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1
I N T R O D U C T I O N

The process of making realistic and believable changes in the semantic features of
objects in images is known to be challenging and difficult. Image editing may involve
transformation of human faces, modifying the color, altering the appearance or texture
of an object, or changing the season in outdoor images [UGB+

16]. Algorithms have
been hand-crafted for such specific tasks until now, which need significant effort
and expert knowledge. A method adopted is considered efficient when it makes
the required changes while retaining other features and to be as similar as possible
to the original image. It should also be robust to the several types of variations in
background or illumination conditions. In case of face images, the feature changes
can be - adding a smile, eyeglasses or changing facial expressions. Such changes are
clearly noticeable when applied to face images that have varying pose, skin tone or
other features of a person.

Convolutional Neural Networks (CNNs) are taking the forefront in the field of
computer vision. In the context of image editing, CNNs have consistently shown better
results when compared to previous standard benchmarks in terms of the quality of
changes obtained, scalability for higher resolutions and robustness [ZIE16] [WG16].
Particularly, deep CNNs, which have more number of stacked layers, learn complex
features and patterns in images. Also, recent advancements in the area of deep learning
have led to designing of models which are suitable for performing a range of image
modification tasks, for example - colorization of a gray-scale image [ZIE16], generating
images of indoor scenes [WG16] or even modifying illumination conditions in an
image [SYH+

17]. Two approaches based on learning the reconstruction objectives,
namely the Variational Autoencoder (VAE) and on Generative Adversarial Network
(GAN), are prominently used for this purpose. These approaches and their variations
are being used to produce the changes in images currently. These generative models
learn the distribution of natural images in a low dimensional latent space before
manipulating the images.

Figure 1.0.1 shows four types of changes on sample face images obtained from a
GAN model. Although the generative methods achieve the desired changes of the
features in images, they have drawbacks. The VAE framework tends to produce images
of blurry, low quality and directly controlling the desired change in terms of the model
parameters is difficult in GAN [BLRW16].
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4 introduction

Figure 1.0.1: Examples of changes done by a GAN model on face images [GD17]

1.1 motivation

Considering the modification of a face image, it is a tedious task to generate visually
aesthetic changes while preserving the identity of the person in the image. The
authors of [UGB+

16] propose a simpler method called Deep Feature Interpolation
(DFI) for performing facial feature transformations in face images. For the purpose
of mapping face images to an Euclidean subspace, where the underlying manifold is
linearized, CNNs can be used [BMDR12]. This follows the fact that a CNN, which is
trained for large image classification tasks, efficiently captures feature variations in its
network layers and is able to separate the image classes linearly [SZ14]. Utilizing this
hypothesis, the manipulation of images can be simply done by linear interpolation in
the feature space.

(a) Input image (b) Modified image for aging

Figure 1.1.1: Modifications done on a high-resolution image for aging using the DFI method.

The technique can be accounted as simple in terms of several factors. The major
factor is that DFI uses pre-trained convnets, which does not involve the process of
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training a network from scratch. Another factor is its ability to perform a variety of
changes in facial features of a face image because the method is not designed for a
specific task. This method requires a set of images to produce image modifications,
which can be controlled by a free parameter. Desirable amount of transformation can
be obtained by varying another hyperparameter. In addition to these factors, this
method is also scalable to high-resolution images as shown in Figure 1.1.1. Moreover,
the authors of [UGB+

16] claim that this technique shows improved quality of results
for various image modification tasks compared to the existing state-of-the-art methods.
They also suggest using this method as a baseline comparison for complex generative
algorithms on certain image transformation tasks. Therefore, it is highly beneficial to
examine the advantages of using DFI.

1.2 objective

The objective of this thesis is, firstly, to provide a quantitative evaluation besides the
qualitative results of applying the DFI method on standard face datasets to change
facial features, particularly for six desired attributes and computing the face verification
measurements for each of the attribute changes by varying the hyperparameter values.
Secondly, the goal is also to obtain different feature transformations on the face dataset
of Deep Face Recognition [PVZ15] using DFI and analyze the variation in classification
accuracy.

1.3 outline

This thesis is organized as follows: Chapter 2 introduces the concept of Artificial neural
networks and the Gradient descent algorithm used for training them. It also describes
the necessary details related to Convolutional neural networks. Chapter 3 highlights
the similar methods used for facial attribute editing in face images. This chapter gives
a description of the two aforementioned generative models based on deep learning
methods. Going further, this chapter explains the respective CNNs employed for the
DFI as well as the Face recognition tasks. The technique of Deep Feature Interpolation
is presented in chapter 4. This chapter gives the detailed explanation of the procedure
followed in DFI for mapping a face image into the feature space, carrying out the
linear interpolation and the reconstruction process to obatin the modified image. The
method followed for the face verification of modified images is also discussed in this
chapter. Chapter 5 discusses the experiments performed in this thesis and also gives
an analysis of their results. Finally, the relevant conclusions are provided in chapter 6.





2
F U N D A M E N TA L S

This chapter gives the basic description of an Artificial neural network, which is a gen-
eral term used for computing systems motivated by the structure of biological neural
systems. A brief description of the elementary components of a Convolutional neural
network, which are large multi-layered networks used for deep learning methods, is
also included in this chapter.

2.1 artificial neural networks

The theories proposed by McCulloch and Pitts in 1943 [MP43] provides an analysis of
biological neural activity formulated through logical algorithms. Based on subsequent
researches, new and complex models have been developed, which are used for the
applications of artificial intelligence. The information processing in a Biological neural
network (BNN) is carried out by an interconnection of a huge number of smaller
building blocks or cells called neurons [Roj96]. A typical neuron of the brain consists
of four essential parts namely: cell body, dendrites, axon and synapses [LJK16]. These
elements assist in the communication and exchange of the information. Synapses are
contact points that connect one neuron with another. The synapses determine the
amount of signal carried from one neuron to another, which is often called as the
synaptic strength [Roj96]. When the strength of the input to the cell body rises above
a threshold, it fires an impulse that is transmitted further. The storage, processing and
transmission involves a combination of complex chemical and electrical processes. In
simple words, each neuron receives the information signal and produces corresponding
output response. Modern artificial systems are built by utilizing and adapting the
properties of BNNs into their architecture.

Artificial neural networks or ANNs learn to perform tasks such as image or speech
recognition by analyzing examples or data related to that specific task. They are
composed of several computing nodes or units called McCulloch-Pitts (MCP) neuron,
analogous to that of a neuron in BNN. A MCP neuron transforms the inputs to a
resulting output by a generalized primitive function [Roj96]. The primitive function is
formed by two functional parts. An integration function reduces all of the input values
to a single intermediate value by summation and next a non-linear activation function
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8 fundamentals

evaluates this intermediate value to produce the output[Roj96]. The activation function
of the neuron works on the principle of threshold logic. The output is calculated by
comparing the total excitation with a threshold. Therefore, basic logical gates like
AND and OR can be implemented with the help of a single McCulloch-Pitts neuron.

2.1.1 Perceptron

A MCP unit operates similar to a conventional logic gate. Networks formed by
connecting such units can compute logical functions, which can be modeled by
specifying the relevant model parameters beforehand [Roj96]. Here the edges of the
input channels are unweighted. Further research led to the evolution of the Perceptron
algorithm invented by Frank Rosenblatt [Ros62]. Inorder to adapt the network for
complex pattern recognition problems, weighting of the inputs were introduced.
Accordingly the tuning of model weights, also known as ’learning’, is achieved by
applying algorithms like Gradient Descent (refer subsection 2.1.4). The weights on the
inputs can be viewed as the synaptic strength in a BNN [AH17].

A typical Perceptron is given in Figure 2.1.1. The threshold θ and the weights of
the neuron can be represented in a single vector as W = (w1,w2, ...,wn,−θ) and a
corresponding 1 is added to obtain the input vector as X = x1, x2, ..., xn, 1. The output
can be represented in a matrix notation as:

f(g(X,W)) =

 1, if WTX > 0

0, otherwise
(2.1.1)

Figure 2.1.1: A visual representation of a Perceptron having threshold θ

Eventually, Minsky and Papert [MP72] made further development to the perceptron.
In contrast to Rosenblatt’s perceptron, the Minsky-Papert perceptron (or MPP) accepts
input values in a subspace of real numbers i.e., [0, 1] ⊂ R. A MPP is able to solve
problems that are linearly separable in input space. To understand perceptron learning,
one should consider a MPP as a classifier. The set of positive examples (P) are patterns
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for which the output of perceptron is w ′x > 0. The perceptron produces a negative
output (w ′x < 0) for samples in Negative set (N). The weights are initialized with
random values and involves the following procedure for correcting them:

1. Evaluate the output of perceptron for each of the input x ∈ P ∪N

2. If the result is wrong, change the weights

• If x ∈ P and w ′tx < 0, w(t+1) = wt + x; t++

• If x ∈ N and w ′tx > 0, w(t+1) = wt + x; t++

3. Repeat the steps from 1. until the output is correct for all the test patterns.

Even though the Perceptron accomplishes an improvement over MCP, it fails when
implemented for non-linear separation like exclusive-OR (XOR) or in determination
of parity. An arrangement of several MPPs in one input layer feeding forward to
an output layer is known as a single-layer perceptron (SLP). A SLP is the simplest
form of a neural network. Instead of a threshold, an SLP uses a nonlinear activation.
A SLP separates an input space into two subspaces similar to MPP. The following
section explains how the architecture of ANN evolved for solving complex issues and
increasing the computational power of the system.

2.1.2 Multi-layer Perceptron

A multi-layer perceptron (MLP) is a feed forward network having acyclic connections.
It consists of an input layer, an output layer and hidden layers. Each layer can contain
arbitrary number of nodes. Each node of a layer is connected to all nodes of the
preceding and succeeding layers. Hidden layers are the layers of perceptrons between
the input and output layer. A SLP separates an input space into two subspaces whereas
a MLP is able to identify a convex region in an n-dimensional space. The MLP depicted
in Figure 2.1.2 has D input neurons, nH hidden neurons in a single hidden layer and a
c-dimensional output vector.

Instead of manually adjusting the weights of the network, they can be updated
automatically by a learning algorithm for solving distinct problems. This is achieved
by minimizing the error gradient as discussed in subsection 2.1.4. Different types of
activation functions are used in a network depending on their advantages. The various
types of activation functions are discussed next.
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Figure 2.1.2: A MLP network having a single hidden layer. A sigmoid transfer function (see
subsection 2.1.3) is used for the neurons in hidden and output layers. [DHS01]

2.1.3 Activation Functions

The choice of the network topology and the proper activation function of the neurons
are important factors to be considered for effective training of the network. At least one
neuron with non-linear activation is enough to make the network non linear [AH17].
Continuity and differentiability of the function is important for back-propagation as
explained later in subsection 2.1.4. Besides these two factors, it is desirable if a identity
mapping for values near origin exists. An activation or transfer function essentially
limits the output to have values within a finite range. Mainly, characteristics of three
kinds of non linear activations are discussed here.

• Sigmoid or Logistic - A sigmoid is a smooth, continuous non-linear function
as plotted in Figure 2.1.3. One can observe that the function maps the output
as f(x) : R → [0, 1]. Equation 2.1.2 calculates the sigmoid function and its
derivative. As the output saturates to 1 when |x| increases, the gradient be-
comes approximately zero and the weight changes are negligible while learning
[AH17]. This is known as vanishing gradients problem in back-propagation (refer
subsection 2.1.4).

f(x) =
1

1+ e−x
, f ′(x) =

e−x

(1+ e−x)2
= f(x)(1− f(x)) (2.1.2)
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Figure 2.1.3: A logistic or sigmoid function
limits f(x) within the range
[0,1]

Figure 2.1.4: Tangent hyperbolic function
having range [-1,1] for the
output f(x)

Figure 2.1.5: A ReLU activation function
having range [0,∞) in R+

• Hyperbolic tangent - A hyperbolic (tanh) function is a rescaled version of
sigmoid. Its function value and the derivative is given by Equation 2.1.3. The
plot Figure 2.1.4 shows that unlike a sigmoid, the output is mapped as f(x) :
R→ [−1, 1]. Moreover, it approximates a linear function near origin.

f(x) =
1− e−x

1+ e−x
, f ′(x) = 1− f(x)2 (2.1.3)

• ReLU - A ReLU or Rectified Linear Unit (as shown in Figure 2.1.5) has a function
value, which is zero for negative inputs and linearly proportional for positive
input. Equation 2.1.4 shows the function and its derivative. From this, one
can conclude that the derivative in R+ always remains 1 and never saturates.
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For network architectures such as a CNN (refer section 2.2) that have many
hidden layers, this helps in avoiding the vanishing gradient problem [AH17]. One
drawback of using ReLU activation is that it may lead to a "dead" neuron such
that the neuron never activates during training [LJK16]. This might happen
when the weight of the neuron becomes negative and for such a value, a ReLU
always returns zero [AH17].

f(x) = max(0 , x) , f ′(x) =

 1, if x > 0

0, otherwise
(2.1.4)

Other than these, there are different types of transfer functions also like Softsign,
Leaky ReLU, Softplus, Exponential linear units (ELU) [AH17].

2.1.4 Learning with Gradient Descent

This section describes an underlying method used for training a layered ANN. As
already seen in subsection 2.1.1, the learning algorithm modifies the parameters
according to the output of the MPP. In case of a SLP, the objective is to minimize the
total number of incorrect classifications. For a weight w and its set of misclassified
patterns F(w) = {x : w ′x < 0}, the optimization can be formulated as [DHS01]:

Objective : min f(w)

where f(w) = −
∑

x∈F(w)

w ′x (2.1.5)

To obtain the minimal value, the Gradient Descent (GD) method is applied. In
the GD approach of optimization, the gradient of the objective function, ∇f(w), is
computed iteratively. The new solution is moved along the negative direction of the
gradient, which finally converges to give a minimized objective [DHS01]. The update
rule to modify the weights is given as:

wt+1 = wt − η∇f(wt) (2.1.6)
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where η > 0 is a constant called learning rate. The choice of a suitable value for η is
important for the convergence process. The gradient for the objective in Equation 2.1.5
is calculated as:

∂f(w)

∂wi
= −

∂

∂wi

∑
x∈F(w)

w ′x = −
∂

∂wi

∑
x∈F(w)

n∑
j=1

wjxj

= −
∑

x∈F(w)

∂

∂wi

n∑
j=1

wjxj = −
∑

x∈F(w)

x

(2.1.7)

When this gradient is substituted in Equation 2.1.6, the new weight vector can be
calculated as in Equation 2.1.8. One can observe that the updated vector is a simple
addition of a multiple of the sum of misclassified samples to the previous weights. In
a geometric sense, the gradient of f(w) is proportional to the sum of distances from
the misclassified samples to the decision boundary [DHS01].

wt+1 = wt + η
∑

x∈F(w)

x (2.1.8)

GD with Back-Propagation

In contrast to the optimization as seen before in SLP, the objective in MLP is to minimize
an error by gradient method. A smooth activation function like the sigmoid (refer
subsection 2.1.3) is chosen for a neuron in MLP. Since such a function is differentiable
everywhere and helps in avoiding discontinuities while computing the gradient. For a
MLP, a classification error or Total Sum Squared Error (TSSE) is defined as given in
Equation 2.1.9. This error is used to efficiently change the weights of all the layers.

E(w) =
∑
p∈D

1

2

C∑
k=1

‖zkp − z
∗
kp
‖2 (2.1.9)

where:
D → set of training data tuple (x,z)

z → output of the net

z∗ → target output
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Because there is no desired output specified for the hidden neurons, the error cannot
be computed directly. For this reason the GD is used in combination of a back-
propagation algorithm. In back-propagation, two passes of the network are carried
out. First is the ’forward pass’, where the inputs of the training set are fed into the
network one by one. In this step, the output of the hidden neurons as well as the final
output z are computed by the network. Next, the gradients are calculated for each of
the layers starting from the output layer until the initial layer. This is known as the
’backward pass’, as the error gradient is propagated from the output layer ’back’ to the
hidden layer. For a MLP as shown in Figure 2.1.2, the update rules for the weights are
given by Equation 2.1.11 and Equation 2.1.10.

wkjt+1 = wkjt − η
∂E(wkj,wji)

∂wkj
(2.1.10)

wjit+1 = wjit − η
∂E(wkj,wji)

∂wji
(2.1.11)

This rule can be generalized for a network having layers l = S1,S2, ...,SL and a
weight matrix having weight ′w ′mn for an edge from neuron m with output om to
neuron n with output on. One can compute the updated weight by Equation 2.1.12.

wmnt+1 = wmnt − η . om . δn (2.1.12)

where,

δn =

 on . (1− on) . (on − z∗n), if n ∈ SL
on .( 1− on) .

∑
k∈Sl+1 δkwnk, if n ∈ Sl and l < L

(2.1.13)

The δn is called the backpropagated error because it is the accumulated error of the
backward computation up to the neuron n. Therefore, one can observe that the error
gradient is nothing but the output value at node multiplied with the backpropagated
error. Therefore, for a sigmoid activation function, the error gradients for Equa-
tion 2.1.11 and Equation 2.1.10 can be computed by Equation 2.1.14 & Equation 2.1.15

respectively.

∂E(wkj,wji)
∂wkj

= yj . 2 (zk − z∗k) zk (1− zk)︸ ︷︷ ︸
δk

(2.1.14)
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∂E(wkj,wji)
∂wji

= xi . yj (1− yj)
C∑
k=1

δkwkj︸ ︷︷ ︸
δj

(2.1.15)

The back-propagation learning process for MLP can be summarized as follow:

1. Apply the input pattern x and propagate it for forward pass.

2. Calculate the error gradient for output layer ∂E
∂wkj

.

3. Proceed to calculate the error for preceding layer successively until the first layer.

4. Update the weights using the gradient according to Equation 2.1.12.

Based on the type of update followed, different training protocols can be implemented.
Two of them are mentioned here:

• Online learning - the weights are updated after back propagating each input
pattern.

• Batch learning - also termed as learning by epoch, the weights are updated by
summing the gradients on a mini-batch of all the training patterns.

2.2 convolutional neural networks

As seen in the previous section, the neurons in a hidden layer of ANN are fully
connected to all the neurons of a previous layer. This implies that the number of
network parameters increases correspondingly to the image resolution and would lead
to over-fitting [LJK16]. Inspired by the cognitive vision in animals, which is invariant
to the position of a pattern, the structure of ANN was adapted to exploit the spatially
local correlation found in images [PG17]. A hierarchical design is inherently useful for
recognition architectures because in images, pixels are assembled into edglets, edglets
into motifs, motifs into parts and eventually objects are constructed by parts [LKF10].
This led to the development of Convolutional neural networks (CNNs).

A CNN is usually a sequence of many number of hidden layers stacked in multiple
stages. By forwarding an input image through the layers of a CNN, the original image
is transformed from original pixel values to obtain a final output. The output of a
CNN can be utilized as a new representation of an input image or as a class score to
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Figure 2.2.1: An example showing the 3D arrangement of neurons in a layer of CNN. [LJK16]

perform object classification [UGB+
16]. The architecture of a typical CNN consists of

an input layer at the beginning, followed by a combination of layers organized in a
particular order and finally composed of fully-connected layers, which are similar to
layer of a ANN (refer subsection 2.1.2). The main types of layers used to build a CNN
architecture are explained next.

Convolutional Layer

Convolutional layers are important building blocks of a CNN used for feature extrac-
tion along the height and width of an input. The input and output of a layer is a set of
arrays called feature maps or activation maps and each feature map represents a specific
feature extracted from all the locations of input [LKF10]. In a convolutional layer,
neurons are arranged in a 3D structure having height, width and depth as shown in
Figure 2.2.1. Similar to a neuron in ANN (Equation 2.1.1), a neuron in this type of
layer still computes the dot product of their weights with input volume followed by a
non-linear function1. But the connectivity of a neuron is restricted to a small subregion
of the input called receptive field [LJK16].

Convolution is a mathematical operation performed over two discrete or continuous
functions. In the context of a CNN, it is used as a feature detector in a convolutional
layer. As an example, the pixel values in a image or a feature map output from
another layer of CNN can be considered as a discrete function as shown in Figure 2.2.2.
Convolution is performed over 3 x 3 subregion of input using a kernel of the same
size as another discrete function. The parameters of kernel (or filter) and input are

1 In a CNN, an activation layer contains activation functions for each of the neurons in a preceding
convolutional layer. ReLU function (refer subsection 2.1.3) is used as activation function because of faster
learning and to avoid vanishing gradient problem [KSH12]
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Figure 2.2.2: Convolution operation depicted as matrix multiplication using a 3 x 3 filter (or
kernel) on input of same size. [PG17]

multiplied element-wise and their summation is the corresponding entry in output
feature map. The size of a filter is a hyper-parameter of convolutional layer.

The sets of weights in a convolutional layer used for convolving an input is referred
as a filter, used for producing a feature map. A convolutional layer consists of multiple
filters and the number of filters is equal to the depth of that layer. The convolution is
performed using a filter only on a small window of input volume, sliding the same
filter along the spatial dimensions of the input and computing the feature detections in
the output. In other words, when we consider a 2D slice of depth in a layer as ’depth
slice’, all the neurons in that particular depth slice share the same weights. Usually, a
filter slides along the input dimensions in steps of pixels known as stride, which can
be used to control the size of the output volume. The local connectivity of neurons
and sharing of parameters in a convolutional layer results in a better computational
efficiency [LKF10]. Gradient descent method is used to learn the weights in this type
of layer and the learned filters activate a neuron when a particular pattern occurs in
the neuron’s receptive field [PG17].

Pooling Layer

The pooling layer down-samples a feature map from its previous layer. This layer
is usually introduced between convolutional layers for reducing the spatial size of a
feature map thereby help control over-fitting [LJK16]. The intuitive reasoning behind
this layer is to provide translational invariance to a feature since feature detection is
more important than the feature’s exact location in a feature map. Therefore pooling
layer preserves the detected features in a smaller representation and reduces the
number of parameters.
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Figure 2.2.3: Max-pooling operation using a 2 x 2 filter. An output entry is the largest input
value within the filter bounds and the filter advances with stride = 2 [LJK16].

The most common subsampling functions used are max-pooling and average pooling.
The filters in pooling layer operate independently on every depth slice of input. For
max-pooling operation, a neuron outputs the maximum value of the input in the filter
window as shown in Figure 2.2.3. Likewise, the average over the input values in filter
window forms the output of average pooling. Max pooling has demonstrated faster
convergence and better performance in comparison to the average pooling and other
variants such as l2-norm pooling [SMB10].

Fully Connected Layer

The fully connected layer has the same configuration as a hidden layer in MLP (refer
subsection 2.1.2), where the neurons in this layer are connected to all the activations in
the previous layer. Fully Connected layer are generally used at the end of CNN for
classifying the input image into various classes.
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R E L AT E D W O R K

In this chapter, the related approaches for manipulating features in images are intro-
duced. In particular, this chapter discusses a traditional approach for aging in face
images in section 3.2. An introduction to machine learning and generative models is
presented in section 3.3, and then, two relevant methods based on deep learning that
are popularly used to generate data-driven attribute transformations in images are
explained. Further, the architecture of two pre-trained CNNs, employed for the image
editing method and the face recognition tasks performed in this thesis, are presented.

3.1 modifying features in face images

Image editing can involve transformation of objects, changing of facial features of
a person or altering the texture of a material in an image. Earlier approaches for
producing semantic changes in the features of an image were specifically designed
for a distinct task. For example, the approach introduced in [BV99] explicitly defines
certain constraints on facial geometry and texture before modeling 3D faces. Then, a
3D face reconstruction having the changed facial expression is synthesized from a pair
of 2D input images. Similarly, the technique presented in [IKS14] involves modeling of
illumination conditions for aging of a person in a face image. The method in [IKS14]
also requires a process of compiling a large dataset containing 40K images of people
at different ages. For automatic removal of eyeglasses from a frontal face image, the
method proposed in [WLS+

04] uses a learned statistical mapping between pairs of
face images with and without eyeglasses. Although the previous methods accomplish
convincing results, these approaches are difficult when generalized for "in-the-wild"
face images, because of large variations in identity, expression or pose of a person. Due
to recent focus on using CNNs in computer vision tasks and with major progress in the
field of deep learning, several models have been developed to modify various kinds
of features in face images such as pose or emotion of a person [BCW+

17]; lighting,
appearance or expression [SYH+

17]. These models are successful in synthesizing
visually realistic changes of a desired feature without affecting other properties in
an original image. In the following section, an introduction to machine learning &
generative models is presented first, and then the two relevant methods popularly

19
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used for modifying face images are explained. The following section describes a
classical approach for modifying age in face images.

3.2 a classical approach for aging in face images

An illumination-aware technique to progress the age of a person in a face image was
presented in [IKS14]. This approach produces the age-progressed image considering
the pose, expression and illumination conditions. Although illumination and shading
are 3D effects, the authors modeled the illumination conditions of an image in 2D
using an illumination modeling technique. In this technique, the differences in shape
and texture between ages are applied while maintaining the illumination conditions
of an input image. The authors created a large dataset consisting of images of people
at different ages through internet searches, spanning an age range of 0 to 100. The
images were categorized into 14 clusters according to age groups as follows: 0, 1, 2-3,
4-6, 7-9, 10-12, 13-15, 16-24, 25-34, 35-44, 45-56, 57-67, 68-80 and 81-100. This dataset
contained a total of 40K images with an average of 1500 images for each age cluster.
The process of obtaining an output with age progression for an input face image using
this approach is illustrated in Figure 3.2.1. The input image is from a source cluster ’s’,
here it is 2-3, which was progressed to an age of a target cluster ’t’, here it is 57-67. The
first step in this process was warping the input image by the method of [KSSGS11] to
obtain a frontal pose image I. The images in the source and the target clusters were
also warped using this method.

Figure 3.2.1: This figure shows an overview of the steps for illumination-aware aging of a face
image. [IKS14]

The next step was to add the texture difference between the source and the target
clusters to the input. To this end, the illumination of the images in the source and
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the target clusters were matched, or as the authors say, "relighted" to the illumination
of image I. To start with, the "collection flow" method [KSS12] was used to obtain
dense correspondence between the images in each cluster. Collection flow method
computes the flow between any pair of n images from a large face dataset. The
frontal images of each of the source and the target clusters were given as input to the
collection flow method. For the images in each cluster, a matrix M with dimensions
[m×n] was constructed, where n is the number of images in the set and each column
has the pixels of an image Ji laid out in a vector. The flow estimation was done by
projecting M onto a low-rank subspace using singular value decomposition in which
facial expressions and pose are normalized while lighting is preserved. This is called
as expression neutralization by the authors of [KSS12]. Then, an intermediate optical
flow1 was calculated between the expression normalized image J

′
i and an input image

Ji in the cluster. Using this intermediate flow, the image Ji was warped to J
′
i. The

process of projecting onto the low-rank subspace, computing the intermediate flow
and warping is applied iteratively to obtain flow-aligned images (see Figure 3.2.3).
This iterative process is summarized as follows:

1. Initialize k = 4 and intermediate flow Fi to identity. The input images are stacked
as columns of the matrix M.

2. A rank-k approximation Mk is computed for M using singular value decomposi-
tion (SVD) and setting the singular values k-n to zero. Each column of Mk is a
low-rank projection of the image in corresponding column of M, as shown in
Figure 3.2.2. The projected images J

′
i are extracted from the columns of Mk.

3. The optical flow Fi from J
′
i to Ji is computed by the method of [L+

09] and Ji is
warped to J

′
i using this flow.

4. Update k = k + 1 and repeat from step 2 until flow converges.

The flow-aligned images obtained from the collection flow method are averaged.
As shown in Figure 3.2.3, the flow-aligned averages are much sharper compared
to the average of the original images of a cluster. However, the illumination was
observed to be unrealistic in the flow-aligned averages and subtle texture differences
in the faces were reduced [KSSGS11]. Hence, the authors of [IKS14] proposed to
match the illumination of an input image onto the flow-aligned average image of

1 Optical flow calculates apparent motion of objects between two images. This motion is determined by
computing a 2D vector field, where each vector shows the displacement of pixels from the first image to
the second image.



22 related work

Figure 3.2.2: This figure shows the projected images obtained in the collection flow method.
The first column contains the input image. The second column shows the rank-
4 projection and the third column shows the rank-12 projection of the input
respectively. [KSS12]

every cluster. This was accomplished by computing a rank-4 approximation of a flow
aligned average and then matching the illumination. The rank-4 approximation retains
the lighting and shading of the input photos, but neutralizes the changes due to facial
expressions [KSS12]. Specifically, for a cluster ’j’ having flow-aligned average Aj, the
rank-4 approximation via SVD is given as:

Mj = Uj ∗Dj ∗ VTj (3.2.1)

where, Mj is a [f × p] matrix, ’f’ is the number of images in a cluster and ’p’ is
the number of pixels in an image. Equation 3.2.2 is solved for the co-efficients α
and the "relighted" average image that matches the illumination of I is obtained by
Equation 3.2.3.

min
α
‖I −αVTj ‖2 (3.2.2)

AI
j = αV

T
j (3.2.3)

Therefore, the "relighted" average images of the source and target clusters was
obtained using the illumination matching process as AI

s and AI
t respectively. An

optical flow Fsource−input between AI
s and I was computed and an illumination matched

projection Js was obtained by warping AI
s to the input image coordinate frame.

Similarly, the flow Ftarget−input between AI
t and I was calculated and Jt was obtained.

The texture difference computed as Jt − Js was added to the image I.
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Figure 3.2.3: This figure shows the relighting technique used for illumination-aware aging. The
first row contains the average pose-aligned images of each cluster. The average
images obtained by the collection flow method are shown in the second row.
The bottom row shows the re-lit averages with the illumination matched to the
illumination of a reference input (first image in the row). [IKS14]

The flow of aging from source cluster to target cluster Ftarget−source was mapped to
the texture-modified image I+ Jt− Js. This was achieved by concatenating two flows as
Finput−target ◦ Ftarget−source and applying this concatenated flow to the texture-modified
image. The flow computations were done using the method of [L+

09]. The change
in aspect ratio was applied to the age progressed image considering the variation of
shape of the face over time and finally blended into the input image using the method
of [BKD+

08] to obtain the modified image shown in Figure 3.2.1.
The authors performed age modification on face images of FGNET dataset [LTC02]

and they conducted an experimental comparison by blending age progressed faces
onto the ground-truth images. Figure 3.2.4 shows the comparison of the modified
results of the age progression method to the ground-truth images. The age modified
face image obtained (refer Figure 3.2.4) using the illumination-aware age progression
method was blended into the ground-truth image for this comparison.

3.3 approaches based on machine learning

Machine learning is a field of artificial intelligence, where algorithms are developed to
learn a specific task without explicitly programming for that task [Sam59]. The goal
of a machine learning algorithm is to identify patterns in a training dataset relevant
to a task. This is accomplished by establishing classification rules for an analytical
model and improving the model using the training data. Machine learning algorithms
are mainly classified into two broad categories and are distinguished based upon the
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Figure 3.2.4: This figure shows the comparison of the age progressed image with ground-truth
image for an input image (left) in age cluster of 0− 3. The second column has
the age modified outputs for two target clusters and the last column has the
corresponding ground-truth images. [IKS14]

type of data required for training. The two categories are: Supervised learning and
Unsupervised learning. In supervised learning, the training dataset contains data
samples associated with their respective label or target value. In contrast, samples
from the training dataset are unlabeled in case of unsupervised learning. Therefore,
unsupervised learning involves inferring the underlying probability distribution of
the training data whereas supervised learning estimates the probability of assigning a
label for a given input [GBC16].

Generative models

A Generative model is essentially a probabilistic model used to generate synthetic
examples either by explicitly or implicitly defining the distribution over the observed
data. A random sample from a fixed distribution (e.g. Gaussian) in a low-dimensional
space is termed as a latent variable. Generative modeling involves mapping of a latent
variable z to a sample x from a distribution over the input data in high-dimensional
space [GBC16]. A generator network g accomplishes the task of this mapping. It is
essentially a parameterized computational system that infers the true distribution p(x)
of training data. A CNN (refer section 2.2) is typically used as a generator network
if input data are images. This is because images have complicated distributions and
also the architecture of a CNN is suitable for learning the parameters required for
nonlinear mapping of latent variables z [GBC16].

Figure 3.3.1 clearly depicts the goal in generative modeling. A generator network
maps samples from a unit gaussian in latent space z to a distribution p̂(x). The
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Figure 3.3.1: Schematic overview of generative modeling. The training data samples
{x1, x2, ..., xn} are represented by dots in the image space of true distribution
p(x) and the distribution p̂(x) is described by the model having parameters θ
[KAB+

16]

generated distribution is similar to the true distribution p(x) described by n training
samples {x1, x2, ..., xn}. In the context of generating images, the difficulty in this
modeling is to obtain correct samples from the latent distribution such that the
generated outputs resemble the training images, since a random latent variable does
not necessarily map to a data point in the true distribution. Therefore to overcome this
difficulty, the learning procedures for generative models are designed to achieve two
factors. The first factor is to determine a useful way for obtaining the latent variable
z. Training a generator network to render realistic images for a given z is the second
factor. Two generative approaches based on unsupervised learning mechanism used
for producing feature changes in face images are described next.

3.3.1 Deep Convolutional GAN

Deep Convolutional GAN or DCGAN, presented in [RMC15], was designed based
on the generative adversarial network (GAN), proposed by Ian Goodfellow et al.
[GPAM+

14]. DCGAN established an useful selection of the model configuration
and hyperparameters of a GAN model. GAN is a learning framework for training
generative models based on a game theoretic scenario. In the GAN approach, two
networks are arranged in an end-to-end manner as shown in Figure 3.3.2 and are
trained in parallel. There are two main components in GAN: a generative model
and a discriminative model. A generative model efficiently learns the training data
distribution and generates plausible outputs that are similar to training samples. A
discriminative model acts as its adversary, which performs a binary classification. The
task of the discriminator is to distinguish real training data from synthesized data.
One can consider the generative network as analogous to an art forger attempting to
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create imitations of original paintings and correspondingly the discriminator model is
analogous to an investigator distinguishing the fraudulent creations from the original
artwork.

Figure 3.3.2: This figure shows a typical GAN pipeline for training a generative model. The
GAN framework is a combination of a generator network producing "fake" images
and a discriminator network distinguishes the "real" and "fake" images. [PG17]

3.3.1.1 Modifications in CNN architecture

The GAN learning process is difficult when generator and discriminator are neural
networks [GBC16]. Images generated by GAN are incomprehensible and it is difficult
to scale up GAN using CNNs [RMC15]. During the early stage of training, the
discriminator tends to separate real images from generated images with high certainty.
Hence, instability occurs when learning the generator parameters [BCW+

17]. To solve
the limitations of GAN, modifications in the CNN (refer section 2.2) architecture were
specified in the DCGAN approach. These changes were as follows:

• Pooling functions were replaced by convolutions resulting in a homogeneous
network, because a network consisting of only convolutional layers is sufficient
to learn all necessary invariances in training data and exhibit state of the art
performance [SDBR14]. By removing pooling layers, a network learns its own
spatial upsampling or downsampling according to the authors of [RMC15].

The generative model in DCGAN has an architecture as shown in Figure 3.3.5. It
maps a low-dimensional latent vector z from a uniform distribution onto a high-
dimensional image. A standard CNN having a structure as specified in Table 3.3.1
was used as the discriminator. Its convolutional layers were configured inversely
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Figure 3.3.3: This figure shows the architecture of the generator network in DCGAN model.
The network has a 100 dimensional latent vector as input z which is projected
into a 64 x 64 image by using a series of 4 fractionally-strided convolutional layers.
[RMC15]

to generator’s layers, such that it downsampled the input image for binary
classification. The generator is comprised of four layers performing fractionally-
strided convolutions connected in series to increase the spatial dimension of an
input representation. Fractional stride convolution was used to conveniently
upsample an input by performing a convolution operation (refer section 2.2). An
example of such an operation is shown in Figure 3.3.4.

• The next modification was eliminating the fully connected layers (refer section 2.2)
for deeper architectures. Instead, global average pooling method was applied. In
global average pooling, each feature map of a layer is averaged and transformed
into a vector which is then given to the succeeding activation layer. Avoiding
the overfitting problem and robustness to spatial translations of the input are
the advantages of using global average pooling [LCY13]. It also increased the
model stability [RMC15]. Therefore, output of the last convolutional layer in the
discriminator was flattened and provided to the sigmoid output unit.

• Batch normalization was used in both the generator layers (except at the output
layer) and the discriminator layers (except at the input layer). In Batch normal-
ization, the input of an activation unit is normalized to have zero mean and
unit variance. Batch normalization enables the use of higher learning rates and
speeds up training considerably [IS15]. Mode collapse is a problem that normally
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Figure 3.3.4: An example of fractional stride convolution for a 2 x 2 input (in blue). A 2 x 2

border of zeros is padded to the input after inserting a zero between them. Then
a 3 x 3 kernel convolves over the input to produce a 5 x 5 output (in green). The
generator’s layers in DCGAN perform fractional stride convolution. [DV16]

Layers Description

1. Input [64 x 64 x 3]

2. Convolutional 64 filters of size [5 x 5 x 3], stride 2

3. Convolutional 128 filters of size [5 x 5 x 64], stride 2

4. Convolutional 256 filters of size [5 x 5 x 128], stride 2

5. Convolutional 512 filters of size [5 x 5 x 256], stride 2

6. Output [1] Sigmoid unit

Table 3.3.1: Layer configurations of the discriminator in DCGAN

occurs in a GAN model, where the generator maps several different latent inputs
to the same output. Using Batch normalization, the mode collapse problem was
prevented in DCGAN [RMC15].

• ReLU activation (refer subsection 2.1.3) was applied for all the layers in the gener-
ator except for the output layer, which used a tanh function. The model quickly
learned the color space of the training distribution because of the bounded range
of the tanh activation [RMC15]. In contrast to a GAN that has maxout activation,
Leaky ReLU activation given in Equation 3.3.1 was used for the discriminator’s
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layers in DCGAN. Unlike ReLU, Leaky ReLU returns a small gradient of a
constant value for negative inputs.

f(x) =

 x, if x > 0

αx, if x < 0
(3.3.1)

3.3.1.2 DCGAN objective functions

The DCGAN objective was to train the binary classifier to effectively discriminate
between true data & generated data and simultaneously encourage the generator to fit
the model distribution pg such that it eventually converges to the true data distribution
pdata. The input to the generator G having parameters θG is a latent variable z from
a uniform distribution pz. The generator produces an output G(z). The discriminator
D having parameters θD computes a scalar value given by y = D(x) ∈ [0, 1]. For
a given training sample x and a random latent variable z from pz, the individual
objective functions of generator and discriminator are calculated by Equation 3.3.2 and
Equation 3.3.3 respectively. From this, one can deduce that each cost function depends
on both generator parameters θG as well as discriminator parameters θD.

JG(D,G) = L
(
D
(
G
(
z
))

, 1
)

(3.3.2)

JD(D,G) = L
(
D
(
x
)
, 1
)
+ L

(
D
(
G
(
z
))

, 0
)

(3.3.3)

where L is the cross-entropy function used to evaluate the dissimilarity between two
probability distributions. It is calculated as:

L(h∗,h) = −[h log(h∗) + (1− h) log(1− h∗)] (3.3.4)

In Equation 3.3.3, the first term can be interpreted as the log-likelihood of D giving
an output of 1 for the training sample x, while the second term indicates the log-
likelihood of D assigning 0 for the generator output G(z). Consequently, one can
regard the generator’s payoff in Equation 3.3.2 as the log-likelihood of D yielding an
output 1 for G(z). The generator maximizes its objective function by changing only
θG, since it has no control over the discriminator’s parameters. Correspondingly, the
discriminator learns to minimize its objective (see Equation 3.3.3) by controlling only
θD. In the perspective of game theory, this is similar to a two-player game known
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as minimax game. The solution for a minimax game is a Nash equilibrium. A Nash
equilibrium 2 for DCGAN is obtained by solving Equation 3.3.5. The value function
V(D, G) in Equation 3.3.5 represents the complete objective function of DCGAN model.
Therefore, the training criteria in DCGAN involved maximization of the value function
by the discriminator and the generator concurrently minimizing V(D, G).

min
G

max
D
V
(
D,G

)
= Ex~pdata(x)

[
logD

(
x
)]

+Ez~pz(z)
[

log
(
1−D

(
G
(
z
)))]

(3.3.5)

Substituting Equation 3.3.4 in Equation 3.3.3, one can confirm from Equation 3.3.6
that the discriminator’s cost in essence corresponds to a value of −V(D,G) and
represents the cross-entropy minimized when training a binary classifier [Goo17].

JD(D,G) = − logD
(
x
)
− log

(
1−D

(
G
(
z
)))

(3.3.6)

3.3.1.3 Training of DCGAN model

For the purpose of generating high quality face images compared to GAN, the authors
of [RMC15] designed a DCGAN model as per the aforementioned guidelines. The
training of the DCGAN model to achieve a solution for Equation 3.3.5 is described in
this section. The primary idea of DCGAN training was balancing the optimization
done between G and D. Training of DCGAN is an iterative process consisting of two
elementary steps:

(i) Keeping the parameters of generator fixed, optimize the discriminator.

(ii) Fix the parameters of discriminator and optimize the generator.

A face image dataset containing 3M images of 10K identities was used for the train-
ing. The learning algorithm uses the minibatch Stochastic Gradient Descent 3 (SGD)
optimization method. The SGD procedure was applied once on the generator after
training the discriminator for fixed number of steps indicated by hyperparameter k,
for DCGAN k = 1 was used. The learning process that is repeated for ’n’ training
iterations is as follows:

1. One obtains a mini-batch of m samples {z(1), z(2), ..., z(m)} from noise prior pg(z).

2 The Nash equilibrium for a GAN is a tuple (θminD , θminG ), where θminD is a local minimum of JD and
θminG is a local minimum of JG [Goo17]

3 Minibatch SGD method is based on Gradient Descent optimization (refer subsection 2.1.4). The key
difference compared to standard GD (see Equation 2.1.6) is that in minibatch SGD the training samples
are randomly shuffled and then the gradient of objective function is updated for each batch of training
samples as: wt+1 = wt − η∇fi(wt), for i = 1,2,...,m training batches
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2. One obtains a mini-batch of m data points {x(1), x(2), ..., z(m)} from true distribu-
tion pdata(x).

3. The discriminator parameters are updated by computing its stochastic gradient:

∇θD
1

m

m∑
i=1

[
logD

(
x(i)

)
+ log

(
1−D

(
G
(
z(i)
)))]

. (3.3.7)

4. Repeat from step 1. for ’k’ number of iterations.

5. The generator parameters are updated by computing its stochastic gradient:

∇θG
1

m

m∑
i=1

[
log
(
1−D

(
G
(
z(i)
)))]

. (3.3.8)

Figure 3.3.5: This figure shows a sample collection of face images generated using a pre-trained
DCGAN model available at [Chi15].

This model showed an improvement from GAN in model stability and also learns
a good representation of images for generative modeling. Figure 3.3.5 shows the
generated images by a pre-trained DCGAN model. The ability of a DCGAN model to
learn an image representation that distinguishes the semantic attributes of an image
is demonstrated in Figure 3.3.6. The latent vectors of images were averaged for each
column. Vector arithmetic was applied on these mean vectors and then given to the
generator for synthesizing the face images with desired changes. An interpolation to
produce varying degree of feature changes was done by adding a uniform noise to the
resulting vector of the arithmetic operation. However, one can notice that it is difficult
to control the amount of interpolation in the desired attribute change with the model
parameters in this method.
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Figure 3.3.6: This figure depicts an arithmetic operation of the latent vectors to produce a
feature change in the generated image by the DCGAN model.[RMC15]

3.3.2 VAE/GAN

VAE/GAN is a generative method proposed in [LSW15], which combines a generative
adversarial network (refer subsection 3.3.1) with a Variational Autoencoder (VAE) to
learn a similarity metric. This model was inspired by [GEB15], where the feature
representations separating the style from content of an image was obtained using the
layers of a CNN. These feature representations were used to transfer a style of one
image to another image in [GEB15]. However, in VAE/GAN approach, a GAN model
provided the required style and content metrics. One can observe from Figure 3.3.7
that the images generated by VAE are blurry while images produced using a GAN
model are sharp but noisy. VAE has stable learning dynamics when compared to GAN
[BLRW16]. The VAE/GAN approach effectively incorporated the advantages of both
the models to learn better image representations. The concept of VAE is explained in
the next section.

Variational Autoencoders

A Variational Autoencoder is a generative model that uses unsupervised learning to
reconstruct images. It was introduced by Kingma and Welling in [KW13]. A VAE
consists of two networks, an encoder (Enc) with parameters φ and a decoder (Dec) with
parameters θDec. The encoder network maps an input data x to a vector z in latent
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Figure 3.3.7: This figure shows a comparison of generated images by VAE and GAN models.
The images generated by a VAE model are in the top row and GAN generated
images at bottom.[YCL+

16]

space Z. The decoder reconstructs output samples from this latent space as pθDec(x | z).
Equation 3.3.9 represents the two networks.

z ~Enc(x) = qφ(z |x) , x̃ ~ Dec(z) = pθDec(x | z) (3.3.9)

In VAE, the data distribution pθ(x) is assumed to be generated from a model with
parameters θ. The true posterior of pθ(z |x) in latent space is intractable because images
have complex probability distributions in a high-dimensional space [Doe16]. Therefore,
the encoder having parameters φ infers an approximate representation of the true
posterior as qφ(z |x) by maximizing a variational lower bound on the likelihood of the
data. This is in contrast to GAN (refer subsection 3.3.1), where a binary classification
provides a criteria for optimizing the generative model. Therefore, VAE method
provides an inference model as well as a generative model. The variational lower
bound is given by Equation 3.3.10. VAE imposes a prior p(z) on the latent distribution,
which is typically a gaussian with zero mean and identity covariance. This is known
as reparameterization trick [Doe16].

LVAE = −Eqφ(z|x)[ logpθDec(x|z) ]+DKL(qφ(z|x)‖p(z)) = Lpixel+Lprior (3.3.10)

In Equation 3.3.10, the first term is the expected log-likelihood of the generated
data also known as reconstruction error. The second term is the Kullback-Liebler4

divergence between the approximate distribution qφ(z|x) and the prior p(z) known
as prior regularization. One can say that, the encoder restricts the latent space from

4 Kullback-Liebler divergence measures the divergence of a probability distribution Q from an expected
distribution P. In the context of machine learning, it is often called the information gain achieved if Q is
used instead of P for a particular task.
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which the decoder reconstructs the output to a space smaller than the prior p(z) by
computing the variational lower bound.

Figure 3.3.8: The combined model of VAE/GAN shows the sharing of parameters between
decoder and generator.[LSW15]

The objective of VAE is to optimize Equation 3.3.10. However, the reconstruction
error in Equation 3.3.10 is usually evaluated by element-wise metrics like `2 error and
was not a sufficient measurement for images having invariances such as translation.
Therefore, the element-wise error was replaced by a feature-wise error measurement
in VAE/GAN approach to obtain a better representation of images. To this effect, a
GAN discriminator was used in conjunction to VAE as shown in Figure 3.3.8. The
discriminator implicitly learns a metric useful for measuring feature-wise error because
it classifies real images from generated images [LSW15]. To formulate a criteria for
the combined model of VAE and GAN, the hidden representation of the lth layer in
the discriminator (represented as Dl(x)) was modeled by a gaussian with mean Dl(x)
and identity covariance as:

pθD(x | z) = N(Dl(x) |Dl(x̃), I), where x̃ ~ Dec(z) (3.3.11)

Now, the element-wise similarity measurement in Equation 3.3.10 was substituted
by the reconstruction error in terms of the GAN discriminator given in Equation 3.3.12.

LDl = −Eqφ(z|x)[ logpθDec(Dl(x) | z) ] (3.3.12)

The value function of GAN (refer Equation 3.3.5) can be represented in the binary
cross entropy form as Equation 3.3.13 for a single data point. Since the generator and
the decoder perform a similar function of mapping from z to x, the generator was
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replaced by the decoder in Equation 3.3.13 and is rewritten as Equation 3.3.14. There-
fore, the LGAN and LDl are incorporated in Equation 3.3.10 to obtain the complete
optimization criteria of VAE/GAN given by Equation 3.3.15. One can interpret LDL as
content error representing the ability of the model to fool the discriminator, and LGAN
as style error representing the model’s reconstruction capability.

LGAN = log(D(x) + log(1−D(G(z))) (3.3.13)

LGAN = log(D(x) + log(1−D(Dec(z))) (3.3.14)

LGAN = LDl +Lprior +LGAN (3.3.15)

The following three factors were considered essential for the training procedure:

• The discriminator was not used to minimize LDl , since this would result in the
discriminator classifying every input as generated data. The error signal LGAN
was not backpropagated to encoder, which offered a better result.

• While updating the parameters of the decoder in Equation 3.3.16, a weighting
factor γ was multiplied to LGAN. This provided a proper balance between the
reconstruction and the discriminating abilities of the model.

θDec = −∇θDec(γLDL +LGAN) (3.3.16)

• In addition to the prior p(z), better results were obtained by using the samples
from the approximate posterior qφ(z|x) for LGAN as:

LGAN = log(D(x) + log(1−D(Dec(z))) + log(1−D(Dec(Enc(x)))) (3.3.17)

The hybrid model of VAE/GAN involved training of both a GAN and a VAE. The
training procedure using GD method (refer subsection 2.1.4) was as follows:

• The parameters for encoder (φ), decoder (θDec) and discriminator (θD) are
initialized.
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• A random mini batch from training set is obtained.

• The samples are encoded into the latent space as Z = Enc(X) and the corre-
sponding outputs are generated by the decoder as X̃ = Dec(Z). The prior
regularization term, Lprior, and the "content error", LDl , are calculated as:

Lprior = DKL(qφ(Z|X)‖p(Z))
LDl = −Eqφ(Z|X)[ logpθDec(X|Z) ]

(3.3.18)

• Samples are obtained from the prior as Zp ∼ N(0, I) and their corresponding
content error is calculated: Xp = Dec(Zp)

• The GAN objective function LGAN is computed as:

LGAN = log(D(X) + log(1−D(X̃) + log(1−D(Xp) (3.3.19)

• The parameters are updated by their gradients using Equation 3.3.18 and Equa-
tion 3.3.12 in Equation 3.3.20 as:

∇φ(Lprior +LDl), ∇θDec(γLDl −LGAN), ∇θDLGAN (3.3.20)

• Repeat from 2. for n training iterations.

The Figure 3.3.9 shows the results of changing facial features in face images of
CelebA dataset(refer subsection 5.1.2). To accomplish this task, an interpolation in
latent space was performed. For the VAE/GAN, the original images were rescaled
to 64 x 64 pixels. The binary attributes provided by the dataset was used to select
the images with a desired attribute & images without that attribute. The latent
representation of the images in both of the sets was calculated and the representations
of the images in each set was averaged. The difference between the mean vectors is
called visual attribute vector, which was added to the latent representation of a test
image to obtain the modified image. Notably, reconstruction of an input image is
not possible by a GAN as it does not have an inference model, which is present in
VAE/GAN. Therefore, VAE/GAN showed that an improvement in producing sharper
images can be achieved by employing a feature-wise similarity metric instead of the
element-wise distance measure of VAE.
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Figure 3.3.9: In this figure, first column is the input image to the VAE/GAN model. The
next column is the reconstuction, followed by desired changes of bald & bangs
produced by the model. [LSW15]

3.4 vgg neural network

This section discusses the architecture of the CNNs, specifically, the layer configurations
of two networks used for the Deep Feature Interpolation (DFI) and face verification
tasks in this thesis. The two CNN architectures are given in Table 3.4.1, where the
network configuration containing 19 weight-layers is used for DFI and network with
16 weight-layers is employed for face verification.

3.4.1 VGG for Image classification

For the purpose of evaluating the performance of CNNs having large number of
layers in image recognition tasks, the authors of [SZ14] investigated the network
configurations in Table 3.4.1. In these CNNs, convolution filters of size 3 x 3 were
used to enable the increase in number of layers. In addition to this, the stride of each
convolution filter is 1, which essentially means that the filter is convolved over each
pixel of the input. Every hidden layer is followed by a non-linear ReLU activation. In
case of large number of layers, reducing the size of filters achieves the simultaneous
reduction in the number of parameters, thereby helping to avoid the overfitting
problem. The pooling layers perform max-pooling operation with filters of size [2 x 2]
and stride 2. The stack of convolutional layers is followed by three fully connected
layers and a final softmax layer. Training of the networks was carried out using batch
GD with batch size of 256. An initial learning rate η = 10−2 was decreased 3 times by
a factor of 10 during the entire training process. The authors also mention that using
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small convolutional filter size was one of the reasons for the networks converging
in less epochs as compared to previous architectures despite of the large number of
layers.

The input to the CNNs were random crops of training images having a fixed size of
[224 x 224]. Two approaches were used for rescaling the training input which can be
considered as data augmentation: (i) single-scale, where the smallest side is resized
to a fixed value, two sizes - 256 and 384 were used by the authors; (ii) multi-scale,
where the smallest side is rescaled by randomly sampling from a range [256, 512].
After training the networks, the testing was done by rescaling the input image to a
predefined smallest side and then passing the input through a fully-convolutional
network, which was obtained by converting the fully connected layers to convolutional
layers. This resulted in a score map having varying spatial resolution and hence, they
were sum-pooled to obtain a fixed size score. The final score vector was obtained by
averaging the score maps of the training input and its horizontal flip.

The networks were trained on the ImageNet challenge [RDS+
15] dataset containing

1.3M images of 1000 object classes and demonstrated state-of-the-art performance for
image classification. The network having 19 layers reached top-1 and top-5 validation
error rates of 25.5% and 8.0%. These results are better than the corresponding error
rates of 40.7% and 18.2% of Alexnet [KSH12], which is the best model of the ImageNet-
2012 challenge [RDS+

15]. For multi-scale testing with scales of [256; 512], each of the
16-layer and the 19-layer networks achieved the same error rates of 24.8% for top-1 and
7.5% for top-5. In conclusion of [SZ14], one can say that a CNN having a large number
of layers and appropriate parameters indeed helps in improving the classification
accuracy.

3.4.2 VGG for Face Recognition

In [PVZ15], a CNN having an architecture similar to that of the 16-layer VGG network
in Table 3.4.1 was adapted for the task of face recognition. For this task, the last fully
connected layer of the VGG network was modified, either to have a dimension of
N = 2622 when used as a N-way face classifier (see item (i)) or a dimension L = 1024

when obtaining a descriptor for face verification (see item (ii)). A mean-normalized
face image of [224 x 224 x 3] was used as the input for the network, which stabilized the
optimization according to the authors of [PVZ15]. The training was done on a specially
curated dataset containing 2.6M face images for 2622 identities (refer subsection 5.1.3).
The dataset was compiled using internet search of celebrity images and filtered to
have 1, 000 images per identity using an automatic filter and a final manual annotation.
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VGG Architecture

16 weight layers 19 weight layers

Input [224 x 224 x 3]

2 Convolutional with 64 filters 2 Convolutional with 64 filters

Max Pooling

2 Convolutional with 128 filters 2 Convolutional with 128 filters

Max Pooling

3 Convolutional with 256 filters 4 Convolutional with 256 filters

Max Pooling

3 Convolutional with 512 filters 4 Convolutional with 512 filters

Max Pooling

3 Convolutional with 512 filters 4 Convolutional with 512 filters

Max Pooling

Fully connected [4096]

Fully connected [4096]

Fully connected [1000]

Soft-max

Table 3.4.1: Layer configuration of the VGG neural networks.[SZ14]

The training procedure followed the method seen in the previous section: batch GD
optimization using batch size of 64 and an initial η of 10−2. The smallest side of the
face images was rescaled to a fixed sized of 256 and a random crop of [224 x 224] from
these images was used for training. The images were flipped with a probability of 0.5
for data augmentation. The training of the network was achieved for two objectives:

(i) Learning a face classifier - The first objective was to recognize the face images of N
distinct individuals in the training dataset. To perform the N-way classification
of face images with N = 2622 identities, the last fully connected layer of the
network having the dimension of 2622 was utilized to obtain a score vector xt
for each training image as:

xt =Wφ(lt) + b (3.4.1)

, where lt is the training image, φ(lt) is the output of the second fully connected
layer and the corresponding weights W ∈ RNxD with D = 4, 096. The network
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was trained to minimize the empirical softmax log-loss, computed by comparing
the score vectors to the ground truth class identity ct ∈ {1, ...,N} as follows.

E(φ) = −
∑
t

log
(

e〈ect ,xd〉/
∑

q=1,...,N

e〈eq,xd〉
)

where, xd = φ(lt) and ec is one-hot vector of class c
(3.4.2)

(ii) Learning face embeddings using triplet loss - To learn a score vector suitable for
face verification (refer section 4.2), the CNN trained previously was frozen,
and the last fully connected layer was replaced by the layer with dimension
L = 1024. Therefore, a new face descriptor, given in Equation 3.4.3, was defined
by conveniently projecting φ(lt) to a low-dimensional space using the weights
W’ and this descriptor was utilized for minimizing the objective. The objective
is the empirical triplet loss given by Equation 3.4.4. The face descriptors xt are
better for face-verification tasks than the descriptors φ(lt) [PVZ15]. Minimizing
the empirical loss ensures that the distance between the face descriptors of one
identity was minimum while the distance to face descriptors of other identities
was above a triplet margin α [SKP15]. A triplet set T was prepared from the
target dataset, in this case the restricted configuration of LFW face dataset (refer
subsection 5.1.1), such that it contained image triplets of form (a,p,n), where
image a is the anchor, p is its corresponding positive sample and n being a
random negative sample of the anchor’s identity that violated the triplet margin.
Then, the new layer was learned for 10 epochs using stochastic GD with η = 0.25.

xt =W
′ φ(lt)

‖φ(lt)‖2
W ′ ∈ RLxD (3.4.3)

E(W ′) =
∑

(a,p,n)∈T

max{0,α− ‖xa − xn‖22 + ‖xa − xp‖22} (3.4.4)

For testing the network, the Equal Error Rate (refer section 5.2) was used as a
measurement for face verification in addition to the classification accuracy. The
evaluation was done on "unrestricted settings" of LFW dataset (refer subsection 5.1.1)
and Youtube Faces (YTF) [LWM11], which conatins 3, 245 videos of 1, 595 identities.
For a given face image l, the face descriptors φ(lt) were obtained after feeding patches
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of size [224 x 224] from the four corners and the center after rescaling the image to
three sizes of [256, 384, 512] to the CNN, resulting in a total of 30 descriptors. The
final descriptor was the average of these 30 face descriptors. Faces were detected using
the Deformable Parts Model (DPM) [MRML14]. In case of the YTF, K face descriptors
were obtained for each test video by ranking the faces in a video by a facial landmark
score and selecting the top K. The K face descriptors were averaged to represent a
video. Applying this testing procedure, the network achieved results comparable with
the state-of-the-art results. The network achieves an accuracy of 98.95% and 97.3% on
the unrestricted setting of LFW and YTF videos respectively. Notably, the network
accomplished a higher 100%-EER of 96.70% when 2D alignment was used for the test
images compared to 92.83% when the test images were not aligned. Therefore, one
can conclude that a deep CNN that is trained suitably without any additions, achieves
results comparable to state-of-the-art.





4
M E T H O D

In the previous chapter, two generative approaches to modify certain desired features
in face images were explained. Although these approaches produce the required
modifications, training of specifically designed networks and optimizing the networks
for a suitable objective is a prior requirement. Besides, the generative approaches
synthesize new images with the edited features rather than modifying the original
images. In addition to this, these methods do not entirely maintain the identity of the
original image [UGB+

16]. This chapter discusses, firstly, a novel approach comprising
of four generalized steps to manipulate desired attributes on existing face images,
secondly, the method of face classification and verification using the pre-trained CNN
(refer section 3.4), and lastly, the approach followed in this thesis for combining both
these methods for evaluation purposes.

4.1 deep feature interpolation

Deep Face Interpolation (DFI), introduced in [UGB+
16], is an image editing method.

This method leverages the learned representations of pre-trained CNNs for producing
desired changes in face images. In [BMDR12], the authors investigate a hypothesis that
the deeper layers of a CNN effectively disentangle the underlying feature variations
in images and linearize the manifold into an Euclidean subspace. This hypothesis
suggests that a classification network has a better discriminative ability to linearly
separate object classes. Inspired by this hypothesis, the DFI approach utilizes appro-
priate learned feature spaces of a CNN for editing images by linear interpolation.
Specifically, the authors consider the 19-layer VGG network trained on ImageNet (refer
subsection 3.4.1) because the network is proven effective for classifying objects among
large number of categories. The DFI approach consists of four steps to generate the
required changes in an image. In the context of modifying a face image, the details of
the four steps are given in the following sections.
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4.1.1 Mapping into feature space

For a given face image ’x’ and a required attribute change, a face dataset is split into
two sets of images: a source set Ss = {xs1, ..., xsn} having images without the desired
attribute and a target set St = {xt1, ..., xtm} containing images with the attribute. The
first step in DFI is to obtain new representations of the test image, the source set and
the target set images using the pre-trained VGG network. The mapping of image x
into deep feature space is represented as x → ϕ(x). The authors called the vector
ϕ(x) as the deep feature representation of x. This representation consists of concatenated
activations of the CNN’s convolutional layers after giving x as the input. The layers
selected for concatenation should be appropriate for linear interpolation as well as
image reconstruction tasks performed in the further steps. On one hand, the first few
convolutional layers preserve essential information of an image in their representation
and are beneficial for semantically-meaningful reconstructions [MV15]. On the other
hand, the representations associated with the lower layers are linearly separable and
they are suitable for interpolation [BMDR12]. Considering these two factors, the
authors of DFI chose, particularly, the first convolutional layer of the last three pooling
regions in the VGG network (refer subsection 3.4.1) for the purpose of creating the
deep feature representation.

Next, the images in source and target sets are mapped to the feature space. To
accurately identify a particular attribute in feature space, one selects the source and
target images differing only in the required attribute and having other unrelated
attributes similar to x. This ensures believable and realistic changes in the transformed
image. The number of images in the source and the target sets is limited by a
hyperparameter K. The deep feature representations of the images in the source and
the target sets are computed similarly to x and these representations are averaged to
obtain their mean values as given in Equation 4.1.1.

ϕs =
1

K

∑
xs∈NsK

ϕ(xs), ϕt =
1

K

∑
xt∈NtK

ϕ(xt) (4.1.1)

where, NsK and NtK denotes the K nearest neighbors of x in source and target sets re-
spectively. The linear interpolation in feature space is performed using these averaged
feature vectors as described in the next section.
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4.1.2 Linear interpolation using an attribute vector

The second step in DFI is computing the attribute vector ’w’ as given in Equation 4.1.2.
The attribute vector is the difference of the mean feature representations of the source
and target sets (ϕs and ϕt). It specifies the direction of the required interpolation in
the feature space as shown in Figure 4.1.1.

w = ϕt −ϕs (4.1.2)

The vector w mainly contains the feature information regarding a desired attribute
and other irrelevant features have negligible values. This is because ϕs and ϕt are
sparse because of the ReLU activations in the CNN [UGB+

16]. Linear interpolation
is performed on ϕ(x) using the attribute vector, which is the third step in the DFI
approach. This is done by a displacement of ϕ(x) in the direction of w in feature
space as given in Equation 4.1.3. According to the authors, ϕ(y∗) corresponds to the
feature representation of an output face image y∗, which is the modified image having
the desired attribute. The amount of interpolation is controlled by a scaling factor
α. Different degree of transformation in the desired change can be visualized in the
modified image by varying α. Figure 4.1.1 summarizes the process of interpolation.

ϕ(y∗) = ϕ(x) +αw (4.1.3)

Figure 4.1.1: The DFI technique of linear interpolation in feature space. The deep feature
representation of test image x is displaced in the direction of attribute vector w.
[UGB+

16]
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4.1.3 Reverse mapping

The final step of DFI achieves the reverse mapping of ϕ(y∗) in Equation 4.1.3 to
obtain an image ’y∗’ in pixel space. But the feature representation ϕ(y∗) is not
uniquely invertible, because CNNs are invariant to certain properties of an image
such as viewpoint or illumination and the discriminative network employed in DFI
discards such information irrelevant for the classification task [MV16]. Therefore, an
approximate solution y producing the feature vector ϕ(y) ≈ ϕ(x) +αw is computed.
In other words, the goal of reconstruction is finding an image ’y’ that has a similar
network mapping to ’y∗’. To accomplish this task, the authors of DFI proceeded with
an optimization algorithm known as inversion introduced in [MV15], as explained in
the next section.

4.1.3.1 Optimization

The reconstruction of ϕ(y) is achieved by minimizing an objective function. Precisely,
the objective function to recover a color image y ∈ RHxWxC with the desired features
is given in Equation 4.1.4. It is formed by two parts: a loss function (or reconstruction
error) and a natural image prior used as a regularizer. The loss function is the
euclidean distance between the ideal image representation ϕ(y∗) (refer Equation 4.1.3)
and the approximated image representation ϕ(y). In the inversion method of [MV15],
the value of ϕ(y) in the loss function is initialized with a random noise. One can
notice that the objective in Equation 4.1.4 utilizes only the interpolated feature vector
ϕ(y∗) and a regularizer. Therefore, the final reconstructed image captures only this
information in the inversion method, whereas in DFI, ϕ(y) is initialized with ϕ(x) of
the original image.

y = arg min
y

1

2
‖(ϕ(x) +αw) − (ϕ(y))‖22 + λVβRVβ(y) (4.1.4)

where:
RVβ(y) → Total Variation regularizer

λVβ → Regularization coefficient

‖(ϕ(x) +αw) − (ϕ(y))‖22 → Loss function

As mentioned earlier, discriminative models such as CNNs disregard information
that are important for visualization. Nevertheless, plausible outputs are obtained by
restricting the reconstruction to a subset of natural images y ⊂ RHxWxC. Therefore,
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an appropriate image prior known as total variation (TV) regularizer, RVβ , is used for
regularizing ’y’ in pixel space. Imposing a naturalness prior on the reconstructed
image improves the reconstruction quality [MV16]. The TV regularizer given by
Equation 4.1.5 encourages images to consist of smooth transitions between neighboring
pixels. Figure 4.1.2 depicts the mapping of the target image ’y’ to ϕ(y) and the
corresponding optimization objective for obtaining ’y’. For optimal tuning of the
objective, the loss function and the regularizer are balanced by a regularizer coefficient
λVβ . This normalizes the pixel values to a given range in the reconstructed image
[MV15]. A value of β = 2 and λVβ = 10−3 was used for the DFI implementation in
[UGB+

16].

RVβ(y) =
∑
i,j

(
(yi,j+1 − yi,j)

2 + (yi+1,j − yi,j)
2
)β
2

where yi,j is the pixel value at (i, j) in image y

(4.1.5)

Figure 4.1.2: The process of reconstructing a modified face image in the case of adding facial
hair to x. Left: The target image y having the mapping ϕ(y). Right: The objective
function of reverse mapping. [UGB+

16]

The GD algorithm (refer subsection 2.1.4) is applied to minimize the reconstruction
objective. For performing the GD optimization, the gradient of each layer in the deep
feature representation is accumulated and composed in an overall derivative using
backpropagation method (refer Equation 2.1.4) of the CNN [MV15].

Using the DFI procedure, the authors of [UGB+
16] performed several attribute

transformations on LFW face dataset (refer subsection 5.1.1). Figure 4.1.3 demonstrates
the qualitative results for addition of facial features obtained on two LFW face images.
The face alignment method of [ZLLT14] was applied on the input images and were
resized to 200 x 200 pixels. The authors rescaled the value of α in Equation 4.1.3
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to the value in Equation 4.1.6 for achieving consistent results in different attribute
transformations.

α =
γ
1
d w̃

(4.1.6)

where, d is the dimensionality of ϕ(x), w̃ is the mean squared attribute vector and γ
is a constant treated as a hyperparameter. The hyper-parameter values of K = 100 and
γ = 0.4 was used for the modifications in Figure 4.1.3.

Figure 4.1.3: The results of changing six different facial attributes on LFW face images using
DFI. Input image given to DFI is in the first column. [UGB+

16]

As shown in Figure 4.1.4, modifications of facial attributes for high-resolution images
of CelebA dataset (refer subsection 5.1.2) was also performed by the authors. For
creating source and target sets in DFI, the face attribute classifier associated with
the CelebA dataset was used to properly identify the attributes of the images. The
face images of the source and target sets were aligned to an input image using the
face alignment tool in DLIB [KS14]. One can notice in Figure 4.1.3 that DFI performs
photo-realistic changes for a specific attribute while preserving other characteristics of
the original image. This is also justified in Figure 4.1.4 since undesired changes are
more perceivable at higher resolutions.
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Figure 4.1.4: The results of high-resolution face image editing using DFI. Left: Original image.
Middle: Adding facial hair. Right: Aging. Modifications done with α = 4.
[UGB+

16]

4.1.4 DFI Discussion

As described in the previous section, DFI is a novel approach to change features in
face images without involving the efforts of training a specific CNN. The authors
demonstrated that an object recognition model such as the VGG network is effective
for another entirely distinct task of image content editing. Moreover, they also
suggest using this method as a baseline for comparison with the state-of-the-art
image transformation methods. Unfortunately, the DFI implementation in [UGB+

16]
illustrates only the visual quality of the image modification results. Besides, the
modifications were generated for fixed hyperparameters K and α in Figure 4.1.3.
These hyperparameter values influence the visual aspects of the reconstructed image
in DFI. As one can observe in Figure 4.1.5, significant changes in the modified images
can be produced by varying the parameter γ (see Equation 4.1.6). When γ is low, the
feature modification is indistinguishable from the original image, whereas, the changes
are noticeable when γ is steadily increased. Moreover, the appearance of the person in
the modified image substantially changes when γ is high. A definitive evaluation of
DFI’s ability to preserve the identity in the modified face images is therefore beneficial.
Additionally, the effect of varying the two hyperparameters values on the identity of
the modified images is not completely analyzed. To this end, a necessary description
of the face verification approach is given next.
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Figure 4.1.5: The DFI results of aging done on a face image by varying γ. [UGB+
16]

4.2 deep face recognition

Deep Face Recognition (DFR) [PVZ15] is inspired by the performance of the VGG
networks in object recognition tasks (refer subsection 3.4.1). The CNN configuration
(refer subsection 3.4.2) was thoroughly investigated by the authors of DFR for the
tasks of face identification and verification. The network was trained with the VGG
face dataset (refer subsection 5.1.3). As mentioned in subsection 3.4.2, training of the
network was achieved for two different objectives, namely, for a N-way classification
problem and for learning the face embedding using a triplet loss objective.

The objective of learning a face embedding in DFR was accomplished to obtain a
better score vector for the task of face verification. The goal of face verification is to
confirm whether two face images belong to the same person or not. For this purpose,
one utilizes the D-dimensional output of the second fully connected layer, φ(lt) (see
Equation 3.4.1), as the representation of a face image. Considering two face images
l1 and l2, one computes the Euclidean distance between their face descriptors [φ(l2),
φ(l1)] as ‖φ(l1) −φ(l2)‖2. If this distance is smaller than a threshold τ, the two face
images will portray the same identity. The threshold τ is not uniquely learned by the
CNN but calculated separately for a test dataset (refer section 5.2).

4.3 extension

As discussed in subsection 4.1.4, the authors of DFI provide only the qualitative results
in [UGB+

16]. One of the objective of this thesis is to establish a quantitative assessment
of the DFI process, particularly using this method for manipulating certain attributes in
face images. Therefore, the face verification approach of DFR is utilized for evaluating
the modified images. The method followed to achieve this task is described in this
section.
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4.3.1 Identity verification of modified face images

For the face verification task of DFI, one considers a face-image pair l1 and l2. The DFI
method is applied on the image l1 to produce a modified image l ′1 having a desired
attribute. The face verification approach in DFR utilizes the Euclidean distance as a
similarity measurement to compare the high-dimensional face descriptors. Instead,
a better performance for face verification task is achieved by using the Bray-Curtis
dissimilarity [RGF17]. The Bray-Curtis dissimilarity (BC) is a non-euclidean measure
quantifying the similarity between two vectors, which is typically used for ecological
data [BC57]. The BC measurement between two vectors is defined in Equation 4.3.1
and lies in the range [0, 1]. A BC value of 1 indicates that the vectors are completely
dissimilar to each other whereas a value of 0 implies they are similar. In contrast to
the multi-cropping procedure in DFR (refer subsection 3.4.2) that requires a total of 30
face descriptors φ(lt), one utilizes a configuration consisting only the center crop and
its horizontal flip from a face image after resizing it to the three scales of [256, 348,
512] resulting in 6 face descriptors for a test image. This configuration shows better
results when compared to the configuration in DFR for LFW face images [FMR17].
Therefore, the 6 face descriptors are computed and averaged for each image l ′1 and l2.
The BC dissimilarity is calculated for the mean face descriptors of l ′1 and l2.

BC(u, v) =
∑d
i=1 |ui − vi|∑d
i=1 |ui + vi|

u, v ∈ Rd (4.3.1)

To sum up, the aim is to replicate the DFI method and perform a conclusive
evaluation on the results of the image modifications, utilizing the face verification
approach as described and to analyze the effect of tuning the hyperparameter values
on the face verification result. Furthermore, an additional goal is to apply the DFI
method on the face dataset of DFR (refer subsection 5.1.3) for obtaining desired
attribute changes using different hyperparameter values and subsequently determine
the classification accuracy using the VGG network (refer subsection 3.4.2) for each
case. The next chapter gives the description of the datasets, the evaluation metrics and
the experiments for achieving these objectives.
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E X P E R I M E N T S

The previous chapter described the method of DFI for modifying desired characteristics
of a face image. Additionally, the face verification approach of DFR was discussed.
Furthermore, based on the discussion in subsection 4.1.4, the method for adopting
DFR’s face verification to evaluate the DFI method was provided. In this chapter,
section 5.1 provides a description of the three datasets used for the evaluation of the
DFI method. The evaluation metrics for the face verification and classification tasks
are described in section 5.2. Finally, the experiments performed in this thesis and the
corresponding analysis of their results are presented in section 5.3.

5.1 datasets

The three datasets used in this thesis are, namely, the LFW face dataset designed
prominently for face verification tasks, the CelebA dataset containing high-resolution
face images of celebrities having annotations for 40 different attributes, and a large
face-dataset of VGG compiled specifically for DFR.

5.1.1 Labeled faces in the Wild dataset

Labeled faces in the Wild dataset (LFW) [HRBLM07] is a benchmark dataset used
especially for the problem of face verification. This dataset contains 13, 233 face images
of 5, 749 different persons with 73 predicted attribute annotations, see Figure 5.1.1.
These images exhibit variability in pose, age, accessories, facial expression, background
and illumination, which is suitable for unconstrained face recognition as per the
authors. The Viola-Jones face detector was used for face detection and the images were
rescaled to 250 x 250 pixels [HRBLM07]. Two unique configurations of the dataset are
provided by the authors for training and testing purposes as described next.

5.1.1.1 Image-Restricted Configuration

In this configuration, a file containing the information of matched and unmatched pairs
of face-images is provided. The file consists of a list of 6000 pairs in total, partitioned
into 10 subsets. Each subset has 300 matched and 300 unmatched face-image pairs.
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(a) (b) (c)

Figure 5.1.1: Sample face images of LFW dataset. [HRBLM07]

A matched pair implies that the two face-images belong to the same person. Using
this configuration, one ensures that the name of a person is not used for inferring
equivalency between two face-images, which are not explicitly given in the training
set [HRBLM07].

5.1.1.2 Unrestricted Configuration

For this configuration, the authors provide a list of identities and a corresponding
face-image associated with that identity, rather than image pairs. The list is divided
into 10 sets. One can form arbitrary matched or mismatched pairs only using the
face-images within each set [HRBLM07].

5.1.2 CelebFaces Attributes dataset

CelebFaces Attributes dataset (CelebA) [LLWT14] is a large-scale face attribute dataset.
This dataset contains a total of 202, 599 celebrity face-images for 10, 177 identities (see
Figure 5.1.2), where each identity has 20 images on average [LLWT14]. Each image
is annotated for 40 facial attributes, which are provided in an attribute file. In the
default attribute file, each attribute of an image is in binary format, where 1 indicates
the presence of an attribute and −1 implies an absence of it. Moreover, the authors of
[LLWT14] provide a deep learning approach for accurately predicting face attribute
scores of these images using CNNs. The identity of each image in the CelebA dataset
is provided in a list, which can be used to form matched and mismatched pairs. These
identities are mutually exclusive from the identities in the LFW dataset.
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(a) (b) (c)

Figure 5.1.2: Some high-resolution face images from CelebA dataset. [LLWT14]

5.1.3 Visual Geometry Group Face dataset

Visual Geometry Group face dataset (VGG face dataset) [PVZ15] is a large face-image
dataset containing 2.6 million images of 2622 unique identities, mainly actors and
politicians. The face-images of each identity in this dataset have large variability in
pose or background, see Figure 5.1.3. The authors of [PVZ15] followed a five-stage
procedure including web searches, automatic filtering of data, and limited manual
intervention to efficiently obtain the images labeled with their identities in this dataset.
This dataset also has no overlapping with the identities of the LFW dataset. Unlike
the LFW and the CelebA datasets, attribute annotations are not provided for the
face-images in this dataset. However, the bounding box and pose information for the
images are available.

Figure 5.1.3: Sample face images of four identities from VGG face dataset. [PVZ15]
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5.2 evaluation metrics

For the purpose of evaluation, two different metrics are calculated depending on the
dataset used for obtaining the modified images of DFI. The different metrics used in
this thesis are as follows:

(i) Classification Accuracy - It is the ratio of number of correctly classified face images
to the total number of images in a test setting. The classification accuracy is
calculated as:

Acc =
t

n
∗ 100 (5.2.1)

where, ’t’ is the number of samples correctly classified by the network and ’n’ is
the total number of samples.

(ii) Equal Error Rate (EER) - As mentioned in section 4.2, the objective of face ver-
ification is to determine if two face images belong to the same identity. The
similarity measurement provides a score for two face descriptors, but it does not
sufficiently validate the distances between descriptors of all the identities in a
test dataset. The distance measure between face descriptors of the same identity
should be smaller than the distance between face descriptors of two different
identities. This implies that a threshold τ exists, which separates the face de-
scriptors of the same identity from the descriptors of other identities. Therefore,
the similarity measurement is compared to the threshold τ by a verification
method. However, when the threshold τ is too high, the verification method
wrongly accepts the face descriptors of different persons as having the same
identity, known as false acceptance [GER12]. On the other hand, if the threshold
is too small, false rejection occurs where face descriptors of the same identity
are incorrectly rejected. Therefore, the performance of a verification method
depends on the choice of the threshold τ. A reliable metric for evaluating a
verification method, proposed by the International Organization for Standardiza-
tion ISO/IEC 19795− 1, is the Equal Error Rate %ERR [GER12]. This quantifies



5.2 evaluation metrics 57

the performance of a verification method in terms of the False Acceptance Rate
(FAR) and False Rejection Rate (FRR), which are given in Equation 5.2.2.

FRR =

∑
m∈M 1

card(M)
, if m > τ

FAR =

∑
n∈N 1

card(N)
, if n 6 τ

(5.2.2)

where, M is the set of Bray-Curtis distances (see Equation 4.3.1), which works well
for high-dimensional vectors [SF15] and is a better similarity metric compared
to Euclidean distance for face verification [RGF17], between the descriptors
of matched pairs and N is the set of BC distances between the descriptors of
mismatched pairs.

Figure 5.2.1: ROC curve obtained by plotting FAR vs FRR values for each threshold τ ∈
[τmin, τmax]. [GER12]

The %EER is defined as the value where both FAR and FRR are equivalent;
that is, the number of false acceptance and the number of false rejections are
equal. For computing the %EER, one selects an optimal threshold τopt, given by
Equation 5.2.3, that minimizes the difference between the FAR and the FRR values
for all the possible thresholds. Figure 5.2.1 depicts the ROC curve, obtained by
plotting FAR versus FRR, used for determining τopt [GER12].

τopt = arg
τ

min(‖FAR(τ) − FRR(τ)‖), ∀τ ∈ [τmin, τmax] (5.2.3)
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Hence, the %EER is computed as the average of the FAR and the FRR values
at τopt, given by Equation 5.2.4 [GER12]. The advantage of this metric over
accuracy is that it is independent of the threshold τ [PVZ15].

%EER =
FAR(τopt) + FRR(τopt)

2
(5.2.4)

5.3 experimental results

The experiments performed in this work and their results for the face verification task
of DFI (refer subsection 4.3.1) are presented next. The experiments performed for
replicating the work of [UGB+

16] for modifying desired attributes in face images are
given in subsection 5.3.1. Additionally, experiments conducted for analyzing the effect
of hyperparameter values on the face verification task are discussed in subsection 5.3.2.
Furthermore, the experiments in subsection 5.3.4 investigate the effect of using the DFI
method for face-image modifications on the classification accuracy. The evaluation
metrics described in the previous section are utilized for these experiments. When
the DFI method is applied on the CelebA dataset and the restricted configuration of
the LFW dataset, the %EER is computed for the face verification. On the other hand,
when it is used for the images in the VGG face dataset, the classification accuracy is
calculated using the VGG face classifier (see subsection 3.4.2).

5.3.1 Replication of the original work

The face-image modification tasks in [UGB+
16] were performed for comparison with

the results of VAE/GAN method (refer subsection 3.3.2). Following the approach
in [UGB+

16], the images in the LFW dataset are utilized for producing desired
attribute changes using DFI. The face images are aligned by the method in [ZLLT14]
and resized to 200 x 200 pixels. Particularly, the following six facial attributes are
selected for the modifications on the LFW dataset: four "positive attributes" - ’Older’,
’Smiling’, ’Eyeglasses’, ’Beard’; and two "negative attributes" - ’Youth’, ’No Beard’.
These attributes are selected to consider the different changes obtained in the modified
image such as adding facial expression, adding of an object and aging. As explained
in subsection 4.3.1, the final descriptor of a face image is the average of 6 descriptors
φ(lt) as this configuration showed better results compared to the configuration of
30 descriptors used in DFR [FMR17]. The descriptors are computed by the CNN
for face recognition and verification (see subsection 3.4.2) for the center crop and its
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horizontal flip of a face image after resizing it to the three scales of [256, 348, 512].
The Bray-Curtis distance between the face descriptors of the face-image pairs in the
restricted configuration of LFW dataset is calculated and the %EER is computed for
face verification.

Figure 5.3.1 shows the relation between %EER values calculated for the six attribute
changes on the LFW dataset, including the %EER for the original face-images of this
configuration (red line). The hyperparameter values of K = 100 and γ = 0.4 are used
for the DFI method (refer section 4.1) to replicate the approach of [UGB+

16]. The
six attribute modifications obtained using this configuration are visualized for an
input image in Figure 5.3.2. Among the six attribute modifications, the %EER for
the attribute ’Youth’ has the least increase of 0.44% from the original %EER of 5.73%
while a significant increase is observed for the attribute ’Older’ having an error rate of
20.5%.

Older Smiling Eyeglasses Beard Youth No Beard
0

Original = 5.73

20.5

9.1

16.2

10.17

6.17
9.2

Attribute

%
EE

R

Figure 5.3.1: This plot shows the relation of %EER for six different attributes in the face
verification task of DFI using the LFW restricted configuration. The modifications
are obtained for hyperparameter values of K = 100, γ = 0.4. [UGB+

16]

(a) Input (b) ’Eye-
glasses’

(c) ’Beard’ (d) ’Smile’ (e) ’No
Beard’

(f) ’Older’ (g) ’Youth’

Figure 5.3.2: This figure shows all the attribute modifications obtained on an input from the
LFW dataset for γ = 0.4 and K = 100.
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5.3.2 Effect of varying the hyperparameters on the face verification of DFI

The effect of the hyperparameter values of DFI on the face identity verification is
analyzed by conducting several experiments on the LFW dataset. The parameter γ
controls the amount of interpolation and ’K’ indicates the number of images in the
source/target sets for DFI. The modifications are obtained for different values of γ
and ’K’ for each of the six desired attributes. The γ values of [0.2, 0.3, 0.4, 0.5, 0.6]
are considered. For each attribute, the value of K = 100 is fixed and the modified
face images are obtained for each γ value. Then, the %EER is calculated for the
face verification task. The results obtained for all of the six attributes are shown in
Table 5.3.1. The %EER values of this experiment for the four "positive attributes" are
visualized in Figure 5.3.3. One can infer from this graph that the error rate increases
correspondingly to the increase in the parameter γ since increasing γ dramatically
affects the appearance of the face in an image. This trend is evident for all of the six
attribute changes, as seen in Table 5.3.1. The attribute ’Older’ exhibits the highest
variation of %EER with 9.03% for γ = 0.2 and 29.87% for γ = 0.6 while the least
variation is for the attribute ’Youth’ with 7.7% for γ = 0.2 and 7.7% for γ = 0.6 (refer
Table 5.3.1).

0.2 0.3 0.4 0.5 0.6
0

10

20

30

6.67
7.8

9.1

11.13

14.1

8.3

11.73

16.2

21.07

24.8

9.03

14

20.5

25.63

29.87

6.8
8.2

10.17

12.73

14.8

γ

%
EE

R

Original %EER = 5.73

Smiling
Eyeglasses
Older
Beard

Figure 5.3.3: This plot shows the relation between %EER and γ for four attribute modifications
of DFI for fixed parameter K = 100.

The effect of increasing the number of images in source/target sets on the face
verification task is also examined by performing relevant experiments. The following



5.3 experimental results 61

three values are considered for ’K’: [50, 100, 200]. The modified images are obtained
using DFI for each desired attribute and for each value of ’K’. Subsequently, the
%EER is computed for each of the obtained modifications. Figure 5.3.4 visualizes
the comparison of the %EER values of the six attributes for all the three values of ’K’
and a fixed value of γ = 0.4 as an example (refer Table 5.3.1 for complete results).
Similar to the observations obtained by varying the parameter γ (see Figure 5.3.3), it
is noticed that the %EER deteriorates as the value of ’K’ increases. This observation
is consistent for all of the six attribute modifications. This increase of the %EER
is due to the usage of a mean vector calculated as an average of source/target set
images. Since information from more number of source/target set images are included
into the measured attribute vector, one can conclude that the identity in the images
gets corrupted and the distances between the face descriptors varies substantially.
Moreover, the attribute vector is more likely to point towards other attributes in feature
space and not only towards the desired attribute when ’K’ is increased .

Older Smiling Eyeglasses Beard Youth No Beard
0

6

12

18

24

Original = 5.73

14.6

7.8

12.27

8.2

6.13
7.43

20.5

9.1

16.2

10.17

6.17

9.2

24.06

10.6

19.53

12.36

6.3

10.96

Attribute

%
EE

R

K = 50
K = 100
K = 200

Figure 5.3.4: This graph shows the comparison between the %EER values and the six desired
attribute changes for three values of ’K’ and fixing γ = 0.4.

Figure 5.3.6 depicts a plot of %EER vs γ for the desired attribute ’Older’, where the
modifications are obtained using DFI for each of the three values of ’K’. The lowest
%EER is measured for K = 50 and the highest for K = 200 for all the γ values. It is
seen that the %EER for a particular value of ’K’ is higher when compared to the %EER
for a smaller value of ’K’ when γ is fixed. Moreover, when γ is increased, there is
a corresponding increase in %EER for all the three values of ’K’. The results of the



62 experiments

(a) Adding ’Beard’. (b) Adding ’Eyeglasses’.

Figure 5.3.5: Two sample attribute modifications obtained on the LFW dataset for γ = 0.4.
For each attribute, first is the input followed by the modified images for K = 50,
K = 100 and K = 200 respectively.

face verification task for all the six desired attributes obtained using the DFI method
with different values of γ and ’K’ are presented in Table 5.3.1. The worst case increase
from the original %EER of 5.73% is for the attribute ’Older’ for γ = 0.6 and K = 200

having an error rate of 33.36%. Noticeably, the attribute ’Older’ has the highest %EER
for all the hyperparameter values in comparison with the corresponding values of all
the other desired attributes. As shown in Figure 5.3.7, the appearance of the person
changes significantly when γ is high, moreover, the face verification and accuracy
deteriorate, as seen from Table 5.3.1 and Table 5.3.2. On the contrary, the attribute
changes are more pronounced by using a higher value of ’K’, as shown in Figure 5.3.5.
Therefore, one can consider that the hyperparameter values selected in [UGB+

16] are
not suitable for producing satisfactory modifications for different desired attributes.
Imperfect modifications are produced for face images that do not have a frontal face
pose as shown in Figure 5.3.7a, besides, undesired artifacts appear when γ is high.
This reaffirms the results in Figure 5.3.6 that %EER steadily increases when both the
hyperparameters are assigned larger values.

5.3.3 Face verification of DFI on CelebA dataset

To measure the performance of DFI on high-resolution images, an experiment is
conducted by applying the method on the face images of CelebA dataset and evaluating
the measurements of face verification. For this purpose, the identities provided by the
dataset are utilized to create the matched and mismatched pairs of images. Considering
the computational effort for high-resolution images, a set of 300 matched and 300
mismatched face-image pairs is prepared. Since aging modifies the appearance of the
entire face in an image, the desired attribute ’Older’ is selected for this experiment.
The modifications are obtained for this attribute using DFI for hyperparameter values
of α = 2.5 and K = 100. The Figure 5.3.8a shows the plot of %EER for the original and
the modified images, an example modification result is shown in Figure 5.3.8b. The
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Figure 5.3.6: This graph visualizes the relation between %EER and γ for different values of ’K’
for the desired attribute ’Older’.

(a) Attribute ’Older’.

(b) Attribute ’Smiling’.

Figure 5.3.7: This figure shows two sample attribute modifications obtained on the LFW dataset
for different γ values and K = 100. In each row, first image is the input followed
by modified images for γ = [0.2, 0.3, 0.4, 0.6] respectively.
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(a) This plot shows the %EER of the original and
the modified images for attribute ’Older’ on the
CelebA dataset.

(b) Sample modification obtained for attribute
’Older’ (second image) for the input image (left).

Figure 5.3.8: This figure shows the results obtained by applying DFI on CelebA dataset for
attribute ’Older’ with α = 2.5 and K = 100.

%EER value of the modified images deteriorates by a value of 0.67% with respect to
the original error of 47%. The DFI takes approximately 40 - 50 seconds to produce a
modification on one image of the LFW dataset using a single Nvidia GeForce GTX
1080 GPU. This computational time is observed to increase linearly for high-resolution
images.

5.3.4 Effect of DFI on classification accuracy

The experiments in this section are implemented to investigate the classification
accuracy of the VGG network (see subsection 3.4.2) on the modified images of DFI.
The attribute transformations are carried out on the face images of VGG face dataset
for measuring the accuracy. Specifically, the following three attribute changes are
selected: ’Older’, ’Youth’ and ’Beard’, considering the changes in appearance of the
entire face by aging and also adding an object, in this case adding beard. Since
facial attribute annotations are not available for the images in the VGG dataset, the
face images are manually selected for creating the source and the target sets of each
attribute, which are required for the DFI method. The modifications are performed
using different hyperparameter values of DFI. For this task, the parameter ’K’ is varied
using four values, specifically, [50, 100, 150, 200], and γ is varied using the following
three values: [0.3, 0.4, 0.6]. A test set containing a total of 2937 face-images and at least
one face-image per identity is created. The face images are cropped by the bounding
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Target
Attribute γ

K
K = 50 K = 100 K = 200

Older

0.2 7.76 9.03 10.9
0.3 10.5 14 16.73
0.4 14.6 20.5 24.06
0.5 19.3 25.63 28.83
0.6 23.83 29.87 33.36

Smiling

0.2 6.27 6.67 6.7
0.3 6.83 7.8 8.47
0.4 7.8 9.1 10.6
0.5 9.6 11.13 13.67
0.6 11.3 14.1 17.03

Eyeglasses

0.2 7.5 8.3 9.83
0.3 9.6 11.73 14.93
0.4 12.27 16.2 19.53
0.5 16.4 21.07 24.47
0.6 20.03 24.8 28.6

Beard

0.2 5.9 6.8 7.1
0.3 6.77 8.2 9.57
0.4 8.2 10.17 12.36
0.5 9.37 12.73 −

0.6 11.43 14.8 18.03

Youth

0.2 6.03 5.7 5.7
0.3 5.7 5.76 5.8
0.4 6.13 6.17 6.3
0.6 7.1 7.7 7.53

No Beard

0.2 6.1 6.63 7.03
0.3 6.4 7.67 9.3
0.4 7.43 9.2 10.96
0.6 10.1 13.53 15.93

Table 5.3.1: This table shows the %EER values obtained for the six desired attributes. The
modifications are produced for the restricted configuration of the LFW dataset
using the DFI method with different hyperparameter values.
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box provided with the dataset and rescaled to 200 x 200 pixels, similar to the image
pre-processing followed for the LFW images. After obtaining the modified face images
from DFI for the test set, the class score of a modified image is compared to the
ground-truth label of the original image to evaluate the accuracy.

Figure 5.3.9 shows the plot for analyzing the effect of the parameter γ on the
classification accuracy. An accuracy of 96.69% is measured for the original images in
the test set (red line). The three attribute changes are obtained using the DFI method
with different values of γ and a specific value of K = 100. It is observed that the
accuracy decreases with the simultaneous increase in γ for all the three attributes.
When γ is increased from 0.3 to 0.6, the attribute ’Older’ displays the highest variation
in accuracy with approximately 6% whereas the attribute ’Beard’ shows the least
variation of 1.49%.
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Figure 5.3.9: The plot of classification accuracy vs the desired attributes. The modifications
on VGG face dataset are obtained with different values of γ and a fixed value of
K = 100.

For analyzing the effect of the parameter ’K’ on the accuracy, the attribute mod-
ifications are obtained for different values of ’K’. The corresponding accuracies for
the attribute ’Older’ for all the three γ values are plotted in Figure 5.3.10. The mod-
ifications obtained for a sample image is visualized in Figure 5.3.11. For a single γ
value, the best accuracy is obtained for K = 50, however, the accuracy drops when ’K’
is increased to a higher value. A significant decrease of more than 11% in accuracy is
observed for γ = 0.6 when the value of ’K’ increases from 50 to 200.

The plot of accuracy vs the three attributes for different values of ’K’ and fixed
value of γ = 0.4 is shown in Figure 5.3.12. The accuracy typically decreases when
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Figure 5.3.10: The plot of classification accuracy vs γ for the attribute ’Older’ for different
values of ’K’.

Figure 5.3.11: The first image is the input from the VGG face dataset followed by modifications
obtained for ’Older’ with K = 100 and γ = [0.3, 0.4, 0.6].
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Figure 5.3.12: The graph of classification accuracy vs the attributes for modifications with
different ’K’ values and γ = 0.4
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Figure 5.3.13: The first image is the input followed by modifications obtained for ’Beard’ with
γ = 0.6 and K = [50, 100, 150, 200] respectively.

’K’ increases, except a slight increase for the attribute ’Older’ (K = 150 and K = 200)
and the attribute ’Youth’ (K = 50 and K = 100). Pointedly, the accuracy for all the
attributes decreases within the range of 5% from the original value in Figure 5.3.12.
Figure 5.3.13 highlights the influence of the images in source/target sets on the quality
of the modification. The images in the LFW dataset are aligned using the facial
landmarks provided with the dataset. Since the face images of VGG dataset lack
facial landmark annotations, they are cropped using only the bounding box of the face
available in the dataset. Therefore, as shown in Figure 5.3.13, improper modifications
are obtained by the DFI method, particularly if an attribute such as adding a beard is
centered in a specific location. The accuracy measurements for different values of the
hyperparameters for all the three attributes are tabulated in Table 5.3.2. Overall, the
least accuracy is obtained for the changes in attribute ’Older’ for all the values of γ
and ’K’ when compared to the corresponding accuracy for the other two attributes.
There is an absolute deterioration of 15.55% from the original accuracy of 96.69% in
case of the attribute ’Older’ for γ = 0.6 and K = 200. This is the largest decrease in
accuracy when compared to the accuracy measured for all the three attributes and all
the hyperparameter values.

Target
Attribute γ

K
K = 50 K = 100 K = 150 K = 200

Older
0.3 95.33 94.56 94.83 94.76
0.4 94.66 92.94 91.65 91.89
0.6 92.36 88.95 85.1 81.14

Youth
0.3 96.45 96.08 95.91 95.57
0.4 95.57 95.67 95.27 94.96
0.6 94.72 92.9 91.58 90.77

Beard
0.3 96.46 96.57 96.46 96.52
0.4 96.52 96.1 96.16 95.86
0.6 95.44 95.08 94.84 94.96

Table 5.3.2: This table shows the classification accuracy (in %) for all the three desired modifi-
cations on the VGG face dataset using DFI with different hyperparameter values
(Original accuracy 96.69%).
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C O N C L U S I O N

The task of modifying a face image to obtain believable and realistic changes in
facial attributes without significantly affecting the identity and appearance of the
person in the image is difficult. The Deep Feature Interpolation method, introduced in
[UGB+

16], provides a simple mechanism for obtaining several attribute transforma-
tions in face images. This approach utilizes a Convolutional neural network (CNN)
that is pretrained for object recognition to manipulate an image. In addition to this,
the DFI method utilizes only the images in the source and the target sets to produce
the modifications on a test image. The target set conatins images having a desired
attribute and the source set has images without that particular attribute. The source
and target sets are used to compute the attribute vector that isolates the desired
attribute in feature space. A hyperparameter controls the number of images in the
source/target sets while the amount of attribute modification is controlled by another
hyperparameter. These parameters can be varied freely to obtain specific amount of
transformation as one desires. The goal of this thesis was to apply DFI for editing facial
attributes in images and evaluating the ability of DFI to preserve the identity in the
modified images. The transformations were obtained on face images of the LFW and
the CelebA datasets for several desired attributes. The evaluation was achieved using
the face verification procedure of DFR [PVZ15]. The observations of [FMR17] were
considered for calculating a better similarity metric for the face verification. Also, a
comprehensive assessment was performed to analyze the effect of the hyperparameters
on the attribute modifications. To this purpose, the modifications were obtained by
tuning the parameters and the verification metrics were subsequently computed. The
results show that a steady increase in error occurs when the parameters are assigned
higher values. One can conclude that, when the parameters have large values the
attribute vector fails to suitably capture the variance between the images of the source
and the target set.

The performance of DFI was further investigated by measuring the classification
accuracy, including the evaluation for different hyperparameter values. For measuring
the accuracy, the DFI method was applied method on the VGG face dataset for
producing the modifications. The results of this experiment display a trend similar to
the face verification results, that is, the accuracy decreases for simultaneous increase in
hyperparameter values. A remarkable advantage of the DFI method is the scalability to

69
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high-resolution images. Therefore, the face images of the high-resolution dataset were
modified using DFI. The face verification performed on these images showed only a
slight increase from the original error rate. These observations lead to a conclusion that
the DFI method with reasonable hyperparameter values does not extremely degrade
the identity in a modified face image. The influence of the hyperparameters and the
face image alignment on the visual aspects of the modification was discussed and
certain inherent limitations of using DFI were indicated. As future improvement, better
modification results can be obtained by adopting a suitable face-alignment method
using facial annotations. As pointed out in [UGB+

16] and also observed during the
testing, the DFI method requires a significant time for producing the modifications
for high-resolution images. Hence, there is scope for reduction in computational time
taken by DFI for editing high-resolution images, which is beneficial for real time
applications. Additionally, the DFI method with appropriate parameters can be used
to obtain modified images, which can be utilized as data augmentation technique for
fine-tuning of the fully connected and last convolution layers of a face image classifier.
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