1, 2...,L − 1, the total sum squared error as objective function, and using the
sigmoid as activation function, the local gradients are:

δl =

 diag(yli)[Imxm − diag(yli)][ti − yli ]
′ l = L

diag(yli)[Iklxkl − diag(zli)]W
′
l,l+1δl+1 l = 1, 2, ...,L− 1

(2.1.42)

And the weight-updates

{
Wlt+1 =Wlt − γδlizli l = 1, 2, ...L (2.1.43)

In addition to BackPropagation, variations have been used to enhance the training
learning, such as, Backpropagation with momentum, QuickProp, Resilient Propagation,
etc. The Backpropagation with momentum takes into account the previous change of
weights (see Equation 2.1.44).

ωi+1 = ωi − γ∆Ep(ω) +α∆ωi−1 (2.1.44)

It helps to avoid oscillations of the gradient direction [Roj96], and to eliminate the
problem of trapping at local minima [Kon05]. The parameter α is called momentum
rate.

2.1.8 Convolutional Neural Networks

Convolutional Neural Networks (CNN), first proposed by [FM82], are reciprocal to
ANNs (see subsection 2.1.3); that is, CNNs consist of neurons that have parameters:
learnable weights and biases, which are organized in a hierarchical structure (layers).
They map their input into a more compact representation, or they classify or distribute
their input into classes, depending on their objective function [PVZ15]. However, their
structure is partially distinct [AK12]: their neurons are 3D filters, and their layers are
organized in different kinds. Neurons in a CNN are 3D filters that activate depending
on their inputs. They are connected just to a small region, called receptive field [Roj96],



24 fundamentals

of previous neuron’s activations. They compute a convolution operation 1 between the
connected-inputs and their internal parameters, and they get activated depending on
their output and a non-linearity function 2.1.5 [FFL16] [FM82].

Figure 2.1.7: A neuron in a CNN [FFL16]

The advantage of CNNs over ANNs is that they assume inputs are images (width,
height, channel) [LKF+

10]. They allow to encode certain properties of images into their
architecture; their neurons activate when they "see" particular features extracted at
different locations in the image, see Figure 2.1.8; and they are, also, robust against shifts
in position and feature distortions [FM82]. CNNs arrange neurons in layers with a 3D
shape, see Figure 2.1.7, called convolutional layers. Each of the layers gets a 3D-input
volume, called feature-map, and transforms it to another by means of convolutions
and a non-linearity [FFL16] [LKF+

10]. By stacking layers and downsampling their
outputs, CNNs extract more complex and abstract feature-maps, which are, at the
same time, invariant to distortions and translations [LCDH+

90] [LDS+
89]. The last

layers of CNNs, see Figure 2.1.8, are standard fully connected layers, same as the
ANNs (Equation 2.1.6). These layers compute final descriptors of the input images,
which can be considered as global representations of images, or they classify the input
images into classes depending on a objective function.

CNNs have less parameters than ANNs because of the neuron’s receptive fields
and the convolutional operation— since, one slides the same filter through the entire
feature-input. Thus, CNNs are easier to train than ANNs [AK12]. To learn the
internal parameters or weights of a CNN, one uses the Backpropagation algorithm (see
subsection 2.1.7) with Batch Gradient Descend (see subsection 2.1.6) as for the ANNs.
In the latest works, authors have used Backpropagation with momentum and weight
decay as the learning algorithm, see Equation 2.1.19. The learning algorithm uses
a training-image set of sample image-tuples (I, t) composed by images (I) and their
respective labels (t). It takes, for example, the Softmax log-loss (Equation 2.1.17) as

1 In image processing, a convolution is the process of multiplying the pixel’s and its neighbor’s intensities
by a kernel or small matrix, which is slided through the entire image along the spatial dimensions.



2.1 artificial neural networks 25

Figure 2.1.8: A Convolutional Neural Network CNN [FFL16]

objective function (see subsection 2.1.6), where the target vector t is the ground-truth
class identity [PVZ15].

Architecture

A CNN is a feedforward network composed by layers, as an ANN (2.1.3), that trans-
form an input image from the original pixel values to final class scores by forwarding
it layer by layer. Its layers are not all fully-connected, but they are ,in general, of four
types:

Input layers

The input is, typically, RGB images (I). One considers them as 3D feature maps of size
(Width,Height,Channel).

Convolutional layers

They can be interpreted as holding neurons arranged in a 3D volume. It consists of
learnable filters (neurons) that give weights to some specific type of feature at some
spatial position in the feature-map input X producing a feature-map of weighted



26 fundamentals

summations Y. Each of the neurons computes convolutions with small regions in X,
see (Equation 2.1.45) [LKF+

10].

yj = bj +
∑
xi∈X

wij ∗ xi (2.1.45)

with yj ∈ Y, j = 1, 2, ...,D, and D the depth of the convolutional layer.
Each filter wi,j is a 3D matrix of size [F× F×Cx]. Its size is determined by a chosen

receptive field (F), see Figure 2.1.7 [FFL16], and its feature-map input’s depth (Cx); for
example, if the receptive field is 5 pixels and the feature-map input X is a [32× 32× 3]
RGB image, then the filter’s size will be [5, 5, 3]. One can say that the filter’s size
represents the number of weights that a neuron has connecting to a region in the
input.

The convolutional operation performs similar to the spatial summation of BNNs
(subsection 2.1.1), collecting information coming from previous feature-maps. A single
convolutional layer produces 2-dimensional weighted feature-maps yj by convolving
each of its filters (see Figure 2.1.9) along the spatial dimensions (width and height)
of the feature-map input X—each of the 2-dimensional weighted feature-maps yj is
a weighted summation per filter at every spatial position [Roj96]. As convolutional
layers use one filter along the spatial dimensions of the input, one can say that
the parameters per filter are shared along those dimensions — detecting the same
feature along the height and the width—, what the author in [LDS+

89] called weight
sharing. The final 3D weighted feature-map output Y of the convolutional layer
corresponds to the stacking of the 2-dimensional weighted feature-maps yj along the
depth dimension D of the layer [FFL16] [LDS+

89]. The size of the weighted feature-
map output [Wy,Hy,Dy] depends on three hyper-parameters of the layer: the depth
D, stride S, and zero-padding P. The D parameter represents the number of neurons
along the depth dimension of the convolutional layer. The S is the number of pixels
that one slides each filter along the width and height of a feature-map input, and P
is the number of zeros in the border of a feature-map input to fit neurons along the
spatial dimensions of the feature-map [FFL16].

Wy =
(Wx − F+ 2P)

S
+ 1 (2.1.46)

Hy =
(Hx − F+ 2P)

S
+ 1 (2.1.47)



2.1 artificial neural networks 27

Figure 2.1.9: Filters in a convoluional layer [FFL16]

and Dy = D

The number of parameters of a convolutional layer in a CNN in comparison with a
fully-connected layer of an ANN for dealing with images is lesser since each of the
filters is just connected with a small portion of the feature-map input (given by the
receptive field), and the weight sharing along the spatial dimensions of the feature-map
input [LDS+

89]. For example, if one has a feature-map input of size [32x32x3], and
a receptive field of F = 5, the number of parameters per neuron in a fully-connected
layer will be (32 ∗ 32 ∗ 3) + 1(bias) = 3073, and the number of parameters for a neuron
(filter) in a convolutional layer will be (5x5x3) + 1(bias) = 76 [FFL16]. This reduction
of parameters is an advantage of CNNs because their generalisation performance
is improved; that is, a learned CNN will not just model the training data, but also,
they will generalize new data more accurate than ANNs, in other words, they avoid
overfitting, and the learning speed is increased [LDS+

89].
By stacking convolutional layers, and downsampling feature-maps, filters in each

layer will learn to give more weight and to activate to different patterns: from simple
pixels to edglets (oriented-edges or blob of colors), edglets to motifs, and eventually,
from motifs to more complex patterns; such as, parts of faces, or parts of cars, see
Figure 2.1.10, [FFL16]. Since neurons are connected in a hierarchical structure, the
deepest neuron’s receptive fields cover bigger areas from the image input. Besides,
the deepest neurons activate to combination of features from earlier feature-maps in
previous convolutional layers [FM82]. As a consequence, the activation of deepest
neurons are not affected by shift variations and feature deformations in the image
input [FM82].

Activation layer or Non-linearity Layer

It is a set of activation functions ϕ(·) (subsection 2.1.5) for each of the neurons in the
convolutional layer, see Equation 2.1.48. They map a weighted feature-map Y from a
convolutional layer to a feature-map of activations Yact, see Equation 2.1.48. Initially,
sigmoid (Equation 2.1.6) and tanh (Equation 2.1.8) functions were used as activation



28 fundamentals

Figure 2.1.10: Feature-maps in a CNN [TYRW14]

functions, but, recently, ReLUs (Equation 2.1.10) have shown better performance for
training CNNs [AK12].

yjact = ϕ(yj = bj +
∑
i

wij ∗ xi) (2.1.48)

with yjact ∈ Yact

Pooling layers

They reduce the spatial size of the feature-maps by downsampling. They are placed
among different convolutional layers to reduce the number of parameters in the
network [FFL16], and to induce a slightly translation robustness. It takes small squared
regions of size Fp with a stride Sp along the spatial dimensions of the feature-map
input, and it performs a downsampling operation per region. This operation can be
the average over the regions [LKF+

10], or the maximum value in each region [FFL16].
The final size of the downsampled feature-map is [Wp,Hp,Dp] for a feature-map input
Yact, see Figure 2.1.11.

Wp =
(Wy − F)

Sp
+ 1 (2.1.49)

Hp =
(Hy − F)

Sp
+ 1 (2.1.50)

and Dp = Dy



2.1 artificial neural networks 29

Figure 2.1.11: Pooling layer [FFL16]

Fully-connected layers

These layers have the same topology of a MLP, see Equation 2.1.6, or one can see them
as a convolutional layer but their filters are fully connected to a feature-map input
[FFL16]. Those layers perform a matrix multiplication with the feature-map input, add
a bias, and they use non-linearity function, see subsection 2.1.5, to get activated.





3
R E L AT E D W O R K

Face recognition is a specific case of object recognition. Its goal is the identification of
unknown face images when a set of known face images is given [BHK97]. However,
face recognition is not a simple task, because images of human faces have multiple
variations, e.g. different colors, poses, expressions, and sizes, or they can be affected
by illumination conditions and occlusion [AR15]. A face recognition model must be
invariant to the aforementioned variations, but simultaneously it must be sensitive
to variations among faces from different persons (inter-class variations). Ideally, Face
recognition aspires to work similar to human perception—humans can recognize a big
number of faces through their life, identifying known faces after years of separation,
or under extreme occlusion conditions (with beards, glasses, make-up, or even just by
looking at small parts of the faces) [TP91]. Today, Face recognition has a great variety
of applications such as robot-human interactions, control by gesture, security, people
tracking, film industry (enhancement and noise reduction in films); thus, it is an active
topic in the computer vision community [AHP06].

This chapter covers, firstly, four face recognition methods that are called, today in
the literature "shallow methods". Secondly, two CNNs, see subsection 2.1.8, for vision
task that introduce two architectures for object recognition, which are not specifically
for face recognition, but they are the basis of the approach that this thesis presents.

3.1 shallow methods for face recognition

The term "Shallow methods" in face recognition is used for calling all the algorithms
that are not based on machine learning—systems that learn automatically from data—,
since they extract face-image representations by applying handcrafted descriptors
[PVZ15]. Following, four methods are introduced: Landmark based, Eigenfaces,
FisherFaces, and LBP.

3.1.1 Landmark based

One of the first and the most intuitive approaches of face recognition methods is
based on facial landmark detection. The author in [Kan73] built face descriptors

31



32 related work

by concatenating geometrical information (area, position in an image, shape, and
curvature), manually, extracted from more than 30 feature points, face landmarks, in
face-binary images—a face image is binarised by applying a laplacian operator. The
face landmarks were: top of the head, cheeks and sides of face, nose, mouth and
chin, chin contour, face-side lines, nose lines, eyes, and face axis. Later, the authors
in [CEL87] built face descriptors by automatically measuring image coordinates and
outlines of four face landmarks: the head outline, lips, eyebrows and eye centers, from
gray-scale face-images.

The landmark based algorithms performed the recognition by computing the Eu-
clidean distance between a query image descriptor and the descriptors from a set of
training face-images, and by taking the identity of the face-image that corresponds to
the shortest Euclidean distance. Nevertheless, they recognize faces in images taken
under specific conditions; besides, they required accurate registration of the face
landmarks, and they were not notably robust against occlusion, poses, expressions,
and illumination since geometrical features might not carry enough information for
the task [Kan73].

3.1.2 EigenFaces

The Eigenfaces method is a holistic algorithm of face recognition, which consid-
ers face images as points in a high-dimensional image space, and it finds a lower-
dimensional feature space, called face-space, where recognition becomes easier. The
low-dimensional space is spanned by the most significant variations among a set of
training face images; that is, the directions with the greatest variance across a set of
training face images span the face-space[TP91] [BHK97]. These directions correspond
to the eigenvectors of the training set that characterize the variation among all the face
images. The eigenvectors and, thus, the face-space are computed by using principal
components analysis (PCA) over normalized face images.

For recognizing faces:

1. One projects query face images into the face-space obtaining lower-dimensional
representations of the queries.

2. One obtains reconstructions of the queries from the lower-dimensional represen-
tations.

3. One compares the distances among the reconstructed query images, the known
reconstructed training images, and the face-space.



3.1 shallow methods for face recognition 33

By using a lower-dimensional representation, the recognition becomes fast, simple,
accurate (under constrained conditions: straight views, maximal 45° face rotation, and
indoor images), and robust to small changes in the face images [TP91].

Mathematically, the EigenFaces method finds the eigenvectors of the covariance
matrix from a set of training face images, where each face image corresponds to a
vector in a high dimensional space [TP91]. The Eigenfaces steps, which were presented
by the authors in [TP91], follow:

Training set

Collect a set of training images from M known faces, see Figure 3.1.1.

(a) (b) (c) (d)

Figure 3.1.1: Some samples from a set of two classes

Principal Component Analysis

Compute the principal components of the covariance matrix from the training set.

• Consider a face image I(x,y) ∈ R[N×N] as a vector γ ∈ R[N2×1].

• Consider the training set as a matrix Γ = γ1,γ2, ...,γM ∈ R[N2×M], and the
average face Ψ = 1

M

∑M
m=1 γm.

• One computes the vectors that best describe the variation of the training set. For
that, one obtains the covariance matrix C from the training matrix Γ .

C =
1

M

M∑
m=1

[Γm −Ψ][Γm −Ψ]T =
1

M

M∑
m=1

ΦmΦ
T
n = AAT (3.1.1)

with normalized images Φ = Γ − Ψ ∈ R[N2×1], and A = [Φ1,Φ2, ...,Φm] ∈
R[N2×M].



34 related work

The needed directions of the lower-dimensional space are, specifically, the eigen-
vectors Υ from the matrix C, which are given by:

CΥ = ΥΛ⇒ AATΥ = ΥΛ (3.1.2)

being Λ ∈ R[N2×N2] the eigenvalues of C.

As the matrix C is of size [N2 ×N2], one can compute N2 number of eigenvec-
tors Υ and eigenvalues Λ. However, the computation of these eigen- vectors
and values is expensive and not necessary, because one has just M number of
known images; and M being smaller than N2 (M << N2), there will be only
M meaningful eigenvalues, and the remaining ones will be zero. By taking
the matrix L = ATA ∈ R[M×M], smaller than matrix C, one can find easier
the M meaningful eigenvectors Υ of C. This matrix L has a M eigenvectors
ΥL ∈ R[M×M] and eigenvalues ΛL ∈ R[M×M] that are computed by:

LΥL = ΥLΛL ⇒ ATAΥL = ΥLΛL (3.1.3)

The eigenvectors ΥL ∈ R[M×M] of L and the eigenvectors Υ ∈ R[N2×N2] of C
are related. Pre-multiplying the Equation 3.1.3 by A, see Equation 3.1.4, one
will observe that the eigenvectors Υ of C are equal to AΥL. So, it is possible to
compute easily the eigenvectors of the covariance matrix C by using a smaller
matrix L.

AATAΥL = AΥLΛL 7→ AAT︸ ︷︷ ︸
C

AΥL︸︷︷︸
Υ

= AΥL︸︷︷︸
Υ

ΛL (3.1.4)

Selection of Eigenvectors

Select M ′ eigenvectors Υ ′L ∈ R[MxM ′] corresponding to the largest eigenvalues of ΛL
as the the principal components, and compute the M ′ eigenvectors Υ ′ ∈ R[N2xM ′] of
C by:

Υ ′ = AΥ ′L (3.1.5)



3.1 shallow methods for face recognition 35

These eigenvectors Υ ′ ∈ R[N2×M ′] have the same dimensionality as the training
face images, and they can be seen as face images; in fact, they are called Eigenfaces
[TP91] [BHK97]. For example, the (Figure 3.1.2) shows four eigenfaces of a training
set of 300 face-images (see some samples in Figure 3.1.1). The M ′ larges eigenvalues
span a M’-dimensional space that best describes the set of training face-images. One
can say that these eigenvectors maximize the determinant of the total variance matrix
of the projected face images [BHK97].

(a) (b) (c) (d)

Figure 3.1.2: Four Eigenfaces from the sample set of 300 face-images

Projection into the Face-space

Compute the projection of a query face image Γquery ∈ R[N2×1] into the M’-dimensional
space.

Ωquery = Υ ′T (Γquery −Ψ) (3.1.6)

The vector Ωquery ∈ R[M ′×1] describes the contribution of each eigenface in repre-
senting the query face image, treating the eigenfaces as a basis for representing face
images in the M ′-dimensional space; in other words, Eigenfaces method transforms
the query image into a descriptor Ωquery.

Reconstruction of face-images

Compute the reconstruction Φreconstructed ∈ R[N2×1] of the query face image
Γquery ∈ R[N2x1] by projecting the descriptor Ωquery ∈ R[M ′×1] back to the high-
dimensional space by:

Φreconstructed = Υ ′Ωquery (3.1.7)

For example, The Figure 3.1.3 shows the reconstruction of the face images in
Figure 3.1.1.



36 related work

(a) (b) (c) (d)

Figure 3.1.3: Reconstruction of the face images (see Figure 3.1.1)

Discarding non face-images

Determine whether the query image γquery is a face image or not by comparing
the euclidean distance ε between the reconstructed face image Φreconstructed and
the zero-normalized image vector Φquery, see Equation 3.1.8, with a threshold value
θepsilon. If ε is smaller than the threshold θepsilon, the query image will be consid-
ered as a face image.

ε2 = ‖Φquery −Φreconstructed‖2 (3.1.8)

with Φquery = Γquery −Ψ.

Classification of face-images

If the query image is a face image, one will, then, determine which class the query
image belongs to. For that end, one computes the Euclidean distance εk, see Equa-
tion 3.1.9, between the descriptor Ωquery ∈ R[M ′×1] and the average descriptors,
Ωk ∈ R[M ′×1] for k = 1, 2, ...,K, of a batch of face images per class from the training
dataset with K classes, and one compare it with a threshold θk.

ε2k = ‖Ωquery −Ωk‖2 (3.1.9)

If min(εk) is smaller than θk, then the query face image will belong to class k.
Otherwise, if min(εk) is greater than θk, then the query face image will be classified
as unknown; if required, this unknown image could become part of the training set as
a new class, in which case, it would be necessary to recompute the eigen- vectors and
values [TP91].

As a drawback, the Eigenfaces method does not consider the class labels of the
training images, so it includes also intra-class variance—different facial expressions or



3.1 shallow methods for face recognition 37

viewing directions per class— in the variance matrix C that is unwanted. This intra-
class variance is irrelevant information for recognition purposes [BHK97]. Besides,
there is not only variation due to differences among faces, but also due to illumination.
These variations are even as large as the variations of faces, and they could become
eigenvectors of C; thus, they become part of the set Eigenfaces [BHK97].

3.1.3 FisherFaces

The Fisherfaces method is another holistic method that tries to overcome the drawbacks
of Eigenfaces, see subsection 3.1.2, for creating a face recognition technique that is,
particularly, invariant to illumination changes (intensity, and direction of light sources)
and face expression variations [BHK97]. As the Eigenfaces method, Fisherfaces method
finds a basis of a low-dimensional space for representing face-images, and thus,
for executing proper face recognition tasks. Fisherfaces method uses the Linear
Discriminative Analysis, which minimizes the intra-class variance, and maximizes the
inter-class variance of a set of training face images with a certain number of classes;
in general, face images from different classes are separated as far as possible—as
Eigenfaces method does—, and face images from the same class are grouped together
[BHK97]. Fisherfaces finds an optimal projection by maximizing the ratio between the
inter- and intra-class variations of the training face images. For that end, the authors in
[BHK97] define two variance matrices: The inter-class variance SB and the intra-class
variance SW , as follows.

Consider a face image I(x,y) ∈ R[N×N] as a vector γ ∈ R[N2×1], a training set of
M face-images Γ = γ1,γ2, ...,γM ∈ R[N2×M], and the average face Ψ = 1

M

∑M
m=1 γm.

The inter-class variance SB ∈ R[N2×N2]

SB =

K∑
k=1

Nk(Ψk −Ψ)(Ψk −Ψ)
T (3.1.10)

with K the number of classes, Nk number of samples per class k, and Ψk ∈ R[N2×1]
the mean image per class k. And the intra-class variance SW ∈ R[N2×N2]

SW =

K∑
k=1

∑
Γi∈k

(Γi −Ψk)(Γi −Ψk)
T . (3.1.11)



38 related work

The optimal projection Υopt is chosen as the matrix with orthonormal columns
which maximizes the ratio of the determinant of the inter-class variance matrix to the
determinant of the intra-class variance matrix of the projected training face-images.

Υopt = argmax

∣∣∣∣ ΥTSBΥΥTSWΥ

∣∣∣∣ (3.1.12)

with Υopt = [Υ1,Υ2, ...,Υm] ∈ R[N2×m] the m = K− 1 eigenvectors of SB and SW
corresponding to the largest K− 1 eigenvalues Λopt, such that:

SBΥopt = SWΥoptΛopt (3.1.13)

Unfortunately, the SW matrix is singular because its rank is at most M−K, and the
number ofM samples is smaller thanN2 (M << N2). So, it is necessary, first, to reduce
the dimensionality of the training face-images by projecting them to a lower-dimension
space M− K in which SW is not singular, and second, to apply the Fisher’s Linear
Discriminant (FLD), see Equation 3.1.12, for reducing them a to K− 1-dimension space.
This method, in two steps, is formally called Fisherfaces [BHK97]. It follows,

1. Dimensionality reduction: The training face-images are projected to a M− K-
dimensional space by using the standard PCA, as Eigenfaces does subsec-
tion 3.1.2. More compactly written:

Υpca = argmax
∣∣ΥTCΥ∣∣ (3.1.14)

with matrix C ∈ R[N2×N2] the covariance of the training set, see Equation 3.1.1,
and Υpca ∈ R[N2×(M−K)] the N2-dimensional eigenvectors of C corresponding
to the largest M−K eigenvalues.

2. Standard FLD: Following the Equation 3.1.12

Υfld = argmax

∣∣∣∣∣ ΥTΥTpcaSBΥpcaΥΥTΥTpcaSWΥpcaΥ

∣∣∣∣∣ (3.1.15)

with Υfld ∈ R[(M−K)×(K−1)] the M−K-dimensional eigenvectors corresponding
to the largest K− 1 eigenvalues.



3.1 shallow methods for face recognition 39

The final projection Υopt ∈ R[N2×(K−1)] is:

ΥTopt = Υ
T
fldΥ

T
pca (3.1.16)

As the Eigenfaces, see subsection 3.1.2, these K − 1 eigenvectors with the same
dimensionality of the training face-images N2 can be considered, as well as, face-
images, called Fisherfaces. The Figure 3.1.4 shows five examples of Fisherfaces from
a dataset of 300 face images and 14 classes (persons)— the same examples shown
in Eigenfaces, see Figure 3.1.1. These descriptors span a K− 1 dimensional space,
where face-images from the same class (person) are projected closes each other, while
face-images from different classes are projected as far as possible [BHK97].

(a) (b) (c) (d) (e)

Figure 3.1.4: Five examples of Fisherfaces

The Fisherfaces method surpasses Eigenfaces. It projects face-images to a low-
dimensional space, augmenting the inter-class variance and decreasing the intra-class
variation, being easy to compute and robust against lighting and face expressions.
However, Fisherfaces descriptors are not robust against partial occlusion.

3.1.4 Local Binary Pattern

Holistic methods, for solving the problem of face recognition e.g. Eigenfaces and
Fisherfaces, treat input data as a vector in a high-dimensional space, and they ex-
tract a lower-dimensional subspace, which preserves discriminative information for
recognition [FFL16]. However, this discriminative information might be generated
by external sources, or they do not contain spatial information. Besides, methods
using the complete high-dimensional image as input require high machine resources,
and they are time consuming. As a necessity, extracting local features, from images
without using the whole image as a high-dimensional vector, becomes important.
Following that point, the authors in [AHP06] present a method for obtaining face
descriptors based on local texture features. They use a texture operator in small
regions of face-images to obtain, what the authors call, LBP-images, showing that face



40 related work

images are compositions of textures: flat areas, spots, lines, and edges. Then, they
combine the spatial information of the small regions. As a result, they extract face
descriptors that are more robust against illumination variation and partial occlusion,
and computationally cheaper than EigenFaces and FisherFaces [doc16].

The texture operator, used by [AHP06], is the local Binary Pattern (LBP operator).
This operator is a highly discriminative texture descriptor that is invariant to gray level
changes, and it is computational efficient [AHP06]. It encodes edge information in a
binary vector, by thresholding intensity values of pixels in small squared or circular
grids, mostly grids of 3x3 pixels; most specifically, it compares the intensity value of
center pixels in grids of an image with intensity values of its pixel neighbors. If the
intensity of the center pixel is greater than or equal to its neighbor’s, then it will code
a ’1’, otherwise it will code a ’0’. These bits are organized in a binary vector with
an specific order depending on the direction of comparisons (see Figure 3.1.5). As a
result, one gets a binary number for each pixel in the center of the selected grid, e.g
11001111 for a grid 3x3. The binary numbers can be represented as decimal numbers,
which are used for creating a new image, called LBP image (see LBP images from the
four samples in Eigenfaces Figure 3.1.6).

Figure 3.1.5: Example of the LBP operator [AHP06]

To compute the face descriptor, the authors in [AHP06] follow:

1. LBP image computation: One compute a LBP image by applying the LBP
operator, see Equation 3.1.17, to center pixels Xc = (xc,yc) in a circular grid,
given by P number of pixel neighbors Xp = (xp,yp) and a radius R, slided
through a face-image.

LBP(Xc) =

P∑
p=0

2p · S(IXp − IXc) (3.1.17)



3.1 shallow methods for face recognition 41

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.1.6: Let take some samples from a set of 300 face-images

with,

S(x) =

1 ifx > 0

0 otherwise
(3.1.18)

the image coordinate of the neighbors Xp = (xp,yp) for p = 1, 2, ...,P that are
computed by,

xp = xc + Rcos(
2πp
P ) p = 1, 2, ...,P

yp = yc + Rsin(
2πp
P ) p = 1, 2, ...,P

(3.1.19)

and IX the intensity of a pixel X with image coordinates (x,y) [OPM02].

The circular grid’s size is determined by the radius R and the number of neighbor
pixels P, see Figure 3.1.7. If the computed image coordinates of a neighbor pixel
Xp are not integers, one might interpolate its intensity value—e.g. one could use
the bilinear interpolation, [doc16].

2. Adding spatial information: The LBP image is divided in m local regions. For
each region i = 1, 2, ...,m, one computes its histogram Hi, and one builds local



42 related work

Figure 3.1.7: Different circular grids: (P = 8,R = 1), (P = 16,R = 2), (P = 8,R = 2) respectively
[AHP06]

descriptors that are important for keeping the spatial relations in faces as they
do not have the same texture. The global or final descriptor is the concatena-
tion of the m histograms LBPHI = [H1,H2, ...,Hm], called Local Binary Pattern
Histogram (LBPH) [AHP06]. This final descriptor is more robust against illumi-
nation and pose variation than holistic methods, e.g. Eigenfaces or Fisherfaces.

For recognition tasks and having computed the LBPH descriptor for a set of N
training face images LBPHtraining = [LBPH1LBPH2, ...,LBPHN], one computes dis-
tance measurements among the set of training LBPHtraining and the LBPHquery of a
query face image, and one selects the persons identity corresponding with the smallest
distance [doc16].

3.2 deep cnns for vision tasks

Having introduced the ANNs (see subsection 2.1.3), CNNs (see subsection 2.1.8),
and their learning method (see subsection 2.1.7), this section introduces the deep
CNN architectures, which are the basis for the face recognition CNN architecture
that is used in this thesis. The next architectures are not thought, specifically, for
face recognition, but for general object recognition. Deep CNNs are models that
are designed for complex object recognition. These CNN have enormous learning
capacities, encoding large and challenging datasets—those datasets consist of millions
of images—, showing excellent results in object recognition. They are named deep,
because they are composed of a large number of layers.

3.2.1 AlexNet

The authors in [AK12] trained a large CNN for ILSVRC−2012 competition (classifica-
tion of 1.2 million of images in 1000 classes) [RDS+

15]. Their CNN has 5 convolutional
layers, 3 fully-connected layers, ReLU layers, and 3 overlapping pooling layers, see



3.2 deep cnns for vision tasks 43

Figure 3.2.1: AlexNet architecture [AK12]

Figure 3.2.1. They were the first to combine CNNs, ReLUs, Pooling, and Dropout in a
deep architecture for computer vision, which is, also, trained supervised on a large
dataset. They found that a CNN with ReLUs trains six times faster than a CNN with
sigmoids or tanh activation functions. Also, the authors utilized a normalisation layer
after the first and second convolutional layers, called Local Response Normalisation,
that implements a lateral inhibition in layers, helping generalization. Using overlap-
ping pooling layers improved the performance of the Alexnet; moreover, the authors
observed that their model does not tend to overfit when using these pooling layers.
The last fully-connected layer implements a 1000−way Softmax, see Equation 2.1.17,
producing a distribution over 1000 class labels.

The authors divided the filters and their feature-maps in two GPUs. The filters in
second, fourth, and fifth convolutional layers are connected just to filters in the same
GPU; opposite case, the filters in third convolutional layer and fully-connected layers
are connected to their whole input feature-map. The layers and their properties are
summarized in Table 3.2.1.

An initial drawback of the Alexnet—and, for now on, a big problem of large CNNs—
is the overfitting. This CNN has 60 millions of parameters, and even though one
has 1.2 millions of images for training, the number of parameters is huge. So, it is
mandatory to add techniques that help CNNs to overcome overfitting. For example,
the authors of Alexnet utilized two techniques: Data Augmentation, and Dropout.
Data augmentation seems the most obvious choice—the idea is to enlarge the training
set. Pointedly, they resized the input training images to [256× 256], and they generated
[224× 224] random translated, and reflected patches from those images. For testing,
they resized the input images to [256× 256], and they computed 10 predictions: from
five [224× 224] patches, and their mirroring; specifically, the five patches are taken



44 related work

Layer Properties
Input [224× 224× 3]

1 Convolutional in 2 GPUs D = 48 Filters of size [11× 11× 3] per GPU, S = 4

Local Response Normalization

Pooling S = 2

2 Convolutional in 2 GPUs D = 128 Filters of size [5× 5× 48] per GPU

Local Response Normalization

Pooling S = 2

3 Convolutional in 2 GPUs D = 192 Filters of size [3× 3× 256] per GPU

4 Convolutional in 2 GPUs D = 192 Filters of size [3× 3× 192] per GPU

5 Convolutional in 2 GPUs D = 128 Filters of size [3× 3× 192] per GPU

1 Fully-connected D = 2048 per GPU

2 Fully-connected D = 2048 per GPU

3 Fully-connected (Softmax) D = 1000 per GPU

Table 3.2.1: Alexnet’s layers [AK12]

from the four corners and the center of the input image—this testing technique will
be studied for face recognition purposes in this thesis. Moreover, they modified
the RGB values of the training images; precisely, they computed the eigenvectors
and eigenvalues of the training image set by performing the PCA method, and they
added multiples of the eigenvectors proportional to the eigenvalues and a random
variable. The second technique was the Dropout. It consist in shutting down neurons
in the forward pass with a certain probability (mostly 50%). Dropout reduces strongly
overfitting; nevertheless, training iterations increase.

Alexnet was trained using SGD, see subsection 2.1.6, with momentum and weight
decay, see Equation 2.1.19, with parameters γ1 = 0.9, γ3 = 0.0005, and a variable γ1
learning rate starting from γ2 = 0.01 and decreased by 10, when the validation error
stopped decreasing. Alexnet achieved top−1 test error rate of 37.7%, and top−5 test er-
ror rate of 17.0%, becoming the best model of the ILSVRC−2012 competition [RDS+

15]
with almost 10% difference with the second and third models of the competition.

3.2.2 VGG

The authors in [SZ15] studied the performance of CNNs when increasing their depth;
that means, when CNNs have many convolutional layers. They trained six CNNs



3.2 deep cnns for vision tasks 45

VGG configuration

A A-LRN B C D E

11 weight layers 11 weight layers 13 weight layers 16 weight layers 16 weight layers 19 weight layers

Input layer [224× 224× 3]images

1 convs 1 convs LRN 2 convs 2 convs 2 convs 2 convs

(D=64, F=3) (D=64, F=3) (D=64, F=3) (D=64, F=3) (D=64, F=3) (D=64, F=3)

Max Pooling

1 convs 1 convs LRN 2 convs 2 convs 2 convs 2 convs

(D=128, F=3) (D=128, F=3) (D=128, F=3) (D=128, F=3) (D=128, F=3) (D=128, F=3)

Max Pooling

2 convs 2 convs LRN 2 convs 2 convs 3 convs 4 convs

(D=256, F=3) (D=256, F = 3) (D=256, F=3) (D=256, F=3) (D=256, F=3) (D=256, F=3)

1 conv

(D=256, F=1)

Max Pooling

2 convs 2 convs LRN 2 convs 2 convs 3 convs 4 convs

(D=512, F=3) (D=512, F = 3) (D=512, F=3) (D=512, F=3) (D=512, F=3) (D=512, F=3)

1 conv

(D=512, F=1)

Max Pooling

2 convs 2 convs LRN 2 convs 2 convs 3 convs 4 convs

(D=512, F=3) (D=512, F = 3) (D=512, F=3) (D=512, F=3) (D=512, F=3) (D=512, F=3)

1 conv

(D=512, F=1)

Max Pooling

Fully connected (D=4096)

Fully connected (D=4096)

Fully connected (D=1000)

Softmax

Table 3.2.2: VGG’s layers [SZ15]

with different depths (two CNNs with 11, one with 13, two with 16, and one with 19
convolutional layers); in which case, it was necessary to reduce the size of the neuron’s
receptive field F (F = 3 for convolutional layers and F = 2 for pooling layers) and the
stride S (S = 1 for convolutional layers and S = 2 for pooling layers) in comparison
with Alexnet; besides, they utilized zero-padding for preserving the spatial resolution.
The six CNNs are shown in Table 3.2.2, with ReLUs following each convolutional layer,
and LRN for Local Response Normalization (as in Alexnet).

The authors proposed adding more adjacent convolutional layers with small recep-
tive fields, since the effective receptive field of those layers is the same as the single
convolutional layer’s with large receptive fields. However, one adds, with those layers,
also non-linearities (ReLUs), which, as the authors say, helps for better discrimination;
moreover, convolutional layers with small receptive fields have lesser number of pa-
rameters than the ones with large receptive fields. One can see this technique as a



46 related work

decomposition of a convolutional layer to few convolutional layers but with smaller
receptive fields.

The VGG was trained following the same configuration of the Alexnet: Batch GD
with momentum and weight decay, see Equation 2.1.19, with parameters: momentum
γ1 = 0.9, weight decay γ2 = 0.0005 and three learning rates γ3 = [10−2, 10−3, 10−4].
They trained, first, the shallowest CNN (A) with random weights initialization; that is,
the initial weights of the convolutional layers are random values, which are drawn
from a normal distribution with zero mean and 10−2 variance. Then, they trained
the other five CNNs with the A-CNN’s weights as initial values. During training, a
CNN was fed with random crops of size [224x224x3] that were taken from rescaled
images of the training set; they were randomly horizontal flipped, and randomly
RGB colour shifted, following the same data augmentation technique that [AK12]
introduced. The authors considered two rescaling approaches: rescaling images, such
that their smallest side is a fixed value—they used two sizes: 256, and 384—, or their
smallest side is randomly drawn from a range [256, 512].

For testing, the authors followed two techniques. In the first one, rescaled test-
images and their horizontal flips were fed to a CNN. The fully-connected layers of
this CNN, however, were transformed to convolutional layers; concretely, the first,
second, and third fully-connected layers were transformed to convolutional ones with
receptive fields of sizes F = 7, 1 and 1 respectively. For computing the final score vector,
one utilized a sum-pooling on the final feature map (third fully-transformed layer’s
output), and one averaged the final score vectors of the rescaled test-images and their
horizontal flips. The second technique consists in averaging the final score vectors
from multiple crops of test-images, introduced by Alexnet, but also, the authors of
VGG included crops over three scales. 25 crops of size [224x224 ∗ 3] over three scales
(150 crops in total) were used for computing a single test-image’s final score vector.
The averaging of CNN’s descriptors from multiple test-image crops will be studied for
face recognition purposes in this thesis.

In the ILSVRC 2014 competition [RDS+
15], the authors of VGG achieved top−1

and top−5 test error rates of 25.5% and 8.0%, respectively, with the deepest CNN
(E), which is 12.2% for top−1 and 9% for top−5 better than the Alexnet’s test error
rates; even, the shallowest CNN (A) reached 39.6% top−1 and 10.4% top−5 test error
rates, being also superior to the Alexnet’s. Therefore, the authors concluded that the
performance of CNNs increases when they are deep architectures with small receptive
fields for convolutional layers.



4
M E T H O D

Previously, CNNs and deep CNNs architectures for general object recognition tasks
have been introduced. These architectures encode large datasets, and show excellent
results in challenging object recognition tasks. One of those tasks is, specifically, the
face-recognition. As large number of face-image datasets are today available, CNNs
and deep CNNs are suitable to learn that amount of information, such that they can,
accurately, classify a set of face-images, or obtain a low-dimensional representation of
face-images [TYRW14]. This chapter covers the use of deep CNNs architectures for face
recognition and, in addition, face-verification tasks. Firstly, a deep CNN architecture,
used concretely for face-recognition and -verification purposes, is introduced. Secondly,
the face-recognition and -verification tasks using this specific deep CNN, focusing,
mainly, on the testing technique, used similarity measurements, and the extreme
occlusion performance, are discussed. And Thirdly, the approaches, for improving
the performance of the aforementioned CNN, are introduced. This approaches are the
focus of this thesis.

4.1 deep face recognition

Deep Face Recognition (DFR) [PVZ15] is inspired by the Alexnet’s (see subsection 3.2.1),
and the VGGNet’s (see subsection 3.2.2) success in object recognition. The authors
evaluated three CNN architectures and two classifiers on face recognition and verifica-
tion tasks. They selected, specifically, the A, B, and D CNNs of VGG, see Table 3.2.2,
and utilized two objective functions for training two different classifiers: an N-way
classifier, and an, what the authors called, L-dimensional metric embedding classifier.
The Figure 4.1.1 shows the general DFR architecture.

4.1.1 N-way classification

The first objective of DFR was to recognize face-images of different individuals, when
a training face-image set with N identities was given; concretely, a training set of
N = 2622 identities was used, the VGG dataset see subsection 5.1.1. The authors
utilized the Softmax-log loss, see Equation 2.1.17, as the objective function for training

47



48 method

Figure 4.1.1: DFR general architecture [PVZ15]

the DFR architectures, where the final score vectors are compared with the ground-
truth class identity vectors; such that, the last fully-connected layer implements an
"N" linear classifier. This layer learns a projection W ∈ R[N×D] that computes a score
vector xt ∈ R[N×1] for an image It.

xt =Wφ(It) + b ∈ R[N×1] (4.1.1)

with φ(It) being the D−dimensional output vector from the second fully-connected
layer, see Figure 4.1.1.

4.1.2 Face Verification

The second objective was to apply the learned knowledge about faces for verifi-
cation purpose, answering the question whether two face-images show the same
person. Therefore, the D-dimensional vector φ(It) is used as a descriptor or as a
low-dimensional representation of face-images for face identity verification. For this
task, one compares two face-images [I1, I2] by means of the Euclidean distance between
their descriptors [φ(I1),φ(I2)]. If the distance is smaller than a threshold θ, then two
face-images will be considered as belonging to the same person.

4.1.3 L-dimensional metric embedding classifier

The D-dimensional descriptors φ(It) are still comparably high-dimensional vectors.
So, the authors of DFR improved them by projecting them to a lower-dimensional
space L (L < D), such that, ideally, descriptors from the same face-image identity



4.1 deep face recognition 49

are grouped nearer than descriptors from different face-image identities [PVZ15].
Purposely, the last fully-connected layer is exchanged with another one that is trained
by minimizing a different objective function, see Figure 4.1.1. This objective function
is, precisely, the empirical triplet loss [FS15], see subsection 4.1.4, which finds the
optimal weights W ′ ∈ R[L×D]. The weights W ′ project the φ(It) to a low-dimensional
descriptor xt ∈ RL as follows.

xt =W
′ φ(It)

‖φ(It)‖2
∈ R[L×1] (4.1.2)

The goal was to derive final descriptors xt that are more distinctive, more compact,
and better for face-verification tasks than the descriptors φ(It) [PVZ15].

4.1.4 Empirical Triplet loss

One wants to ensure that descriptors of face-images from the same person are closer
than any descriptor of face-images from another person. For that purpose, the authors
in [FS15] proposed the empirical triplet loss as an objective function for the Gradient
Descent, see subsection 2.1.6. By using this objective function, one minimizes the
distance among descriptors of the same persons (positive descriptors), and, at the
same time, one maximizes the distance among descriptors from different persons
(negative descriptors); such that, distances to negative descriptors should be larger
than a certain margin α, see Figure 4.1.2 [FS15].

For a training triplet set T with anchor-descriptors a, positive descriptors p (p 6= a),
and negative descriptors n, the empirical triplet loss, to be minimized, is:

E(W ′) =
∑

(a,p,n)∈T

max
{
0,α− ‖Xa −Xn‖22 + ‖Xa −Xp‖

2
2

}
(4.1.3)

with α a positive triplet margin, and Xt a L2-normalized and projected (using the
trained W ′) vector of φ(It):

Xt =W
′ φ(It)
‖φ(It)‖2

W ′ ∈ R[L×D] (4.1.4)

4.1.5 Training

The authors in [PVZ15] followed the same training scheme of Alexnet and VGG:
Batch GD with momentum and weight decay, see Equation 2.1.19. The following



50 method

Figure 4.1.2: Triplet loss learning goal [FS15]

parameters were used: momentum γ1 = 0.9, weight decay γ2 = 0.0005 and three
learning rates γ3 = [10−2, 10−3, 10−4]. They trained, first, the shallowest CNN (A)
with random weights initialization from a normal distribution (µ = 0,σ = 10−2). Then,
they fine-tuned B-, and D-CNNs using the parameters of the shallow A-CNN as the
starting point. During training, random-cropped, and -horizontal flipped face-images
of size [224x224x3] over resized face-images of 256 px from the VGG training set,
see subsection 5.1.1, are fed to the CNNs; contrary to Alexnet and VGG, the face-
images are not colour shifted. For learning the L-dimensional metric embedding (see
subsection 4.1.3), a CNN is frozen and its last fully-connected layer is replaced, then,
this layer is learnt by using stochastic GD feeding triplets (a,p,n) from the training
set of the target domain— this training set refers to all the face-images from LFW
dataset that do not belong to the unrestricted setting of the dataset subsection 5.1.2—
that violate the triplet margin α; that is, distances among anchor a and positive p
descriptors are superior to α, and distances to negative n are inferior to α.

4.1.6 Testing

For the face verification task, the authors in [PVZ15] followed the second testing
technique of VGG network—averaging the final score vectors from multiple crops
of test-images—, see subsection 3.2.2, and, also, the standard evaluation protocols
("unrestricted setting") of LFW dataset, see subsection 5.1.2, and YTF dataset, see
subsection 5.1.3. For testing on the LFW dataset, they evaluated 3000 pairs of face-
images— a pair consists of two face-images of the same person—, and 3000 non-pairs
face-images. For each image of this testing set, they took the average of 30 descriptors
as the final representation, or as a global face-descriptor of a single face-image. The
30 descriptors are, specifically, the D-dimensional vector φ(It) when feeding [224×
224× 3] crops extracted from the four corners and the center of (256, 384, 512) resized
face-images and their horizontal flips to the CNN. In the same way, for testing on
the YTF dataset, they evaluated, in this case, 2500 pairs of face-videos, and 2500



4.2 deep face recognition discussion 51

non-pairs face-videos. For each face-video, they ordered the frames by their facial
landmark confidence score, and they selected the top K frames, whose K descriptors
φ(It) are computed and averaged. The average of those K descriptors represents a
single face-video. The authors compared two face-descriptors by using the Euclidean
distance. If the distance between the final descriptors from two face-images is smaller
than a threshold, the two face-images will belong to the same identity. In addition,
the authors in [PVZ15] detected faces on the images of the LFW dataset by using
the Deformable Parts Model (DPM), see [MBPVG14]. Since, the face-images of LFW
dataset, see Figure 5.1.2, have a bigger bounding-box than the face-images of VGG
dataset, see Figure 5.1.1.

4.2 deep face recognition discussion

The multicropping over three sizes—originally thought for avoiding overfitting and for
multisize robustness since objects can be of different sizes— is beneficial for general
object recognition. Nevertheless, this testing technique implemented by [PVZ15],
following the guidelines of the first deep CNN (Alexnet), is not optimal for face
recognition and verification tasks. Some of the 30 [224× 224× 3] crops, and their
horizontal flips of single face-images might not be, exactly, considered as faces, and
they might vary the final descriptors, see Figure 4.2.1.

(a) (b)

Figure 4.2.1: Crops of a 256, 384, and 512 resized face-image

Furthermore, extreme occlusion in face-images was not completely studied in DFR.
The training and test datasets, VGG, LFW and YTF datasets, are collections of images
extracted from internet, and they might have face-images with partial occlusion, due
to, mainly, glasses, beards, and, hairstyle changes see Figure 4.2.1. However, human
perception needs less visual information coming from objects to recognize them.



52 method

Humans can recognize faces under extreme occlusion conditions, see Figure 4.2.2; for
example, we can recognize persons just by looking to small portions of their faces.

(a) (b)

Figure 4.2.2: Example of extreme occlusion

Finally, one notices that the previous CNNs (Alexnet, VGG and DFR) utilized only
the L2 norm or Euclidean distance as similarity measurement. Nevertheless, the
performance of the L2 norm deteriorates for comparisons in high-dimension spaces
[CC01].

4.3 extentions to deep face recognition network

Based on the previous discussion, different approaches for testing/training, overcom-
ing the noticed disadvantages of DFR, are introduced next. These approaches address
to study the performance of CNN when utilizing different similarity measurements
of descriptors, to overcome the necessity of using multicropping, and to improve the
performance of CNNs under extreme occlusion conditions.

4.3.1 Spatial Pyramid Pooling layer

The authors in [HZRS14] pointed out that convolutional layers do not need fixed-size
feature-map inputs, since they perform a convolution operation and their filters are not
fully-connected to their inputs. However, the fully-connected layers need, necessarily,
fixed-size feature-map inputs. In fact, the last convolutional layer is the only one
that should generate a fixed-size feature map because the first fully-connected layer
is connected to it. For that reason, the authors in [HZRS14] replaced the last max-
pooling layer, see Figure 2.1.8, with a new layer to eliminate the need of fixed-size
input images— since Alexnet, one uses [224× 224× 3] cropped images. This new
layer is called the spatial pyramid pooling (SPP), whose idea comes from the spatial
pyramid matching used originally as an extension of Bag of Features [LSP06].



4.3 extentions to deep face recognition network 53

Figure 4.3.1: D-CNN with SPP layer

The SPP layer divides an input from finer to coarser levels; it aggregates their
information generating local outputs; and it concatenates these outputs into an overall
feature output, see Figure 4.3.2. Its advantage lies on the generation of fixed-size
outputs from multisized inputs, and, the most important characteristic for this thesis,
it maintains spatial information. More concretely in CNNs, a l-level SPP layer divides
a feature-map input, whose depth is D, into D ·M spatial bins with M =

∑l
1 2
l, where

the level l denotes the number of divisions along the spatial dimensions of the feature-
map [LSP06]. Then, the SPP layers concatenates the maximal or the average value of
each bin into a vector, which has a fixed-size. This vector becomes the feature-map of
the first fully-connected layer, see Figure 4.3.2. By using a SPP layer, the CNN’s input
can be of any scale.

As the training and testing techniques of DFR, see section 4.1, used multicropping
over three scale resized images, the performance on multiscaled face-images of a
CNN, when using an SPP layer for avoiding multicropping, is studied. Besides, the
performance of the CNN with an SPP layer, when inputs are images with extreme
occluded faces, is observed. Precisely, it is sought to study whether CNNs with an
SPP layer can discriminate between two faces when certain percentage of the face is
occluded in the images. Besides, as the faces are symmetric, using half of a face-image,
for obtaining a lower-dimensional global representation, is studied. For an l-level
SPP layer, one can mirror the activated bins of its output, obtaining a symmetrical
feature-map that is, then, fed to the first fully-connected layer.



54 method

Figure 4.3.2: Spatial Pyramid Pooling SPP layer in a CNN [HZRS14]

4.3.2 Empirical Triplet loss for partially occluded face-images

As discussed in section 4.2, humans can recognize faces under extreme occlusion
conditions; for example, humans can identify, easily, a person just by looking at one
half of his/hers face. Following the same idea of the L-dimensional metric embedding
classifier of DFR, see subsection 4.1.3, one wants to ensure that descriptors of half-face
images are closer to descriptors of non-occluded face-images of the same person
than any descriptor of face-images from other persons. By training the last fully-
connected layer minimizing the Empirical Triplet Loss with descriptors of half-face
images as anchors, see subsection 4.1.4, one will expect to have a projection W ′ that
will compute a compact- and robust-, against occlusion, final descriptor xt ∈ R[N× 1],
see Equation 4.1.2.

4.3.3 Measurements

In high-dimensionality, the concept of distance, and nearer neighbor may not be quali-
tatively meaningful [CC01]. Traditionally, one uses the L2 norm, also called Euclidean
distance, as default for spatial (2D or 3D) applications. However, its performance



4.3 extentions to deep face recognition network 55

Figure 4.3.3: Triplet Loss with halfoccluded faceimages as query images [HZRS14]

deteriorates rapidly for high-dimensions. For that reason, the performance of four
similarity measurements for face-verification with CNNs is studied in this thesis. Since,
the CNN’s final descriptors are of dimension 4096, and the Alexnet, VGG and DFR
networks utilized only the Euclidean distance for testing purposes. The four similarity
measurements are: the L2, the L1, the cosine, and the Bray-Curtis distances.

Lk norm

The commonly used Lk norms are defined as,

Lk(x,y) =
∑d
i=1(‖xi − yi‖

k)1/k with x,y ∈ Rd and k ∈ Z, (4.3.1)

The L2 norm or Euclidean distance, and the L1 or Manhattan distance are two
examples of Lk norms. The authors in [CC01] showed that Lk norms with low values
of k perform better for comparisons among vectors of high-dimensionality.

Cosine distance

The cosine distance measures the cosine of the angle between two non-zero vectors.
If the measured cosine is "1", then the two vectors are oriented towards the same
direction; that is, the angle between them is 0◦. If the cosine is "0", then the vectors
are perpendiculars. On the other side, if the measured cosine is " − 1", then the two
vectors are opposite. For two vectors (x,y), the cosine distance is defined as:

cos(θ) =
x · y
‖x‖ ‖y‖

(4.3.2)



56 method

Bray-Curtis Dissimilarity

The Bray-Curtis dissimilarity (BC) is a dissimilarity measurement or a non-euclidean
distance— it is not a true distance, since it violates the triangle inequality—, normally,
used in ecology and biology [BC57], which gives a value to the dissimilarity between
two vectors. It outputs an index between zero and one: zero for similar vectors, and
one for dissimilar ones. For two vectors (x,y), the BC dissimilarity is defined as:

BC(x,y) =
∑
i |xi − yi|∑
i xi + yi

(4.3.3)

The BC dissimilarity works well for histogram representations [SF15] and high-
dimensional vectors, having better performance than L2, L1, cosine and the χ2 distances
[Blo81].

4.4 conclusion

Briefly, the idea is to replicate the DFR’s results, and to evaluate the influence of the
aforementioned approaches on performing face-verification on two testing datasets.
Concretely, two deep CNNs are used: the A architecture of DFR, see section 4.1, and a
similar CNN with a SPP layer, see subsection 4.3.1, instead of the last pooling layer.
Several multicropping configurations on non-, extreme- and partially-occluded face-
images are utilized. Moreover, for boosting the performance on extreme-occlusion, an
additional fully-connected layer is trained using the empirical triplet loss, in which full
face- and partially-occluded face-images of the same identities are grouped together.
As an extension, the previously introduced four distances measurements as similarity
metrics for the task are used.



5
E X P E R I M E N T S

The main task in this thesis is to perform face verification following the standard
evaluation protocols ("restricted configuration") of the LFW and YTF datasets. For
that purpose, descriptors φ(It) of face-images, which are organized in pair and non-
pair groups, are computed using the deep CNN architecture (the A architecture in
Table 3.2.2, of subsection 3.2.2), as well as, the proposed one including the SPP layer,
see subsection 4.3.1, as descriptor extractors. The similarities between pair-descriptors,
and between non-pair descriptors are calculated using different measurements. In the
end, these similarity values are compared with a threshold for determining if they
belong to the same identity or not. Depending on the dataset, the number of pairs and
non-pairs, and the approach for computing a single face-descriptor change. For the
LFW dataset, the restricted setting has 3000 pairs and 3000 non-pair face-images. A
single descriptor is the average of a a group of descriptors, which are computed from
different configurations of crops—mainly, from [224× 224× 3] crops over different
scales of a face-image. For the YTF dataset, its restricted setting has 2500 pair and
2500 non-pair face-videos. In this case, a single face-descriptor is the average of K
face-frames of the video. Besides, the performance of the aforementioned deep CNNs,
and the previously discussed approaches, see section 4.3, for verification tasks with
face-images, or -videos with extreme- and proportional occlusion are evaluated.

This chapter covers, firstly, an introduction of the three datasets and the evaluation
metric that was used in DFR [PVZ15] and in this thesis, secondly, the experiments and
results of the discussed CNN, and CNN with an SPP layer for face-verification on the
restricted settings of the datasets using different multicropping configurations with
non-, extreme- and proportional-occlusion are presented.

5.1 datasets

Three datasets are used by the DFR network [PVZ15] and this thesis. The VGG dataset
is used for training the deep CNN networks for face-recognition, and two benchmark
datasets (the LFW and the YTF datasets) are used as testing datasets, allowing direct
comparisons with previous face-verification methods.

57



58 experiments

(a) (b) (c) (d)

Figure 5.1.1: Some samples of VGG dataset [PVZ15]

5.1.1 Visual Geometry Group Face Dataset

The Visual Geometry Group Face Dataset (VGG dataset) is a large collection of
face-images extracted from the Internet. It contains 2.6 million of face-images from
2622 identities; specifically, celebrities and politicians, see Figure 5.1.1. This dataset
was obtained following the procedure proposed by [PVZ15], which idea was to
assemble a large dataset of labeled face-images with small label noise, and minimal
manual annotation; moreover, this dataset does not contain overlapping identities with
standard benchmark datasets (LFW, YFT), so it is suitable for training.

Unfortunately, the dataset is available in a text file, which contains URLs to images
and their corresponding bounding-box of the detected faces. Due to the constant Web
page changes, it was not possible to download all the 2.6 millions face-images. In the
end, around 2 million of the images can be obtained, being, still, a large amount of
face-images.

5.1.2 Labeled Faces in the Wild dataset

The Labeled Faces in the Wild (LFW) is a standard benchmark dataset for face
verification. It contains 13233 face-images from 5749 identities extracted from the
Internet. Faces in images were detected using the Viola-Jones face detector [GHLM07].
Faces are roughly centered, contain lesser noise but larger bounding-box than the
VGG dataset. Besides, faces have different poses, face-expressions, gender, ethnicity,
and hairstyles, becoming a challenging benchmark for face-identification purposes.

The authors in [GHLM07] provide two training and testing configurations:



5.1 datasets 59

(a) (b) (c)

Figure 5.1.2: Some samples of LFW dataset [GHLM07]

Restricted Configuration

The training and testing information of matched and non-matched face-images is
provided in a pairs ave. The file is divided in 10 sets (9 for training and the last one
for testing purposes). The pairs ave has in total 3000 matched face-image pairs; that
is, pairs of face-images that belong to the same person. And, also, it has 3000 non-
matched face-image pairs. This configuration is called restricted, because face-image
identities should not be used for training purposes.

Unrestricted Configuration

In addition to the restricted configuration, the authors in [GHLM07] provide a list
with the number of face-images per identity. In that case, one can do as many pair
and non-pairs as wanted. This list is also divided in 10 sets, from which 9 are used for
training and the rest for testing.

As the training dataset used by [PVZ15] is the VGG dataset, both configurations
of LFW dataset can be used as the testing dataset. For training the Embedding with
triplet loss subsection 4.1.4, authors in [PVZ15] followed the unrestricted configuration.

5.1.3 YouTube Faces Dataset

The YouTube Faces (YTF) is a standard benchmark for face verification in video. It
contains 3425 videos from 1595 identities, with an average of 2.15 videos per identity,
and 181.3 frames per video [WHM11]. The authors detected faces in videos using the
Viola-Jones face-detector. For this thesis and following the same approach of [PVZ15],
faces were detected in all the video-frames using the DPM detector [MBPVG14], since
bounding-boxes that are detected by the Viola-Jones detector are larger than the



60 experiments

Figure 5.1.3: YouTube Faces [WHM11]

training VGG dataset ones. In the end, each video has as minimum of 45 face-frames,
which are used for representing a single face-video.

Same as the LFW dataset, the authors of YTF dataset [WHM11] provide two training
configurations: a restricted and an unrestricted configurations. For the restricted
configuration, the authors provide a list with 2500 pair face-videos and 2500 non-
pair face-videos, which is divided in 10 mutually exclusive sets. This configuration
constraints the information for training purposes; that is, only information of same
or not same should be used. The unrestricted configuration allows to use video’s
identities for training purposes, and to create as many pairs and non-pairs as wanted.

5.2 evaluation metric

As explained before, the face-verification’s goal is to tell whether two face-images
belong to the same identity. For that, the distance between their descriptors φ(It)
is compared with a threshold θ. If the distance is smaller, the face-images will be
classified as the same identity. However, the threshold value is not, clearly specified,
and it is not learned, directly, by the CNNs. Moreover, the similarity measurements
in subsection 4.3.3 provide only information of the distance of two descriptors, but
they do not tell, concretely, if two vectors are far or near. Ideally, descriptors of
face-images from the same person should be similar, and their distance should be
always smaller than distances to descriptors of any other person; that is, there exists a
threshold θ that separates the area where descriptors of the same person lie in the face-
space. This threshold value should be valid for all the identities in the testing dataset.
However, in real applications, there exist cases where descriptors of different persons
are nearer than the same person ones [GEAR13]—the area corresponding to descriptors
of a person is crossed by other descriptors—, so the verification method accepts a
descriptor into a wrong identity, or as called in the literature, a false acceptance. In
that case, the threshold θ is too large. Contrary, if the threshold is too small, there
will not exist false acceptance, but correct descriptors are rejected, or a false rejection.
Therefore, in general, the verification methods show an error. This error is, indeed,



5.2 evaluation metric 61

(a) (b)

Figure 5.1.4: False negative vs False positive curve, and the error rate vs Threshold curve
[GEAR13]

a metric that tells how accurate methods are. The International Organization for
Standardization ISO/IEC 19795-1 proposed several metrics for evaluating a verification
method [GEAR13]. One of those metrics, used for face-verification purposes [PVZ15]
[KBBN09] [TYRW14], is the Equal Error Rate %EER. The %EER is the value where
the False Acceptance Rate (FAR), and the False Rejection Rate (FRR) are equivalent;
that means, one selects a threshold from a range of possible values that minimizes
the number of false acceptance and, at the same time, the number of false rejection.
This can be seen, concretely, in the curve FAR vs FRR (Figure 5.1.4), called ROC curve
[GEAR13], for all the possible thresholds.

For an optimal threshold θopt,

θopt = argmin(‖FAR(θ) − FRR(θ)‖), ∀θ ∈ [θmin, θmax] (5.2.1)

,the %EER is defined as

%EER =
FAR(θopt)+FRR(θopt)

2
(5.2.2)

where the FAR, and the FRR, for a threshold θ, are,

FAR(θ) =


∑
d∈N 1∑n
c=1 c

d 6 θ∑
d∈P 1∑p
c=1 c

d > θ
(5.2.3)



62 experiments

with N the set of distances between non-pair descriptors, and P the set of distances
between pair descriptors. The advantage of this metric lies in the comparison among
different verification methods, since it does not depend on the a specific threshold θ
[PVZ15].

5.3 experiments and results

The experiments and results for performing face-verification task using CNNs on
the testing datasets (LFW, and YTF datasets) with non-, extreme, and proportional
occlusion are described and discussed next. For all the experiments, the four similarity
measurements, see subsection 4.3.3, are used, and their performances for comparing be-
tween descriptors are presented. For both testing datasets, the restricted configuration
is chosen.

5.3.1 Replication of the original publication

The testing technique of DFR, see section 4.1, for both restricted configurations of the
LFW, and YTF datasets, is replicated. Accordingly, the descriptors φ(It) for each of
the pairs and non-pairs are computed, and they are compared using the Euclidean
distance. For the LFW dataset, a face-descriptor is the average of 30 descriptors φ(It)
per face-image, where the CNN computes each of those descriptors from [224×224×3]
crops of the four corners and the center of [256, 384, 512] resized face-images, and
their horizontal flips. For the YTF dataset, a face-descriptor is the average of K
descriptors φ(It), which are computed by the CNN from K face-frames per face-
video; specifically, one took K = 45, since there are as minimum 45 face-frames in all
the face-videos of the YTF dataset. The faces in images or frames of both datasets
were detected using the DPM detector [MBPVG14], as [PVZ15] suggested, since the
bounding-boxes of the images of the LFW—faces are detected using the Viola-Jones
detector [GHLM07]—, and YTF datasets are larger than the ones from the images of
the VGG dataset. Furthermore, using the DPM detector, one filters the face-frames in
videos, such that the K face-frames, for YTF dataset testing, corresponds to centered
faces. This is different from the original publication [PVZ15], because the authors used
the face-frames that have the best facial landmark scores.

Figure 5.3.1 shows the relation between %EER and all the four similarity measure-
ments: the L1, L2, cosine and Bray-Curtis distances for the restricted configuration of
LFW dataset, including, also, the VGG original publications’s %EER for the A-CNN
architecture (red line) [PVZ15]. Notice the difference of 1.2% between the original



5.3 experiments and results 63

publication’s %EER for L2, and replicated one (L2’s %EER), which are based on the
same testing configuration. Besides and among the replication results, the BC distance,
clearly, shows better performance for the task, showing a reduction of the %EER of
1.07% with respect to its counterpart (L2).

L2 L1 Cosine BC
4

6

8

10

12

VGG Original L2 = 7.17

8.37
8.03

11.9

7.3%
EE

R

Figure 5.3.1: %EER vs distance measurements for the restricted configuration of LFW dataset

Figure 5.3.2 shows the relation between %EER and all the similarity measurements
for the restricted configuration of YTF dataset, including, the DFR original publication’s
%EER (red line); particularly, the authors in [PVZ15] used K = 100 face-frames that
were ordered by their facial landmark confidence score [PVZ15]. Following the results
of LFW dataset, using the BC distance improves the performance of the testing in
comparison to L2 distance; exactly, the BC shows an improvement of 2.32%. However,
the BC’s %EER is 1.56% inferior with respect to the original publication’s one. this is
possibly due to the difference between the number of face-frames and the different
detector.

5.3.2 Testing on different multicropping configurations

Having present the non-optimal crops of resized face-images, see section 4.2, eight
multicropping configurations, for computing a single descriptor φ(It) from a face-
image of the LFW dataset, were tested. These configurations were divided according
to the scale, the bounding-box around the face, and the number of crops. Two size-
configurations were used: a single scale of 256, and three scales [256, 348, 512] (as the
original testing procedure). The bounding-box of the face-images in LFW dataset is
larger than face-images of VGG dataset, because of the different face-detectors used by



64 experiments

L2 L1 Cosine BC

6

8

10

12

VGG Original L2 = 7.2

11.08
11.64

9.08
8.76

%
EE

R

Figure 5.3.2: %EER vs similarity measurements for the unrestricted configuration of YTF
dataset

their authors [GHLM07] [WHM11]. The authors in [PVZ15] utilized face-images that
were detected on images of the LFW dataset using a DPM detector Figure 5.3.3, but as
the Figure 4.2.1 showed previously, the crops of [348, 521]-resized face-images are not,
in fact, faces. Therefore, utilizing a bounding-box, which possesses larger information
of faces, could be beneficial for multicropping over three scales, because crops would
be more likely to contain more face information. So, two-configurations of face-images
were used: the original images, and the DPM-detected face-images, as DFR proposed
see subsection 4.1.6, from LFW dataset.

(a) (b)

Figure 5.3.3: Original LFW face-image and a DPM-detected face-image

Moreover, the center cropping of three-resized face-images are more likely to be
considered as faces, so one utilized, also, multicropping over the three scales but only
considering the center of the face-images. The eight configurations are summarized in
Table 5.3.1.



5.3 experiments and results 65

Name Size Face detection [224× 224× 3] Crops # of crops

A 256 No Four corners and center 10

B 256 No Center 2

C 256 Yes Four corners and center 10

D 256 Yes Center 2

E 256, 384, 512 No Four corners and center 30

F 256, 384, 512 No Center 6

G* 256, 384, 512 Yes Four corners and center 30

H 256, 384, 512 Yes Center 6

Table 5.3.1: Multicropping configurations for LFW dataset testing

The Table 5.3.2 shows the %EER for all the multicropping configurations, and the
similarity measurements for the LFW dataset testing. In general, the BC performs
better than its counterparts; following the conclusion of [SF15], BC works better for
higher-dimensionality. Besides, in comparison with the original testing configuration of
DFR (the configuration G*1) with L2, L1 and cosine measurements, the configurations,
with a single scale (A,B,C,D) or with three scales using the original LFW face-images
(E,F), show better results. This results are due to the using of suitable crops and
face-images; since, the crops of all the scaled images would be considered as full-faces.
This results are, also, consistent with the conclusion of [HZRS14], who stated that
maintaining a complete content is important for improving the recognition’s accuracy.
However, the configuration H, which uses only center crops in all the scales, achieves
the worst %EER; inclusively, the configuration H shows a deterioration of 6.860% (in
L2) with respect to the original configuration G* despite, intuitively, the more suitable
crops taken from the center of images than the four corners, as the Figure 4.2.1 shows.

Figure 5.3.4 shows the relation between the %EER and the BC distance for all the
configurations. Notice the superiority of the configurations of a single scale using DPM
detection (C and D), and the configurations of three scales without DPM detection (E
and F) with respect to the other configurations, especially, with respect to the original
configuration G*. The best configuration (F) shows an improvement of 4.9%, 5.97%,
and 4.77% compared to the original configuration (G*), the original configuration
(G*) comparing with the L2’s %EER (red line), and the original publication’s of DFR

1 Configuration G* refers to the original multicropping configuration defined by Alexnet [AK12]. It was
thought for avoiding overfitting and for multisize robustness



66 experiments

Similarity measurements

Cropping conf L2 L1 Cosine BC

A 5.03 8.17 5.1 4.58

B 5.07 8.23 5.1 4.7

C 4.1 7.73 4.17 4.07

D 4.3 8.37 4.43 4.37

E 3.83 5.1 5.27 3.47

F 2.77 4.7 2.73 2.4

G* 8.37 8.03 11.9 7.3

H 15.23 12.87 11.6 11.43

Table 5.3.2: %EER for all the multicropping configurations, and the similarity measurements
for the LFW dataset testing

(dark grey line) [PVZ15] respectively. Besides, comparing with the state of the art,
this configuration is, also, superior to Fisher Vector Faces’s %EER = 6.9 [SVZ14] and
DeepFace’s %EER = 2.65 [TYRW14], and comparable with the Fusion’s %EER = 1.63
[YTW15].

5.3.3 Training a CNN with SPP layer

As discussed in chapter 4, a CNN with a 2-level SPP layer replacing the last max-
pooling layer was trained. For that end, and utilizing the original CNN architecture
of DFR (the A architecture in Table 3.2.2 subsection 3.2.2) as the initial state, the last
three fully-connected layers, using batch GD with momentum γ1 = 0.9, weight decay
γ2 = 0.0005 and three learning rates γ3 = [10−2, 10−3, 10−4], were fine-tuned. Besides,
the original CNN performs well for non-normalized face-images. However, in the
literature (e.g. Alexnet and VGG), authors have proposed using mean-normalized
images for stabilizing the optimisation algorithm. Therefore, the above CNN with an
SPP layer is trained using mean-normalized face-images. During training, random-
cropped, and -horizontal flipped crops of size [224× 224× 3] over 256 resized mean-
normalized face-images, see Figure 5.3.5, from the VGG dataset, see subsection 5.1.1,
were used for training the CNN. Later, this CNN is referred as CNN-SPP network.

The CNN-SPP network was tested on the restricted configurations of LFW and YTF
datasets. For the LFW dataset, specifically, all the multicropping configurations were
tested. Table 5.3.3 shows the %EER for all the configurations, and the similarity mea-



5.3 experiments and results 67

A B C D E F G H

2

3

4

5

6

7

8

9

10

11

12

VGG Original conf

VGG Original L2

8

4.7

4.07
4.36

3.46

2.4

7.3

11.43

%
EE

R

Figure 5.3.4: EER% vs BC distance for LFW dataset testing

(a) (b)

Figure 5.3.5: Mean-normalized face-image

surements. Contrary to the results of multicropping using the A-CNN subsection 5.3.2,
the L2 performs slightly better than the BC measurement; however, the %EER of these
two measurements are better than the L1’s, and cosine’s ones.

Figure 5.3.6 shows the relation %EER and all the cropping configurations for L2
similarity measurement. Similar to the original CNN’s performance, the configurations
of a single scale using DPM detection (C and D), and three scales without DPM
detection (E and F) are superior with respect to the other configurations. The best
configuration (F) shows an improvement of 4.53%, 4.8%, and 3.6% better than the
original configuration (G), the original configuration (G) with D-CNN network (red
line), and the original publication’s of DFR (dark grey line) [PVZ15] respectively.



68 experiments

Nevertheless, this configuration (F) shows a deterioration of 1.17% with respect to the
L2’s %EER of its similar configuration using the original CNN, see Figure 5.3.4.

A B C D E F G H

3

4

5

6

7

8

9

10

11

12

13

14

VGG Original conf
VGG Original public

6.8

8.17

4.77

6.33

4.23

3.57

8.1

12.97

%
EE

R

Figure 5.3.6: %EER vs L2 distance for all multicropping configurations on LFW dataset using
the CNN-SPP network

The %EER of configurations (C,D,E, and F) from both networks, the original CNN
and the CNN-SPP, are superior to the one of the original multicropping configuration
(G), and the original publication %EER itself. These results confirm that multicropping
over different scales is not beneficial for computing a single face-descriptor, because
crops of scaled-images are not faces—one can say that crops portray scaled-features of
faces, e.g. a single eye, or a single ear, or parts of the mouth, but they do not posses
enough information of a complete face. The best configuration (F) uses crops from the
center of the face-images (original LFW dataset) in all the scales. As the bounding-box
of the original LFW dataset covers a bigger area of the head (not the face), center crops
of scaled face-images contain still a complete face. Besides, utilizing the configuration
(F), the computation of a single face-descriptor is computationally cheaper than using
the configuration (G), since one must compute five times lesser number of descriptors.
In addition, multicropping configurations of a single scale using the DPM detector
perform, also for both networks, better compared to the original configuration (G).

For the testing on YTF dataset, the Figure 5.3.7 shows the relation between the
%EER vs the four similarity measurements, the original CNN’s %EER, see Figure 5.3.2,
(red line), and the original publication’s one (dark grey line). The BC’s %EER of
the CNN-SPP shows a relative deterioration of 0.48% and 2.04% with respect to the



5.3 experiments and results 69

original CNN’s and the original publications’s respectively. The BC distance shows a
superior performance compared to its counterparts, being consistent with the previous
results.

L2 L1 Cosine BC
4

6

8

10

12

VGG Original BC = 8.76

VGG Original L2 = 7.2

11.72

10.04

10.84

9.24
%

EE
R

Figure 5.3.7: %EER vs similarity measurements for the restricted configuration of YTF dataset
using the CNN-SPP as descriptor extractor

5.3.4 Testing on half-occluded face-images

As discussed in section 4.2, the performance of the previous CNNs (the original CNN,
CNN-SPP) was tested using extreme-occluded face-images. Pointedly, half of the
face-images, one face-image per pair or non-pair in the restricted configuration of LFW
dataset, were artificially and randomly occluded. The face-images of LFW dataset,
detected with the DPM, are, in general, face-centered and frontal-oriented. So, a
half-occluded face-image contains, approximately, a half of a face, see Figure 5.3.8.
For each pair or non-pair, a descriptor φ(Ithalf) of half-face image is compared with a
descriptor φ(It) of a face-image.

Figure 5.3.8: Example of a half-occluded face-image



70 experiments

For the original CNN, the %EER for the multicropping configurations (A,C, and F)
and all the similarity measurements are shown in Table 5.3.4. Notice the increment
of the %EER with respect to the experiments with entire face-images (non-occluded
face-images). Specially, the multicropping configurations using three sizes show a
high %EER; in fact, the performance becomes random, when using the multicropping
configurations (E, G, and H). This is due to the use of black crops, which do not
have any relevant information. Configuration (C) shows better results than their
counterparts (configuration A without DPM detection, and multisize configuration F).
Besides, and contrary to previous results, the Cosine distance shows, slightly, better
performance than the other similarity measurements. Compared to the original results,
see Table 5.3.2, the %EER of this testing setting presents a large deterioration, e.g. there
is an absolute difference of 8.03% between the configuration (D)’s %EER using the BC
similarity for both testing settings.

For testing the CNN-SPP using half-occluded face-images, only the multicropping
configuration (C) was used. The Figure 5.3.9 shows the %EER vs similarity mea-
surements, including, the the best %EER when using the original CNN as descriptor
extractor (red line), see Table 5.3.4. The performance of the BC distance shows a
superior performance with respect to the other distances, following the previous
results. However, it is not superior to the original CNN’s one, having an absolute
difference of 1.43%. This results show that there is not a benefit of using an SPP layer
for verification of extreme-occlusion of faces.

L2 L1 Cosine BC

8

10

12

14

16

18

CNN Cosine = 12.3

14.53

17.5

14.5
13.73

%
EE

R

Figure 5.3.9: %EER vs similarity measurements for the CNN-SPP using half-occluded face-
images of LFW dataset



5.3 experiments and results 71

Similarity measurements

Cropping conf L2 L1 Cosine BC

A 6.8 7.7 8.97 7.53

B 8.17 9.93 9 8.6

C 4.77 5.47 6.13 5.13

D 6.33 6.9 6.63 6.13

E 4.23 4.73 8.6 5.27

F 3.57 4.6 5.27 4.2

G* 8.1 7.8 14.6 9.1

H 12.97 10.6 15.27 12.33

Table 5.3.3: %EER for all the multicropping configurations, and the similarity measurements
using the CNN-SPP network on the LFW dataset testing

Occlusion Cropping conf Similarity measurements

L2 L1 Cosine BC

Yes A 17.23 18.07 16.57 16.13

Yes C 13.23 14.43 12.3 12.57

Yes F 29.3 21.17 21.47 21.43

No D 6.33 6.9 6.63 6.13

Table 5.3.4: %EER for all the multicropping configurations, and the similarity measurements
using the CNN network on the LFW dataset testing



72 experiments

5.3.5 Half-max pooling on the last convolutional layer’s output

Analysing the feature-maps of original face-images and half-occluded face-images
through the convolutional layers, see Figure 5.3.10, half of the feature-maps of the
convolutional layers are not, for the earlier convolutional layers, or are partially, for
the last convolutional layers, activated. Therefore, a sort of half (left-right sides)-max
pooling on the fifth convolutional layer’s feature-map is utilized, such that the largest
activations from one of the sides of the feature-maps are copied to the other side—
under the assumption that faces are centered and not tilted or rolled—, producing
full-face feature-maps.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.3.10: The second (b,g), third (c,h), forth (d,i), and fifth (e,j) convolutional layer’s
feature-maps from a original face-image (a) and a half-occluded face-image (f)
of LFW dataset

Figure 5.3.11 shows the %EER vs the CNN and CNN-SPP with the half-max-pooling
on top of the fifth convolutional layer for the multicropping configuration (C) on the
non-occluded and side-random-occluded face-images of the LFW dataset, comparing,
also, with the previous CNN’s and CNN-SPP’s %EER on side-random-occluded
face-images, see Table 5.3.4 and Figure 5.3.9, and on non-occluded face-images, see
Figure 5.3.4 and Table 5.3.3, (brown and dark gray colours) of LFW dataset. Comparing
the %EER of both networks when applying a half-max pooling (blue and red columns)
on Side-random-occluded face-images, the CNN-SPP shows an absolute improvement
of 2.57%. However, there is no improvement, and deterioration of 0.67% with respect
to the same network without the half-max pooling on the side-random-occluded and



5.3 experiments and results 73

the non-occluded face-images (red and grey columns) respectively. In the case of the
CNN with half-max pooling, there is an absolute deterioration of 3.73% and 1.71%
on the performance compared to the same network without the half-max pooling on
side-random-occluded and the non-occluded face-images (blue and brown columns)
correspondingly. Nonetheless, the %EER for both networks with half-max pooling on
non-occluded face-images is, relatively, 19.1% superior than the original publication’s
(red line).

Non-occluded Side-random-occluded

2

4

6

8

10

12

14

16

18

Original publication L2 = 7.17

5.77

16.3

5.8

13.73

4.06

12.57

5.13

13.73

%
EE

R

CNN with HMP CNN-SPP with HMP CNN CNN-SPP

Figure 5.3.11: %EER vs CNN and CNN-SPP performance applying the half-max pooling
on top of the fifth convolutional layer on the non-occluded and side-random-
occluded face-images of LFW dataset using the BC distance for multicropping
configuration (C)

5.3.6 Mirroring the last convolutional layer’s output

For observing whether parts of feature-maps in the last convolutional layer, which
correspond to occluded areas from the face-image, are activated and their values are
higher than the other side’s, only the left side of face-images were occluded, and,
instead of implementing a half-max pooling—in which case, the left side of the last
convolutional layer’s feature maps with non-face activations could affect the right
side—, a mirroring from right to left side of the last convolutional layer’s feature
map is utilized, assuming that the right part of feature maps should be activated



74 experiments

and the left side should not. A testing with both networks (CNN, and CNN-SPP),
mirroring (CNN-mirror and CNN-SPP-mirror) and not mirroring (CNN and CNN-
SPP) their last convolutional layer’s feature maps, and using the configuration (C) for
left-side-occluded was performed, which results using the BC distance as similarity
measurement are summarized in Figure 5.3.12. Despite the absolute reduction of 1.27%
between the %EER of the CNN-SPP and the same network applying the mirroring,
applying a mirroring of, as well as, a half-max pooling on, see previous experiment
Figure 5.3.11, the last convolutional layer’s feature-maps do not provide any benefit
with respect to face verification task for extreme-occluded face-images; inferring that,
filters (neurons) in convolutional layers do not activate symmetrically, e.g. a neuron
can activate only when it "sees" an eye, but not necessarily for both eyes. Besides
and even though frontal faces are, in general, symmetric, the spatial relation of facial-
features, in specific in convolutional feature-maps, are not. Therefore, implementing a
mirroring, trying to copy features from one side (full of important information of faces)
to another (with null or weak information of faces), to fill a complete feature-map does
not improve the performance on extreme-occluded faces.

CNN-mirror CNN CNN-SPP-mirror CNN-SPP

8

10

12

14

16
16.1

11.5

14.46

15.73

%
EE

R

Figure 5.3.12: %EER vs CNN and CNN-SPP performance when mirroring and not mirroring
the last convolutional layer’s feature-maps on the left-occluded face-images of
LFW dataset using the BC distance for multicropping configuration (C)

5.3.7 Mirroring the input images

As seen in the previous experiments on extreme-occluded face-images, the approaches
for copying meaningful information from strongly activated parts of feature-maps



5.3 experiments and results 75

were not successful. Neurons do not activate for symmetrical features, making non-
viable mirroring important information for filling feature-maps that are required for
an appropriate descriptor extraction. Nonetheless, these approaches do not fully dete-
riorate the performance of deep CNNs on non-occluded face-images, see Figure 5.3.11.
For that reason and for comparison purposes, non-occluded parts of face-images were
mirrored before being fed to the CNNs, see Figure 5.3.13, in such a way that, early
neurons (from the first convolutional layers) activate for facial-features from full-faces
images.

(a) (b)

Figure 5.3.13: Mean-normalized face-image

Table 5.3.5 summarizes the %EER vs all the similarity measurements from all the
one-size multicropping configurations (A,B,C and D) for the original CNN, and the
configuration C* from the CNN-SPP. For all these multicropping configurations, the
%EER shows a significant improvement with respect to the same networks, when
feeding extreme-occluded face-images, see Table 5.3.4, and Figure 5.3.9. Besides, the
CNN under this, specifically, type of inputs shows a relative improvement of 21.2%
better than the CNN-SPP. Being consistent with previous results, using the BC distance
as similarity measurement boosts the performan of the CNNs.

Figure 5.3.14 shows, in specific, the BC distance for both networks, when feeding the
occluded and mirrored face-images, including also, the %ERR of the networks when
applying the half-max pooling and the mirroring on the last convolutional layer’s
feature map. Notice that using mirrored face-images helps to overcome the problem of
extreme-occluded faces; concretely, there is an absolute improvement of 2.91% between
the CNN’s %ERR. However, this approach is 34.1% inferior compared to the original
publication’s %EER (on non occluded face-images).

The approaches for facing extreme-occlusion in face-images depend, strongly, on the
face-alignment of the testing dataset. The LFW and YTF datasets contain, in general,
frontal faces. Using an additional face-alignment might boost the performance of
previous approaches (half-max pooling on-, mirroring of last convolutional layer’s



76 experiments

Similarity measurements

Cropping conf L2 L1 Cosine BC

A 10.23 14.73 10.1 10

B 10 14.8 10.23 10.2

C 10.26 15.5 10 9.66

D 10.366 16.46 10.2 10

C* 12.533 12.37 12.8 12.26

Table 5.3.5: %EER for all the one size multicropping configurations, and the similarity measure-
ments using the CNN and the CNN-SPP (C*) networks on mirrored face-images of
the LFW dataset

Occluded faces Mirrored faces Half-max pooling Mirror conv5

5

6

7

8

9

10

11

12

13

14

15

16

17

VGG Original L2 = 7.2

12.57

9.66

16.3 16.1

13.73

12.26

13.73

15.73

%
EE

R

CNN CNN-SPP

Figure 5.3.14: %EER vs CNN and CNN-SPP performance when feeding extreme-occluded and
mirrored face-images of the LFW dataset using the BC distance for multicropping
configuration (C)



5.3 experiments and results 77

feature-maps, and mirroring of input images), since facial-features would be better
positioned.

5.3.8 Training triplet loss

Following the approach in subsection 4.3.2, an additional fully-connected layer for each
of the two networks, minimizing the the Empirical Triplet Loss, see subsection 4.1.4,
using non- and half-occluded face-images as anchors, is fine-tuned. For that end, and
following the triplet selection procedure of [FS15], a set of "hard triplets" T from the
testing LFW dataset (following the unrestricted configuration, see subsection 5.1.2)
was computed, such that they ensure fast convergence on training. For a half-occluded
face-image as an anchor a, a triplet [a,p,n] ∈ T is composed of a hard positive
p = argmaxpi ‖Xa −Xpi‖

2
2 from a mini-batch of positives images, and a hard negative

n = argminni ‖Xa −Xni‖
2
2 from a mini-batch of negative images. The positive and

negative mini-batches are built using images from the training set of the unrestricted
configuration of LFW dataset—none of the face-images from the 6000 pairs of the
testing dataset are used for learning the embeddings. Besides, a set of suitable
triplets, which violate the condition ‖Xa −Xn‖22 > ‖Xa −Xp‖

2
2, are extracted from

the set of hard triplets. For the CNN-SPP network, an additional layer embedding
the non-occluded face-images, using batch GD with momentum γ1 = 0.9, weight
decay γ2 = 0.0005 and learning rate γ3 = 10−3 with a batch’s size of 64 for 100
iterations; and an additional layer embedding the half-occluded face-images, using the
same aforementioned parameters but with a batch’s size of 32, were independently
learnt. As a result, the CNN-SPP with an embedding computes a more distinctive and
compact 1024-dimensional face-descriptors Xt.

The experiments using the CNN-SPP for both embeddings, multicropping configura-
tion (C) on non- and extreme-occluded face-images were executed. Their %EER using
the L2 distance are summarized in Figure 5.3.15, including the previous results using
the CNN (blue bar) and the CNN-SPP (brown bar) on the same input sets. Notice that
the CNN with embedding the non-occluded faces show a small deterioration of 0.5%
with respect to the CNN no T.L (triplet loss) in the experiments with non-occluded.
Besides, the CNN-SPP with embedding the non-occluded and the extreme-occluded
faces show, respectively, a small absolute improvement of 0.34% and a small deteriora-
tion of 0.4% compared to the CNN-SPP no T.L in the experiments with non-occluded
images. However, for experiments with extreme-occluded faces, there is a deterioration
of the performance for all the embeddings, showing no benefit for face-verification
on extreme-occlusion. Thus, and contrary to the original publication’s conclusions



78 experiments

[PVZ15], the embeddings do not boost, significantly, the performance of the deep
CNN; indeed, the most remarkable benefit of the embeddings is the dimensionality
reduction of the D−dimensional face-descriptor φ(It), see subsection 4.1.2. Besides,
the layer implementing the Embedding maps the face-descriptors into a Euclidean
space, so the BC distance produces random results.

Non-occluded faces Occluded faces

2

4

6

8

10

12

14

16

18

20

VGG Original L2 = 7.2

4.1

13.23

4.6

14.3

4.77

13.73

4.43

17.93

5.17

16.5

%
EE

R

CNN no T.L.
CNN with T.L. non occluded faces

CNN-SPP no T.L.
CNN-SPP with T.L. non-occluded faces

CNN-SPP with T.L. extreme-occluded faces

Figure 5.3.15: %EER vs CNN-SPP with and without the two embeddings performance when
feeding non- and extreme-occluded face-images of the LFW dataset using the L2
distance for multicropping configuration (C)

5.3.9 Testing different occlusion proportions

Until now, experiments with non- and extreme-occlusion cases have been presented.
The performance of the previous networks (the original CNN and CNN-SPP), and
the approaches for facing occlusion (half-max pooling and mirroring of the last con-
volutional layer’s feature-maps) on different proportions of occlusions are evaluated.
Portions of face-images, concretely, [5%, 10%, 15%, 20%, 30%, 40%, 50%] are occluded at
random. Table 5.3.6 shows the BC’s %EER for both networks, and the approaches for
facing occlusion from all the occlusion proportions. Consistent to the previous results
on comparisons among similarity distances, the BC distance shows better performance,
being suitable for face-verification. The original CNN is superior, for all the propor-
tions, compared to the CNN-SPP with and without the half-max pooling or mirroring



5.3 experiments and results 79

the fifth convolutional layer’s feature-maps. Comparing with the original publication’s
%EER = 7.17 for non-occluded face-images, the performances of the CNN, the CNN
with SPP, and the approaches for facing partially- and extreme-occlusion are remark-
able for proportions until to 20%. They are not superior to the original %EER, but
they present a small deterioration. The worst case (50% of occlusion) using CNN-SPP
with mirroring the fifth convolutional layer’s feature-maps shows a EER% equal to the
double of the original publication’s one.

Occlusion proportions

Network 5% 10% 15% 20% 30% 40% 50%

Original CNN 4.93 5.6 5.97 7.47 8.37 8.9 11.06

CNN-SPP 6.96 7.27 8.57 10.03 11.43 11.4 13.73

CNN-SPP with half-max-pool 7.07 8.5 9.3 11.23 12.5 12.9 13.73

CNN-SPP with mirroring the conv5 6.4 7.53 8.73 10.53 11.7 11.8 14.26

Table 5.3.6: %EER of the networks and approaches for facing occlusion using multicropping
configuration C, and the BC similarity measurement on proportional occluded
face-images of the LFW dataset





6
C O N C L U S I O N S

The thesis goal is to analyze the performance of deep CNN architectures for face-
verification, when faces are non-, partial- and extremely-occluded, including the
evaluation of different similarity measurements, variations of the CNN’s architecture
or CNN’s feature maps, and a validation of testing procedures, commonly, used in
object recognition and verification.

A validation and a discussion of the testing procedure, concretely, the use of several
crops extracted from corners and center of three scaled face-images that was introduced
in [AK12] and followed by [SZ15] for general object recognition and [PVZ15] for
face-recognition and verification, who also utilized the Deformable Parts Model face-
detector for improving the bounding-box around faces, is presented. Contrary to
[AK12], [SZ15], and [PVZ15] results, but consistent to [HZRS14], the use of multiple
crops over three scales is not beneficial for face-recognition and verification purposes,
because crops, mainly from the corners, of the largest scales do not contain meaningful
information of faces, affected, clearly, by the bounding-box’s size in images, which does
not allow to use entire faces; that is, including also the head contour. After analyzing
different combinations for extracting suitable crops, and a validation whether using
or not a face-detector, which changes the bounding-box around faces, it is found that
configurations using a single scale including a face-detector, or configurations using
three scales from only the center part of images without a face-detector—or with a
bounding-box around faces that covers also the head—, are, certainly, superior—and
computationally cheaper since lesser number of crops are fed to the deep CNNs—
compared to the formulated configuration in the literature. This finding allows to
partially conclude that it is necessary to analyze whether the testing procedures of
general object recognition from related works are suitable to conduit a proper testing
on a particularly object recognition and verification; in this case, face-verification.

Additionally, four distance measurements as similarity metric for face verification
were compared. Being consistent with [Blo81] and [SF15], the Bray-Curtis Dissimilarity,
in general, improves the performance for solving the task of face-verification when
comparing high-dimensional face-descriptors computed by deep CNNs; except,when
the Embedding triplet loss is used, in which case the final descriptors are mapped to a
Euclidean space, and the L2 distance performs better.

81



82 conclusions

Moreover, an evaluation of performing face-verification, on non-, extreme- and
partially-occluded face-images using two similar deep CNNs—the two deep CNNs
vary, only, on the last pooling layer, specifically, one of them uses a Spatial Pyramid
Pooling layer (SPP) instead—, was also presented. For the CNN without an SPP
layer, it was found that it achieves an %EER of 2.4% when using non-occluded face-
images of the LFW dataset—and clearly using a proper multicropping configuration—,
being comparable to the state of the art, and with the DFR’s %EER = 1.05 [PVZ15]
that uses the Embedding minimizing the triplet Loss, even though the deep CNN
in question does not utilize the Embedding. In addition, its performance does not
extremely deteriorate from partial %EER = 4.93 up to the extreme-occlusion %EER =

11.06% conditions. However and contrary to [HZRS14], the deep CNN with an
SPP layer does not overpasses the original one, but this deep CNN is, also, not
extremely affected by partial %EER = 6.96% up to the extreme-occlusion %EER =

13.73% conditions. Based on these observations in occlusion, it can be partially
concluded that deep CNNs can verify whether two face-images portray the same
identity; inclusively, when the faces are partially- up to half- occluded; that is, they
can serve from information from parts of faces, as humans perception does. Besides,
two approaches for boosting the performance of the CNN with an SPP layer, which
manipulate directly the last convolutional layer’s feature-maps for filling possible non-
activations caused by occluded areas in faces with their opposite side activations, were
also introduced. Nevertheless, these two approaches did not improve the performance.
Since, neurons do not necessarily activate to symmetrical facial-features on images,
and the face-images in the testing datasets are not completely symmetric. Also and
following the Embedding procedure of [PVZ15], an additional fully-connected layer
for both deep CNNs, implementing an embedding using a triplet loss as the objective
function for the optimization process [FS15], was utilized. Although the Embedding
strongly improved the performance of the network in [PVZ15], it did not boost the
performance of the here utilized deep CNNs for non- and extreme-occluded face-
images; but, it reduces the dimensionality of the final descriptor. As future work, the
deep CNN with SPP can be trained from scratch, such as the neurons in convolutional
layers adapt also according to the influence of the SPP layer on the network; besides,
an additional face-alignment can be utilized, such that it boost the two aforementioned
approaches for facing occlusion.



B I B L I O G R A P H Y

[AHP06] Ahonen, Timo ; Hadid, Abdenour ; Pietikainen, Matti: Face description
with local binary patterns: Application to face recognition. In: IEEE
transactions on pattern analysis and machine intelligence 28 (2006), Nr. 12, S.
2037–2041

[AK12] Alex Krizhevsky, Geoffrey E H. Ilya Sutskever S. Ilya Sutskever:
ImageNet Classification with Deep Convolutional Neural Networks.
(2012). http://dx.doi.org/{kriz,ilya,hinton}@cs.utoronto.ca. –
DOI kriz,ilya,hinton@cs.utoronto.ca

[AR15] Antonio Rama, Francesc T.: Un nuevo método para la detección de
caras basado en Integrales Difusas. (2015). http://dx.doi.org/{alrama,
tarres}@gps.tsc.upc.edu. – DOI alrama,tarres@gps.tsc.upc.edu

[BC57] Bray, J R. ; Curtis, John T.: An ordination of the upland forest commu-
nities of southern Wisconsin. In: Ecological monographs 27 (1957), Nr. 4, S.
325–349

[BHK97] Belhumeur, P. N. ; Hespanha, J. P. ; Kriegman, D. J.: Eigenfaces vs.
fisherfaces: Recognition using class specific linear projection. In: IEEE
Transactions on pattern analysis and machine intelligence 19 (1997), Nr. 7, S.
711–720

[Blo81] Bloom, S. A.: Similarity Indices in Community Studies Potential Pitfalls.
In: Marine Ecology- Progress Series, vol.5, 125-128 (1981)

[CC01] C. C, A. Hinnerburg A. A. K. Aggarwal: On the Surprising Behaviour of
Distance Metrics in High Dimensional Space. In: ICDT, pp 420-434 (2001)

[CEL87] Craw, Ian ; Ellis, H ; Lishman, J R.: Automatic extraction of face-
features. In: Pattern recognition letters 5 (1987), Nr. 2, S. 183–187

[doc16] documentation, OpenCV: Face Recognition with OpenCV. url-
http://docs.opencv.org/2.4/modules/contrib/doc/facerec, 2016

83

http://dx.doi.org/{kriz,ilya,hinton}@cs.utoronto.ca
http://dx.doi.org/{alrama,tarres}@gps.tsc.upc.edu
http://dx.doi.org/{alrama,tarres}@gps.tsc.upc.edu


84 Bibliography

[FFL16] Fei-Fei Ly, Justin J. Andrej Karpathy K. Andrej Karpathy:
CS231n: Convolutional Neural Networks for Visual Recognition. url-
http://cs231n.stanford.edu/, 2016

[Flo00] Floyd, Thomas L.: Fundamentos de Sistemas Digitales. Pearson Education,
2000. – 7th ed.

[FM82] Fukushima, Kunihiko ; Miyake, Sei: Neocognitron: A new algorithm
for pattern recognition tolerant of deformations and shifts in position. In:
Pattern recognition 15 (1982), Nr. 6, S. 455–469

[FS15] Florian Schroff, James P. Dmitry Kalenichenko K.
Dmitry Kalenichenko: FaceNet, A unified Embedding for
Face Recognition and clustering. (2015). http://dx.doi.

org/{fschroff,dkalenichenko,jphilbin}@gmail.com. – DOI
fschroff,dkalenichenko,jphilbin@gmail.com

[GBB11] Glorot, Xavier ; Bordes, Antoine ; Bengio, Yoshua: Deep Sparse
Rectifier Neural Networks. In: Aistats Bd. 15, 2011, S. 275

[GEAR13] Giot, Romain ; El-Abed, Mohamad ; Rosenberger, Christophe: Fast
computation of the performance evaluation of biometric systems: Ap-
plication to multibiometrics. In: Future Generation Computer Systems 29

(2013), Nr. 3, S. 788–799

[GHLM07] G.B Huang, T. B. M. Ramesh R. M. Ramesh ; Learned-Miller, E.:
Labeled faces in wild: A database for studying face recognition in un-
constrained environments. In: Technical report 07-49, University of Mas-
sachusetts (2007)

[Hai14] Haines, Duane E.: Principios de Neurociencia: Aplicaciones básicas y clínicas.
Elsevier Saunders, 2014. – 2014 ed.

[HL01] Hjelmas, E. ; Low, B. K.: Face Detection: Survey. In: Computer Vision and
Image Understanding, vol. 83, no. 3, pp. 236-274 (2001)

[HZRS14] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Spatial
pyramid pooling in deep convolutional networks for visual recognition.
In: European Conference on Computer Vision Springer, 2014, S. 346–361

http://dx.doi.org/{fschroff,dkalenichenko,jphilbin}@gmail.com
http://dx.doi.org/{fschroff,dkalenichenko,jphilbin}@gmail.com


Bibliography 85

[Kan73] Kanade, T: Picture processing system by computer complex and recogni-
tion of human faces. In: Doctoral dissertation, Kyoto University 3952 (1973),
S. 83–97

[KBBN09] Kumar, N ; Berg, A. C. ; Belhumeur, P. N. ; Nayar, S. K.: Attribute
and simile classifiers for face verification. In: 2009 IEEE 12th International
Conference on Computer Vision IEEE, 2009, S. 365–372

[Kon05] Konar, A: Computational Intelligence: Principles, Techniques, and Applica-
tions. Springer Science & Business Media, 2005. – 2005 ed.

[LCDH+
90] Le Cun, B B. ; Denker, John S. ; Henderson, D ; Howard, Richard E. ;

Hubbard, W ; Jackel, Lawrence D.: Handwritten digit recognition with
a back-propagation network. In: Advances in neural information processing
systems Citeseer, 1990

[LDS+
89] LeCun, Yann ; Denker, John S. ; Solla, Sara A. ; Howard, Richard E.

; Jackel, Lawrence D.: Optimal brain damage. In: NIPs Bd. 2, 1989, S.
598–605

[LKF+
10] LeCun, Yann ; Kavukcuoglu, Koray ; Farabet, Clément u. a.: Convolu-

tional networks and applications in vision. In: ISCAS, 2010, S. 253–256

[LSP06] Lazebnik, Svetlana ; Schmid, Cordelia ; Ponce, Jean: Beyond bags
of features: Spatial pyramid matching for recognizing natural scene
categories. In: 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06) Bd. 2 IEEE, 2006, S. 2169–2178

[MBPVG14] Mathias, M ; Benenson, R ; Pedersoli, M ; Van Gool, L: Face detection
without bells and whistles. In: European Conference on Computer Vision
Springer, 2014, S. 720–735

[OPM02] Ojala, Timo ; Pietikainen, Matti ; Maenpaa, Topi: Multiresolution
gray-scale and rotation invariant texture classification with local binary
patterns. In: IEEE Transactions on pattern analysis and machine intelligence
24 (2002), Nr. 7, S. 971–987

[PVZ15] Parkhi, Omkar M. ; Vedaldi, Andrea ; Zisserman, Andrew: Deep face
recognition. In: British Machine Vision Conference Bd. 1, 2015, S. 6

[RDS+
15] Russakovsky, Olga ; Deng, Jia ; Su, Hao ; Krause, Jonathan ; Satheesh,

Sanjeev ; Ma, Sean ; Huang, Zhiheng ; Karpathy, Andrej ; Khosla,



86 Bibliography

Aditya ; Bernstein, Michael u. a.: Imagenet large scale visual recognition
challenge. In: International Journal of Computer Vision 115 (2015), Nr. 3, S.
211–252

[Roj96] Rojas, Raúl: Neural networks: a systematic introduction. Springer Science &
Business Media, 1996

[SF15] Sudholt, Sebastian ; Fink, Gernot A.: A Modified Isomap Approach to
Manifold Learning in Word Spotting. In: German Conference on Pattern
Recognition Springer, 2015, S. 529–539

[SVZ14] Simonyan, Karen ; Vedaldi, Andrea ; Zisserman, Andrew: Learning
local feature descriptors using convex optimisation. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 36 (2014), Nr. 8, S. 1573–1585

[SZ15] Simonyan, Karen ; Zisserman, Andrew: Very Deep Convolutional
Networks for Large-Scale Image Recognition. In: ICLR (2015). http://dx.
doi.org/{karen,az}@robots.ox.ac.uk. – DOI karen,az@robots.ox.ac.uk

[TP91] Turk, Matthew ; Pentland, Alex: Eigenfaces for recognition. In: Journal
of cognitive neuroscience 3 (1991), Nr. 1, S. 71–86

[TYRW14] Taigman, Yaniv ; Yang, Ming ; Ranzato, Marc’Aurelio ; Wolf, Lior:
Deepface: Closing the gap to human-level performance in face verifica-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014, S. 1701–1708

[WHM11] Wolf, Lior ; Hassner, Tal ; Maoz, Itay: Face recognition in unconstrained
videos with matched background similarity. In: Computer Vision and
Pattern Recognition (CVPR), 2011 IEEE Conference on IEEE, 2011, S. 529–534

[YKA02] Yang, M-H ; Kriegman, D J. ; Ahuja, N: Detecting faces in images: A
survey. In: IEEE Transactions on pattern analysis and machine intelligence 24

(2002), Nr. 1, S. 34–58

[YTW15] Y. Taigman, M. R. M. Yang Y. M. Yang ; Wolf, L.: Web-scale training for
face identification. In: CVPR (2015)

http://dx.doi.org/{karen,az}@robots.ox.ac.uk
http://dx.doi.org/{karen,az}@robots.ox.ac.uk

	1 Introduction
	1.1 Structure

	2 Fundamentals
	2.1 Artificial Neural Networks
	2.1.1 Biological Neural Networks
	2.1.2 Mathematical representation of a neuron
	2.1.3 Layered-Perceptron and Learning
	2.1.4 Single Layer Perceptron
	2.1.5 Activation Function
	2.1.6 Gradient Descent (GD)
	2.1.7 BackPropagation
	2.1.8 Convolutional Neural Networks


	3 Related Work
	3.1 Shallow Methods for face recognition
	3.1.1 Landmark based
	3.1.2 EigenFaces
	3.1.3 FisherFaces
	3.1.4 Local Binary Pattern

	3.2 Deep CNNs for vision tasks
	3.2.1 AlexNet
	3.2.2 VGG


	4 Method
	4.1 Deep Face Recognition
	4.1.1 N-way classification
	4.1.2 Face Verification
	4.1.3 L-dimensional metric embedding classifier
	4.1.4 Empirical Triplet loss
	4.1.5 Training
	4.1.6 Testing

	4.2 Deep Face Recognition discussion
	4.3 Extentions to Deep Face Recognition network
	4.3.1 Spatial Pyramid Pooling layer
	4.3.2 Empirical Triplet loss for partially occluded face-images
	4.3.3 Measurements

	4.4 Conclusion

	5 Experiments
	5.1 Datasets
	5.1.1 Visual Geometry Group Face Dataset
	5.1.2 Labeled Faces in the Wild dataset
	5.1.3 YouTube Faces Dataset

	5.2 Evaluation Metric
	5.3 Experiments and Results
	5.3.1 Replication of the original publication
	5.3.2 Testing on different multicropping configurations
	5.3.3 Training a CNN with SPP layer
	5.3.4 Testing on half-occluded face-images
	5.3.5 Half-max pooling on the last convolutional layer's output
	5.3.6 Mirroring the last convolutional layer's output
	5.3.7 Mirroring the input images
	5.3.8 Training triplet loss
	5.3.9 Testing different occlusion proportions


	6 Conclusions

