
End-to-end Human Activity Recognition on
Video Datasets

Master thesis

Matthias Jakobs
November 3, 2020

Supervisors:

Prof. Dr.-Ing. Gernot A. Fink

Fernando Moya Rueda, M.Sc.

Fakultät für Informatik

Technische Universität Dortmund

http://www.cs.uni-dortmund.de

C O N T E N T S

1 introduction 3

2 fundamentals 5

2.1 Human Action Recognition 5

2.1.1 Action Granularity 5

2.1.2 Video-based HAR 6

2.2 Pose Estimation 7

2.3 Neural Networks 9

2.3.1 Artificial Neural Networks 10

2.3.2 Convolutional Neural Networks 24

3 related work 29

3.1 Pose Estimation 29

3.1.1 Pictoral Structure Framework 29

3.1.2 Deep Learning Methods 42

3.2 Video-based Human Action Recognition 55

3.2.1 Shallow Methods 55

3.2.2 HAR using Two-Stream Convolutional Neural Networks 64

3.2.3 HAR using pose information 67

4 method 77

4.1 Deep HAR 77

4.1.1 Approach 77

4.1.2 Soft-argmax 78

4.1.3 Architecture 79

4.1.4 Intermediate supervision 87

4.1.5 Limitations 87

4.2 Proposed experiments 88

5 experiments 91

5.1 Datasets 91

5.1.1 MPII Human Pose 91

5.1.2 Penn Action 93

5.1.3 JHMDB 95

5.2 Evaluation Metrics 95

5.2.1 PCK 96

5.2.2 PCKh 97

1

2 contents

5.2.3 Single- and Multi-Clip Accuracy 98

5.3 Experimental Results 98

5.3.1 Accuracy of Soft-argmax function 98

5.3.2 Replication of Original Work 101

5.3.3 Pose estimation on JHMDB dataset 111

5.3.4 HAR on JHMDB Dataset 116

5.3.5 Effect of Combining Loss Functions 116

6 conclusion 123

6.1 Future Work 124

1
I N T R O D U C T I O N

Understanding human behaviour is one of the main goals of artificial intelligence
research. One approach towards achieving this goal is called Human Activity Recog-
nition. Human Activity Recognition (HAR) is the process of recognizing specific
gestures or actions performed by humans from different sources, e.g., images, videos
or sensor data. Knowledge of actions performed by humans is useful in different
application contexts, such as video surveillance, human-machine interaction or for
evaluating worker performance in a warehouse setting [RMRHF18].

One approach for predicting human actions is to use pose information as an input to
a HAR machine learning model, such as a neural network. A pose is a set of keypoints
on the person’s body, usually joints between limbs. For images, a pose is usually
given by a set of pixel coordinates. Each pixel coordinate refers to one estimated
joint position. Poses are estimated using a dedicated machine learning model, which
is often based on neural networks as well. In [JGZ+

13], the authors find that using
human pose information is useful when training HAR models, more so than other
features such as image features.

In Human Activity Recognition research, a pose estimation model is often used
to precompute the pose for each image. In [LPT18], the authors argue that jointly
learning the pose and the action using a convolutional neural networks may improve
the learning process of the action predictor. This approach of jointly learning was
previously not possible with many pose estimators since the output needed additional
postprocessing steps. Many pose estimation models output joint heatmaps, which
contain the likelihood of a joint being present for each pixel in the input image. A
function called argmax extracts the pixel coordinates with the highest likelihood
from the joint heatmaps. The argmax function is, however, not differentiable. The
optimization algorithms used for training neural networks require a fully differentiable
network for learning the parameters of the network. With the introduction of the
Soft-argmax function in [LTP17], the authors presented an approach for extracting
exact pose from the joint heatmaps using a differentiable function. This function
makes it possible to train the pose estimator and action recognition model jointly.

The first objective of this thesis is to use the Convolutional neural network model
proposed by [LPT18] to recreate their results. This includes investigating the perfor-
mance of the network using different hyperparameters. Second, the model is evaluated

3

4 introduction

using a more challenging benchmark to gain a better understanding of how well the
model performs on different data. Third, the network is trained in an end-to-end
approach. The authors in [LPT18] use a technique called pretraining for the pose
estimator part of the network. Pretraining means that the pose estimator part of the
network is trained indepently of the rest of the network. The pretrained parameters of
the pose estimator are then transferred to the complete network and the network is
finetuned. A different approach for training the network is called end-to-end learning
and refers to the method where the parameters of the network are initialized randomly.
From this random initialization, the entire network is trained jointly. While pretraining
certain parts of a network often leads to a faster convergence of the model, it also adds
more complexity to the training process, because two training processes need to be
optimized.

This thesis is divided into six chapters, including this introduction. Chapter 2

explains the fundamentals of Human Activity Recognition in the context of video
data, pose estimation using image data as well as artificial and convolutional neural
networks. Recent relevant work in the fields of HAR and pose estimation are discussed
in detail in Chapter 3. There, a focus is set on Human Activity Recognition methods
using pose information. Next, a detailed explanation of the methods of [LPT18]
are presented in Section 4.1. Chapter 4.1 also discusses limitations to the approach
by [LPT18] and further experiments conducted in this thesis. In Chapter 5, the
experiments, as well as the used datasets and metrics, are explained. Moreover, the
results of the proposed experiments are discussed. Finally, a conclusion of the findings
from the experiments are presented in Chapter 6.

2
F U N D A M E N TA L S

After introducing and motivating the problems this thesis focuses on in the previous
chapter, this chapter gives an overview over the fundamentals of Human Action
Recognition, Pose estimation as well as Neural Networks in general.

First, the fundamental concepts of Human Action recognition are discussed in
Section 2.1, specifically in the context of video data. Afterwards, 2D pose estimation
for still images is introduced in Section 2.2. Since many methods discussed in this
thesis, including the approach by [LPT18], use Neural networks, this thesis also
introduces them in Section 2.3, beginning with Artificial Neural networks and how they
are trained. Afterwards, the use of Convolutional Neural networks, often used in image
processing, is motivated and explained.

2.1 human action recognition

In Human Action Recognition, often referred to simply by its acronym HAR, the task is
to attach a label of an action to a signal, e.g. an image, video or sensor meassurements.
Thus, HAR is a classification problem where the classes are human actions. It is
important to understand that HAR recognizes the action after it is completed, as
opposed to action prediction, which tries to predict the action while it is still happening
[KF18].

Typical use-cases of Human Action Recognition consists of evaluating human be-
haviour, for example in a warehouse context [RMRHF18], or analyzing video surveil-
lance footage [HKRA14]. An example of simple actions performed by multiple subjects
is provided in (Fig. 2.1.1).

2.1.1 Action Granularity

When defining what an action is, it is important to think about the degree of granularity
needed. As an illustration, consider an image of a person waving with her left hand at
the camera. It is not inherently clear whether the label attached to this action should
be waving or raising left arm. This is why the choice of labels is often domain and
use-case specific.

5

6 fundamentals

Figure 2.1.1: Example of six actions performed by four different subjects, annotated with their
corresponding label (top). Image taken from [LMSR08].

According to [ZWN+
17], human actions can be categorized into three levels, referred

to as action primitives, activities and interactions. Action primitives consists of actions
where one part of the body is performing the actions. For example, waving or clapping
would constitute action primitives since a specific part of the body is responsible.
In contrast, activities are actions where the whole body is involved in performing
the action. As an example, consider jumping or jogging. When considering actions
performed involving objects or other persons, e.g. shaking hands or throwing a ball,
[ZWN+

17] categorize these actions as interactions.

2.1.2 Video-based HAR

When considering HAR on video clips, some domain-specific problems arise, which
are outlined in [ZWN+

17].
Firstly, depending on the camera and scene, the background of the image can be

highly dynamic. This means that the amount of information irrelevant for identifying
the action can be very high and might change constantly. As an example, consider a
video filmed with a hand-held modern smart phone. The camera is not stationary, so
the background will shift while recording. Also, depending on the scene, illumination
changes and occlusion of the human subject might occur.

Secondly, different actions can have similar visual shapes. Consider talking on
the phone and military salute. In both cases, the dominant hand is positioned at the
side of the subjects head. Depending on factors like image quality and the subjects

2.2 pose estimation 7

rotation towards the camera, these two actions might be hard to differentiate. Also,
consider walking and running. It is not inherently clear where the boundary between
these two classes are, i.e., up to which point is a subject still walking and when does
the subject begin to run? This problem is referred to as interclass similarity. Another
similar problem is the intraclass variation, where the same action performed by different
subjects might look very different. As an example, consider throwing a ball. The scene
will differ a lot when considering different clothing of the subject, different shape and
color of the ball as well as different contexts where the action is happening, e.g., in a
backyard or in a baseball stadium. Also, performing actions at different intensities can
alter their appearence, for example running can be performed at slow to high speed
and might even involve small jumps [KF18].

Thirdly, [ZWN+
17] mention group activities. When there are multiple subjects per-

forming actions in a frame, it can be difficult to differentiate between many individual
actions and a group action. An example would be the difference between running and
playing football. Not only is a lot of context necessary to be able to determine a group
activity but also to determine which subjects are part of the group activity and which
are not. Consider the case where, in a single frame, two subjects are playing football
and two subjects are sitting, reading a book. No single label is able to fully describe
the human actions present in the image. Thus, a sizeable portion of literature focuses
on single human, single action problems.

2.2 pose estimation

Pose estimation is defined by modeling human joint positions from an image or from
other signals. In this thesis, however, the main focus is performing pose estimation
using image-based methods, where the pixel positions for each joint are estimated. The
joint positions are then often represented in a tree structure representing a skeleton.
See (Fig. 2.2.1) for an example.

Such a representation of the human pose is useful in many use-cases. Action
recognition on images, presented in Chapter 2.1.2, often incorporates the pose of a
human to identify the action performed by that human. Additionally, since computer
generated characters in movies become even more prevalent in recent years, pose
estimation is often used for motion capturing, where an actor’s pose is used for
animating a computer generated character.

The skeleton structure shown is just a visualization of the data generated. When
computing pose, two main approaches are used. Firstly, many approaches use regres-
sion to directly compute the image coordinates. This approach was used in the early

8 fundamentals

Figure 2.2.1: Examples of human pose estimation. The pose is represented using a tree
structure of joint positions, forming a skeleton. Image taken from [NYD16].

Figure 2.2.2: Representing joint coordinates as probability heatmaps. From left to right: Tree
structure representation of all joints, left shoulder, left elbow, left hand, right knee
and right ankle. Image taken from [NYD16].

work because its reasoning is intuitive. Secondly, heatmaps are used that represent
a discrete probability distribution over the x and y coordinates. One 2D heatmap
corresponds to the position of one joint. An example is provided in (Fig. 2.2.2). To
extract the joint coordinates from heatmaps, a post processing step like the argmax
is needed. According to [LPT18], in practice, heatmap based methods outperform
regression methods.

When computing pose from images, one obvious challenge is the variety in ap-
pearance because of different choices in clothing. Consider the difference between
detecting elbows in a picture with a person wearing a T-shirt and a picture with a
person wearing a jacket. Not only is the naked elbow exposed in the first example but

2.3 neural networks 9

the overall shape of the person is distorted because of the thick fabric of the jacket
in the second example. This problem also applies when considering the substantial
differences in human appearance based on height and weight.

Other challenge are occlusion and self-occlusion. Occlusion happens when an
object is in the line of sight of the camera, occluding parts of a joint or the whole joint.
Self-occlusion means that the subject in the image is positioned to the camera in such
a way that their own body occludes the joints.

When focusing on detecting the pose of a single human, other humans in the
background might complicate the process because their joints could be wrongly
recognized as belonging to the desired subject. Consider again the examples provided
in (Fig. 2.2.1). It is easy to see how such errors can occur in crowded environments.

According to [Zhu16], there are two general approaches for pose estimation. First,
in top-down pose estimation, a generic model of a human is used as a starting point. This
model is then updated based on the information gathered from the images. That way,
there is always a model where all joints are present, i.e., occlusion is handled easily.
This approach, however, requires a priori assumptions about the human body and may
lead to bad results when these assumptions are not true, i.e., people with disabilities
or exceptionally tall or heavy people. Second, bottom-up pose estimation focuses on
detecting individual body parts. These individual parts can then be combined together
into the final pose representation. As part detectors got significantly more accurate in
recent years due to the development of deep convolutional neural networks, this is the
predominant approach for pose estimation in the current literature.

2.3 neural networks

Neural networks are becoming increasingly popular in modern computer vision
and machine learning pipelines due to their high classification accuracy. In the
following chapter, an introduction into their functionality is given, starting with the
McCulloch-Pitts-Neuron. Then, the Perceptron is discussed, which generalizes the
McCulloch-Pitts-Neuron to real numbers. Also, an outline of how Perceptrons learn
from data is presented. Afterwards, multiple Perceptrons are combined into a network
to solve more complex tasks. Finally, convolutional neural networks are discussed,
which are very commonly used in modern computer vision literature due to their
ability to learn how to extract meaningful visual features from data.

10 fundamentals

2.3.1 Artificial Neural Networks

Artificial Neural Networks are unidirected graphs where neurons are used as vertices.
A neuron is a compute unit, which performs an action upon its inputs and propagates
its output along the output edge. Each neuron has a set of internal parameters that
determine how its output is computed. In the following sections, two approaches
for how a neuron is defined are presented, as well as mechanisms for determining
their internal parameters automatically. Also, the approach of constructing a neural
network from a collection of neurons to compute more complex functions will be
discussed.

2.3.1.1 McCulloch-Pitts-Neuron

One of the earliest definitions of a neuron was proposed by Warren McCulloch and
Walter Pitts in 1943 [MP43]. The McCulloch-Pitts-Neuron (MCP), also referred to
as the McCulloch-Pitts unit, takes binary input values x = (x1, . . . , xn) ∈ Bn and
computes a binary value f(x) ∈ Bn. Additionally, the neuron contains a threshold
value θ ∈N. After adding all input signals, the sum (also referred to as excitation) is
compared to θ (Eq. 2.3.1). The output of the neuron is 1 if the excitation is greater or
equal to θ and 0 otherwise.

f(x, θ) =

1 if
∑n
i=0 xi > θ

0 otherwise
(2.3.1)

This simple neuron is capable of realizing some binary operators by choosing
different values for θ. For example, the boolean OR operator is realized by setting
θ = 1 and the boolean AND operator (over n inputs) can be implemented by choosing
θ = n [Roj96].

A geometrical explanation of how the MCP works is that it separates its input space
into two half-spaces, assigning the output 1 to all input combinations on one side and
0 on the other. For example, for two dimensional input spaces (two input variables x1
and x2), a MCP defines a separating line while for three dimensional input spaces the
MCP becomes a separating hyperplane. A visualization for the boolean OR function
with three input variables is shown in (Fig. 2.3.1).

The MCP looked at so far is also called an uninhibited MCP. [Roj96] show that
uninhibited MCP’s can only model monotonic logical functions. By adding inhibitory

2.3 neural networks 11

Figure 2.3.1: Example of MCP dividing the three-dimensional input space using a hyperplane.
The MCP is configured to model the boolean OR function. Image taken from
[Roj96].

inputs y = (y1, . . . ,ym) ∈ Bm to the MCP, however, non-monotonic logical functions
like boolean NOT can be implemented. The output of the MCP changes to

f̂(x,y, θ) = f(x, θ) ·
m∏
j=0

(1− yj). (2.3.2)

With uninhibited and inhibited inputs a neuron can model any conjugation of negated
and non-negated inputs. For example, modeling the boolean function x1 ∧¬x2 ∧ x3
results to

f̂(x1, x2, x3, θ = 1) = f(x1, x3, θ) · (1− x2). (2.3.3)

To compute more complex functions, multiple neurons can be grouped together
into layers, which, in turn, are connected into a neural network. An example of a neural
network made up from multiple layers can be seen in (Fig. 2.3.2). The input layer
does not contain neurons, however, since the nodes to not perform any computation.
Rather, the input layer abstracts the input values into the neural network framework.
Any layer between the input layer and the final layer is referred to as an hidden layer.

12 fundamentals

Figure 2.3.2: Example of a simple neural network, made up of two hidden layers. Image taken
from [Der17a].

Each neuron in a layer receives the output of all neurons in the previous layer as input.
When defining the number of layers a network has, the input layer is typically not
counted because it does not contain compute units. This means that the example
network in (Fig. 2.3.2) would be considered a three layer network.

By using a two-layer neural network it is possible to model any boolean function
f : Bn → B. The first layer consists of neurons that model conjunctions over the inputs
just as presented above. The second layer is made up of a single neuron, which is
configured to compute boolean OR. By making the outpus of the first layer the input
of the disjunction in the second layer any boolean function f can be computed because
any such function can be represented in disjunctive normal form.

The obvious limitation of McCulloch-Pitts-Networks is that they are limited to the
domain of logical functions. Additionally, they have to be constructed rather than
being able to learn the desired function because they rely on fixed connections to
model relations between input variables.

2.3 neural networks 13

2.3.1.2 Perceptron

In contrast to the McCulloch-Pitts-Neuron, a Perceptron uses real valued inputs
x = (x1, . . . , xn) ∈ Rn as well as a set of real valued weights w = (w1, . . . ,wn) ∈ Rn:

f(x,w, θ) =

1 if
∑n
i=0wi · xi > θ

0 otherwise.
(2.3.4)

Instead of setting θ as part of the neuron it is preferred to treat it as an additional
trainable parameter. To achieve this, a new fixed input value xb = 1 with the corre-
sponding weight wb = −θ is added to the model and the previously internal θ is fixed
to 0 (Eq. 2.3.5). This additional weight is called the bias of the Perceptron.

f(x,w) =

1 if −wb +
∑n
i=0wi · xi > 0

0 otherwise
(2.3.5)

For notational convenience, from now on the bias is assumed to be part of w,
i.e., w = (w1, . . . ,wn,−θ) and the additional input xb = 1 is part of x, i.e., x =

(x1, . . . , xn, 1).
The excitation of a Perceptron is still just a (weighted) linear combination. This

means that the Perceptron, like the MCP, separates the input space by a hyperplane.
In (Fig. 2.3.3) examples for some common logical functions for two input variables are
provided.

Figure 2.3.3: Logical functions modelled by a single Perceptron. The blue line indicates where
the input space is divided. All input combinations on one side of the line are
going to be assigned to 1 while being assigned to 0 on the other side. Notice that
there are infinitely many possibilities for dividing lines since the input space is
real valued. Image taken from [Rud18].

14 fundamentals

While MCP’s were designed to model logical functions like boolean OR or boolean
AND by setting θ as well as categorizing the input variables as either inhibitory or
non-inhibitory, Perceptrons are able to infer these parameters through a learning process.

Perceptrons learn from a training set M = P ∪N comprised of positive examples
and negative examples. A positive example p ∈ P is defined as an input for which the
Perceptron should output 1. Analogously, the Perceptron should output 0 for each
negative example. Learning in the context of Perceptrons then means determining
a parameter vector w, which satisfies the following inequalities for all positive and
negative examples:

w · p > 0 ∀p ∈ P

w ·n < 0 ∀n ∈N .
(2.3.6)

A parameter vector, which satisfies these inequalities, then defines the hyperplane
separating positive from negative training examples. The Perceptron can then assign
an output value to non-training examples by computing its output using the learned
weight vector. The training examples are required to be linearly separable in order to
find an optimal separating hyperplane.

The general algorithmic approach determining an optimal weight vector is the
following:

1. Start with a random weight vector w

2. Evaluate how accurate the hyperplane defined by w separates the input space

3. If all positive and negative examples are separated correctly:

a) Done

4. Else

a) Update weight vector in a way which further reduces the error function

b) Go to step 2

For the learning algorithm to determine the accuracy of a given weight vector wi,
an error function or loss function needs to be provided. Such a function takes all
positive and negative examples and calculates the amount of error, i.e., number of
wrongfully classified examples.

2.3 neural networks 15

One example of a loss function is the sum of squared error function:

SSE(w) =
∑
x∈M

(f̂(x,w) − yx)
2. (2.3.7)

This function computes the output of the Perceptron f̂(x,w) for a given weight
vector w and subtracts the expected output yx for the input x. It is trivial to see that
the minimum error SSE(w) = 0 is achieved if and only if f̂(x) = 1 for all positive
examples and f̂(x) = 0 else.

Iteratively updating the weight vector needs a strategy that guarantees that the error
will be less than it was before after updating. One algorithm, presented in [Roj96] and
simply called Perceptron learning algorithm, uses the following method.

Figure 2.3.4: Visualization of the weight plane w ·x separating two positive and two negative
vectors. The weight vector w is the normal of the hyperplane. Image taken from
[Roj96]

A training example x ∈M is chosen randomly. Also, as discussed before, a random
weight vector wt = w0 is initialized. If x ∈ P and wt · x 6 0 then the weight vector
needs to be updated. The idea is that, in the case above, the two vectors x and w must
have an angle bigger than 90 degrees (see (Fig. 2.3.4)). By rotating w towards x the
angle will be reduced, eventually putting x on the correct side of the hyperplane. To
rotate w the algorithm proposes wt+1 = wt +x. Analogously, if x ∈ N and wt · x > 0
the algorithm proposes wt+1 = wt − x. This is done for each x ∈ M in a random
order.

16 fundamentals

As P and N are required to be linearly separable and there are a finite number of
examples it can be proven that, after a finite amount of steps, the error will be reduced
to zero and the hyperplane will correctly separate the two sets [Roj96].

2.3.1.3 Gradient Descent Learning

Another approach to learning the weights of a Perceptron is gradient descent. Given an
error function E with a set of initial weights wt and an input example x the amount of
error is given by E(w,x). If the error function is differentiable, one can calculate the
gradient of the error function for each weight wi ∈ w using

∂E

∂wi
, (2.3.8)

which points toward the steepest ascend of the error function.
Consider the error function defined earlier in (Eq. 2.3.7). The partial derivative

given each wi ∈ w is then given by:

∂SSE(M ,w)

∂wi
=

∂

∂wi

(∑
x∈M

(f̂(x,w) − yx)
2

)

=
∑
x∈M

∂

∂wi
(f̂(x,w) − yx)

2

= 2 ·
∑
x∈M

f̂(x,w) − yx) ·
∂

∂wi
(f̂(x,w) − yx)

= 2 ·
∑
x∈M

f̂(x,w) − yx) ·
∂

∂wi
f̂(x,w).

(2.3.9)

This presents a challenge, however, since f̂(x,w) is not differentiable. Until now, the
definition of a single Perceptron was the following:

f̂(x,w) =

1 if w ·x > 0

0 otherwise

= φ(x ·w)

= φ(ψ(x,w)),

(2.3.10)

2.3 neural networks 17

where ψ is called the integration function, which computes the excitation and φ the
activation function that computes the activation of the neuron.

This results in a non-differentiable activation function since the thresholding ap-
proach is not continuous, which means that it cannot be differentiable. A popular
choice for a differentiable activation function is the sigmoid activation function S(x)
given by:

S(x) =
1

1+ e−x
. (2.3.11)

One can easily see that the sigmoid function is differentiable and that the derivative
is given by:

d

dx
S(x) =

e−x

(1+ e−x)2

= S(x)(1− S(x)).
(2.3.12)

By then choosing φ = S and keeping ψ(x,w) = x ·w in (Eq. 2.3.9) the partial
derivative of the error function becomes:

∂SSE(M ,w)

∂wi
= 2 ·

∑
x∈M

(f̂(x,w) − yx) ·
∂

∂wi
f̂(x,w)

= 2 ·
∑
x∈M

(S(x ·w) − yx) ·
∂

∂wi
S(x ·w)

= 2 ·
∑
x∈M

(S(x ·w) − yx) ·
∂

∂wi
S

∑
j

xj ·wj

= 2 ·

∑
x∈M

(S(x ·w) − yx) · S(x ·w) · (1− S(x ·w)) · ∂
∂wi

∑
j

xj ·wj

= 2 ·
∑
x∈M

(S(x ·w) − yx) · S(x ·w) · (1− S(x ·w)) · xi.

(2.3.13)

After computing the partial derivative for each wi ∈ w the gradient then is given by:

∇SSE(M ,w) =

(
∂SSE(M ,w)

∂w1
, . . . ,

∂SSE(M ,w)

∂wn

)
. (2.3.14)

18 fundamentals

Finally, the current weights wt can be updated by changing the weights by a certain
step size or learning rate γ towards a local minimum of the error function by applying

wt+1 = wt − γ ∇SSE(M ,w). (2.3.15)

Since the gradient points toward the steepest ascent of the error function a negation
is needed to approach the local minimum.

2.3.1.4 Multi-Layer Perceptron

The assumption was made that the two sets of points P and N are linearly separable.
Many problems, however, are more complex and cannot be easily separated linearly.
One example from the realm of logical functions is the XOR function. As an example,
consider XOR with two input variables. If visualized in the same way as in (Fig.
2.3.3) it is quite trivial to see that no single line is able to divide the positive from the
negative points. A more complex model is necessary for modeling functions with
convex solution spaces such as XOR (Fig. 2.3.5). Similar to 2.3.1.1, Perceptrons can
be arranged into layers to compute more complex functions. Such a network is also
known as a multi-layer perceptron (MLP).

Figure 2.3.5: Solving the XOR problem by using separating regions instead of hyperplanes.
Image taken from [Roj96]

2.3 neural networks 19

By constructing an MLP with one input layer, one hidden layer as well as one output
layer, the network is capable of modeling every convex solution space [Roj96]. The
Perceptrons in the hidden layer each learn to linearly separate the solution space into
two parts like described earlier. By using just one Perceptron in the second layer,
which is able to learn the boolean AND function over all outputs from the previous
layer it is possible to learn any convex solution space. A visualization is provided in
(Fig. 2.3.6).

Figure 2.3.6: Example of a convex solution space using a two-layered MLP with three Per-
ceptrons in the first and one Perceptron in the second layer. Each bit vector
b = (x1, x2,3) shows the output of Perceptron 1, 2 and 3 respectively. Image
taken from [Roj96]

Even with the ability to model any convex solution space, there are still problems
which have a non-convex solution space. However, by adding another hidden layer to
the MLP these problems can also be solved.

The first hidden layer behaves just like in the previous example with each Perceptron
splitting the input space into two. Each Perceptron in the second layer again learns
boolean AND functions, resulting in as many convex regions as there are neurons in
the layer. In the third layer, a Perceptron then combines these regions into non-convex

20 fundamentals

regions using the learned boolean OR operator. In fact, a three-layer MLP is able to
model any arbitrary function (given enough Perceptrons per layer) [Roj96].

2.3.1.5 Backpropagation

A single Perceptron can be trained using gradient descent. A network of many
Perceptrons, however, a different algorithm is needed.

Probably the most common learning algorithm for training MLPs is the backpropa-
gation algorithm, initially proposed by [Wer74] and popularized by [RHW86]. It uses
gradient descent with the addition of propagating the error backwards through the
network by making use of the chain rule of derivation.

For each example xi in the training data, the algorithm follows these steps:

1. Start with random weights W0 = (w, . . . ,wn) for each neuron.

2. Feed xi into the network (called a forward pass)

• f̂(xi,w0) = yi

3. Compute gradient at the last layer by using a loss function and the expected
result ŷi.

4. Compute gradient for the previous layers, incorporating the error from the
consecutive layers (called a backward pass).

5. Update the weights with their corresponding gradients.

In order to show how the Backpropagation algorithm works consider a MLP with
one hidden layer L1, one output layer O1 and n inputs. Also, let ‖L1‖ = ‖O1‖ =M
without loss of generality.

First, the forward pass is performed. The output of each neuron hj(x,wj) = yj in
the hidden layer can be described using the following equation:

hj(x,wj) = S(x ·wj)

=
1

1+ e−(x·wj)
.

(2.3.16)

2.3 neural networks 21

Similarly, after the output layer, the output gk for each neuron given the network
input can be described as:

gk(x,wk) = S

M∑
j=0

wjk · hj(x,wj)

= S

M∑
j=0

wjk · S

(
N∑
i=0

wij · xi

) .

(2.3.17)

Every differentiable loss function can be used in the Backpropagation algorithm. For
consistency, consider the sum of squared error function defined in (Eq. 2.3.7). After the
forward pass through the network the loss for a single output neuron gk is given by:

SSE(x, (wj ,wk)) = (yk − ŷk)
2

= (gk(x,wk) − ŷk)
2

=

S
M∑
j=0

wjk · hj(x,wj)

− ŷk

2

=

S
M∑
j=0

wjk · S

(
N∑
i=0

wij · xi

)− ŷk

2
(2.3.18)

By using the same approach as with gradient descent, the partial derivative of the
loss function with regards to the weights of the output layer is given by:

∂ SSE(x,w)

∂wjk
=

∂

∂wjk
(gk(x,wk) − ŷk)

2. (2.3.19)

Using the chain rule for derivation

(p(b(x))) ′ = p ′(b(x)) · b ′(x), (2.3.20)

22 fundamentals

the partial derivative can be broken down :

∂ SSE(x,w)

∂wjk
=

∂

∂wjk
(gk(x,wk) − ŷk)

2

= 2 · (gk(x,wk) − ŷk) · S ′
M∑
j=0

wjk · hj(x,wj)

 · hj(x,wj)

= 2 · (yk − ŷk) · yk · (1− yk) · hj(x,wj)

= δk · hj(x,wj)

= δk · yj.

(2.3.21)

One can observe that the output of all neurons from layer Nk are needed to compute
the partial derivate for neurons in layer Nk+1, which is why the initial forward pass
through is necessary.

Similarly, the partial derivative of the loss function with regards to wij is given by
(Eq. 2.3.22). However, while running Backpropagation, the partial derivatives of all
nodes in layer Nk+1 need to be computed in order to determine the partial derivative
of nodes in layer Nk [Roj96].

∂ SSE(x,w)

∂wij
=

∂

∂wij
(gk(x,wk) − ŷk)

2

= 2

K∑
k=0

(gk(x,wk) − ŷk) · S ′
M∑
j=0

wjk · hj(x,wj)

 ·wjk · S ′(x ·wj) · xi

= 2

K∑
k=0

(gk(x,wk) − ŷk) · gk(x,wk) · (1− gk(x,wk)) ·wjk · hj(x,wj) · (1− hj(x,wj)) · xi

= 2

K∑
k=0

(yk − ŷk) · yk · (1− yk) ·wjk · yj · (1− yj) · xi

= xi · yj · (1− yj) ·
K∑
k=0

2 · (yk − ŷk) · yk · (1− yk) ·wjk

= xi · yj · (1− yj) ·
K∑
k=0

δk ·wjk

= xi · δj

2.3 neural networks 23

(2.3.22)

Generally, the error signal δ can be computed for all layer Lg in the network using:

δj =

yj · (1− yj) · (yj − ŷj) if Lg is output layer

yj · (1− yj) ·
∑
k∈Lg+1 δk ·wjk else.

(2.3.23)

After computing the error signal, the weight can be updated, similarly to (Eq. 2.3.15),
using the following formula:

wjk(t+1) = wjk(t) − γ · δk · yj. (2.3.24)

One problem that held the development of deep networks with many hidden layers
back is the vanishing gradient problem [Hoc91][Hoc98]. As seen previously, part of
the gradient that gets propagated back through the network to update the parameters
is the derivative of the activation function. When choosing Sigmoid as the activation
function, the following was shown by [Hoc98] for its derivative:

dS(x)

dx
6 0.25 (2.3.25)

To compute the gradients of the weights in the first layer, all gradients of all following
layer need to be known. When considering (Eq. 2.3.23) for a layer which is not the
output layer, it becomes clear that the gradient of the next layers are mulitplied
together to compute the error signal, and thus gradient, of the current layer. Since the
gradient is limited by the derivative of the Sigmoid function, the gradient decreases
exponentially with the number of layers. In the literature, this is then referred to as
the gradient vanishing, which means that the gradients towards the beginning of the
network approach zero. This then means that the weights are not changed enough to
further learn these layers.

One way of dealing with this problem is using the Rectified Linear Unit (ReLU)
non-linearity as activation function, as proposed in [NH10]:

ReLU(x) = max(0, x) (2.3.26)

24 fundamentals

When computing the derivative of ReLU, it becomes clear that the vanishing gradient
problem cannot occur because the gradient is either propagated or not as opposed to
being diminished with every layer:

dReLU(x)

dx
=

1 if x > 0

0 if x < 0

(2.3.27)

2.3.2 Convolutional Neural Networks

Until now, the only kind of neural network layer discussed consisted of neurons,
which take all inputs, compute the weighted sum using a weight matrix and then
computing the activation. For certain input data, like images, this approach is not
efficient, because each pixel intensity value would need a dedicated weight value,
resulting in a large weight matrix. Instead, convolutional layers were proposed, which
drastically reduce the amount of weight values necessary to process image data.

2.3.2.1 Convolutional Layer

In computer vision, image features like edges are traditionally computed by first
designing two-dimensional matrices K called kernels or filters. Let W,H be the width
and height of the image I. For each (i, j) ∈ W ×H, the excitation E(i, j) is computed
using the following formula:

E(i, j) =
∑
m

∑
n

I(i+m, j+n) ·K(m,n). (2.3.28)

A visualization of this process can be seen in (Fig. 2.3.8). This process relates to
the mathematical concept of convolution, where the amount of overlap is computed
when sliding one function over the other. Specifically, computing the excitation is a
discretized, two-dimensional version of the general convolution. In its most general
form, a convolution over functions x and w is defined in [GBC16] as:

s(t) = (x ∗w)(t) =
∫∞
a=−∞ x(a)w(t− a)da. (2.3.29)

The excitation values then form the output feature map.

2.3 neural networks 25

One approach for detecting edges was introduced in [SF68], where two 3× 3 kernels
were introduced for detecting horizontal (Gy) and vertical (Gx) edges in an image (Eq.
2.3.30). In the case of the Sobel operator, the output feature map is a horizontal or
vertical edge image. See (Fig. 2.3.7) for a visualization.

Figure 2.3.7: Output feature maps after applying Gx and Gy, in comparison to the original
image (left).

Gx =

−1 0 1

−2 0 2

−1 0 1

 , Gy =

1 2 1

0 0 0

−1 −2 −1

 (2.3.30)

Convolutional layers generalize the approach of convolving input feature maps with
kernels by using kernels whose parameters are learned through backpropagation. This
means that the kernels do not need to be designed manually, because the network
can learn which kernels are needed, depending on the task. Instead of computing the
excitation for each (i, j) position, a stride can be defined. A stride of x indicates that
the positions to apply the kernel are incremented by x, instead of 1.

In practice, each convolutional layer consists of multiple kernels. This results in a
output feature map with a depth corresponding to the number of different kernels.
The output feature map can then be processed by another convolutional layer. A
neural network with at least one convolutional layer is also often referred to as a
Convolutional Neural Network or a CNN.

Since the kernel is centered at each coordinate (i, j) of the input feature map, a
decision has to be made when not all input values are present, e.g., at the edges of
an input image. Generally, there are two approaches used in the literature. First, (i, j)
positions where not all input feature map values are available can be ignored, resulting

26 fundamentals

Figure 2.3.8: Visualisation of using a Sobel filter for detecting vertical edges. Image taken from
[Der17b].

in a output feature map with smaller spatial dimensions since the convolution was
not computed for every (i, j) position. Second, the missing values can be substituted.
This is referred to as padding. Common padding approaches are to fill the missing
values with 0 or duplicating with the nearest input feature map values.

2.3.2.2 Pooling Layer

Another important layer type when using Convolutional Neural Networks is the
pooling layer. Pooling layers are used to reduce the size of the activation map and
introduce invariance to small translations when applied to the spatial dimensions
[GBC16]. There are different types of pooling layer, however the most popular is the
Max-pooling layer where, for each n×n pixel block, the maximum value is used as
the output. Consider the output feature map of the previously discussed Sobel filter,
where high values indicate the presence of a horizontal or vertical edge, depending
on the kernel. In a similar sliding-window approach to the convolutional layer, the
Max-pooling layer computes the maximum values for n×m blocks at each pixel
position. Additionally, a stride s can be defined as well and, in practice, the stride
is often set to s = n. This results in a reduction of the spatial dimension of the

2.3 neural networks 27

feature map by a factor n in both dimensions. Also, invariance to small translations
is introduced because the maximum value is propagated, regardless of where in the
n×n window it occured. See (Fig. 2.3.9) for a visualization.

Figure 2.3.9: Example of a 2× 2 Max-pooling operation with a stride of 2. Image taken from
[Cor18].

2.3.2.3 Fully-Connected Layer

As discussed previously, in convolutional neural networks, convolution and pooling
layers are used to extract visual features from the input. The features can then be used
for classifying or regression. For this purpose, layers of neurons, as introduced earlier,
can be added to a convolutional neural network. In the context of CNNs, these layers
are referred to as fully-connected layers. An example of a CNN where features are
computed and then classified can be seen in (Fig. 2.3.10).

Figure 2.3.10: Example of a Convolutional Neural network, consisting of a feature extractor,
followed by a fully connected network, which uses the Softmax activation
function for classification. Image taken from [Sah18].

3
R E L AT E D W O R K

In the previous chapter, the fundamentals of Human Action Recognition, Pose estima-
tion, as well as Artificial and Convolutional Neural networks were introduced. This
chapter discusses current methods for both HAR and Pose estimation found in the
literature. Current and historical approaches to estimating pose are presented in Sec-
tion 3.1. These include shallow approaches based on the Pictoral Structure Framework,
as well as deep learning based approaches. In Section 3.2, both shallow methods as
well as methods using deep learning are discussed for HAR on video datasets. This
thesis focuses on methods incorporating pose information in the Human Activity
Recognition decision process as features, since this is similar to the approach presented
in [LPT18].

3.1 pose estimation

While there are many different approaches for pose estimation, one of the most widely
used in the literature was the Pictoral Structure Framework. In the following section, the
foundation of this framework will be explained, along with extensions to the model
from . Afterwards, deep learning based methods became dominant in the field of pose
estimation, which is why they will be explained in the subsequent section.

3.1.1 Pictoral Structure Framework

In 1973, [FE73] presented a general framework for object recognition problems, includ-
ing pose estimation. The so called Pictoral Structure Framework is comprised of parts,
that are connected by spring-like connections. In the context of pose estimation, they
used the term part to be synonymous with limb. A part is defined by a collection of
parameters li which could include center coordinates and rotation. The connection
between two parts is modelled using a mechanism inspired by physical springs. Such
connections can be relaxed or be under tension. This expresses how realistic a certain
connection is, based on the amount of tension required to connect two parts.

The graph that is created from connected parts models the desired object, for
example the pose or facial features of a human, and it is also referred to as a deformable

29

30 related work

structure. In the context of pose estimation, limbs are modelled as parts, connected
together at the joints.

The output of the alorithm is expressed as L = (l0, l1, . . . , ln), called the configuration
of all parts li. To compute the optimal configuration, the authors proposed the
following minimization problem:

L∗ = arg min
L

 n∑
i=0

mi(li) +
∑

(vi,vj)∈E

dij(li, lj)

 . (3.1.1)

In (Eq. 3.1.1), mi is a function evaluating the placement of part i at configuration li.
This is also often referred to as the unary term. dij measures the mismatch when parts
i and j, which are connected, are placed according to li and lj respectively.

Minimizing the energy function is computationally expensive since the space of
possible positions for each part spans the entire image. According to [FH05], there are
methods using heuristics to make the computation more efficient, but they do not find
optimal solutions. They proposed to transform the problem into a statstical framework
and solve it by estimating a posterior distribution.

One advantage of this statistical model is that the parameters can then be estimated
using training examples, similar to the principles of learning presented in (Sec. 2.3).
Also, it is possible to get multiple solutions to the minimization problem by sampling
the posterior distribution as opposed to a single solution with the energy minimization
approach.

The authors model the problem as follows. Let p(L | I, θ) be the desired posterior
distribution, where θ is a set of model parameters and I is the image. When applying
Bayes’ formula, one can express the posterior as:

p(L | I, θ) ∝ p(I | L, θ)p(L | θ). (3.1.2)

The likelihood p(I | L, θ) is approximated as
∏n
i=1 p(I | li, θi). This approximation,

however, is bad if recognized parts occlude each other [FH05]. This problem is often
referred to as double counting and it is one of the most prominent error of Pictoral
Structure based models. The authors tackle this problem by sampling multiple times
from the posterior, and by evaluating them using a separate measurement.

To approximate the prior distribution p(L | θ), the authors utilize the joint dis-
tribution of a tree structured Markov-random field. This tree is also referred to as
the kinematic pose prior, since it encodes prior information of how limbs should be

3.1 pose estimation 31

connected together. The vertices are modeled by li and the edges show connections
among the different parts. Since the denominator incorporated the absolute position
for each part, and the authors are only interested in modeling the relative position
between parts, they argue that the denominator can be constant. Thus, for simplicity,
they set the denominator to one:

p(L | θ) ∝
∏

(i,j)∈E p(li, lj | θ)∏
i∈V p(li | θ)

deg vi−1

∝
∏

(i,j)∈E

p(li, lj | θ).
(3.1.3)

This then leads to the following approximation of the posterior distribution:

p(L | I, θ) ∝ p(I | L, θ)p(L | θ)

∝
n∏
i=1

p(I | li, θi)
∏

(i,j)∈E

p(li, lj | θ).
(3.1.4)

To show the equivalence to the original energy minimization problem, the authors
take the formula presented in (Eq. 3.1.4), and they apply the logarithmic function.
Then, they negate the result. This then leads to the following formulation:

− log

 n∏
i=1

p(I | li, θi)
∏

(i,j)∈E

p(li, lj | θ)

= −log

(
n∏
i=1

p(I | li, θi)

)
− log

 ∏
(i,j)∈E

p(li, lj | θ)

=

n∑
i=1

−log p(I | li, θi) +
∑

(i,j)∈E

−log p(li, lj | θ).

(3.1.5)

When comparing (Eq. 3.1.5) to (Eq. 3.1.1) it is easy to see that mi(li) = −log p(I |

li, θi) and dij(li, lj) = p(li, lj | θ).
After presenting the statistical framework for general object recognition tasks, the

authors explain their approach to pose estimation using this framework. First, they
specify that the input image needs to be a binary image where the person is separated
from the background. Then, the objective is to maximize the number of foreground

32 related work

Figure 3.1.1: Overview of pose matching algorithm. Upper left: Original image. Upper
right: binary image where foreground pixels (containing the human figure) are
separated from the background. Lower right: One result from matching the limb
rectangles to maximize the amount of foreground pixels covered. Lower left:
Final result with estimated pose layered on top of original image. Image taken
from [FH05].

pixels covered by the detected parts in their calculated configuration. A visualization
of this process can be seen in (Fig. 3.1.1).

The authors model the human pose as a collection of 10 different parts. Two parts
per arm and leg as well as one torso and one head part (Fig. 3.1.1). Each part
configuration li = (xi,yi, si,ϕi) contains the x and y coordinate of the center of
the rectangle representing the part. In addition, si ∈ [0, 1] defines the length of the
rectangle and ϕi its rotation. The width is fixed.

To model p(I | li, θi), they use the formula in (Eq. 3.1.6), which utilizes θi = (q1,q2).
q1 is the probability of pixel inside li being a foreground pixel whereas q2 is the
probability of pixels closely around li being foreground pixels. The area around l1 is
referred to as area2 whereas the area of li is referred to as area1. counti referres to

3.1 pose estimation 33

the number of foreground pixels in areai and t is the total number of pixels in the
image.

p(I | li, (q1,q2)) =q
count1
1 ∗ (1− q1)(area1−count1)

∗ qcount22 ∗ (1− q2)(area2−count2)

∗ 0.5(t−area1−area2)
(3.1.6)

Also, they smooth the distribution to prevent peaks by using the principle of
annealing with a constant factor T (Eq. 3.1.7). This is important because a distribution
with strong peaks is more likely to return results around these pearks when sampled
from. As discussed earlier, sampling is needed because of the approximation of the
unary term the authors used and its problem with overlapping limbs. A distribution
with strong peaks would not allow for sufficiently diverse pose samples.
θi is then estimated using the mean values from annotated training data points, and

the authors set T to to 10 for smooting the peaks:

p(I | li, θi) ∝ p(I | li, θi)
1
T (3.1.7)

Figure 3.1.2: Visualization of connecting limbs. a: Two limbs in their own coordinate sys-
tem. The circles indicate connection joints. b: Possible, anatomically plausible
connection. Image taken from [FH05].

Next, the authors model the prior p(L | θ). Each spatial relation p(li, lj | θ) between
two parts is modelled in the following way: First, each part is placed inside its

34 related work

own coordinate system with the origin being the center point of the part (see (Fig.
3.1.2)a). The connection point (joint) between parts i and j is defined as (xij,yij) in the
coordinate system of part i and as (xji,yji) in the coordinate system of part j. When
transformed to the image coordinate system, these points should be as close together
as possible (see (Fig. 3.1.2)b). The authors express this using Gaussian distributions:

N((x̂i − x̂j), 0,σ2x)

N((ŷi − ŷj), 0,σ2y),
(3.1.8)

where x̂i and ŷi are transformations of the joint position into the image coordinate
system:

x̂i
ŷi

 =

xi
yi

+ siRϕi

xij
yij

 . (3.1.9)

x̂j and ŷj are computed analogously. Rϕi is a matrix which rotates around the origin
for ϕi radiants. Additionaly, the authors define that the difference between si and sj
should be close to zero. Again, this is modelled using a Gaussian distribution:

N((si − sj), 0,σ2s). (3.1.10)

Lastly, the authors specify that the difference between the two relative angles ϕi
and ϕj be close to a parameter ϕij. They use a von Mises distribution, given by

M(θ,µ,k) ∝ exp(k · cos(θ− µ)). (3.1.11)

A von Mises distribution, also referred to as a circular normal distribution, can be
thought of as a normal distribution around a circle. This means that the support of
the distribution is x ∈ [−π,π] which is why the authors use it for periodic input like
angles. Using µ = ϕij, they specify the constrained described earlier. The parameter k
determines how strong the peak at ϕij should be or, in other words, how constrained
the joints should be.

3.1 pose estimation 35

In summary, each spatial relation is expressed in the following way:

p(li, lj | θ) = p(li, lj | cij)

= N((x̂i − x̂j), 0,σ2x)

∗N((ŷi − ŷj), 0,σ2y)

∗N((si − sj), 0,σ2s)

∗M((ϕi −ϕj),ϕij,k).

(3.1.12)

The prior parameters cij are then given by cij = (xij, xji,yij,yji,σx,σy,σs,ϕij,k)
and they are estimated using maximum the maximum likelihood estimation.

The authors merely provide example images instead of a quantitative analysis. This
is most likely because of the lack of benchmark datasets available at the time. They
labeled 10 images by hand and used these to estimate the parameters. Then, for each
of their unlabeld test images, they sampled 200 poses and calculated the Chamfer
distance, which measures the binary correlation. The best pose with regards to the
Chamfer distance is then returned. Some example images can be seen in (Fig. 3.1.3)

3.1.1.1 Approaches for parts detection

Over the years, many approaches build on top of [FH05] by improvig parts of the
framework. One approach, where the parts detector was improved, is presented in the
following section.

In [ARS09], the authors propose a different appearance model p(I | L, θ), which is
based on individual parts detectors. [FH05] used background separation to extract the
silhouette of the subject from the background. Then, the objective was to configure the
parts in such way that the covered foreground area was maximized (see (Eq. 3.1.6)).
This resulted in a large search space since all different rotations and scalings for each
part need to be placed inside the foreground area to evaluate the overall fit. The
authors in [ARS09] limit the search space by using a detected parts evidence map di for
each part i. An example evidence map can be seen in (Fig. 3.1.4b). These evidence
maps are the result of individual parts detectors trained on annotated images such as
presented in (Fig. 3.1.4a).

The authors compute dense shape context descriptors [BMP02] for each training image.
This local descriptor takes gradients of edge pixels into account and discretizes them
into bins in a log-polar histogram. The authors chose 12 bins for the location where
the gradients are put inside 8 bins, resulting in a 96 dimensional descriptor for each
sampled point. Descriptors with a center point inside a part bounding box given by

36 related work

Figure 3.1.3: Example of poses estimated by the statistical framework. Image taken from
[FH05].

the annotation are then concatenated and used as positive training examples to train
the parts detectors.

For detectors, the authors use the concept of boosting where the decisions of many
weak classifiers are combined into a strong classifier [FS99]. Specifically, the authors
use the AdaBoost algorithm proposed by [FS97]. Each weak detector takes a bin from
the feature vector and compares it to a threshold. The sign of the result is then used
as the output of the weak detector following

ht(x) = sign(ξt(xn(t) −ϕt)), (3.1.13)

where x is the feature vector, ξt ∈ {−1, 1} and n(t) is the index of the bin, which is
used to compare to ϕt. The authors do not, however, specify how to set ξt or which
threshold ϕt was used.

3.1 pose estimation 37

(a) Parts-annotated exam-
ple image.

(b) Part evidence map
for part head. No-
tice the peak (in red)
where the head is in
the left image.

Figure 3.1.4: Images taken from corresponding talk to [ARS09].

Combining t weak detectors by summing over the weighted outputs, the complete
part detector for part i is given by

Hi(x) = sign

(∑
t

ai,tht(x)

)
(3.1.14)

According to the authors, ai,t are weights learned by each weak detector. To fit
the parts detectors into the Pictoral Structure Framework, the authors compute a
pseudo-probability based on the part detectors:

p(di | li) = max

(∑
t ai,tht(x(li))∑

t ai,j
, ε0

)
. (3.1.15)

x(li) is the feature vector for part li whereas ε0 is set to 10−4. The authors claim
that this pseudo-probability achieves good results in practice.

Lastly, the authors make two assumptions to embed the parts detectors into the
Pictoral Structute Framework. First, different part evidence maps di are independent

38 related work

from each other given L. Second, di only depends on li on not on other parts
configurations. This leads to the following likelihood

p(I | L, θ) = p(D | L) =

N∏
i=0

p(di | li), (3.1.16)

where N is the number of parts to detect in the given image.
The authors use two datasets to evaluate their model. The Buffy dataset provides

annotated upper-body poses from 3 episodes of the TV series Buffy The Vampire Slayer
[FMJZ08]. Also, for evaluating full-body poses, they used the Iterative Image Parsing
dataset provided by [Ram07]

As an evaluation metric, the authors use the Percentage of Correct Parts (PCP), pro-
posed by [FMJZ08]. For each annotated body part, PCP is calculated by first computing
the length of the ground truth body part lgt. Then, a threshold value tgt = 0.5 · lgt is
defined as half the length of the segment. If both endpoints of a prediction fall within
tgt radius of their ground truth annotation the part is considered detected.

First, they compare their upper-body model to [FMJZ08]. In contrast to [FMJZ08],
however, the authors also compute PCP for each part, whereas [FMJZ08] only provide
the overall accuracy of 57.9%. Using the pose dataset of [Ram07] for training the pose
priors and part detectors, the authors achieve an overall accuracy of 71.3%. They notice
that, while torso, head and upper arm accuracy is fairly high (from 78% for upper
arm to 95.9% for head), forearm accuracy (40%) was significantly lower. They argue
that is is due to the challenging nature of the dataset. Also, forearm parts are smaller,
which means it is more difficult for these parts to be considered correct. The authors
also tried exclusively using frames from the Buffy dataset, which were not used for
testing, to learn the pose priors. This lead to a slight increase in accuracy (73.5%) in
comparison to generic priors, mainly by increasing the forearm accuracy scores. This
illustrates that generic pose priors can achieve comparable results to domain-specific
priors.

For evaluating full body pose, the authors compared their results to the results
presented by [Ram07], the authors of the dataset. Overall, they achieve an overall
accuracy of 55.2%, which is significantly higher than the 27.2% achieved by [Ram07].
The authors argue that this large improvement is due to their strong part detector.
This is illustrated by the accuracy achieved on the head part. The accuracy of the
authors is higher than [Ram07], even when not using the pose prior information and
just using the part detector.

3.1 pose estimation 39

3.1.1.2 Articulated pose estimation with flexible mixture-of-parts

Another approach building on the Pictoral Structure Framework was proposed by
[YR11].

The proposed model differs from the origninal framework by using parts that are
not rotated or forshortened. To gain more flexibility, each part i has a type ti, which
can encode arbitrary information. One possibility, which is also what the authors
used in their experiments, is to let the types correspond to different orientations. For
example, two types for the part head could be upright or tilted to the left. In addition, in
this model, it is possible to constraint two adjacent parts’ types, as it will be seen later.

First, the authors change the definition of a part i and its parametrization li from
the one presented in [FH05]. A part is defined as a joint instead of a limb, because
the datasets used annotated joint positions as opposed to parts positions. Thus, the
parametrization changes to li = (xi,yi) since no rotation and forshortening occurs.

The Buffy and Iterative Image Parsing datasets, which the authors used for eval-
uation, do not provide annotations for type labels. Thus, they decided to compute
these beforehand using the following steps. First, the authors define a graph where
the vertices correspond to joints. The edges of the graph are defined in a way that
model a human skeleton. See (Fig. 3.1.5) for an example graph.

Figure 3.1.5: Visualisation of the graph resulting from connecting the joint positions, which
form the vertices, together into a human skeleton. Image taken from [YR11].

Second, the orientation of a part i is considered relative to its parent part j. For
instance, consider the relative position of the part corresponding to neck to its parent
part head. Necks tend to be below heads (when considering upright people). The

40 related work

authors use all relative positions found by iterating the dataset and cluster the relative
positions into T = 4 clusters. The cluster that the part i is put in then defines the type
label ti. See (Fig. 3.1.6) for an example. This results in a fully annotated dataset with
location information li as well as type ti for each part i.

Figure 3.1.6: The relative positions of neck with regard to its parent head (left) and left knee with
regard to hip (right). The origin marks the location of the parent. Notice that
the neck is generally placed below the head (since most images contain upright
people) while the left knee is mostly placed left of the hip. Each color indicates a
cluster and a thus a corresponding type label. Image taken from [YR11].

Instead of using one template for each limb, the authors propose to use many small
templates per limb. Each template can be of a specific type ti, which can encode
semantic features, e.g., open versus closed hand, or orientational information.

The authors provide the following score function to evaluate a predicted pose:

S(I, l, t) =
∑
i∈V

btii +wtii ·φ(I, li)

+
∑

(i,j)∈E

b
ti,tj
ij +w

ti,tj
ij ·ψ(li − lj)

(3.1.17)

In (Eq. 3.1.17), the variable I refers to the image that is evaluated. l = (l1, · · · , lk) is
the configuration containing all part positions while t = (t1, . . . , tk) corresponds to
the types of parts. φ(I, li) is a Histogram of Oriented Gradients (HoG) feature vector
[DT05] computed around the part position li. ψ(li − lj) = [(xi − xj), (xi − xj)2, (yi −
yj), (yi − yj)2]T encodes the relative location of part li to lj.
wtii , wti,tjij as well as btii and bti,tjij are parameters estimated from annotated training

data, which encode learned relationships between parts as well as type assignments

3.1 pose estimation 41

for each part. During training, a supervised approach is used where the score for an
annotated training image is maximized while utilizing regularisation on the models
parameters β = (w,w).

To evaluate their model, the authors use Percentage of Correct Parts (PCP), presented
in (Sec. 3.1.1.1), to be able to compare it to earlier work. In addition, they define a new
metric, Probability of Correct Keypoints (PCK)). In terms of datasets, they use Buffy and
Iterative Image Parsing.

PCK was designed to improve upon two disadvantages of PCP. First, the toolkit
provided with the Buffy dataset [FMJZ08] used a definition of PCP different from the
one proposed in the paper, which makes the comparison of PCP values in literature
hard, because it is unclear which definition was used. The paper definition was
provided in (Sec. 3.1.1.1). The Buffy toolkit defines a part as detected if the distance
of the average point of both endpoints is within the threshold to the average of the
ground truth endpoints. Second, foreshortening changes the length of the part, which
means that the threshold is dependent upon the amount of foreshortening. This means
that foreshortened parts require more accurate predictions to be considered detected.
PCK requires each test image to have a person bounding box annotation. Using the
bounding box dimensions (width,height), a keypoint is considered detected if the
distance between the ground truth and prediction is less than α ·max(width,height).
This gives a clear reference point for comparison and makes the metric less susceptible
to errors due to foreshortened parts. The paramter α determines how strict the
meassurement should be. For the Buffy dataset, the authors set α = 0.2, while they
chose α = 0.1 for the Iterative dataset. They argue that they relaxed the metric for
Buffy since the dataset only contains upper-body poses.

As mentioned earlier, the definition of PCP is not clear since the toolkit implementa-
tion and paper definition differ. Thus, the authors computed two different PCP values
for each dataset. First, they use definition presented in the paper, where the distance
of both keypoints need to be smaller than the threshold for a part to be defined as
detected. This is referred to as the strict definition. Second, they use the definition
provided by the Buffy toolkit, which is more loose since the averages of the keypoints
are more likely to be close to each other than both endpoints of the parts.

Even when considering the strictest definition, the model outperforms the previous
approaches, including [ARS09] (see (Sec. 3.1.1.1)), on the Iterative dataset. The authors
achieve an overall PCP score of 61.5%, which is significantly larger than the 55.2%
achieved by [ARS09]. Most notably, the detection rate of the legs is about 10 percentage
points higher when compared to [ARS09]. Since they also propose a new metric, they
provide the PCK metric results as well. Overall, the accuracy achieved is 72.9%, which

42 related work

is higher than the overall PCP value. The authors argue that this might be due to the
fact that foreshortened limbs are not penalized unfairly by PCK.

When evaluating the upper-body Buffy dataset, the authors model outperforms
the previous methods, when considering the loose definition, on overall accuracy.
However, when considering the strict definition, they outperform [ARS09] with 83.5%
(compared to 73.5%, see (Sec. 3.1.1.1)), but are themselves outperformed by other
competitors. When using PCK, the model achieves an overall accuracy of 72.9%, which
is also higher than the corresponding PCP score.

The authors also evaluate the effect of the number of mixtures defined as well as
the number of parts to detect. The results can be seen in (Fig. 3.1.7). While there is a
significant increase in accuracy (in terms of PCK) when increasing the number of parts
from 14 to 26, the effect decreases when further increasing the number of parts. When
evaluating the number of different types, accuracy increases again when increasing
the number of mixtures. They argue that 26 parts and 6 mixtures is a good trade-off
when considering both accuracy and runtime.

Figure 3.1.7: The authors find that the higher the number of mixtures (T) the higher the
accuracy. This is also true, to an extend, with number of parts to detect (K). The
authors suggest a 26 part, 6 mixture model for a good trade-off between accuracy
and performance. Image taken from [YR11].

3.1.2 Deep Learning Methods

In the following Sections, this thesis presents methods for estimating pose using
deep learning approaches. In contrast to the previously presented Pictoral Structure
Framework, these methods do not learn statistical representations of pose. Rather, they

3.1 pose estimation 43

use CNNs to detect the joints between limbs from image features and either regress
the location of the limbs directly or output a heatmap, which indicates the likelihood of
a certain limb being present for each pixel pair (x,y) in the image. Another term used
in the literature for heatmap is belief map. In addition, all approaches use the principle
of a stacking architecture, where initial pose estimations are refined by later stages of
the network.

3.1.2.1 DeepPose

One of the first approaches for pose estimation using deep convolutional neural
networks was proposed by [TS14]. They achieved state-of-the-art results on two
benchmark datasets using a neural network architecture based on the ImageNet
network [KSH12]. In contrast to the Pictoral Structure framework discussed earlier,
the approach was to regress the image coordinates directly without specific prior
constrains on how the joints are allowed to be connected.

The authors define their network in terms of multiple connected stages. Each stage is
comprised of the neural network architecture provied in (Tab. 3.1.1). The only change
the authors made from the architecture originally proposed in [KSH12] was to use
the output of the last fully connected layer to regress the joint coordinates as opposed
using the softmax activation function. This means that, assuming k joints should be
detected, the output of each stage is of size 2k, because each joint position is given by
image coordinates (x,y). Stage s0 is trained using the full images of size 220x220 as
its input.

Once the first stage is trained until convergence, the authors use the output co-
ordinates to crop sub images around the prediction. By feeding these subimages
into the next stage s1 they argue that the predictions of s1 get more precise, because
local context around the prediction becomes more important. The sub image size is
dependend upon the diameter of the torso bounding box given by the annotations.

This cascading approach is then repeated with the next stages. In the end, they
use 3 stages S = (s0, s1, s2) after evaluating different numbers of stages on a held-out
training set.

After training their network, the authors evaluate the final model on two datasets,
FLIC [ST13] and LSP [JE10]. Frames Labeled In Cinema (FLIC) is a dataset, which
contains 5000 images of Hollywoord movie scenes where 10 upper-body joint positions
are labeled for the subject of the scene. In that regard, FLIC is similar to the Buffy
dataset. Leeds Sports Pose (LSP) is a dataset of 2000 annotated images of subjects
in a sport context, which means that the subjects are highly articulated and thus
challenging to detect. LSP contains 14 different joint positions of the entire body.

44 related work

nr. layer type filter size nr. of filters / neurons stride

1 convolutional 11 x 11 x 3 96 4

2 local response normalization

3 pooling 3 x 3 2

4 convolutional 5 x 5 x 48 256 1

5 local response normalization

6 pooling 3 x 3 2

7 convolutional 3 x 3 x 256 384 1

8 convolutional 3 x 3 x 192 384 1

9 convolutional 3 x 3 x 192 256 1

10 fully connected 4096

11 fully connected 4096

12 fully connected 2k

Table 3.1.1: One stage of the DeepPose network. Architecture based on [KSH12].

Figure 3.1.8: Qualitative evaluation of the cascading architecture. Ground truth joints are
shown in green while predicted poses are shown in red. Notice how the pose gets
more accurate with consecutive stages. Also, notice that the biggest improvement
can be seen after stage 1. The authors argue that this is due to the fact that, with
an increase in stages, the subimage gets smaller and smaller and thus harder to
estimate the pose. Image taken from [TS14].

3.1 pose estimation 45

The authors use two different metrics to evaluate their model. First, they use PCP
(see (Sec. 3.1.1.1)) for comparison with the literature.

Also, they define a new metric, Percentage of Detected Joints (PDJ). They argue, similar
to [YR13], that PCP unfairly penalizes shorter limbs. With PDJ, a joint is considered
detected correctly if the distance between the predicted joint position and the ground
truth dp is smaller than a fraction of the torso’s diameter dt. This fraction is set to
be 0.5, meaning a joint is considered detected if 0 <= dp <= 0.5 · dt. This metric is
similar to PCK in that it compares the distance between two joints to a subject-specific
value like torso diameter or subject bounding box.

When comparing the results on the LSP and FLIC datasets, the neural network out-
performs the state-of-the-art approaches when considering the PCP metric. However,
like mentioned before, PCP accuracies are hard to compare since there are multiple
definitions available. Thus, the authors reevaluate previous approaches using PDJ and
compare their model against these new meassurements. Again, they outperform the
previous state-of-the-art models on both LSP and FLIC.

The authors additionally evaluate their model on the Buffy and Iterative Image Parse
datasets, presented in (Sec. 3.1.1.1). This allows a comparison to [YR13]. Specifically,
they trained their model on LSP and evaluated it on Iterative Image Parse for evaluating
full-body poses. Analogously, they train their model on FLIC and evaluate it on the
Buffy dataset when considering upper-body poses.

After evaluating on the Iterative Image dataset, they do not share the overall PCP
values. Instead, they compare their results on upper and lower arms as well as upper
and lower legs. These are considered to be the hardest to detect. On this subset, the
model outperforms [YR13] on average by 13 percentage points (69% average acccuracy
as opposed to 56%).

For the Buffy dataset, they do not publish explicit values, but rather the plot in (Fig.
3.1.9). From the graphic, it becomes clear that the author’s model also outperforms
[YR13] in terms of PDJ.

The authors provide three examples, which illustrate the importance of the cascading
architecture. These examples can be seen in (Fig. 3.1.8). They argue that stage s1
has the biggest effect on the accuracy of the joints, since further stages use smaller
and smaller subimages for regression and thus use a smaller context. To support
their hypothesis, they evaluating three networks in terms of PDJ on the FLIC dataset,
with one, two and three stages respectively. Their findings show the same behaviour
observed in (Fig. 3.1.8).

46 related work

Figure 3.1.9: Percentage of Detected Joints for multiple models (elbows and wrists), including
[TS14] and [YR13], on the Buffy dataset. Image taken from [TS14].

3.1.2.2 Convolutional Pose Machine

Another approach for pose estimation was proposed by [WRKS16]. The authors base
their work on traditional Pose machines proposed by [RMH+

14]. In comparison to
[TS14], they do not regress the joint coordinates directly using fully-connected layers,
but use a fully convolutional architecture to compute belief maps. These maps are very
similar to the part evidence maps discussed in (Sec. 3.1.1.1), since they indicate the
belief of a joint being present at a certain pixel position.

Pose machines are a general framework for estimating pose, focusing on refining
initial pose predictions based on context from previous decisions. The modular nature
allows to easily use different predictors and encoders, which will be explained in the
next section.

The Pose machine is made up of cascaded stages. The first stage uses a predictor
g1, which predicts, for each pixel in the input image, how likely it belongs to part p.
The results are P belief maps, one for each part to detect. In all subsequent stages,
the output belief maps of the previous stage are encoded back into image features
using an encoder function ϕ. Then, these encoded features are combined with the
local image features of the current stage and passed into the stage’s predictor. This
way, the predictor not only has the image features as a basis for decision, but also the
previously estimated joint location for context. See (Fig. 3.1.10) for a visualization of
the pipeline.

In [RMH+
14], the authors use boosted random forests for their stage predictors

gi. To extract features, they utilize Histogram of Oriented Gradients (HoG) descriptors
[DT05]. Their encoder ϕ is made up of two parts. The first part is referred to, by the

3.1 pose estimation 47

Figure 3.1.10: Cascading stages of the Convolutional Pose Machine. Image taken from
[WRKS16].

authors, as context patch features. For a given pixel coordinate z = (x,y) for each belief
map, the authors concatenate the belief scores in a 5x5 grid around z. Afterwards, the
concatenated scores from each belief map are again concatenated across belief maps
into a final feature vector ϕ1. The second part, which the authors refer to as context
offset features, again iterates over all pixel locations z. Given the pixel location of the
three highest peaks in the belief map, the feature vector is given by concatenating the
relative position to these peaks, given z, in polar coordinates. Again, they concatenate
all feature vectors over all belief maps, resulting in ϕ2. Finally, their context feature
vector is given by ϕ = [ϕ1,ϕ2]. See (Fig. 3.1.11) for a visualization of ϕ1 and ϕ2.

Figure 3.1.11: Example of context feature extraction, as proposed by [RMH+
14], for three belief

maps lb1t , lb2t and l
b3t (columns). Top row: Extraction from scores in a 5x5

grid around the pixel z. Bottom row: Each arrow points towards one of the
top 3 peaks in the belief map. The polar coordinates with regards to z are then
concatenated into the feature vector. Image taken from [RMH+

14].

48 related work

In [WRKS16], the authors used convolutional neural networks for their predictors
gi. In fact, the complete architecture is a fully convolutional neural network, allowing
end-to-end training of both the decoder and predictor. Each stage consists of a feature
extraction network, of which the architecture is presented in (Tab. 3.1.2) (layers 1 to 7).
This leads to the following formulation for the output belief maps b1:

b1 = g1(x) (3.1.18)

For context encoder ϕ, the authors first compute the receptive field size of the
previous stage. Then, when computing the context of position z = (x,y), they center a
window of that size around z in the belief maps. This leads to

bt = gt(xz,ϕt(z, bt−1)), (3.1.19)

as the output belief maps of stage t with t > 1.
The layers in (Tab. 3.1.2) denoted with a1 to a3 refer to the layers after the feature

extraction network in the first stage s1. Analogously, b1 to b5 refer to the layers after
the feature extraction network in all subsequent stages si, i > 1. The architecture of
the first stage, compared to all subsequent stages, differs because the authors want the
first stage to have a lower receptive field for a more precise extraction of local features.
In fact, the design was chosen so that, after the second stage, the receptive field of
the network is roughly the size of the input image. The authors claim that, through
experimentation, this provided the best overall accuracy.

The authors evaluated the amount of stages to use. They find that, after 5 stages,
the performance of the network stops increasing, which is why they choose to use 5
stages for all subsequent experiments.

To illustrate why context belief maps can help the network to correct itself, the
authors provide the visualization in (Fig. 3.1.12). They argue that, even when the

nr. 1 2 3 4 5 6 7 a1 a2 a3 b1 b2 b3 b4 b5

layer type conv pool conv pool conv pool conv conv conv conv conv conv conv conv conv

layer size 9 x 9 2 x 2 9 x 9 2 x 2 9 x 9 2 x 2 5 x 5 9 x 9 1 x 1 1 x 1 11 x 11 11 x 11 11 x 11 1 x 1 1 x 1

Table 3.1.2: Network architecture of the Convolutional Pose Machine. Layers 1 to 7 refer to
the feature extraction subnet, which is identical (in terms of architecture) in each
stage. However, stages t > 1 share the weights of the feature extraction layer to to
share the computed image features across stages. a1 to a3 are layers attached to
the feature extraction subnet in the first stage, while b1 to b5 are layeres attached
to the feature extraction subnet in all subsequent stages.

3.1 pose estimation 49

belief maps after the first stage are noisy, they can provide useful context information
since not every joint is equally hard to detect. As an example, they argue that head and
neck joints are easier to detect than other joints. Instead of right elbow and left elbow,
where there are two very similar joints in each image, head and neck are only present
once. Thus, their position in the first stage belief maps can aid in finding more difficult
joints like right shoulder. Similarly, the lack of context information can also help in
lessening the score in the belief maps. For example, consider the local information
around right shoulder. Normally, necks and shoulders are near to each other. When
there is no indication of neck in the belief map around right shoulder, this may lead to a
lower belief score of right shoulder being present at that pixel.

Figure 3.1.12: Visualization of how context information helps in detecting joint positions. The
task at hand is to to find right elbow. The current belief map for right elbow in
stage 1 is given in the left most image. In green, the authors visualized the
receptive field around the ground truth coordinates for right elbow, while red
illustrates the receptive field around the wrongfully detected joint. Notice that
other, easier to detect joints such as neck and head fall inside the receptive field
of the ground truth, suggesting that their positional information can help in
locating right elbow in further stages due to the context information they provide.
The right most two images show the result after the next two stages, where the
network corrected itself successfully. Image taken from [WRKS16].

The authors evaluate their model using three widely used benchmark datasets.
These are LSP and FLIC (Sec. 3.1.2.1) as well as MPII Human Pose. MPII Human Pose
is a benchmark, which consists of 40, 000 annotated images of people. These images
are also often referred to as in-the-wild images, since they were downloaded from
YouTube videos and are thus representative of every day activaties and situations. In
addition, since most YouTube videos are uploaded by private individuals, the image

50 related work

quality varies, making the benchmark more realisitic. For a complete overview of the
MPII dataset, please refer to (Sec. 5.1.1).

For evaluating their model, the authors use both PCK (Sec. 3.1.1.1) and PCKh
metrics. PCKh is used as the metric for the MPII dataset, which is very similar to both
PCK and PDJ (Sec. 3.1.2.1). However, instead of using the person bounding box or
torso bounding box for normalization, PCKh uses the head bounding box. [APGS14]
argue that PCKh is more useful for evaluating highly articulated poses compared to
PCK since the full body bounding box can be fairly large for some poses. Consider a
person, jumping in the air, spreading their arms and legs away from their body. This
maximizes the person bounding box and thus makes it easier for the PCK metric to
consider predictions to be correct when they are fairly far away from the ground truth.
The head size, aswell as torso size, however, is quite independent from the type of
pose and thus more suitable for evaluation. In addition, they use PCK to compare
their results on FLIC and LSP to the literature.

When evaluating their model using the LSP dataset, they found that, using a six
stage model, they achieved 84.32 percent accuracy. In comparison, the previous state-
of-the-art approach achieved 70 percent. The improvement is especially noticeable
when evaluating the challenging joints like ankles. The accuracy increased to 90.5
percent when utilizing additional training data from the MPII dataset. The authors
argue that this is due to the fact that the LSP datasets contains noisy annotations when
compared to the annotations provided by MPII.

Afterwards, the authors compare their results on the FLIC dataset to many state-
of-the-art models, including [TS14] (Sec. 3.1.2.1). They compare their result on two
challenging type of joints, namely wrists and elbows. Again, they outperform all
state-of-the-art approaches. When comparing their results specifically with [TS14] the
authors outperform their result by approximately 15 percentage points for wrists and
approximately 9 percentage points for elbows. Also, in contrast to their LSP evaluation,
they did not incorporate training data from MPII.

When comparing their results with the traditional Pose machine, they find that the
convolutional approach improves upon the results on the LSP dataset by an overall
PCK accuracy improvement of 42.4 percentage points.

The authors also evaluated the result of intermediate supervision on the vanishing
gradient problem (Sec. 2.3.1.5). They trained two networks, one with intermediate
supervision and one without, for the same amount of time. Their results are visualized
in (Fig. 3.1.13). The authors argue that the reason why intermediate supervision does
help against the vanishing gradient problem is because it replenishes the gradient
after each stage and thus keeps the gradient from decreasing when propagating back
towards the network.

3.1 pose estimation 51

Figure 3.1.13: Gradient magnitude and variance across some layers of the Convolutional Pose
Machine. When not using intermediate supervision (red), the gradient variance
approaches zero towards the beginning of the network, effectively stopping the
learning process. When using intermediate supervision, however, notice that the
variance of the gradients generally does not approach zero. Image taken from
[WRKS16].

3.1.2.3 Stacked Hourglass

Building on [TS14], [NYD16] proposed the Stacked hourglass network. Similar to
[WRKS16], the authors compute belief maps encoding joint probabilities instead of
regressing the coordinates directly. However, the authors refer to them as heatmaps.

Similar to the previously discussed approaches for convolutional architectures, the
authors use a stacked architecture, where predictions get refined iteratively. In contrast
to [TS14], they do not use crop the image around the estimated joint positions of
the previous stage when passing the image to a later stage, but rather but keep the
original image in every step (similar to [WRKS16]). The authors argue that refinement
of joint positions inside a local subimage is not optimal since many errors occur when
misattributing joint positions. Thus, limiting the network to local images might hinder
its ability to make big changes in joint positions.

The building blocks of the stacked hourglass architecture are so-called hourglass
modules. See (Fig. 3.1.15) for a visualization of a single hourglass module. The idea is
to process the input of the module at different scales and then combine features from
different scales using skip-connections.

52 related work

Figure 3.1.14: Schematic visualization of the stacked hourglass network. Notice the hourglass-
shaped symmetric submodels connected together. Image taken from [NYD16].

Figure 3.1.15: Visualization of a single hourglass module. Each block is a residual module,
consisting of multiple convolutional layers with skip-connections. Notice how
the skip-connections combine features at different scale levels. Image taken from
[NYD16].

A skip-connection is a path in the network, which branches of at a certain point and
gets combined with the original path again further down the network. For example,
consider a neural network with three convolutional layers. A skip-connection could
branch of before the first convolutional layer, apply some processing in forms of
additional convolutional layers, and get added back into the original path after the
second convolutional layer, thus effectively skipping the processing of the first and
second convolutional layers. Thus, earlier features (in terms of network depth) can be
reintroduced at a later stage and long-range dependencies between variables can be
modelled. One common use-case for skip-connections, which the authors used, is to
reintroduce lower level features and add them to higher level features. This way, tasks
like pose estimation can incorporate global, high level features like body shape with
low level, local features like faces.

Skip-connections get used in residual blocks [HZRS16], which are used for more
efficient learning in deep networks. Consider two connected convolutional layer with

3.1 pose estimation 53

input x. Let f(x) be the output of the second convolutional layer. Residual models
model f(x) + x, because they use the skip-connection to add the input back to the
output. The authors of [HZRS16] argue that this allows for deeper neural network
architectures, because it is easier to fit identity mappings. [HZRS16] evaluated deep
neural networks and they found that the error does not only not decrease for very
deep networks but starts increasing. They argue that this would not happen if the
layers would learn identity functions, because then the error would stagnate instead of
increase. In addition, because residual blocks allow for very deep architectures, they
achieved substantially better results in comparison to identical architectures without
residual blocks.

An example of a residual blocks used in the stacked hourglass network can be seen
in (Fig. 3.1.16). In fact, all blocks shown in (Fig. 3.1.15) are residual blocks.

Figure 3.1.16: A residual module [HZRS16], as used in the stacked hourglass network. The
module is made up of a batch normalization layer (left) and three convolutional
layers, each utilizing the ReLU activation function. The dotted line visualizes
the skip-connection. Image taken from [NYD16].

Each hourglass module is a network with a symmetrical architecture. For each
downsampling step with a pooling layer there exists a corresponding upsampling step
using nearest-neighbour upsampling. Consequently, the input and output dimensions of
the hourglass module are identical, allowing multiple modules to be applied one after
the other.

The input to the module is scaled down using pooling layers, until it reaches a
resolution of 4x4 pixels. At each resolution level, features are extracted using a residual
module. Once the image is scaled down to 4x4 pixels, upsampling is utilized until the
image is back to its original size. Again, residual blocks are used to extract features
at the different levels of resolution. Before each pooling layer, a skip-connection is
utilized to apply another residual block, after which the resulting features are added
to the output feature maps after upscaling. This effectively combines features from
two different image scales, because they get combined before upsampling happens.

The authors use another skip-connection between the input and output of the
module. This means that the input to each module, which is the output of the previous

54 related work

module, is added onto its output. The authors argue that this allows the network to
refine its prediction with each hourglass module since the high level features, which
are the outputs of each module, get processed by consecutive hourglass modules again,
creating higher order spatial relationships.

They qualitatively observe that errors made by early modules can be corrected
by later modules. Also, they evaluated the difference between 2, 4 and 8 stacked
hourglasses, which will be referred to as s2, s4 and s8. For a better comparability, they
altered the hourglass archictecture for the s2 and s4 to keep the number of trainable
parameters the same between architectures. For each residual block in each hourglass
in s2 the authors substituted 4 residual blocks, effectively quadrupeling the number
of residual blocks. Analogously, they doubled the amount of residual blocks for s4.
When training s2, s4 and s8, they found validation accuracies of 87.4%, 87.8% and
88.1% respectively, suggesting that the stacked architecture does contribute to higher
overall accuracies. In the final architecture, the authors use 8 hourglass modules.

While training, the output of each hourglass module is not only feed into the next
module, but also processed into a heatmap using a 1x1 convolutional layer. Using this
heatmap, a loss is computed after each hourglass module, which is then propagated
back. The authors refer to this process as intermediate supervision and they argue that it
increases the accuracy of the final prediction, because the network needs to develop a
high-level of understanding at each stage of the network. In their quantitative analysis,
they showed an increase in validation accuracy of around 3 percent when utilizing
intermediate supervision.

For evaluating the stacked archictecture, the authors used the FLIC (Sec. 3.1.2.1)
and MPII Human Pose [APGS14] datasets.

In terms of metrics, the authors take the same approach as [WRKS16], where
they use PCKh for MPII Human Pose and PCK for FLIC. For FLIC, they defined
α = 0.2, which means that 20% of the length of the head is used as the threshold.
They compare their results to [TS14] and outperform their results on elbows and
wrists by 6.7 percentage points (99.0% compared to 92.6%) and 15 percentage points
(97% compared to 82%), respectively. In addition, they outperformed [WRKS16], the
state-of-the-art appraoch at that time (Sec. 3.1.2.2).

With MPII Human Pose, the authors use a threshold of α = 0.5 to compare their
results to the state-of-the-art approaches. Also, PCKh was used instead of PCK, as
described before, since PCKh was proposed in [APGS14], and thus most models using
the MPII dataset use PCKh for evaluation. They outperformed the state-of-the-art
approaches, including [WRKS16]. In particular, they achieved 90.9% overall accuracy
as compared to 88.5% achieved by [WRKS16]. Also, they achieved significantly better
results on each individual part, including a 3.5 percentage point increase on the average

3.2 video-based human action recognition 55

over the most challenging joints (wrists, elbows, kness and ankles) in comparison to
[WRKS16].

3.2 video-based human action recognition

In the following chapter, approaches for Human Action Recognition on video data
will be discussed. First, some prominent works utilizing hand-crafted features will be
discussed. These approaches still perform well in modern scenarios and are sometimes
used in conjunction with modern, neural network based approaches. Second, the
Two-Stream architecture will be discussed, as it is the foundation for many state-of-
the-art approaches today. Finally, Human Action Recognition approaches explicitly
utilizing pose feature information are presented, since they show promise for end-to-
end learning of the Human Action Recognition pipeline by training the pose estimator
in tandem with the action classification network.

3.2.1 Shallow Methods

3.2.1.1 Learning realistic human actions from movies

For a long time, action recognition research focused on simple video datasets such
as KTH [SLC04], which feature a small number of different actions, recorded in
simple environments like laboratories. While important for the initial research into the
methodology, such datasets do not represent real world scenarios and are thus not
ideal when deciding whether an algorithm performs well in the real world.

The authors of [LMSR08] gathered a novel dataset, which will be referred to as the
Hollywood1 dataset. This dataset was gathered from movie scenes, which are close to
real world scenarios in the sense that they have diverse backgrounds, feature occlusion
pf the subject by other entities in the scene as well as differences in clothing, overall
making the action recognition process more challenging than in previous datasets.

The dataset contains eight different actions, Answer Phone, Get Out Of Car, Handshake,
Hug Person, Kiss, Sit Down, Sit Up and Stand Up, which were gathered from 12 movies
for the training and from 21 different movies for the test set, resulting in 219 and 211
clips respectively.

In addition to the new dataset, the authors also propose a novel approach for action
recognition, building on the work of [Lap05], where the Harris corner detector is
expanded to also detect interest points in the temporal dimension, making it suitable
for action recognition in videos.

56 related work

The Harris corner detector [HS88] finds corners, also referred to in the literature
as interest points, by finding locations where the image expresses significant changes
of intensity in both x and y direction [Lap05]. By using a small window W, which is
moved over the image I, and displacing the content of the window, an error term can
be computed to the original, non-displaced image patch, using the following formula:

f(∆x,∆y) =
∑

xi,yi∈W
(I(xi,yi) − I(xi +∆x,yi +∆y))2. (3.2.1)

By using the Taylor series to approximate the second term of the subtraction, the
error formula simplifies to

f(∆x,∆y) ≈
∑

xi,yi∈W
(Ix(xi,yi)∆x+ Iy(xi,yi)∆y)2

≈ (∆x,∆y)M
(
∆x

∆y

)
.

(3.2.2)

M =
∑
xi,yi∈W

 I2x IxIy

IxIy I2y

 is the second-moment matrix, with Ix, Iy being the

partial derivatives of I in x and y direction, respectively. According to [Lap05], M
can be interpreted to describe the covariances around the window center. Using the
eigenvalues λ1, λ2 of M, edges and corners can be detected in the following way. If
λ1 >> λ2 or λ1 << λ2, then an edge has been detected, since large change is only
detected in one direction. Similarly, if both eigenvalues are small, then very little
change is detected in both directions, meaning that the patch does neither contain
an edge nor a corner. However, if both eigenvalues are sufficiently large, a corner is
detected, since significant change in both directions was observed.

To detect these interest points in a spatio-temporal context, [Lap05] extended the
Harris corner detector to three dimensions. This means that the image sequence needs
to express high changes in x, y and the temporal direction t. The first change is the
dimension of M, which is now a 3× 3 matrix, given by the following formula:

M3 =
∑

xi,yi,ti∈W

I2x IxIy IxIt

IxIy I2y IyIt

IxIt IyIt I2t

 . (3.2.3)

3.2 video-based human action recognition 57

This in turn results in three eigenvalues λ1, λ2 and λ3, which can then be used as
discussed previously to detect interest points. An example of detected spatio-temporal
interest points are shown in (Fig. 3.2.1).

Figure 3.2.1: Two examples of spatio-temporal interest points calculated on move frames. Left:
Scene of two people shaking hands. Notice the cluster of interest points around
the subjects hands. Right: A person gets out of the car. Again, notice the cluster
forming around the car door as well as the person performing the action. Image
taken from [LMSR08].

Using the computed spatio-temporal interest points, the authors proceed to extract
image descriptors around them. First, they define a volume around each interest
point, the size of which is dependent upon the image scale since they compute
features for multiple scales of the original image. Each of those volumes is then
further partitioned into subvolumes of size 3× 3× 2, where 2 refers to the number of
consecutive frames. On each of those subvolumes, the authors compute Histogram of
Oriented Gradients (HoG) as well as Histogram of Oriented Flow (HoF) descriptors. Similar
to HoG, Histogram of Oriented Flow discretises and clusters the values of a optical
flow image into bins. Then, a histogram is created, containing the number of items
for each bin. The authors, however, do not mention which algorithm was used to
compute the optical flow. The histograms of all subvolumes are first normalized and
then concatenated, resulting in a single HoG and HoF descriptor per volume.

Before classification, the authors utilize the bag-of-features approach to cluster the
computed image descriptors. They take 100, 000 random features computed earlier
and cluster them into 4, 000 clusters using the k-Means algorithm [Mac67][Llo82]. The
number of clusters was chosen because the authors claim that, empirically, this leads
to good results.

To compute the descriptor for a video clip, the authors divide the whole volume of
the clip into three horizontal subvolumes. They refer to this as the spatio-temporal
grid. For each subvolume, the descriptors computed are assigned to the nearest of the

58 related work

Figure 3.2.2: Four examples of spatio-temporal grid evaluated by the authors. From left to
right: (1) Using the whole clip to compute the histogram. , (2) Split the number
of frames in half, compute separate histograms and concatenate afterwards, (3)
Split the clip horizontally into three subvolumes, spanning the whole temporal
dimension, (4) Choose overlapping subvolumes in the spatial dimensions. The
authors found (3) to achieve the best results. Image taken from [LMSR08].

4, 000 cluster centers and a histogram is computed over the cluster centers. Finally, the
histograms of all subvolumes are concatenated and normalized, resulting in the final
descriptor of the video clip. The authors evaluated different methods of subdividing
the video clip and found the approach using three horizontal subvolumes to perform
the best. They argue that this is due to the nature of the dataset, where (mostly
upright) subjects perform actions, and thus distinctions in horizontal direction are
more important than in vertical direction. See (Fig. 3.2.2) for a visualization of some
spatio-temporal grids evaluated by the authors. The grid described above is shown at
position (3).

First, the authors compare their approach to the state-of-the-art approaches on the
KTH benchmark [SLC04]. This dataset contains the classes Walking, Jogging, Running,
Boxing, Waving and Clapping. The video sequences are recorded in front of mostly
uniform backgrounds such as white walls or on grass. The authors achieve an increase
in accuracy of 5.1 percentage points over the previous best approach by [WC07]. The
classes which the authors approach wrongly classified the most were Jogging and
Running, which are very similar actions. When evaluating their approach on the
Hollywood1 dataset, they report average precision values of 18.2 percent for the worst
class (Sit Up) and 53.3 percent for the most accurate class (Kiss). Overall, their approach
achieves a mean average precision of 38.38 percent.

3.2.1.2 Dense Trajectories

Similar to [LMSR08], many approaches in the action recognition literature focused
on creating spatio-temporal descriptors, often based on known 2D descriptors like
3D-SIFT [SAS07] and HOG3D [KMS08]. However, the authors of [WKSL13] argue

3.2 video-based human action recognition 59

that, due to the different characteristics of the spatial and temporal domain, tracking
2D descriptors over time should lead to a higher accuracy in action recognition. They
propose to densely sample points on the first frame of a video clip and then tracking
them on trajectories throughout the clip. Afterwards, image descriptors are computed
along these dense trajectories.

Figure 3.2.3: Overview of the Dense Trajectories method proposed by [WKSL13]. First, dense
interest points are sampled at different scales of the first frame of the video clip.
Then, using precomputed optical flow, these points are tracked through the video,
resulting in a trajectory. Afterwards, image descriptors are computed along the
trajectory. Image taken from [WKSL13].

They start by sampling the initial interest points in a 5 pixel grid. Afterwards, they
decide to prune the grid to reduce the amount of computation necessary. This is
achieved by removing sample points which are located inside homogeneous areas,
e.g., walls in the background or other flat surfaces. This is necessary because reliably
tracking points over homogeneous areas using optical flow is impossible [WS13].
Also, optical flow is computed on all consecutive frame pairs using the optical flow
algorithm provided by the OpenCV library [Bra00]. Then, they proceed to track each
interest point using the optical flow field for 15 frames, which results in a trajectory
(P1,P2, . . . ,Pt) with t ∈ [1, 15]. This process is repeated for different scales of the image
in order to extract local and global image features. See (Fig. 3.2.3) for visualization of
the process. The authors argue that limiting the length of a trajectory is necessary in
order to avoid the trajectory from drifting away from the initial interest point too much.
In the case where a trajectory is too stationary the authors prune it afterwards because
they argue that such a trajectory does not contain sufficient motion information to be
useful. Analogously, in the case where a trajectory contains a jump which is higher
than 70 percent of the overall displacement since the initial interest point the trajectory
is also pruned, since, according to the authors, such a large displacement is usually
present due to errors. Also, in the case where an interest point vanishes from one

60 related work

frame to another or a displacement larger than a certain threshold is occurring they
decide to start a new trajectory by sampling a new initial point in the area where the
last point was. The authors do not, however, specify how large this threshold is.

Along each trajectory, the authors compute four different descriptors. The first
descriptor contains the relative motion between consecutive trajectory points ∆Pt =
(Pt+1 − Pt) = (xt+1 − xt,yt+1 − yt). This vector is further normalized by the sum
over all relative displacements, resulting in the following descriptor T given the length
of the trajectory L:

T =
(∆Pt, . . . ,∆Pt+L−1)∑t+L−1

t ‖∆Pt‖
(3.2.4)

The authors use Histogram of Oriented Gradients (HoG) [DT05], Histogram of Optical
Flow (HoF) [LMSR08] (see (Sec. 3.2.1.1) for more information) as well as Motion
Boundary Histograms (MBH) [DTS06] to extract features along the trajectories, similar
to the approach of [LMSR08] (Sec. 3.2.1.1). Centered at each interest point along a
trajectory, a N×N pixel area is defined with N = 32. These areas are then again
subdivided into nσ×nσ subareas with nσ = 2. The descriptors are then computed on
each of these subareas and descriptors over nτ = 3 timesteps are then summed to form
a single descriptor for each nσ ×nσ ×nτ subvolume. Afterwards, these subvolume
descriptors are aggregated, resulting in a single descriptor for each type (HoG, HoF,
MBH) and each subvolume N×N×nτ. See (Fig. 3.2.3) (right) for a visualization of
this process.

Motion Boundary Histograms, originally proposed by [DTS06], are computed using
optical flow between consecutive frames. First, optical flow for both x and y direction
is computed. Afterwards, gradients are computed on both x and y flow images. On
these gradient images, a histogram is computed analogously to HoG using eight bins.
It is argued that MBH is highly robust to camera motion since this kind of motion is
mostly constant in a movie context and thus results in the gradient of the optical flow
being close to zero. The authors decide to compute separate descriptors for x and y,
resulting in MBHx and MBHy. For HoG and HoF, they also chose to use eight bins
for quantization. Additionally, for HoF, a ninth bin is added in cases where the flow
magnitude is lower than a not specified threshold.

The authors evaluate the contribution of each of the four descriptor types to the
overall accuracy on multiple datasets. First, they find that the trajectory descriptor
using the relative displacement vectors outperforms HoG on datasets where the
background is not complex, i.e., in a laboratory environment. They argue that this is
because tracking is significantly easier in such a environment. On datasets which focus

3.2 video-based human action recognition 61

on sport activities, HoG consistently outperforms HoF. The authors argue that this
is due to the importance of spatial context in sports actions since they often involve
objects, i.e., a ball or a javelin, and specific environmental scenarios, such as arenas or
track fields. Additionally, the authors find that MBH outperforms all other descriptors
on most datasets. Especially in videos which are recorded by private individuals using
cheap cameras or mobile phones MBH gains an advantage over other descriptors
because it suppresses camera motion. In general, according to the authors, using all
descriptors in combination for classification yields higher accuracies than only using a
subset, suggesting that both temporal and spatial information are necessary for high
accuracy.

In addition, they compared their findings against [LMSR08], discussed in (Sec.
3.2.1.1). For comparison, they used two datasets. The Youtube dataset [LLS09] con-
tains video clips gathered from the video streaming platform YouTube. The dataset
contains 11 different actions, mostly from the context of sport. The other dataset is
Hollywood2 [MLS09], which is an extension of the previously discussed Hollywood1
dataset [LMSR08] (see (Sec. 3.2.1.1)). First, the number of actions was increased to 12
by adding Fight Person, Run, Eat and Drive Car. Additionally, the number of training
video clips was increased to 810 while the number of test clips was increased to 884.

To accurately compare both approaches, they utilize the interest points computed by
[LMSR08] to compute the HoG and HoF descriptors. In a direct comparison, both HoG
and HoF descriptors on their own lead to the same accuracy regardless of whether the
trajectory is used or the interest points computed by [LMSR08]. However, the MBH
descriptor consistently outperforms both HoG and HoF, and by combining MBH with
HoG and HoF the authors achieve a significant accuracy gain of 7.0 percentage points
on the YouTube dataset and 4.2 percentage points on the Hollywood2 dataset over
[LMSR08] (76.2 versus 69.2 percent and 51.9 versus 47.7 percent, respectively).

3.2.1.3 Improved Dense Trajectories

After their work in [WKSL13], some of the same authors improved upon their work
in [WS13]. The new approach is named Improved Dense Trajectories (IDT). The core
idea is to remove the camera motion before computing the dense trajectories, resulting
in a optical flow field which contains less background information. To achieve this,
the authors assume that two consecutive frames can be related to each other using a
homography.

In general, a homography H relates two points x and x′ in the same plane by
x′ = Hx [VL01]. H is defined as a 3× 3 matrix since the image points x = (xx, xy, 1)
are projections of three dimensional points onto the camera plain. Also, a homography

62 related work

can express the relationship between the same point but viewed by two different
cameras, or, as shown later, a single camera before and after displacement. Let
F1, F2 be two images, taken by the same camera, but at different world positions.
Using matching points between F1 and F2, H can be computed. With H, the camera
movement in F2 can be removed, resulting in a reduction of background movement.
This procedure is further referred to as warping.

Figure 3.2.4: Overview over the different stages of the Improved Dense Trajectories algorithm.
Outer left: Two consecutive frames displayed over another. Notice the blurry
background. Middle left: Computed optical flow without warping. Middle
right: Optical flow computed where the second frame was warped according to
the computed homography. Notice that the background motion has vanished and
the motion of the subject is much more pronounced. Outer right: Trajectories
computed on the warped flow. Background trajectories, which are removed, are
displayed in white .Image taken from [WS13] and modified from vertical stack to
horizontal stack.

The authors argue that the homography assumption, requiring the motion between
frames to be planar, holds in their scenarios most of the times since the movement by
independent subjects in the frame, such as actors, is small enough to be negligible.
To compute H, the authors first compute SURF detectors [BTVG06], which are then
used to compute point correspondences in consecutive frames by using the nearest
neighbour algorithm. They argue that SURF detectors robust to motion blur and are
thus more useful for this task than other descriptors. Additionally, they track points
using the optical flow by sampling points and tracking them in the consecutive frame.
Finally, they use the matched points to compute H using the RANSAC algorithm
by [FB81]. This algorithm randomly samples a subset of the input point pairs and
computes H by solving the following equation [VL01]:

x′ ×Hx = 0 (3.2.5)

The points pairs, which were not used for estimation, are then used to evaluate the
accuracy of H. If the accuracy is above a certain threshold, the point pair is considered
an inlier, and an outlier otherwise. This procedure is repeated a fixed number of times
and the parameters of H that produced the most inliers are chosen.

3.2 video-based human action recognition 63

Estimation of H can be problematic when a subject is very dominant in the frame
since the homography assumption does not hold for independently moving objects
in the scene [WS13]. Thus, the authors suggest to use a human detector in order to
remove point pairs which lie inside a human bounding box. They use the, at that time,
state-of-the-art human detector proposed by [PSF12].

After estimating H, the authors warp the second image in each consecutive frame
pair using H and recompute optical flow between the frames. Then, using the new
optical flow images, they compute the HoF, trajectory and MBH descriptors identically
to [WKSL13]. The HoG descriptors, on the other hand, are created on the original
frames without warping applied. As another improvement, they remove background
trajectories based on the computed trajectory descriptors. This is achieved by com-
puting the maximum magnitude of each trajectory and removing the trajectory if the
magnitude is less than 1 pixel, since this means that the trajectory is consistent with
the camera motion [WS13]. See (Fig. 3.2.4) for a visualization of these processing
steps.

In their evaluation, the authors first evaluate the difference between the Improved
Dense Trajectories approach to their baseline from [WKSL13]. They find that by using
the warped optical flow alone the accuracy increases by 3 to 4 percentage points over
the baseline, depending on the dataset. Also, if they remove background trajectories,
they gain an additional 1 percentage points over the baseline.

When investigating the individual contributions of the descriptors, the first thing
the authors notices was that the HoG descriptors do not significantly increase over the
baseline. However, this is to be expected, since HoG is a static descriptor. The authors
attribute the small accuracy increase in HoG to the removal of background trajectories.
Also, they notice that the HoF descriptor is comparable to MBH if the warped flow
field is used, whereas MBH in the original Dense Trajectories approach significantly
outperformed HoF.

The authors additionally investigated the contribution of the human detector. For
the experiment, they annotated a subset of the datasets with ground truth human
bounding boxes and compared the accuracy gain over the baseline, which does not
use human bounding boxes, and the bounding boxes computed by [PSF12]. They
found that, using the computed bounding box, accuracy increases upon the baseline
by 1.8 percentage points. Using the ground truth, an additional increase in accuracy
of 1.2 percentage points was observed. The authors argue that the accuracy increases
because the homography H is more accurate when using a human bounding box,
which then leads to a better approximation of the camera motion and in turn to better
motion descriptors like HoF and MBH.

64 related work

3.2.2 HAR using Two-Stream Convolutional Neural Networks

3.2.2.1 Two-Stream CNN

Recently, many approaches for action recognition in videos incorporate a concept
referred to as a Two-Stream Convolutional neural network. For a better understanding of
the approaches discussed later, a short overview over this concept is provided.

As discussed previously (see (Sec. 3.2.1)), the combination of spatial features, such
as the HoG descriptor, and temporal features, such as the HoF descriptor, yielded
significant improvements over the individual components. Many methods utilized
precomputed optical flow fields for computing temporal features (see (Sec. 3.2.1.1)
and (Sec. 3.2.1.2)). With the success that CNNs achieved in computer vision tasks on
still images, such as image classification and image segmentation, [KTS+

14] proposed
a similar approach for use in video action recognition. The authors, however, did not
incorporate temporal information in form of optical flow fields into their architecture.
Instead, they relied solely on passing multiple consecutive frames to 2D convolutional
layers. The authors were not able to achieve comparable results to the hand-crafted
feature approaches proposed by [WS13] (see (Sec. 3.2.1.3)), gaining 65.4 percent
accuracy compared to 85.9 percent on the UCF101 dataset [SZS12].

Figure 3.2.5: The Two-Stream architecture used by [SZ14]. Notice that the spatial and temporal
networks have nearly identical architecture, with the difference that the second
convolutional layer in the temporal network does not have batch normalization to
reduce memory consumption. Image taken from [SZ14].

In order to improve upon this first approach, [SZ14] proposed the Two-Stream
Convolutional neural network. Such a network is comprised of two individual networks.
The first network extracts features from a single RGB frame of the video and, by using

3.2 video-based human action recognition 65

a softmax layer, classifies the present action. Simultaneously, the second network
processes L consecutive optical flow images and also outputs a classification using a
softmax layer. Both classification outputs are then fed to a multiclass linear Support
Vector machine which then outputs the final action prediction. In [SZ14], the networks
have almost the same, shallow architecture, consisting of 5 convolutional and 2 fully-
connected layers, followed by a softmax layer. See (Fig. 3.2.5) for a visualization of the
used architecture.

Because the spatial network classifies static images, the authors pretrain it on the
ImageNet dataset [DDS+

09]. This step alone improves the accuracy achieved on
the UCF101 dataset by 20.5 percentage points from 52.3 percent when training from
scratch, suggesting that it is highly beneficial to design action recognition architectures
in a way that they can be pretrained on large static image datasets. The authors did
not pretrain the temporal network since sufficiently large datasets were not available.

The authors evaluated the length of consecutive optical flow frames L of an RGB
frame to pass into the flow network. They noticed that L = 5 and L = 10 flow frames
lead to similar performance, with L = 10 being slightly better. Thus, they decided to
set L = 10. Additionally, they found that subtracting the mean flow image from every
flow frame significantly improved the overall accuracy. They argue that this is due to
the fact that such a subtraction reduces the camera motion, similar to the homography
approach by [WS13] (see (Sec. 3.2.1.3)).

To train their model, the authors utilized multi task learning. They combined two
datasets for training, UCF101 and HMDB51 [KJG+

11], by changing the architecture so
that there are two final softmax layers, one which outputs the prediction for UCF101

and one which outputs the prediction for HMDB51. The authors found that training
in such a way has a regularisation aspect, reducing the risk of overfitting on any of
the two datasets. For computing optical flow, they use the algorithm provided by the
OpenCV library [Bra00].

The authors also evaluated their approach against the Improved Dense Trajectories
approach by [WS13] (see (Sec. 3.2.1.3)). On the UCF101 dataset, the Two-Stream
network outperformed IDT by 2.1 percentage points (85.9 percent versus 88.0 percent).
They argue that this is the case because the Two-Stream network can generalise the
HoG, HoF and MBH descriptors used in IDT using its convolutional layers.

3.2.2.2 Quo Vadis, Action recognition?

Recently, [CZ17] published a video dataset called Kinetics, which claims to be big
enough to be used for pretraining video processing neural networks, similar to how
ImageNet [DDS+

09] is used for pretraining static image processing pipelines. To

66 related work

Figure 3.2.6: The five architecture types compared in [CZ17]. e) is a novel approach proposed
by the authors, while c) is the Two-Stream approach proposed by [SZ14]. Image
taken from [CZ17].

inspect how much impact such pretraining in the domain of video has the authors
reimplemented 5 popular action recognition architecture types.

First, an architecture where each frame of a video is fed through a 2D convolutional
network, whose outputs get aggregated over time using a LSTM layer [HS97]. Sec-
ond, the authors implement a model which uses 3D convolutional layer to process
k frames of a video simultaneously. The idea is that such a model would not need
additional temporal components as the 3D layers already capture temporal informa-
tion. The architecture is based on [TBF+

15], however, the authors add additional
batch normalization to allow for an accurate comparison to other architectures who
use batch normalization. Third, the authors took the Two-Stream architecture by
[SZ14]. Fourth, an extension to the Two-Stream architecture by [FPZ16] is added. The
extension exchanges the fusion stage of the traditional Two-Stream network with 3D
convolutional layers. Also, this approach achieved state-of-the-art results on both
UCF101 as well as HMDB51. Lastly, the authors propose a novel architecture based on
both the Two-Stream architecture as well as the 3D convolutional network. They use
two 3D convolutional networks to extract spatial and temporal classifications and then
fuse them together, similar to [SZ14]. They utilize a novel approach for pretraining
3D networks by inflating the parameters to the third dimension. First, they pretrain
two 2D networks on ImageNet. Then, they inflate the convolutional layers filter sizes
from N×N by repeating each filter N times and dividing all filters by N. Thus, they
change the dimensionality from N×N to N×N×N for each filter. They claim that
this produces identical output to the 2D network. An overview over all 5 architectures
is provided in (Fig. 3.2.6).

3.2 video-based human action recognition 67

For evaluation, the authors pretrained the models on ImageNet and then fine-tuned
them on UCF101, HMDB51 as well as Kinetics individually. In general, they noticed
that the Two-Stream approaches outperform the other approaches on all datasets. The
authors argue that this is due to the flow used since the flow network contributes more
to the overall accuracy when compared to the spatial network. Also, they observe that
all architectures achieve higher accuracies when pretrained using Kinetics, suggesting
that the dataset is suitable for pretraining action recognition models in general.

Moreover, the architecture proposed by the authors achieves state-of-the-art accu-
racies on both UCF101 (98 percent) as well as HMDB51 (80.7 percent) when first
pretrained on ImageNet, followed by additional pretraining on Kinetics. The previous
state-of-the-art approach by [FPW16] achieved 94.5 and 70.3 percent, respectively. The
improvement in accuracy over [SZ14] is thus 10 percentage points on UCF101 and
21.3 percentage points on HMDB51. Analogously, the performance improvement over
[WS13] is 11.6 percentage points on UCF101 and 19 percentage points on HMDB51.
Overall, the authors argue that using Kinetics for pretraining and transfer learning is a
feasible approach to achieve similar transfer learning capabilities for video clips as
with ImageNet and static images.

3.2.3 HAR using pose information

3.2.3.1 Towards understanding action recognition

In [JGZ+
13], the authors evaluate the effect of different parts of a state-of-the-art action

recognition pipeline [WKSL13] in order to gain a deeper understanding of the problem
(see (Sec. 3.2.1.2) for a detailed explanation of the algorithm).

In order to evaluate the impact of different parts of an action recognition pipeline
they needed a fully annotated dataset. They took a subset of the HMDB dataset
[KJG+

11], which they argue is a challenging dataset, and additionally annotated pose
and created binary human segmentation maps, which they refer to as Puppet masks
(see (Sec. 5.1.3) for more information on the dataset).

In addition to the annotated poses and Puppet masks, they computed optical flow
on consecutive frames for each video clip as well as annotate a rectangular bounding
box around the subject. By substituting ground truth pose, optical flow and bounding
boxes into the pipeline of [WKSL13] the authors studied how much these individual
features contribute to classification accuracy.

To establish a baseline, they extract features using [WKSL13] for each video clip
and then train a Support Vector Machine for action classification. This resulted in
an overall accuracy of 56.6 percent. Afterwards, they evaluated different ways to

68 related work

Figure 3.2.7: Three masked optical flow variations used in [JGZ+
13]. Left: The estimated

optical flow of [WKSL13] masked using the ground truth Puppet mask annotation.
Middle: Optical flow computed only on the masked subject. Right: Combination
of both. Notice the sharp edges between the subject and the surrounding flow.
Image taken from [JGZ+

13].

substitute the ground truth optical flow into the algorithm. The highest accuracy gains
over the baseline (11 percentage points) were achieved by using the ground truth flow
computed on the masked subject in combination with using the optical flow from
around the Puppet mask borders. See (Fig. 3.2.7) for a visualization. The authors
argue that is most likely due to the fact that the separation between the background
flow and subject flow is more distinct, resulting in a sharp motion boundary.

Next, the authors investigate the impact of masking the subject in the RGB image.
They use two types of masking. First, they use a bounding box around the subject.
Second, they utilize the Puppet mask for masking. When applying the masking in such
a way that the image is masked before computing the features (as opposed to densely
computing features and then masking afterwards) they find that both bounding box
masking and puppet flow masking improve significantly upon the baseline with 5.6
and 8.0 percentage points respectively. They argue that the Puppet mask likely leads
to a better accuracy because the optical flow algorithm is easier to compute on the
subjects boundary. In addition, they also utilize a state-of-the-art person detector
from [BMBM10] to compute the bounding box but find that the computed bounding
box is not accurate enough to improve significantly upon the baseline. This suggests
that future progress in person detection algorithm could improve upon current action
recognition algorithms.

Afterwards, the impact of using pose as a feature was evaluated. The authors
generate two types of pose related features. First, they use the joint positions over time
as trajectories. Second, they compute additional features related to pose. This includes
calculating the distances and relative angles between all joint pairs. In addition, they
iterate every triplet of joints and calculate the inner angle spanned by two relative
vectors anchored at the third joint. See (Fig. 3.2.8) for a visualization of this procedure.
Besides this, they encode temporal information by computing the change in the

3.2 video-based human action recognition 69

Figure 3.2.8: Visualization of computing the inner angle for each joint triplet. The vectors u

and v are calculated from the first joint of each triplet to the other two. Then, the
angle between these vectors is computed. Image taken from [JGZ+

13].

previously mentioned values for consecutive frames. They find that the accuracy
improves by 19 percentage points over the baseline, suggesting that pose information
is by far the most discriminative feature to use for action recognition [JGZ+

13]. Also,
adding the image features to the pose features does not significantly improve upon the
accuracy. The authors thus argue that, once pose features are used, the image feature
contribution is negligible. Additionally, they evaluate the use of estimated poses using
the approach presented by [YR11] (see (Sec. 3.1.1.2) for a detailed explanation). They
find that, while the estimated pose is of low quality compared to the ground truth, this
approach still outperforms the baseline approach, suggesting that even low quality
pose information is highly relevant as a feature for action recognition.

3.2.3.2 Pose-CNN

After the findings of [JGZ+
13] discussed previously, [CLS15] build on their work by

proposing a new action descriptor extracted using a Convolutional Neural network.
Specifically, they use a Two-Stream network approach similar to [SZ14] (see (Sec.
3.2.2.1)) where the network is split into two parallel parts. The first part processes
the individual RGB frames, resulting in an appearance feature vector. The second
part processes flow images and outputs another feature vector. These two vectors are
then concatenated, which results in the final feature vector for the entire video clip.
Each part consists of 5 convolutional layers, followed by 3 fully-connected layers. The
RGB part is pretrained using the ImageNet dataset [DDS+

09] while the flow part is
pretrained using the UCF101 dataset [SZS12]. Once pretrained, the last fully-connected
layer of both parts is removed, resulting in a output size of the previous layer of 4096,
which they use as the extracted feature. See (Fig. 3.2.9) for a network visualization.

The authors compute optical flow using [BBPW04] for consecutive frames in each
video clip beforehand. They also scale the x and y flow values to the interval [0, 255].

70 related work

Figure 3.2.9: Visualization of the network architecture used to extract the video descriptor in
[CLS15]. In blue: The part of the Two-Stream network which extracts the visual
feature vector vapp. In red: The flow feature extraction network part. Image
taken from [CLS15].

Then, they concatenate these two flow maps and add a third map with the flow
magnitude values, resulting in a 3 channel flow image. They also preestimate the
joint positions using the approach by [YR11]. Additionally, they use a dynamic
programming approach by [CMAS14] to refine the estimated pose by incorporating
flow information as well as temporal information from previous and following poses.
Afterwards, using the precomputed joint positions, they extract subimages around the
right hand, left hand, upper body, full body and full image from the RGB frames as
well as from the flow images.

After passing all subimages through the network, the resulting feature vectors
f
p
t for time step t and body part p are aggregated by first computing minimum

and maximum values mi,Mi for each descriptor dimension i. Then, the minimum
values for each dimension are concatenated, followed by another concatenation of the
maximum values. The authors refer to this vector as the static video descriptor since
it is computed per frame without taking future or past frames into account. They
compute another descriptor, called the dynamic video descriptor, where the original
feature descriptors fpt get subtracted by fp(t−4), thus encoding temporal information.
The aggregation of minimum and maximum values following that is identical to the
aggregation for the static video descriptor. Finally, both descriptors are normalized
and again concatenated, yielding the final video descriptor. The resulting feature

3.2 video-based human action recognition 71

vector is then used as input for a linear Support Vector Machine, used for action
classification. See (Fig. 3.2.9) for a visualization.

The authors compare their results to the descriptor presented in (Sec. 3.2.3.1)
(from now on referred to as HLPF for High Level Pose Features) as well as to the
Improved Dense Trajectories (IDT) descriptor presented in (Sec. 3.2.1.3), which was
the state-of-the-art approach at that time.

When training on the JHMDB dataset, the authors find that their approach does
not outperform HLPF when using ground truth pose annotations (74.6 and 77.8
percent accuracy respectively). However, when using estimated pose, their approach
significantly outperforms HLPF by almost 35 percentage points (61.1 as opposed to
25.3). While the authors give no explanation for why this might be the case, one
possibility would be that the conclusion of [JGZ+

13] that visual features and flow do
not significantly improve upon accuracy when also utilizing pose might not hold in
all situations. For example, consider two actions like military salute and talking on the
phone, which have similar poses. When also considering image features, the distinction
between an empty hand (military salute) and a hand containing an object (talking on the
phone) can aid in the decision process. Also, since the authors use a different approach
for estimating pose as opposed to [JGZ+

13] and they do not evaluate the accuracy of
the pose estimator individually it might be the case that the pose information itself is
not of sufficient quality for the pose features computed by HLPF to be discriminative
enough.

Interestingly, the authors find that, while their approach does not outperform IDT, a
combination of their descriptor with IDT significantly outperforms IDT on its own. The
authors argue that, because IDT uses a larger time window for feature aggregation,
actions like kick ball achieve higher accuracy while on actions like shoot gun and
waving the image features extracted by their method provide more information and
thus higher accuracy. A combination thus improves the accuracy in both scenarios
simultaneously.

3.2.3.3 PoTion

Building on the work of [SZ14] (see (Sec. 3.2.2.1)), [CWRS18] propose a complementary
pose-based feature called Pose motion (PoTion). The idea is to track joint positions over
time and displaying them in a single frame using a color gradient. The authors argue
that such a compact representation can be used in combination to recent Two-Stream
approaches to achieve state-of-the-art performance. See (Fig. 3.2.10) for a visualization
of this approach.

72 related work

Figure 3.2.10: The approach presented in [CWRS18] first estimates the joint positions for each
frame of a video. Then, depending on the frame, the position is colored according
to a gradient from, for example, red to green. By aggregating all frames in to a
single image the path the joint moved in the frame becomes visible. Image taken
from [CWRS18].

First, the authors compute joint positions for each frame of a clip using a pose
estimator proposed in [CSWS17]. Then, the authors define C colors to encode the
movement for each joint. Using a gradient between these colors, the authors color each
joint position based on the frame position in the video. For example, consider C = 2

and let these two colors be red and green. Then, the joints in the first frame would
be colored red. Analogously, the joints in the last frame would be colored green. In
between, the authors define a function for interpolating between the different colors.
Notice that the color is solely dependent on the frame position t. See (Fig. 3.2.11) for a
visualization of these functions. In their evaluation, the authors find that, initially, the
accuracy on the datasets increases with the number of colors used. They find that this
is the case until C = 6, where the accuracy stops increasing. Thus, the authors choose
C = 4 in order to get both a high accuracy and remain a compact representation.

3.2 video-based human action recognition 73

Figure 3.2.11: Example of the color interpolation for two and three different colors. On
the bottom, the resulting color for each frame t is shown. Image taken from
[CWRS18].

Afterwards, the authors aggregate the colorized frames for each joint into a single
RGB image. They evaluate different aggregation techniques. First, they compute the
normalized sum Uj for each joint j by summing all colorized frames and dividing by
the maximum pixel value over all pixels. The authors notice that, if a joint stays at
any position for a period of time, that the intensity increases strongly at this particular
position. Thus, they also compute an intensity image Ij =

∑
cUj(c) by summing all

color channels for all pixels in Uj. Then, they compute an additional representation
Nj =

UJ
ε+Ij

, which does not contain intensity information. In their evaluation, the
authors find they achieve the highest accuracy by using all three representations.

For evaluation, the authors also propose a shallow CNN for classification using
only the precomputed representations discussed earlier. The network is made up of 6
convolutional layers, followed by a single full-connected layer. However, the authors
find that this shallow classification network alone does not achieve high accuracies
compared to the previous work. On the JHMDB dataset, the authors achieve 57.0
percent accuracy (as compared to 61.1 percent achieved by [CLS15] (see (Sec. 3.2.3.2)))
and on HMDB, the authors achieve 43.7 percent accuracy (as compared to 59.4 and
61.7 percent by [SZ14] (see (Sec. 3.2.2.1)) and [WS13] (Sec. 3.2.1.3) respectively).

The authors also evaluate the effect of adding their representation to other previous
approaches and find that adding it to the previous state-of-the-art approach by [CZ17]
(see (Sec. 3.2.2.2)) they were able to improve the accuracy slightly by 0.5 (87.9 percent
as opposed to 87.4 percent) percentage points using estimated poses on the JHMDB
dataset. When using ground truth annotation for the joint positions, the authors
observe an improvement of 3 percentage points to 90.4 percent upon [CZ17], indicating

74 related work

that their representation is complementary to the Two-Stream approach and that it is
worthwhile to improve upon the pose estimation component.

3.2.3.4 Three-Stream Network

Inspired by the success of the Two-Stream architecture (see (Sec. 3.2.2.1)), [KY18]
expanded the idea to a Three-Stream approach, using pose information as the third
stream.

First, they estimate the poses for each frame using the same pose estimator by
[CSWS17] that [CWRS18] use. The authors argue, however, that missing joints need
to be interpolated because this leads to higher accuracy on the benchmark datasets.
However, they do not provide evidence in form of a direct comparison of accuracy
with and without interpolation. They propose two different interpolation strategies,
referred to as temporal interpolation and spatial interpolation. Temporal interpolation is
used whenever a joint is not visible for a small number of frames. Let fl be the frame
where the joint was last visible. This frame is then followed by n frames, where it is
not visible, followed by fk, where it becomes visible again. Then, the authors linearly
interpolate the position of the missing joint for each frame fl+1, . . . , fl+n using the
positions in fl and fk. They do, however, not specify what constitutes as a small number
of frames, i.e., how small n has to be in order for this approach to lead to good results.
Spatial interpolation is used for long-term occlusion, i.e., for large n. The authors argue
that this is necessary since temporal interpolation leads to worse results the bigger n
gets. Again, they do not specify for which value of n spatial interpolation becomes
necessary. For spatial interpolation, they divide the joints into 5 groups, which can be
seen in (Fig. 3.2.12). The groups are iterated, starting with the group the missing
joint is in. If the other joints in a group are present, they vote on the position of the
missing joints based on a statistical model of relative joint positions computed on
training data beforehand. The average vote is then assumed to be the missing joints
position. The authors argue that this leads to good results since the position of joints
is highly correlated for certain joints. As an example, they mention the correlation of
head and neck positions. This approach and reasoning is similar to [YR11] (see (Sec.
3.1.1.2)), where the relative orientation between joints was used as a feature for action
recognition.

Once the joint positions are estimated for each frame, the authors order them in a
way so that the neighbourhood relationship between joints is kept. They argue that
this leads to higher accuracy since the relationship of the joints is a useful feature, but
they do not compare it to other approaches for joint ordering. The ordering process
is visualized in (Fig. 3.2.13). By traversing the tree in such a way, some nodes are

3.2 video-based human action recognition 75

Figure 3.2.12: The authors divide the joints into 5 groups in order to estimate relative positions
of joints to each other. Image taken from [KY18].

visited multiple times and thus present multiple times in the pose tensor. That way, the
authors argue, neighbourhood relationships are expressed more directly in comparison
to simply starting at joint 1 and concatenating the x and y positions. The pose tensor
then contains the x and y information for each frame in a row. The authors process
the video clips in chunks, so that the pose tensor always has identical dimensions.
Also, in the second and third tensor dimension they compute the first and second
order derivatives of the joint position coordinates. Finally, the joint positions Pi are
normalized with regards to the middle point between neck and belly joint Pmiddle and
with regards to the torso length d using the following two formulas:

Pnormi =
Pi
d

, Preli = Pnormi − Pmiddle. (3.2.6)

The authors propose a shallow CNN for classification, similar to the one proposed
by [CWRS18] (see (Sec. 3.2.3.3)). The network is made up of two convolutional layers,
followed by a max pooling layer and a fully-connected layer. Finally, a layer with the
softmax activation function is used for classification. The other layers all utilize the
ReLU activation function. Since the network is so small, the authors do not pretrain
it. For the Two-Stream architecture, they use [WXW+

16], which is a Two-Stream
network achieving high accuracy on the UCF101 and HMDB datasets. They fuse their
pose network into the existing Two-Stream approach by equally weighting all three
components.

First, the authors evaluate each component of the Three-Stream architecture in-
dependently and find that the pose component (using estimated pose) and spatial

76 related work

Figure 3.2.13: Visualization of the ordering process. From left to right: a) The original pose
skeleton. The belly joint is highlighted and used as the root node. b) A tree is
computed based on the previously chosen root node. c) Traversion algorithm
example. d) The final pose vector. Each row contains x and y coordinates of the
persons joint locations of one frame. Image taken from [KY18].

component perform worse than the components using optical flow and ground truth
pose components, suggesting the importance of motion information for action recogni-
tion. When combining the different components, the Three-Stream network performs
the best with 78.81 percent accuracy on the JHMDB dataset using estimated pose.
When substituting ground truth pose, the accuracy further increases to 83.05 percent.

When comparing the Three-Stream network to previously discussed methods, it
performs slightly worse (0.7 percentage points) on the JHMDB dataset, using estimated
pose, when compared to [CLS15] (see (Sec. 3.2.3.2)). Even when utilizing ground truth
pose information, the authors are not able to outperform [CWRS18], who achieved
87.9 percent accuracy on JHMDB using estimated pose. Notice that the pose estimator
was identical in both cases, suggesting that either the architecture proposed by [KY18]
is not deep enough or that estimating missing joint positions by linear interpolation
and statistical modeling leads to worse results.

4
M E T H O D

4.1 deep har

In the previous chapter, approaches for estimating pose from still images and pre-
dicting actions from video were presented. Although some approaches for HAR
incorporate pose information as features in their decision process, estimating the pose
and predicting actions were not used in conjunction during the training process. For
example, [CWRS18] (Sec. 3.2.3.3) estimated the human pose using a dedicated model,
before using the information to train their model.

This chapter presents the approach by [LPT18], who argue that training the pose
estimator and action recognition model jointly may help in the learning process. In
Section 4.1.2, the authors present a novel way to infer joint coordinates from a heatmap,
which allows the model to be fully differentiable and thus able to be trained in an
end-to-end approach. Next, the model architecture the authors used is presented in
Section 4.1.3. For training the model, an approach called intermediate supervision is
used, which is presented in Section 4.1.4. Lastly, this thesis presents limitations of the
authors work in Section 4.1.5, in addition to proposed experiments to overcome some
of those limitations.

4.1.1 Approach

In [LPT18], the authors propose a network, which estimates pose and then uses
the estimation, in combination with low level image features, to predict the action
performed by a subject in a video clip. The network is completely differentiable, which
allows the authors to pretrain certain parts, like the post estimator, and then fine-tune
the network in an end-to-end fashion. The authors claim that the combination of
a pose estimator and activity recognition is novel as pose estimators were not fully
differentiable. Many pose estimators output a heatmap, like the Stacked Hourglass
network [NYD16] (Sec. 3.1.2.3), for each joint position. Such a heatmap requires the
use of the argmax function in a postprocessing step to compute the x and y image
coordinates of the highest peak of the heatmap. Thus, the authors propose the Soft-

77

78 method

argmax function as an differentiable alternative to the regular argmax function (Sec.
4.1.2).

In addition, the authors propose methods to use both 3D and 2D pose datasets
while training their network. However, these are not discussed here since this thesis
focuses on 2D pose information.

4.1.2 Soft-argmax

The authors propose an approach for computing the x and y pixel coordinates from
a joint heatmap using a method called Soft-argmax [LTP17]. An example of a joint
heatmap can be seen in (Fig. 4.1.1). After computing the Softmax Φ(h) of a joint
heatmap h, the x and y pixel coordinates of the highest image value need to be re-
gressed. This coordinate represents the highest peak in the probability map computed
using the softmax. This is achieved by computing the expectation in x and y direction
on the probability map. In the implementation, the authors first define a fixed weight
matrix for a convolutional layer in the following way:

Figure 4.1.1: The approach presented by the authors to regress x and y coordinates from
heatmaps. First, the authors in [LPT18] apply a Softmax. Then, they compute the
expectation in both x and y direction using a 2D ramp function. Summation of the
result leads to the regressed coordinates. Image taken from [LPT18].

Wi,j,x =
i

W
, Wi,j,y =

j

H
, (4.1.1)

where H,W refer to the width and height of the heatmap and i, j are the coordinates
for each element in the heatmap. This leads to ramp functions for the horizontal and
vertical dimensions, which are visualized in (Fig. 4.1.1). By convolving a part heatmap
with both Wx and Wy the expectations are computed, leading to the regressed
coordinate (ψx(h),ψy(h)) = (xexp,yexp) with xexp,yexp ∈ [0, 1] (see (Eq. 4.1.2)). The

4.1 deep har 79

regressed coordinates need to be multiplied with the width and height to obtain
integer coordinates.

ψd(h) =

W∑
i=1

H∑
j=1

Wi,j,dΦ(hi,j) (4.1.2)

The authors further prove that the Soft-argmax function is differentiable by providing
the derivative of ψd(h):

∂ψd(hi,j)

∂hi,j
= Wi,j,d

exp(hi,j)(
∑W
k=1

∑H
l=1 exp(hk,l − exp(hi,j))

(
∑W
k=1

∑H
l=1 exp(hk,l))2

(4.1.3)

Further, the authors argue that such a method for regressing x and y coordinates
is more accurate and it requires fewer model weights than directly regressing them
using, for example, a fully-connected layer [LTP17]. As proof, they compare their
methods to other state-of-the-art methods that directly regress the coordinates. The
authors observe that their approach consistently outperform approaches regression
approaches, such as [CAFM16] and [SSLW17], on the MPII benchmark. Specifically,
when comparing to the previously best approach for regressing the pose by [SSLW17],
the authors observe an overall increase in PCKh accuracy of 5.2 percentage points
from 86.4 to 91.2 percent.

4.1.3 Architecture

The architecture used by the authors can be divided into several blocks. First, a
feature extraction block, referred to as Stem, is used to extract visual features from
each frame of the input video separately. These features are used to predict the joint
heatmaps in the pose estimation block. The heatmaps are used to compute the x
and y coordinates of each joint position using the Soft-argmax function. Second, the
estimated poses are used to predict the action performed in the video clip. Third, the
computed image features from the Stem block are similarly used for a separate action
prediction. Both predictions are combined to form the final action prediction of the
network. Throughout the network, the authors use the ReLU activation function if not
otherwise stated. See (Fig. 4.1.2) for a visualization of the network and its separate
components.

80 method

Figure 4.1.2: High level visualization of the network used by [LPT18]. The images features and
poses are computed frame-by-frame. The output is then passed to the appearance
and pose recognition subnetworks, where they are jointly processed to predict
the action of the video clip. Image taken from [LPT18].

4.1.3.1 Feature extraction (Stem)

The authors base their feature extraction network on the Inception v4 network proposed
by [SIVA17]. The last convolutional layer of the Inception v4 network was replaced
by a depthwise separable convolutional layer, which will be explained in the next section.
The authors do not use pretrained weights for the Stem feature extractor, which is a
method often used to reduce training time of the network. A visualization of the Stem
network is shown in (Fig. 4.1.4a).

4.1.3.2 Depthwise separable convolution

A depthwise separable convolution [Sif14] [Cho17] is used to reduce the number of
parameters and matrix multiplications needed for convolutional layers with many
channels. Consider an input matrix to a convolutional layer of size n×n× p, where p
indicates the number of channels. Without loss of generality, a square input as well
as a square kernel size is assumed. If a regular convolutional layer is used, and the

4.1 deep har 81

desired number of output channels is given by m with m� p, then one approach is
to use m kernels in the convolutional layer of size a× a× p. These result in a2 ∗ p ∗m
parameters of the convolutional layer that need to be learned. In a depthwise separable
convolutional layer, two convolutional layers are used sequentially, referred to as the
depthwise convolutional layer and pointwise convolutional layer. The depthwise convolutional
layer consists of p filters of size a× a× 1. Each filter processes one channel of the
input matrix. The resulting feature map is fed through the pointwise convolutional layer,
which consists of m filters of size 1× 1× p. See (Fig. 4.1.3) for a visualization. Using a
depthwise separable convolutional layer results in

p ·m+ p · a2 ⇔ p · (m+ a2)

learnable parameters. It is then easy to see that

p · (m+ a2)� p ·m · a2.

Additionally, the number of matrix multiplications needed to compute the convolution
is reduced significantly.

Figure 4.1.3: Visualization of a depthwise separable convolutional layer. Left: The depthwise
layer consists of p kernels of size a× a× 1. Each kernel processes one channel of
the input image. Right: The pointwise convolutional layer takes the output of the
depthwise layer as input and consists of m filters of size 1× 1× p to compute the
desired output feature map. Image taken from [Wan18].

4.1.3.3 Pose estimation

For the pose estimation network, the authors build upon the work by [NYD16], pre-
sented in (Sec. 3.1.2.3). Their pose estimator is constructed from multiple prediction
blocks, which are visualized in (Fig. 4.1.4b). Similar to the stacked hourglass architec-
ture, the prediction block computes features on different scales of the input by utilizing
Max-pooling and Upsampling layers. In particular, the authors use separable residual
blocks in place of regular convolutions to extract these scale-dependant features.

82 method

(a) Stem network. (b) Prediction block network

Figure 4.1.4: Left: The feature extraction network used in [LPT18], also referred to as Stem.
Each RGB frame of the video is resized to 256× 256× 3. SR refers to a depthwise
separable convolution. C refers to a regular convolutional layer. The extracted
features are of size 32× 32× 576. Right: One prediction block used in the pose
estimation network in [LPT18]. Notice that the input and output dimensionality
are identical, which allows the authors to connect multiple blocks together. C and
SC refer to regular convolutional layers and depthwise separable convolutional
layers, respectively. SR refers to a Separable residual block. The estimated pose of
each prediction block can then also be used for intermediate supervision (Sec.
4.1.4). Images taken from [LPT18] supplementary material.

4.1 deep har 83

A separable residual block is defined by the authors in their previous work [LTP17] as
a depthwise separable convolutional layer, whose input is added to the output using a
residual connection (Sec. 3.1.2.3). For the case where the number of output channels
pout is different to the number of input channels pin, the authors add a convolutional
layer with pout kernels of size 1× 1× pin to ensure that the addition of the input
with the output of the depthwise separable convolutional layer is possible.

After the extraction of features on different scales, the features are passed to a
convolutional layer with Nj +Nj ∗Nc filters of size 1 × 1 × 576. Nj refers to the
number of desired heatmaps, i.e., the number of joints that need to be detected. Nc
is defined by the authors as the number of additional heatmaps per joint heatmap,
called context heatmaps. The Soft-argmax computes the predicted joint locations on all
heatmaps and aggregates the results for each joint using (Eq. 4.1.4). There, α ∈ [0, 1]
determines how much influence the context heatmaps (h1,n, . . . ,hNc,n should have on
the prediction of the joint n ∈ [1,Nj]. SA refers to the Soft-argmax function, computing
joint position estimates from heatmaps. Additionally, (p1,n, . . . ,pi,n, . . . ,pNc,n refers
to the predicted visibility of joint n in context heatmap i, which the authors estimate
by using Max-pooling on heatmap hn, followed by a sigmoid activation function. In
[LTP17], the authors present this approach and argue that, for the final joint location
prediction, this approach leads to more accurate results, without specific evaluation of
accuracy with and without context heatmaps.

yn = α · SA(hn) + (1−α)

∑Nc
i=1 pi,n · SA(hi,n)∑Nc

i=1 pi,n
. (4.1.4)

Similar to the stacked hourglass approach by [NYD16], the prediction block is
designed in a way that the input and output dimensions are identical, which allows
the authors to connect multiple prediction blocks. When training the pose estimator
for evaluating its accuracy, the authors use 8 prediction blocks, whereas a smaller pose
estimator of 4 blocks is used when incorporating it into the human activity recognition
pipeline. The authors do not motivate their choices or evaluate the accuracy of
different number of prediction blocks, which is why we chose to evaluate the accuracy
experimentally in (Sec. 5.3.2).

4.1.3.4 Pose Model

After computing image features in the Stem network and feeding them into the pose
estimator, the authors decide to split their network into two parts for estimating the
performed action. The first path, further referred to as Pose Model, aggregates the

84 method

Figure 4.1.5: The approach presented by [LPT18] to aggregate the estimated pose for each frame
and use it to estimate the performed action. The chosen pose representation is
also referred to as a pose cube, since represents a three dimensional matrix. Notice
that the pipeline produces intermediate action recognition results, which can be
used for intermediate supervision (Sec. 4.1.4). Image taken from [LPT18].

predicted x and y coordinates of the joints for each frame of the input video into
a three-dimensional matrix representation of size a× b× z, also referred to as the
pose cube. b refers to the number of frames of the input clip, while a determines the
number of joints to detect. To ensure that the pose matrix has identical dimensionality,
regardless of the original input video length, the authors decide to subdivide the video
into chunks of 16 frames, resulting in b = 16. The last dimension contains the x and y
coordinates, respectively, resulting in z = 2 and a total dimensionality of 16× 16× 2.
Next, the pose cube is processed by a fully-convolutional neural network, which can be
seen in (Fig. 4.1.6), before being fed into a so called action prediction block. The authors
decide to use a function called MaxPlusMin pooling instead of regular Max-pooling.
This function is implemented by the authors using a Max-pooling operation with kernel
size (4× 4) in the following way:

MaxMinPooling(x) =MaxPool(x) −MaxPool(−x). (4.1.5)

However, the authors do not explain the benefit of such a pooling operation over a
regular Max-pooling layer.

The purpose of the fully-convolutional block is to extract features from the pose
matrix. A processing block called action prediction block is used to classify the action
performed, based on the features computed from either the pose or the appearance
cube.

The action prediction block is similar to the prediction block used in the pose estimator,
and follows the ideas of stacking, since the input and the output dimensions of the
action prediction block are identical. As an intermediate representation, action heatmaps

4.1 deep har 85

Figure 4.1.6: The fully-convolutional network used to process the pose cube, followed by a
single action prediction block. T refers to the number of frames, Nj is defined as the
number of joints and Nf represents the third dimension, i.e., Nf = 2 in the case
of the pose cube. In the action prediction block, the number of actions to detect
can be set using Na. Image taken from [LPT18] supplementary material.

are created, which are in turn used in training and to predict the action performed
in the video clip using the Softmax activation function for evaluation. Notice that
the output of the action prediction block is not the predicted action itself, but rather
features of the same dimensionality as the input to the block. The predicted actions
are only used for computing the loss during training and for evaluation.

86 method

4.1.3.5 Visual Model

Figure 4.1.7: The approach proposed in [LPT18] to aggregate image features for multiple
frames into a appearance cube. This cube can then be used for further processing,
similar to the pose cube. Image taken from [LPT18].

Figure 4.1.8: The Visual Model, according to the code provided as supplementary material to
[LPT18]. The architecture differs to the one presented in the paper, where the
authors claim that both Visual Model and Pose Model have identical architectures.

The authors also incorporate low level image features from the Stem block into their
action recognition approach, in addition to the estimated pose information. Thus,
they extract visual features for each frame and aggregate them in a matrix, which is
used to predict the action performed in the video clip. This matrix is referred to as
the appearance cube. The computed features fd for a frame d have the dimensionality
32× 32× 576. The authors multiply fd with each computed joint heatmap, after the
heatmaps were further processed by applying the Softmax activation function. They
do not multiply the features with the context heatmaps, but only with the Nj joint
heatmaps. The resulting features are summed over the first two dimensions, resulting

4.1 deep har 87

in a new feature of size 1× 1× 576. Then, these new features are aggregated into the
appearance cube, resulting in a cube of dimensionality 16× 16× 576. See (Fig. 4.1.7)
for a visualization of this process. The authors use a different feature extraction step
as in the Pose Model. The feature extraction consists of a single convolutional layer,
followed by a batch normalization and a Max-pooling layer. In [LPT18], the authors
claim that they use a similar architecture to the Pose Model. However, when examining
the code, published as supplementary material, we found that they actually use the
shallow model mentioned before. A visualization of the shallow feature extractor can
be seen in (Fig. 4.1.8). The action prediction block is identical to the one presented in
the Pose Model (see (Fig. 4.1.6)).

Recall that each action prediction block computes action heatmaps, which are used
in training by passing them through a Max-pooling layer, followed by applying the
Softmax activation function. For combining both the predictions based on the pose
cube and appearance cube, the authors take the output of the last action prediction
block in both network paths, add the action heatmaps and apply a Max-Pooling and
Softmax activation to form the final action classification of the video clip.

4.1.4 Intermediate supervision

One aspect of the training process is called intermediate supervision. Instead of only us-
ing the final output of the network to compute the error and start the backpropagation
algorithm, multiple intermediate results are created, each of which can then be used to
compute the error and start backpropagation. After each prediction block in the pose
estimator, a intermediate prediction is performed by applying Soft-argmax to the joint
heatmaps created by that prediction block. Similarly, in each action prediction block,
intermediate results are created by performing pooling and Softmax to the action
heatmaps, which can be seen in (Fig. 4.1.5). The authors claim that this approach
increases the accuracy of the overall network, since the network needs to be able to
predict the action as early and as accurately as possible. However, they do not provide
evidence to proof their claim.

4.1.5 Limitations

There are four limitations to the approach proposed by the authors and their evaluation
of the method.

First, the authors evaluate their model for 2D action recognition solely on the Penn
Action dataset. While they do not focus exclusively on 2D action recognition in

88 method

their paper, a comparison to state-of-the-art results on other complex datasets such
as JHMDB would be desirable. This is especially true considering that Penn Action
focuses on 15 different actions, which are predominantly from the sports domain,
while JHMDB contains 21 classes, including every day activity such as brushing hair
and climb stairs. Thus, the JHMDB dataset is a more complex dataset in terms of action
diversity. We thus argue that evaluation on the JHMDB dataset will lead to valuable
insight into the effectiveness of the authors approach outside of the domain of sports
action recognition.

Second, they argue that their approach for training the action recognition network
constitutes end-to-end learning. This would imply that the network weights are not
pretrained. However, as discussed earlier, the pose estimator is pretrained. While this
approach leads to competitive results, it is misleading to call it end-to-end training.
Later in their paper, the authors refer to their approach as fine-tuning on a pretrained
model, which is a more accurate description of the process.

Third, certain choices of hyperparameters used for configuring and training the
model are not evaluated in the original work. For example, the authors decided to
utilize context heatmaps (as discussed in (Sec. 4.1.3.3)) as well as setting the number
of prediction blocks of their pose estimator to 8. They do not provide explanations
or evaluations as to why these decisions were made and thus further analysis will
give a better insight into the differences these choices make, considering the overall
performance of the model.

Fourth, the pose estimator processes the input videos frame by frame. This means
that temporal information, which could aid in pose estimation, is not utilized for
training. As an example, [GGT+

18] adopt a frame by frame approach to video data by
incorporating 3D convolutional layer to capture temporal information. They show an
increase in accuracy when comparing predicting the pose for each frame individually,
suggesting that capturing the temporal dimension can aid in learning pose in videos.

4.2 proposed experiments

Apart from recreating some key findings of the authors and evaluating certain decisions
by the authors, we propose the following extensions to the network architecture and
learning process.

First, we propose to combine the losses of the pose estimator with the losses of the
overall action recognition pipeline in a similar manner to the intermediate supervision
approach. A combination of the loss function allows for the network to be trained
in an end-to-end fashion, as opposed to fine-tuning the network after pretraining

4.2 proposed experiments 89

certain components. This will give an insight not only into the feasibility of the
end-to-end training approach but also on the results regarding the pose estimator.
[IGG16] argue that pose estimation accuracy increases when given an action prior.
Also, in the approaches discussed earlier (Sec. 3.2.3), using pose information for action
recognition significantly increases the overall accuracy. Thus, we propose that, by
using an end-to-end learning approach, both pose estimation and action recognition
networks could benefit from each other when learned jointly.

Second, as explained before, evaluating the methods on a more complex video
dataset is desirable. Thus, in this thesis, it was decided to train and evaluate the
network on the JHMDB dataset. Even though this dataset is smaller in overall number
of images, it contains more diverse classes.

Third, the authors presented the Soft-argmax approach in [LTP17] without evalu-
ating the accuracy of the approach. Thus, this thesis quantitatively and qualitatively
evaluates the accuracy by using synthetic test images derived from the ground truth
pose positions. These experiments will give an insight into whether or not the Soft-
argmax is a suitable approach for computing the joint positions from heatmaps, when
compared to using the argmax in a postprocessing step.

5
E X P E R I M E N T S

In the previous chapter, the method for Human Activity Recognition by [LPT18]
was introduced by explaining the model architectures and the Soft-argmax function
proposed in [LTP17]. Afterwards, this thesis proposed experiments to gain a better
insight into the authors method by evaluating the model for different hyperparameters,
as well as to investigate whether end-to-end training is feasible. First, this chapter
introduces the datasets in Section 5.1, which consist of the MPII Human Pose dataset
for 2D pose estimation and the Penn Action and JHMDB datasets for Human Activity
Recognition. Second, the metrics used in the authors work, as well as the experiments
done in this thesis, are discussed in Section 5.2. Third, this chapter discusses the
experiment setups, as well as the results, in Section 5.3. The pose estimation and 2D
HAR experiments from [LPT18] are recreated first. Further experimentation towards
understanding the capabilities of the model are presented, including a qualitative
and quantitative evaluation of the Soft-argmax function, the accuracy of the authors
model achieved on the complex JHMDB dataset, as well as an approach for training
the model in an end-to-end approach, without using a pretrained pose estimator.

5.1 datasets

In the following section, three datasets are introduced. The MPII Human Pose and
Penn Action datasets are used to recreate the authors work. The JHMDB dataset,
which contains video clips with pose annotations for each frame, is used to evaluate
how the model proposed in [LPT18] adapts to a more challenging video dataset.

5.1.1 MPII Human Pose

In [APGS14], the authors present a dataset for estimating two dimensional human
pose on image data. It contains pose annotations for 40.000 persons in 25.000 images.
The annotations include 16 joint positions and an indicator of whether or not the joint
is occluded or not. The 16 joints are left / right ankle, left / right knee, left / right hip,
left / right elbow, left / right shoulder, left / right wrist, pelvis, thorax, upper neck and top
of the head. See (Fig. 5.1.1) for example images of the dataset. In addition, the body

91

92 experiments

center coordinates, as well a scale indicating the size of the person bounding box are
given by the dataset. The scale is given with regards to a 200 pixel bounding box,
meaning that the bounding box side lengths can be computed by multiplying the scale
with 200. Also, a bounding box of the head is given, which is used to compute the
PCKh metric (see (Sec. 5.2.2)). The images are extracted from YouTube videos and
they do not contain artifacts commonly found in videos, e.g., compression or blur.
Additionally, each image is assigned with an activity, totalling 401 activities. However,
these annotations are not used for Human Action Recognition since the number of
samples per activity is too low for training a model as complex as the HAR pipeline
presented in (Sec. 4.1.1).

Figure 5.1.1: Four example images from the MPII dataset [APGS14].

We follow the approaches from [LPT18] for preprocessing. First, a person bounding
box is estimated using the center body annotation from the dataset. The authors
multiply the scale given by the annotation sorig by 1.25, resulting in snew. They do
not motivate the reason for using this specific value, but it most likely was used to
enlarge the bounding box to contain more context around the person. Next, they
compute the width and height using snew · 200, since the scale parameter in the dataset
is given w.r.t. a 200× 200 pixel bounding box. In addition, the authors also alter the
center position (cx, cy) by computing (cnewx , cnewy) = (cx, cy + snew · 12). Again, the
authors do not provide a reasoning for increasing the center y position. Once the
bounding box is computed, the image is cropped to the size of the bounding box
around the newly computed center coordinate and rescaled to a size of 256× 256.
In the case where a joint annotation falls outside of the now cropped image, the
authors set the visibility of the joint to 0 and set the (x,y) coordinates of the joint to
(−1e9,−1e9).

5.1 datasets 93

Additionally, the authors introduce parameters used for image augmentation by
rotating, scaling and mirroring the image randomly. These values are sampled
from their respective sets whenever augmentation is performed. Specifically, they
introduce saug ∈ {0.7, 1, 1.3}, which gets multiplied with snew computed earlier.
This results in zooming into or out of the image by 30% when saug 6= 1. Also,
raug ∈ {−40,−35, . . . , 35, 40} is introduced to rotate the image raug degrees around
its center, possibly introducing black borders around the image. Moreover, when
augmenting, the image is horizontally mirrored with a chance of 50 percent. See (Fig.
5.1.2) for examples of different augmented images, including augmented pose.

Figure 5.1.2: From left to right: 1. Original image from the MPII dataset. 2. Original image
with the ground truth pose superimposed. 3. Image after estimating the bounding
box, cropping and rescaling. 4. Augmented image using saug = 1.3, raug = −15

degrees and flipping the image horizontally.

The dataset does not contain annotations for the test data, other than the scale and
center coordinates. To evaluate the test images, the joints need to be evaluated and
the results need to be send to the authors of the dataset at the Max Planck Institute
for Intelligent Systems for comparison to the ground truth pose. This ensures that
the test data annotations are not mistakenly or maliciously used in training. For all
datasets used in the experiments, 10 percent of the training datapoints are withheld
from training and used as validation data.

5.1.2 Penn Action

Another dataset used in [LPT18] is the Penn Action dataset [ZZD13]. It contains 2326
video clips of 15 different, resulting in 149.355 frames. The actions are mostly sports
related and they include baseball swing, clean and jerk, jumping jacks, pushup, strum guitar,
bench press, golf swing, baseball pitch, situp, tennis forehand, bowling, jump rope, pullup,
squat and tennis serve. Additionally, the authors provide annotations for 13 body joints,

94 experiments

including left and right shoulders, elbows, wrists, hips and knees and head. Some example
images can be seen in (Fig. 5.1.3).

Figure 5.1.3: Four example images from the Penn Action dataset [ZZD13].

It was decided by [LPT18] that the number of joints should be identical to the
ones presented in [APGS14] (Sec. 5.1.1). This is important, because the network
architecture is designed in a way that assumes 16 joints per video frame because the
estimated poses for each frame of a video clip are aggregated in a fixed size pose cube
representation (see (Sec. 4.1.3.4)). To achieve this, the head annotation of the Penn
Action dataset is mapped to the upper neck joint of the MPII dataset and the missing
joints were interpreted as not visible.

Additional augmentation is introduced to make the training process more robust.
Two additional augmentation methods are used. First, salt and pepper augmentation
is applied to the training images with a probability of 0.5. In this augmentation
method, each pixel is set to either black or white with probability psp = 0.02. Second,
black rectangles are placed randomly inside the image, occluding parts of the original
image. The network needs to make decisions on partially occluded images, making it
more robust, because it forces the network to utilize alternative paths on some images,
effectively making the model more general. Dropout is applied with a probability of
0.5 as well.

For some experiments, ground truth bounding boxes of the person are calculated
by taking the minimum and maximum of the x and y coordinates from the ground
truth pose and defining these as the corners of the bounding box. Additionally,
to include more context around the person, the bounding box is increased in both

5.2 evaluation metrics 95

dimensions. This was done to add more context around the subject, but also because
the Soft-argmax function is unprecise around the image borders (see (Sec. 5.3.1)).
For high uncertainty of the pose location, the Soft-argmax function is unprecise for
approximately 20 pixels around the image border (see (Fig. 3.1.8)). Thus, the amount
of context added is set to 30 pixels to make certain that the Soft-argmax function does
not wrongly estimates the pose position.

Additionally, the authors in [LPT18] decide to process the video clips in chunks
of 16 frames. This is important since the network architecture assumes a specific
dimensionality for the pose cube (see (Sec. 4.1.3.4)). These chunks are further referred
to as fragments.

5.1.3 JHMDB

Similar to [ZZD13] (Sec. 5.1.2), the JHMDB dataset [JGZ+
13] contains annotations

for the pose and the action in video clips. The JHMDB dataset contains 928 video
clips, totalling 31.838. The dataset was created by taking a subset of the HMDB action
recognition dataset [KJG+

11], which was annotated using the puppet tool [ZFB12].
This tool allows to not only annotate the pose of the person but also automatically
computes a binary segmentation map of the person, further referred to as the puppet
mask. See (Fig. 5.1.4) for a visualization of the annotation process and the puppet tool.

The clips in the HMDB dataset are taken from YouTube. The annotated subset
contains the following actions: brush hair, catch, clap, climb stair, golf, jump, kick ball,
pick, pour, pullup, push, run, shoot ball, shoot bow, shoot gun, sit, stand, swing baseball,
throw, walk and wave. Some example images of the dataset can be seen in (Fig. 5.1.5).
Notice that the actions are more diverse, in comparison to the Penn Action dataset,
specifically because it also contains non-sport activities.

The puppet tool defines 15 different joints. They are identical to the ones annotated
in the Penn Action dataset, but they additionally contain the neck and the belly. Also,
the approaches for computing ground truth bounding boxes, preprocessing and
augmenting the fragments are identical to the ones presented earlier in (Sec. 5.1.2).

5.2 evaluation metrics

In this section, the PCK and PCKh metrics are presented, which are used to evaluate
the accuracy of the predicted pose in comparison to the ground truth annotation.
Also, two approaches for assessing the accuracy in video clips, Single- and Multi-Clip
accuracy, are presented.

96 experiments

Figure 5.1.4: Example of an image, annotated using the puppet flow. The dots indicate the joint
positions, while the transparent human figure prior automatically adjusts, yielding
the human segmentation map. Notice that, by using the figure, even joints that
are not visible (like the ankles) still get anatomically plausible annotations. Image
taken from [Max].

5.2.1 PCK

The Probability of Correct Keypoints (PCK) metric [FMJZ08] is often used in the literature
to evaluate an estimated pose when a human bounding box is given. See (Sec. 3.1.1.2)
for a motivation of this metric. Let kest = (xest,yest) be a predicted joint location and
let kgt = (xgt,ygt) be the corresponding ground truth joint location. First, the absolute
distance d = ‖kest − kgt‖ is computed. Second, the maximum of the bounding box
side lengths lmax = max(bboxheight,bboxwidth) is computed and multiplied by a
hyperparameter α, resulting in lcomp = lmax · α. Then, an estimated joint location
is determined to be estimated correctly if d < lcomp. The hyperparameter α is a
threshold, which determines how close the predicted joint location has to be to the
ground truth joint location in order to be classified as correctly estimated. Typical
values for α found in the literature are 0.2 and 0.1. This metric is used primarily for
evaluating the pose on the JHMDB dataset since the dataset does not provide head
bounding box annotations, which are necessary for using the PCKh metric.

5.2 evaluation metrics 97

Figure 5.1.5: Four example images from the JHMDB dataset [JGZ+
13].

To compensate for the lack of head annotation, this thesis proposes to use an
additional metric for evaluating predicted poses, referred to as PCKu. Instead of using
the bounding box side lengths to determine lcomp, the distance between the neck joint
position and pelvis joint position is used. While this is not as invariant to different
actions and poses as PCKh, it is more robust in comparison to traditional PCK. This
metric is computed in addition to PCK for datasets which do not provide a head
bounding box annotation.

5.2.2 PCKh

One downside of using the PCK metric based on person bounding box side lengths is
that poses where one or more limbs are stretched out far from the subjects torso the
bounding box is not an accurate representation of the body size. Thus, the threshold
lcomp highly depends on the pose of the person, which can lead to a higher threshold,
depending on the action. Consider the difference in subject bounding box size between
a person sitting on a chair versus a person jumping in the air while spreading their
arms.

In [APGS14], the authors propose the head bounding box diameter, assuming
that this bounding box does not change for different poses. See (Sec. 3.1.2.2) for a

98 experiments

motivation of the metric. Similar to PCK, PCKh also defines a threshold parameter α.
Typical values for α found in the literature are 0.5 and 0.2.

5.2.3 Single- and Multi-Clip Accuracy

To evaluate the accuracy of the HAR pipeline, the authors in [LPT18] use two different
approaches. First, they take the video to evaluate and extract a 16 frame long clip
from the middle of the video. Second, they classify the action of that 16 frame clip.
Since the output of the network is a Softmax activation, they use the argmax function
to determine the action with the highest score. This is referred to further as Single-Clip
accuracy.

Additionally, the authors first extract multiple 16 frame long clips from the video
by starting at frame 0 and then incrementing the starting position by 8 for as long
as there are at least 16 frames left in the clip. They do not motivate their choice of
incrementing the starting position by 8. Second, for each clip, they predict the action.
Third, they determine the class most often predicted for the set of clips, which is then
used to compare to the ground truth class of the video. For example, if 4 clips are
extracted from the video using the method presented above, and 3 of these clips are
classified as shooting bow, then shooting bow is used for comparison to the ground truth
action of the video. The accuracy of this method is referred to as Multi-Clip accuracy.

5.3 experimental results

This section presents the results of the experiments conducted in this thesis. First,
an evaluation of the accuracy of the Soft-argmax function is presented. Second, this
thesis replicates the work of [LPT18] by recreating the pose estimation and 2D HAR
experiments. Third, the pose estimator from [LPT18] is evaluated against the JHMDB
dataset. Fourth, the HAR model is trained and evaluated using data from the JHMDB
dataset. Fifth, we present the results of training the HAR model in an end-to-end
approach without pretraining the pose estimator weights.

5.3.1 Accuracy of Soft-argmax function

In [LTP17], the authors propose a method for finding pixel coordinates of the maximum
pixel value in an image, which they refer to as Soft-argmax (see (Sec. 4.1.2)). They
argue that this method can be used instead of the argmax function, which is often
used for the same purpose. This suggests that the Soft-argmax should be as accurate

5.3 experimental results 99

in determining the maximum values as the argmax function. To investigate this
assumption, this thesis performs two experiments.

In the first experiment, we analyze the accuracy quantitatively on data from the
MPII dataset. For each joint position (i, j) of a pose, a synthetic joint heatmap is
generated by placing a two-dimensional gaussian with mean (i, j) and covariance c.
The Soft-argmax is applied to the heatmap, which results in estimates (xest,yest) of
the maximum. The distance from (xest,yest) to (i, j) is computed and an accuracy
meassurement is proposed by the following formula:

f((xest,yest), (i, j),d) =

1 if |xest − i| 6 d and |yest − j| 6 d

0 otherwise
(5.3.1)

In (Eq. 5.3.1), d refers to a threshold, which is necessary because of the way
(xest,yest) is computed. The output of the Soft-argmax function are fractions of width
and height with (xfrac,yfrac) ∈ [0, 1]. These fractions need to be multiplied by the
width and height and they need to be rounded to the nearest integer afterwards to get
valid image coordinates. This rounding process might introduce rounding errors. This
thesis evaluates the accuracy of the Soft-argmax for different values of d on a subset
of 1000 random images from the MPII dataset. Moreover, different covariance values
c ∈ {1, 2, 5, 10, 20, 50} are used to simulate different uncertainties in the heatmap. The
results can be seen in (Tab. 5.3.1).

As can be seen in (Tab. 5.3.1), the Soft-argmax function is accurate in practice for a
2 pixel threshold. For higher values of c, the Soft-argmax becomes less accurate. This
is to be expected, given that the heatmap is less certain of the true pixel coordinate.
Notice that the accuracies are significantly lower for a threshold of d = 1. This contrast
between d = 1 and d = 2 is most likely due to the rounding errors discussed earlier.

In the second experiment, a synthetic image of size 255× 255 pixels is created, since
this is the size of the input images to the network after preprocessing. For each (i, j)
position of the image, a two-dimensional gaussian with mean (i, j) and covariance
c is placed. Next, (xest,yest) are computed using the Soft-argmax function. Then,
the estimations are compared to the ground truth mean value of the gaussian, i.e.,
(i, j), using the accuracy function defined in (Eq. 5.3.1) with d = 2 to allow for a
small rounding error. This procedure is repeated for each (i, j) coordinate of the
image. See (Fig. 5.3.1) for a visualization of the results, where violett pixels indicate a
wrong prediction and yellow pixels indicate a correct prediction. As can be seen in
the visualization, the Soft-argmax function accurately regresses the gaussian mean
values for small covariances c for most of the image coordinates. As the covariance

100 experiments

threshold c = 1 c = 2 c = 5 c = 10 c = 20 c = 50

1 93.137 93.123 93.069 92.988 92.811 92.201

2 99.952 99.931 99.843 99.741 99.469 98.598

3 99.959 99.945 99.891 99.809 99.639 99.054

4 99.959 99.952 99.911 99.829 99.700 99.197

Table 5.3.1: Mean average accuracy (in percent) of Soft-argmax when detecting ground truth
coordinates from synthetic joint heatmaps. Threshold refers to the amount of pixels
the estimate is allowed to deviate from the ground truth annotation. c refers to
the covariance used for creating the synthetic heatmaps. The large discrepancy
between a threshold of 1 and a threshold of 2 is most likely due to rounding errors.

increases, the accuracy decreases, especially around the borders of the image. While
this behaviour indicates that the Soft-argmax function is less accurate around the
borders of the image, this does not negatively effect the accuracy when estimating
actual pose coordinates, according to the quantitative experiment.

Figure 5.3.1: Evaluation of the accuracy of the Soft-argmax function using synthetic data.
Yellow pixels (i, j) indicate where the Soft-argmax function correctly regressed
the peak of the gaussian with mean value (i, j), while violet indicates wrong
predictions. Notice that the accuracy decreases when approaching the border of
the image and when the covariance is increasing.

5.3 experimental results 101

5.3.2 Replication of Original Work

First, to recreate the work of [LPT18], a pose estimator using the MPII dataset is
trained. In addition to the authors work, the number of prediction blocks as well as the
number of context heatmaps are varied to observe the effect on the overall accuracy of
the model. Second, the 2D HAR experiments, performed by the authors on the Penn
Action datasets, are recreated. The experiment settings are taken from [LPT18] as well
as the supplemental material provided by the authors, if this thesis does not mention
otherwise.

5.3.2.1 Pose estimation

In [LPT18], the authors use 8 prediction blocks in their pose estimator (see (Sec.
4.1.3.3)) for evaluating the accuracy of the model on the MPII dataset, using the PCKh
metric (Sec. 5.2.2). In this thesis, additional experiments using 2 and 4 prediction
blocks are performed. In addition, we evaluate all models without context heatmaps as
well as with 2 context heatmaps, to gain an insight into how using context maps effects
the model performance. From now on, this thesis uses the term model configuration
when refering to models with different number of prediction blocks and context
heatmaps.

The training data of the MPII dataset is split into a training and validation set
for evaluating the model’s accuracy on unseen data. An iteration is defined as the
processing of one batch. The batch size varies, depending on the experiment, since the
models are of different size. This means that, for smaller models, a bigger batch size is
used since more data fits in GPU memory. The batch size is set to 45, 30 and 20 for 2, 4
and 8 prediction blocks, respectively. As an optimizer, the authors use the RMSProp
algorithm. An initial learning rate of 10−3 is used in accordance to the work of the
authors.

Lp =
1

Nj

Nj∑
i=1

‖(pest − p)‖1 + ‖pest − p‖22. (5.3.2)

The authors define a loss function named Elastic Net Loss. For each joint in the pose,
the L1 and L2 norms between the estimated and ground truth joint are computed and
added. Then, these sums are again summed and normalized by the number of joints
in the pose. See (Eq. 5.3.2), where pest refers to the estimated joint position by the
pose estimator and p refers to the ground truth pose. In addition to computing the

102 experiments

Elastic net loss, the authors predict the visibility of each joint. The annotations of MPII
provide ground truth labels v ∈ {0, 1} of whether a joint is occluded or not. The binary
cross-entropy is used to compute a loss Lv between the predicted visibility vector vest
and the ground truth v. Finally, both losses are combined in the following way:

L = Lp + 0.01 · Lv. (5.3.3)

For all subsequent pose estimation experiments, L is used to compute the loss of the
pose estimator.

As discussed before, for evaluating a model on the test dataset, the estimations need
to be send to the Max Planck Institute for Intelligent Systems for evaluation. The amount
of submissions is limit to 4. This means that it is not possible to evaluate all pose
estimator configurations on the test dataset. Thus, this thesis chooses to report the
validation accuracy for comparison between the different model configurations and
only submit estimations from the best performing model.

The PCKh accuracies achieved on the validation dataset from the different model
configurations are shown in (Tab. 5.3.2). For comparison, the authors report a
validation accuracy of 89% for 8 prediction blocks and 2 context heatmaps. As can be
seen in (Tab. 5.3.2), the higher the number of prediction blocks, the more accurate the
model performs on the validation data. In addition, using context heatmaps appears to
increase the accuracy only when using 8 blocks. To test whether or not the differences
in accuracy between the configurations are statistically significant, this thesis performs
randomization tests with a significance level of 0.05. For the randomization tests, 3000
permutations are used. As can be seen in (Tab. 5.3.2), the only statistically significant
increases in accuracy are observed when comparing 2 and 8 prediction block models
with and without context heatmaps. This suggests that a certain depth of network
is necessary in order for context heatmaps to contribute significantly to the model
performance.

Next, the best performing model (8 prediction blocks, 2 context heatmaps) is used
to estimate the pose on the test dataset and the results were submitted to the Max
Planck Institute for Intelligent Systems. The results can be seen in (Tab. 5.3.3), in direct
comparison to the values reported by the authors. As can be seen, our model performs
significantly worse in comparison to the reported values. One possible reason for
this significant difference is the method of how the test poses are computed. The
authors first estimate the pose for the test image. Afterwards, they obtain another pose
estimation by mirroring the image horizontally, estimating the pose on the mirrored
version and then mirror the estimated pose again. Moreover, they report that they

5.3 experimental results 103

blocks context PCKh @ 0.5 p-values

2

2

0

2

84.15

84.01

0.85

4

4

0

2

85.78

85.64

0.85

8

8

0

2

86.71

87.00
0.73

2

4

0

0

84.15

85.78

0.074

2

4

2

2

84.01

85.64

0.076

blocks context PCKh @ 0.5 p-values

4

8

0

0

85.78

86.71

0.31

4

8

2

2

85.64

87.00
0.12

2

8

0

0

84.15

86.71

0.006

2

8

2

2

84.01

87.00
0.001

8

8*

2

2*

87.00

89.00*
0.025

Table 5.3.2: Different model configurations and their corresponding PCKh validation score.
The p-values were computed using a randomization test. p-values below the
significance level of 0.05 are shown in bold, indicating that the change in accuracy
is significant. Additionally, the highest accuracy is also shown in bold. The
configuration marked with a star is the model from [LPT18]

Head Shoulder Elbow Wrist Hip Knee Ankle Total p-value

our recreation 96.1 92.5 83.8 78.2 84.5 77.2 71.5 84.1

[LPT18] 98.1 96.6 92.0 87.5 90.6 88.0 82.7 91.2 0.0

Table 5.3.3: PCKh test results of our recreation in direct comparison to the original work by
[LPT18] using α = 0.5. The change in total accuracy is statistically significant with
a significance level of 0.05.

104 experiments

randomly displaced the bounding box, which is used for cropping the image around
the subject. On these cropped image, the authors also estimate the pose. The final pose
estimation is then computed by taking the average of each joint position per image
over all computed poses. The authors do not describe the method of displacement
in detail, which might cause the difference in test accuracy reported. Moreover, they
report a mean validation accuracy over all joints of 89 percent, which is close to the 87
percent achieved by our model. In this thesis, it was decided to compute 4 displaced
bounding boxes by moving the center randomly by (xd,yd) ∈ [−8, . . . ,−3, 3, . . . , 8].
The results suggest that the displacement method the authors use for computing the
test poses has a significant impact on the final score, since the discrepancy between
our validation and test scores are significantly larger than the ones reported by the
authors. Some example pose estimations on the validation dataset are given in (Fig.
5.3.2).

Figure 5.3.2: Example images from the validation dataset after training a pose estimator using
8 prediction blocks and using 2 context heatmaps. The joints on the right side of
the body (from the subjects perspective) are shown in magenta, while the joints
on the left side are shown in yellow. The remaining joints are shown in cyan.
From left to right: 1. The pose estimator was able to estimate the ground truth
pose correctly. 2. The pose estimator confused right and left joints. Also, the
estimator was not able to estimate the right ankle joint position correctly and
wrongly estimated the joint position at the left ankle. 3. The belt of the subject
was wrongly estimated to be the right wrist. 4. The pose estimator was not able
to estimate the subjects pose, except for the head joint. This is most likely due to
the fact that the subject is underwater and because the subject is wearing a diving
suit.

In conclusion, while the test accuracy scores are significantly lower in comparison
to the scores provided by the authors, this is most likely due to the difference in

5.3 experimental results 105

evaluation technique. Moreover, there were no statistically significant differences
found between the different model configurations, except for the difference between
the 2 and 8 prediction block models. Additionally, using context heatmaps does not
significantly increase the accuracy of the pose estimator.

5.3.2.2 HAR using Penn Action dataset

To recreate the Human Activity Recognition results from [LPT18] on the Penn Action
dataset, we first train a pose estimator. Once the pose estimator is trained, its pretrained
weights are transferred to the HAR model. The authors used a hybrid dataset for
training, consisting of 75% MPII and of 25% Penn Action training data. They do not,
however, motivate this decision. The pose estimator contains 4 prediction blocks, uses
2 context heatmaps and it is trained using a batch size of 30 and a learning rate of
10−3.

Figure 5.3.3: Validation accuracies computed during the training of the pose estimator. The
training dataset is a mixture of 75% MPII and 25% Penn Action data. The
validation accuracies are computed on the validation split of the Penn Action
dataset.

The validation accuracy scores achieved on the Penn Action validation dataset can
be seen in (Fig. 5.3.3). As can be seen, the validation accuracy of the pose estimator
stops increasing after approximately 9000 training iterations. In (Tab. 5.3.4), the test
accuracies of the model after 9000 iterations using both PCK with α = 0.2 and α = 0.2

106 experiments

PCK @ 0.2 PCK @ 0.1

80.26 59.28

Table 5.3.4: Test results for pose estimation on the Penn Action test set, using a pose estimator
with 4 prediction blocks and 2 context heatmaps. The pose estimator is trained on
a mixture dataset, containing 75% MPII and 25% Penn Action training data.

can be seen. It is difficult to compare the results to [LPT18], since the authors do not
provide their results of the pose estimator training. In addition, comparison with
different approaches in the literature is difficult because of the mixture of training
data. To gain a better insight into the performance of the pose estimator, this thesis
evaluated the accuracy of the pose estimator w.r.t. PCK on a per joint basis. These
results can be seen in (Tab. 5.3.5). In comparison to the pose estimation results of
Section 5.3.2.1, it can be seen that the accuracy of the joint associated with the head
(upper neck) is much lower. This is most likely due to the fact that the position of the
upper neck is slightly different in the MPII dataset in comparison to the Penn Action
dataset. Thus, when mixing the datasets, the pose estimator likely learns the position
of the head joint in the MPII dataset, since there are more training images present in
the mixture dataset. This leads to a higher prediction error in the Penn Action test
dataset. It can also be seen in (Tab. 5.3.5) that the pose estimator more accurately
estimates joints on the right side of the body (from the position of the subject in the
image) in comparison to the left body side. To evaluate whether this difference is
statistically significant, we used a randomization test with a significance level of 0.05.
The resulting p-value for the change in accuracy between left and right arms is 0.0,
while the p-value for the difference between right and left legs is 0.0. The p-values
are zero because they are too small for the floating point precision of the machine,
which means that the change in accuracy between left and right sides are statistically
significant. One reason for the significant difference in accuracy might be that, for
most people, the predominant side of their body is the right side. This might then lead
to an overrepresentation of actions performed by right-handed people in the dataset.
Some example images of the predicted poses on the test dataset can be seen in (Fig.
5.3.4).

The pretrained pose estimator weights are inserted into the HAR model after the
training process of the pose estimator finished. The HAR model is trained using Penn
Action training data. Also, the weights of the pose estimator are initially frozen. The
HAR model is then trained until the validation accuracies stops increasing, at which
point the authors unfreeze the weights of the pose estimator and lower the learning

5.3 experimental results 107

Figure 5.3.4: Two example poses estimated using the pose estimator trained on the mixed
dataset of MPII and Penn Action. Left: An example of an image where the left leg
joints were not estimated correctly. Right: Example, where the legs are wrongly
estimated because they are not seen in the frame.

Ankle (r) Knee (r) Hip (r) Hip (l) Knee (l) Ankle (l) Upper neck Wrist (r)

70.24 65.11 68.98 64.81 62.23 71.92 36.92 45.3

Elbow (r) Shoulder (r) Shoulder (l) Elbow (l) Wrist (l) Total

54.86 69.12 67.71 54.53 42.50 59.28

Arms (l) Arms (r) Arms (both) Legs (l) Legs (r) Legs (both) Upper body

54.92 56.45 55.68 66.34 68.11 67.22 46.37

Table 5.3.5: Per joint accuracy, computed on the Penn Action test set using PCK @ 0.1 measure.
In addition, aggregated accuracy values are given in the third row for different
sets of joints. Arms for both left and right are computed by taking the average of
the shoulder, elbow and wrist accuracies. Legs are computed the same way, using
knee, ankle and hip accuracy values. For Upper body, the upper neck is added to
Arms (both).

rate. The model is then fine-tuned in an end-to-end approach. As an optimizer, the
Stochastic Gradient Descend is used, with the addition of a momentum value γ = 0.98
and the use of a method called Nesterov Accelerated Gradient (NAG) [Nes83].

Momentum is used to accelerate the gradient descent process by incorporating a
fraction γ of the previous gradients when computing the new gradients. Consider a
regular update to the weights w of a neuron using gradient descent, as explained in
(Sec. 2.3.1.3), given by

wt+1 = wt − η∇wt, (5.3.4)

108 experiments

where η refers to the learning rate and ∇wt refers to the gradients w.r.t. wt. When
using momentum, a update term νt is computed following

νt = γνt−1 + η∇wt. (5.3.5)

Afterwards, the new weights are computed by subtracting νt from wt:

wt+1 = wt − νt. (5.3.6)

The intuition behind momentum is that the descend towards the local minimum
of the loss function can be accelerated by assuming that the gradients do not change
significantly. If gradients with a similar direction were multiple times before, then the
assumption is that the next gradients will be similar as well. This assumption, however,
can lead to the case where the local minimum of the loss function is surpassed,
which is often referred to as overshooting the minimum. To minimize the probability
overshooting while still accelerating the descend towards the local minimum, Nesterov
Accelerated Gradient adds an additional step to the momentum process. It calculates
a look-ahead weight wla = wtγνt−1 and evaluates the gradient using this new weight.
If the gradient at wla points to a different direction than γνt−1 it will correct the
surpassing of the minimum to an extend by reducing changing the direction of the
gradient slightly. The following formula describes the update process of weights wt
using the NAG:

wt+1 = wt − (γνt−1 + η∇wla). (5.3.7)

The results of the training process can be seen in (Fig. 5.3.5). A learning rate of
2−5 is used, as suggested by the authors in their work. The training process with
frozen pose estimator weights is shown to the left of the blue vertical line. We show
the validation accuracy, which is computed by predicting the action for every 16 frame
fragment in the validation dataset. Additionally, we show the training accuracy of the
pose estimator using the PCK metric with α = 0.2, as well as the training accuracy
of the action classification. As expected, the pose estimation training accuracy does
not change, because the weights are frozen. Unexpectedly, the validation accuracy
did not increase after unfreezing the pose estimator weights and after finetuning
the network. In fact, the training accuracy of the action classification also decreased.
Because finetuning the network did not lead to a better result in terms of validation
accuracy, it was decided to continue the evaluation using the non-finetuned model.

5.3 experimental results 109

Figure 5.3.5: Validation and training accuracies for the HAR model, trained on Penn Action
data. Validation accuracy is computed by classifying each 16 frame fragment
and comparing it to the ground truth class. Validation accuracy is computed
identically, except on the validation dataset. The pose estimator training accuracy
is computed using the PCK metric with α = 0.2. We show the results without
finetuning, i.e., with the pose estimator weights frozen, to the left of the blue
vertical line. To the right, the results for finetuning the network in an end-to-end
approach are shown.

The results on the Penn Action test dataset for the model at iteration 5000 can be seen
in (Tab. 5.3.6). In comparison to the results provided by [LPT18], it is apparent that
our model performs significantly worse. One possible explanation could be that the
pose estimator of the authors achieved a higher accuracy, which will lead to a higher
action classification accuracy. Since the authors did not publish an evaluation of the
pose estimator, a comparison between their pose estimator and the one trained in this
thesis is not possible. Another possible explanation could be that the authors forgot to
mention a crucial step in training their model. For example, they do not mention how
many iterations both the pose estimator and action recognition model were trained.

110 experiments

Single Clip accuracy Multi Clip accuracy [LPT18]

79.56 81.66 97.40

Table 5.3.6: Test results for action classification on the Penn Action test set, in comparison
to the result from [LPT18]. The authors do not mention whether the reported
accuracy value was determined using a single clips or multiple clips.

Figure 5.3.6: Confusion matrix of the Penn Action test set after training the HAR classifier.
Notice that the model is most uncertain with the class clean and jerk.

To gain a better insight into the types of errors the network produces, we computed
a confusion matrix of the test data. A confusion matrix shows not only the accuracy of
the model for each action, but it also shows which classes the model often confuses.
The confusion matrix is shown in (Fig. 5.3.6). As can be seen, the network is most
uncertain when predicting the class clean and jerk. Clean and jerk is a weight lifting

5.3 experimental results 111

action, where the person bends their knees while holding a weight lifting bar and
then lifts the weights while standing up. See (Fig. 5.3.7) for an example of this action.
Notice that the clean and jerk action starts with bend knees. This is similar to the
action of squat, which might explain why the network gets confused between these
two classes. In (Sec. 4.1.3), it was explained that the network processes a video in sets
of 16 consecutive frames. This means that, if a person takes a long time to stand up
after bending their knees, the network might classify the 16 frame excerpt as squats,
because the poses are very similar. A network architecture, which takes more frames
of a video into account before predicting an action, might be able to distinguish these
classes better. On the other hand, actions with highly distinct poses, such as sit ups and
jumping jacks, are seldom confused with other classes. These two findings indicate that
very precise pose information is necessary to reduce the amount confusion between
similar classes.

Figure 5.3.7: Example frames of a video where a person performs the clean and jerk action.
Notice the similarities in pose to squats, where the person also bends their knees.

In conclusion, while our results do not match the results in [LPT18], this is most
likely due to the performance of the pose estimator. More experimentation towards
increasing the accuracy of the pose estimator would be necessary to decrease the
amount of confusion between certain actions. It was shown that the pose estimator
is more accurate on joints of the person’s right side, as opposed to the left side. For
future work, a deeper investigation into this phenomenon would be necessary.

5.3.3 Pose estimation on JHMDB dataset

Similar to the experiment performed in (Sec. 5.3.2), this thesis evaluates different
pose estimator configurations using the JHMDB dataset. Specifically, pose estimators
with 2, 4 and 8 prediction blocks are trained with and without context heatmaps to
assess the performance of the network on a more challenging video dataset in terms
of action diversity. In terms of the pose estimator architecture, there are no changes to
the experiments on the MPII dataset.

112 experiments

One assumption this thesis makes is that the ground truth bounding boxes for
training, validation and test datasets are given. This assumption was also made by
[LPT18] for training and evaluating the pose estimator on the MPII dataset. The
accuracies, computed using three different metrics, are shown in (Tab. 5.3.7). As can
be seen, the best performing pose estimator configuration is 4 prediction blocks and 0
context heatmaps. Notice that the test accuracies when using 8 prediction blocks are
significantly lower in comparison to the other configurations. This is most likely due
to the limited amount of data of the JHMDB dataset. This hypothesis is supported by
the fact that the accuracies when using context heatmaps are lower, in comparison to
not using context heatmaps. Context heatmaps introduce additional parameters to the
pose estimator model, which need to be trained. In general, the higher the number of
parameters of a model, the more training data is needed to fit the model.

The p-values in (Tab. 5.3.7) indicate that, for a pose estimator configuration with
2 prediction blocks, adding context heatmaps significantly decreases the accuracy of
the model. This is most likely due to an increase in parameters of the pose estimator,
which means that more data is necessary to fit the model. This also applies to
the configurations using 4 prediction blocks, where the evaluated metrics are also
lower when using context heatmaps. These findings imply that the utility of context
heatmaps is highly dependent on the training dataset size. Interestingly, when using
8 prediction blocks, the opposite appears to be true. In (Sec. 5.3.2.1), it was found
that the use of context heatmaps only significantly increased the accuracy of the pose
estimator if 8 prediction blocks were used. This finding, in combination with the
findings on the pose estimator trained on the JHMDB dataset, indicate that using
context heatmaps only positively impacts the accuracy of a pose estimator if a high
number of prediction blocks are used. One reason for this might be that context
heatmaps benefit from the refinement process of the stacked architecture more than
the regular heatmaps (see (Sec. 4.1.3)).

In (Tab. 5.3.8), the accuracies of different pose estimator configurations are compared
using randomization testing. The configurations with 8 prediction blocks are omitted
from this comparison, because their accuracies are much lower in comparison to the
other configuration and there is no need for statistical significance testing. It is found
that there are no statistically significant differences between the accuracies of the tested
configurations for any metric. This is consistent with the findings in (Sec. 5.3.2.1),
where the only significant differences were found between 8 and 2 prediction blocks.

Next, the accuracy of best performing pose estimator configuration (4 prediction
blocks, 0 context heatmaps) with regards to individual joints and groupings of joints
is evaluated in (Tab. 5.3.9). As a metric, PCK using α = 0.1 is used, since this
metric more precise in comparison to PCK using α = 0.2, which aids in determining

5.3 experimental results 113

p-value p-value p-value

nr_blocks 2 2 4 4 8 8

nr_context 0 2 0 2 0 2

PCK @ 0.2 96.85 95.61 0.0 96.94 96.06 0.0 74.95 75.47 0.408

PCK @ 0.1 92.03 90.20 0.0 91.69 90.95 0.072 50.13 52.14 0.005

PCKu @ 0.2 87.32 86.21 0.031 87.49 86.92 0.224 44.03 45.30 0.085

Table 5.3.7: Test accuracies of the different pose estimator configurations, computed on the
JHMDB test set. PCK is computed for two threshold values, α = 0.2 as well as
α = 0.1. Additionally, PCKu is computed using α = 0.2. Maximum values per
metric, as well as p-values below the significance level of 0.05, are shown in bold.

p-value p-value

nr_blocks 2 4 2 4

nr_context 0 0 2 2

PCK @ 0.2 96.85 96.94 0.689 95.61 96.06 0.121

PCK @ 0.1 92.03 91.69 0.396 90.20 90.95 0.089

PCKu @ 0.2 87.32 87.49 0.742 86.21 86.92 0.164

Table 5.3.8: Different model configurations for estimating pose on the JHMDB dataset, with
their corresponding accuracy values. The configurations using 8 prediction blocks
are omitted because the results are significantly worse in comparison to the other
configurations. The p-values were computed using a randomization test. None of
the p-values are below the significance level of 0.05.

114 experiments

the differences between the individual joint accuracies. In comparison to the joint
accuracies computed in (Tab. 5.3.3), it becomes apparent that left and right ankles
are more accurately estimated on the JHMDB dataset. On both datasets, the joints
associated with the head and torso region of the subject, i.e., upper neck, pelvis and
head, are the most accurate. One explanation for this is that there is less confusion
with other, similar looking joints. For example, while the left ankle might easily be
confused with the right ankle, the head and torso region joints do not have a similarly
looking counterpart. In addition, these joints are less articulated, meaning that they do
not change in position between different actions performed. Similar to (Sec. 5.3.2.2),
right arms and legs are more accurately detected. The difference in accuracies is also
statistically significant with a significance level of 0.05 (p values 0.003 and 0.0).

As discussed before, this thesis assumed that human bounding boxes are given for
training, validation and testing data. When comparing our results to the state-of-the-art
approach by [SWGH17], it was noted that our results outperforms the state-of-the-art.
The authors report a PCK accuracy of 81.6% using α = 0.2 and 68.7% using α = 0.1.
In comparison, our best performing model with 4 prediction blocks and 0 context
heatmaps achieved 96.94% PCK accuracy using α = 0.2 and 91.69% using α = 0.1.
However, the authors of [SWGH17] do not mention whether or not they used ground
truth bounding boxes for the subject while training or evaluating their model. Thus, it
was decided to estimate the bounding box of the test data before estimating the pose.
To achieve this, we first estimate the pose for each frame without taking the ground
truth bounding box into account. The estimated poses are used to define a bounding
box by choosing the largest and smallest x and y values over all joints as the corner
points of the bounding box. Additionally, the resulting estimated bounding box is
increased by 30 pixels in both dimensions, since the estimated poses are not accurate
enough to ensure that the subject is fully visible. Then, the estimated bounding box for
each frame is used to crop the image. The results can be seen in (Tab. 5.3.10). When
comparing the results to [SWGH17] using estimated bounding boxes on the test data,
it becomes clear that our model is not able outperform the state-of-the-art. A more
accurate pose estimator would be needed to increase the accuracy of the initial pose
estimation used for estimating the bounding box. This would lead to less discrepancy
between the pose accuracy using the ground truth bounding box and the estimated
bounding box.

In conclusion, pose estimation on the JHMDB dataset appears to be harder in
comparison to the MPII dataset. One reason might be the small size of the JHMDB
dataset. Also, since the JHMDB dataset is a video dataset, it contains video artifacts
such as blur and camera jitter. Moreover, the resolution of the frames is significantly
lower in comparison to the MPII dataset. This means that, since images from both

5.3 experimental results 115

Ankle (r) Knee (r) Hip (r) Hip (l) Knee (l) Ankle (l) Pelvis Upper neck

0.87 0.84 0.90 0.88 0.83 0.85 0.93 0.94

Head top Wrist (r) Elbow (r) Shoulder (r) Shoulder (l) Elbow (l) Wrist (l) Total

0.97 0.83 0.87 0.89 0.89 0.82 0.82 0.92

Arms (l) Arms (r) Arms (both) Legs (l) Legs (r) Legs (both) Upper body Lower body

0.84 0.86 0.85 0.85 0.87 0.86 0.88 0.87

Table 5.3.9: Per joint accuracy w.r.t. PCK @ 0.1, computed on the JHMDB test set using 4
prediction blocks and 0 context heatmaps. In addition, aggregated accuracy values
are given in the third row for different sets of joints. Arms for both left and right
are computed by taking the average of the shoulder, elbow and wrist accuracies.
Legs are computed the same way, using knee, ankle and hip accuracy values. For
Upper body, upper neck and head top are added to both Arms aggregations. Lower
body is computed by aggregating both Legs accuracies and pelvis accuracy.

[SWGH17]

nr_blocks 2 2 4 4 8 8 -

nr_context 0 2 0 2 0 2 -

PCK @ 0.2 72.20 75.94 74.80 73.25 51.10 51.78 81.6

PCK @ 0.1 41.53 45.77 43.82 41.76 20.82 21.42 68.70

PCKu @ 0.2 33.77 38.02 35.47 34.55 19.22 19.81 -

Table 5.3.10: Test accuracies of the JHMDB pose estimation models when using estimated
bounding boxes for the test data. In comparison to the state-of-the-art approach
by [SWGH17], our model achieves notably lower accuracy values in both metrics.
The highest accuracies achieved by our methods are shown in bold.

116 experiments

dataset are resized to 256× 256 pixels, the images from the JHMDB dataset contain
more artifacts due to scaling and compression.

5.3.4 HAR on JHMDB Dataset

To assess the performance of the action recognition model on the JHMDB dataset, the
pretrained pose estimator with 4 blocks and 2 context maps from (Sec. 5.3.3) is used, in
order to compare the results to the performance on the Penn Action dataset experiment
(Sec. 5.3.2.2). The batch size is set to 12 since the GPU used for experimentation did
not allow for a bigger batch size. Keep in mind that, since JHMDB is a video dataset,
each item in the batch contains 16 frames (see (Sec. 5.1.3)). Effectively, this leads to a
batch size of 16 · batch_size for the pose estimator since the pose for each frame is
computed independently, before aggregating the estimated poses into the pose cube
(see (Sec. 4.1.3.4)). As an initial learning rate, 2−5 is chosen, since this is the value
used in the Penn Action HAR experiment. Similar to before, the point where the
validation data accuracy does not increase further is found by training the model with
a pose estimator with fixed weights. The results of the training process can be seen in
(Fig. 5.3.8). It is observed that the action training accuracy quickly approaches 100%
while the validation accuracy does not show an upward trend throughout the training
process. This is especially interesting considering the results in (Sec. 5.3.5). One
explanation could be that the network overfit the training data, which is supported
by the fact that both training accuracies computed quickly approach 100%. In the
time of writing this thesis, we did not find a solution to this problem. In order to
not discuss possibly erroneous results, it was decided to omit a discussion of testing
results regarding this experiment.

5.3.5 Effect of Combining Loss Functions

Next, this thesis proposes a method for training the network in an end-to-end approach.
This means that no part of the network is pretrained. To achieve this, the loss of the
pose estimator and the loss of the action recognition pipeline are combined. First,
during the training process, the losses of all intermediate results from the pose
estimator are computed using the elastic net loss. This is equivalent to the way the
pose estimator is trained in [LPT18]. Second, the loss of all intermediate results from
the action recognition are computed using categorical cross-entropy. It was decided to
weigh both losses equally, i.e., sum them without weighting either the pose estimation

5.3 experimental results 117

Figure 5.3.8: The training and validation accuracies computed during the training process of
the HAR model on JHMDB training data.

or action recognition loss more in order to not make any assumptions about which
part is more important.

The network needs a high amount of iterations for training until the validation
accuracy stops increasing. This is to be expected, since no part of the network is
pretrained and thus all parts have to be trained from random initialization. See (Fig.
5.3.9) for a graphical representation of the training process. As can be seen, the training
pose accuracy increases at a slower rate in comparison to the action recognition training
accuracy. Both training accuracies approach 100%, albeit after much more iterations
in comparison to (Sec. 5.3.2.2). After approximately 228.000 iterations, the validation
accuracy stops increasing, which is why it was decided to further evaluate the model
at that point. The results of the evaluation on the JHMDB test set can be seen in (Tab.
5.3.11).

When comparing the pose accuracy of the end-to-end model to the pose estimators
trained in (Sec. 5.3.3), it is apparent that the end-to-end model is significantly worse in
all three metrics related to pose estimation (see (Tab. 5.3.12)). Further experimentation
is necessary to assess whether or not the model hyperparameters like learning rate and

118 experiments

Figure 5.3.9: Training and validation accuracies of the HAR model trained using an end-to-end
approach, without pretraining individual parts of the model. Validation accuracy
given as percentage of correctly classified validation video clips.

batch size can be optimized in order for the end-to-end model to achieve comparable
results to the pretrained model. In comparison to the state-of-the-art approaches for
HAR on the JHMDB dataset in (Sec. 3.2.3.3) and (Sec. 3.2.3.4), the action recognition
is also significantly lower (see (Tab. 5.3.11)). However, the findings are promising,
because the network is, in general, able to achieve a high classification accuracy on
the action recognition metrics by being trained in an end-to-end approach. This
suggests that, while the pose estimator might be weaker in comparison to a standalone
pose estimator, it is enough to make accurate action classifications. In future work,
an investigation into changing the architecture of the HAR model might lead to
comparable results to the literature.

A confusion matrix of the action classification on the test dataset is computed
to gain a better understanding of the types of misclassification of the network (see
(Fig. 5.3.10)). From the confusion matrix, it becomes clear that the network is highly
uncertain between the classes sit and stand. Only 38% of the test datapoints classified
as stand were actually from the stand class. In addition, in 29% of the cases where the

5.3 experimental results 119

Single Clip accuracy Multi Clip accuracy [KY18] [CWRS18]

65.88 68.09 78.81 87.90

Table 5.3.11: Test results of the action recognition accuracy on the JHMDB test set after 228.000
iterations of training the model in an end-to-end approach. The accuracy values
are much lower in comparison to the state-of-the-art methods described in (Sec.
3.2.3).

PCK @ 0.2 PCK @ 0.1 PCKu @ 0.2

End-to-end model 81.12 49.23 35.63

JHMDB pose estimator (Sec. 5.3.3)

4 prediction blocks, 0 context heatmaps
96.94 91.69 87.49

Table 5.3.12: Pose estimation accuracy, meassured using three different metrics, in comparison
to the findings in (Sec. 5.3.3).

network predicted stand, the ground truth class was sit. This is most likely due to
the fact that the first frames of many clips labeled as sit show people standing. These
people are about to sit down, which might explain the strong confusion between the
two classes. See (Fig. 5.3.11) for an example clip which were wrongly classified as
stand when the ground truth class was sit. Notice that, for the majority of the extracted
frames, the person is still standing. One way of reducing this error would be to include
more temporal context to the decision process. In the model architecture, a video clip
is divided into smaller clips of 16 frames. This amount of temporal context appears to
be too small for some classes, causing the network to confuse these classes. Another
approach would be to relabel the dataset and to ensure that every clip strictly belongs
to one class.

In (Tab. 5.3.13), the accuracy of the poses are given for each joint, as well as for
some aggregations like upper body. On average, the network is more precise on the
joints associated with the legs in comparison to the arm joints. Also, joints associated
with the right side of the subjects are detected with a higher accuracy than the joints
associated with the left side. The differences in accuracies are statistically significant
with a p-value too close to zero to be accurately reported (p = 0.0). This finding
supports the findings in (Sec. 5.3.2.2) and (Sec. 5.3.3). This indicates that, independent
of the dataset, the pose estimator is able to more accurately estimate right side body
joints from left side body joints. Whether this is due to the fact that most images in
these datasets feature right-handed persons of because of the particular pose estimator
architecture needs to be evaluated in future work.

120 experiments

Figure 5.3.10: Confusion matrix, computed on the JHMDB test dataset, using the end-to-end
model. Notice the strong confusion between the classes sit and stand.

In conclusion, while the end-to-end approach does not achieve state-of-the-art
performance for action recognition on the JHMDB benchmark, it is a promising
approach, since the training process complexity is significantly lower. Instead of
pretraining weights of a pose estimator, which involves separate hyperparameter
tuning, the end-to-end approach can be learned from randomly initialized weights.
With changes in the model architecture, such as using more temporal context, and by
using a larger dataset, the network might be able to reach a performance close to the
state-of-the-art.

5.3 experimental results 121

Figure 5.3.11: Frames extracted from a video clip from the JHMDB test dataset with the
ground truth class sit. Notice that the person, which sits down in the video
clip, is standing for the majority of the clip. This explains the strong confusion
between the classes.

Ankle (r) Knee (r) Hip (r) Hip (l) Knee (l) Ankle (l) Pelvis Upper neck

47.82 55.66 60.17 61.18 55.66 54.32 54.15 67.82

Head top Wrist (r) Elbow (r) Shoulder (r) Shoulder (l) Elbow (l) Wrist (l) Total

74.51 32.44 32.29 43.80 51.94 36.29 42.47 49.24

Arms (l) Arms (r) Arms (both) Legs (l) Legs (r) Legs (both) Upper body Lower body

0.49 0.39 0.44 0.54 0.57 0.55 0.51 0.56

Table 5.3.13: Per joint accuracy, computed on the JHMDB test set using PCK @ 0.1 meassure.
In addition, aggregated accuracy values are given in the third row for different
sets of joints. Arms for both left and right are computed by taking the average of
the shoulder, elbow and wrist accuracies. Legs are computed the same way, using
knee, ankle and hip accuracy values. For Upper body, upper neck and head top
are added to both Arms aggregations. Lower body is computed by aggregating
both legs accuracies as well as pelvis.

6
C O N C L U S I O N

In [LPT18], the authors presented a convolutional neural network for Human Activity
Recognition, which is able to jointly learn the pose of a person and the action performed
in video clips. The authors introduced the Soft-argmax function [LTP17], which allows
for this novel approach of learning. One downside of the approach by [LPT18] is that
they only evaluated their network on the Penn Action dataset. This thesis evaluated
the performance of the network using the more complex, albeit smaller JHMDB
dataset [JGZ+

13]. We also performed two experiments to evaluate the accuracy of
the Soft-argmax function. Finally, the network was trained without using pretrained
parameters for the pose estimator to investigate whether or not pretraining is necessary.

First, the Soft-argmax was evaluated in a qualitative and quantitative manner. It
was found that the Soft-argmax appears to not be able to correctly extract the pose
information at the border of the input image. However, this does not impact its
performance on extracting pose from synthetic pose heatmaps from the MPII dataset.
This suggests that the Soft-argmax is a viable alternative to the argmax function, which
was previously necessary to extract pose coordinates joint heatmaps.

Second, this thesis was not able to achieve identical results in terms of pose estimator
accuracy on the MPII dataset. The authors report a pose accuracy, using the PCKh
metric, of 91.2 percent. This thesis achieved 84.10 percent accuracy using the same
metric. The authors used multiple pose estimations of the test images, which were
averaged to get the final pose estimation. However, the authors did not publish a
detailed explaination of this procedure. It was found that the results on the validation
data was only slightly below the validation accuracy reported by the authors (87
percent PCKh accuracy in comparison to 89 percent). This suggests that their procedure
for estimating the pose of the test images is the deciding factor to explain the difference
in test accuracy.

Third, we were not able to recreate the results of the authors regarding the accuracy
of the HAR model. The authors achieved 97.40 percent accuracy, in comparison to
81.66 percent achieved in this thesis. This discrepancy is most likely due to the fact
that the pose estimator, whose weights were pretrained on a mixture dataset of MPII
and Penn Action data, was not accurate enough. A comparison of pose estimator
accuracy with [LPT18] was not possible because the authors did not publish their
results for this experiment. When investigating the accuracy of the pose estimator

123

124 conclusion

for each type of joint, it was found that the pose estimator performed significantly
better on joints associated with the right side of the persons body, in comparison to
the left side of the person. These findings could be replicated with the JHMDB dataset,
suggesting that either the model is predisposed to be more accurate on right side body
joints or that both datasets contain a bias towards right side body joints. This bias
could be that both datasets are unbalanced w.r.t. the handedness of the subjects in the
videos.

Fourth, when evaluating the pose estimator on the challenging JHMDB dataset,
it was found that the pose estimator is able to adapt to a different, smaller, but
more complex dataset, achieving accuracy results only slightly below the state-of-the-
art approaches in the literature. This suggests that the pose estimator architecture
generalizes well to different use cases and and it can serve as a baseline for future
work in this field.

Fifth, this thesis tried to train the HAR model from [LPT18] on the more challenging
JHMDB dataset. However, the results appeared to be erroneous, which is why further
analysis was ommited in order to not report and interpret wrong results.

Sixth, it was found that training the network in an end-to-end approach is feasible.
The accuracy of the end-to-end model (68.09 percent) was significantly lower in com-
parison to the state-of-the-art approaches for HAR on the JHMDB dataset by [CWRS18]
(87.90 percent) and [KY18] (78.81 percent). However, the results are promising and
future work could improve upon the results presented. Additionally, it was found
that the HAR models struggle with interclass variance on the JHMDB dataset, because
some classes (like sit) are very similar to other classes (like stand). A video clip labeled
as sit often contains persons in the process of sitting down, which means that some
frames contain persons standing as well. A network architecture using more temporal
information would most likely increase the accuracy on this dataset.

6.1 future work

Finally, this thesis makes some suggestions regarding possible future work, based on
the findings presented earlier. First, the pose estimator architecture used in the HAR
pipeline computes the pose for each frame in a video clip without taking poses of
previous frames into account. Utilizing a pose estimator capable of processing video
clips directly and utilizing previous poses could lead to better results, since the change
in pose between consecutive frames of a video are very small.

Second, a HAR architecture using a larger temporal context would decrease the
amount of error due to interclass variance. The model presented in [LPT18] divides

6.1 future work 125

each video clip into chunks of 16 frames, which this thesis found leads to confusion
when predicting the actions. This is because, for actions such as sit and stand, large
parts of the video clips are identical. Ideally, the clip size would not determine the
network architecture. To that end, using 3D convolutional layers could be implemented,
as well as recurrent layers.

Third, larger and fully annotated video datasets could be gathered. While the
JHMDB dataset, in terms of action diversity, is a more complex dataset in comparison
to the Penn Action dataset, the later dataset is significantly larger in terms of number
of frames. For large networks, such as the pose estimator with 8 prediction blocks, it
was found that, even using strong augmentation, the JHMDB dataset did not contain
enough data to train large pose estimators. One approach could be to increase the size
of the JHMDB dataset by annotating more clips found in the HMDB dataset [KJG+

11]
using the proposed puppet tool. This approach would make the JHMDB dataset more
useful for evaluating deep neural networks found in modern literature. Additionally,
the images in the JHMDB dataset are small compared to the MPII dataset. [LPT18]
resizes the images to 256× 256 pixels, after cropping the image around the person.
This leads to artifacts in the JHMDB dataset, because the cropped images need to be
scaled up. A dataset containing fully annotated, high resolution images would result
in less artifacts and, possibly, higher pose estimation accuracy.

B I B L I O G R A P H Y

[APGS14] Andriluka, Mykhaylo ; Pishchulin, Leonid ; Gehler, Peter ; Schiele,
Bernt: 2D Human Pose Estimation: New Benchmark and State of the Art
Analysis. In: Proceedings of the 2014 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). Columbus, OH, Juni 2014, S. 3686–3693

[ARS09] Andriluka, Mykhaylo ; Roth, Stefan ; Schiele, Bernt: Pictorial struc-
tures revisited: People detection and articulated pose estimation. In:
Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Miami, FL, Juni 2009, S. 1014–1021

[BBPW04] Brox, Thomas ; Bruhn, Andrés ; Papenberg, Nils ; Weickert, Joachim:
High Accuracy Optical Flow Estimation Based on a Theory for Warping.
In: Pajdla, Tomás (Hrsg.) ; Matas, Jiří (Hrsg.): Proceedings of the 8th
European Conference on Computer Vision (ECCV). Prague, CZ, Mai 2004, S.
25–36

[BMBM10] Bourdev, Lubomir ; Maji, Subhransu ; Brox, Thomas ; Malik, Jitendra:
Detecting People Using Mutually Consistent Poselet Activations. In:
Daniilidis, Kostas (Hrsg.) ; Maragos, Petros (Hrsg.) ; Paragios, Nikos
(Hrsg.): Proceedings of the 11th European Conference on Computer Vision
(ECCV). Heraklion, GR, September 2010, S. 168–181

[BMP02] Belongie, Serge ; Malik, Jitendra ; Puzicha, Jan: Shape matching and
object recognition using shape contexts. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) 24 (2002), April, Nr. 4, S. 509–522

[Bra00] Bradski, Gary: The OpenCV Library. In: Dr. Dobb’s Journal of Software
Tools (2000)

[BTVG06] Bay, Herbert ; Tuytelaars, Tinne ; Van Gool, Luc: SURF: Speeded Up
Robust Features. In: Leonardis, Aleš (Hrsg.) ; Bischof, Horst (Hrsg.) ;
Pinz, Axel (Hrsg.): Proceedings of the 9th European Conference on Computer
Vision (ECCV). Graz, AT, 2006, S. 404–417

[CAFM16] Carreira, Joao ; Agrawal, Pulkit ; Fragkiadaki, Katerina ; Malik,
Jitendra: Human Pose Estimation with Iterative Error Feedback. In:

127

128 bibliography

Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Las Vegas, NV, Juni 2016, S. 4733–4742

[Cho17] Chollet, Francois: Xception: Deep Learning With Depthwise Separable
Convolutions. In: Proceedings of the 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Honolulu, HI, Juli 2017, 1251–1258

[CLS15] Cheron, Guilhem ; Laptev, Ivan ; Schmid, Cordelia: P-CNN: Pose-Based
CNN Features for Action Recognition. In: Proceedings of the 2015 Inter-
national Conference on Computer Vision (ICCV). Santiago, CL, Dezember
2015, 3218–3226

[CMAS14] Cherian, Anoop ; Mairal, Julien ; Alahari, Karteek ; Schmid, Cordelia:
Mixing Body-Part Sequences for Human Pose Estimation. In: Proceedings
of the 2014 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Columbus, OH, Juni 2014, 2353–2360

[Cor18] Cornelisse, Daphne: An intuitive guide to Convolutional
Neural Networks. https://www.freecodecamp.org/news/

an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/.
Version: April 2018

[CSWS17] Cao, Zhe ; Simon, Tomas ; Wei, Shih-En ; Sheikh, Yaser: Realtime Multi-
person 2D Pose Estimation Using Part Affinity Fields. In: Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Honolulu, HI, Juli 2017, 1302–1310

[CWRS18] Choutas, Vasileios ; Weinzaepfel, Philippe ; Revaud, Jérôme ; Schmid,
Cordelia: PoTion: Pose MoTion Representation for Action Recognition.
In: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Salt Lake City, UT, Juni 2018, 7024–7033

[CZ17] Carreira, Joao ; Zisserman, Andrew: Quo Vadis, Action Recognition?
A New Model and the Kinetics Dataset. In: Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu,
HI, Juli 2017, 4724–4733

[DDS+
09] Deng, Jia ; Dong, Wei ; Socher, Richard ; Li, Li-Jia ; Li, Kai ; Li, Fei F.:

ImageNet: a Large-Scale Hierarchical Image Database. In: Proceedings
of the 2009 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Miami, FL, Juni 2009, S. 248–255

https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/

bibliography 129

[Der17a] Dertat, Arden: Applied Deep Learning - Part 1: Arti-
ficial Neural Networks. https://towardsdatascience.com/

applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6.
Version: November 2017

[Der17b] Dertat, Arden: Applied Deep Learning - Part 4: Convo-
lutional Neural Networks. https://towardsdatascience.com/

applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2.
Version: November 2017

[DT05] Dalal, Navneet ; Triggs, Bill: Histograms of Oriented Gradients for
Human Detection. In: Proceedings of the 2005 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). San Diego, CA, Juni 2005, S. 886–
893

[DTS06] Dalal, Navneet ; Triggs, Bill ; Schmid, Cordelia: Human Detection
Using Oriented Histograms of Flow and Appearance. In: Leonardis,
Aleš (Hrsg.) ; Bischof, Horst (Hrsg.) ; Pinz, Axel (Hrsg.): Proceedings
of the 9th European Conference on Computer Vision (ECCV). Graz, AT, Mai
2006, S. 428–441

[FB81] Fischler, Martin A. ; Bolles, Robert C.: Random Sample Consensus:
A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. In: Communications of the ACM 24 (1981), Juni,
Nr. 6, S. 381–395

[FE73] Fischler, Martin A. ; Elschlager, Robert A.: The Representation and
Matching of Pictorial Structures. In: IEEE Transactions on Computers 22

(1973), Januar, S. 67–92

[FH05] Felzenszwalb, Pedro F. ; Huttenlocher, Daniel P.: Pictorial Structures
for Object Recognition. In: International Journal of Computer Vision 61

(2005), Januar, Nr. 1, S. 55–79

[FMJZ08] Ferrari, Vittorio ; Marin-Jimenez, Manuel ; Zisserman, Andrew: Pro-
gressive search space reduction for human pose estimation. In: Proceed-
ings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Anchorage, AK, Juni 2008, S. 1–8

[FPW16] Feichtenhofer, Christoph ; Pinz, Axel ; Wildes, Richard: Spatiotem-
poral Residual Networks for Video Action Recognition. In: Lee, D. D.

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

130 bibliography

(Hrsg.) ; Sugiyama, M. (Hrsg.) ; Luxburg, U. V. (Hrsg.) ; Guyon, I. (Hrsg.)
; Garnett, R. (Hrsg.): Advances in Neural Information Processing Systems
29. 2016, S. 3468–3476

[FPZ16] Feichtenhofer, Christoph ; Pinz, Axel ; Zisserman, Andrew: Con-
volutional Two-Stream Network Fusion for Video Action Recognition.
In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Las Vegas, NV, Juli 2016, S. 1933–1941

[FS97] Freund, Yoav ; Schapire, Robert E.: A decision-theoretic generalization
of on-line learning and an application to boosting. In: Journal of Computer
and System Sciences 55 (1997), Nr. 1, S. 119–139

[FS99] Freund, Yoav ; Schapire, Robert E.: A short introduction to boosting.
In: Japanese Society For Artificial Intelligence 14 (1999), Nr. 5, S. 771–780

[GBC16] Goodfellow, Ian ; Bengio, Yoshua ; Courville, Aaron: Deep Learning.
MIT Press, 2016

[GGT+
18] Girdhar, Rohit ; Gkioxari, Georgia ; Torresani, Lorenzo ; Paluri,

Manohar ; Tran, Du: Detect-and-Track: Efficient Pose Estimation in
Videos. In: Proceedings of the 2018 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Salt Lake City, UT, Juni 2018, S. 350–359

[HKRA14] Htike, Kyaw K. ; Khalifa, Othman O. ; Ramli, Huda A. M. ;
Abushariah, Mohammad A. M.: Human activity recognition for video
surveillance using sequences of postures. In: Proceedings of the 3rd Inter-
national Conference on e-Technologies and Networks for Development (ICeND).
Beirut, LBN, April 2014, S. 79–82

[Hoc91] Hochreiter, Josef: Untersuchungen zu dynamischen neuronalen Netzen,
Technische Universität München, Diplomarbeit, Juni 1991

[Hoc98] Hochreiter, Josef: The Vanishing Gradient Problem During Learning
Recurrent Neural Nets and Problem Solutions. In: International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 06 (1998), April, Nr.
02, S. 107–116

[HS88] Harris, Christopher G. ; Stephens, Mike: A combined corner and
edge detector. In: Proceedings of the 4th Alvey Vision Conference (AVC).
Manchester, UK, September 1988, S. 1–6

bibliography 131

[HS97] Hochreiter, Josef ; Schmidhuber, Jürgen: Long Short-Term Memory.
In: Neural Computation 9 (1997), November, Nr. 8, S. 1735–1780

[HZRS16] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Deep
Residual Learning for Image Recognition. In: Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas,
NV, Juni 2016, S. 770–778

[IGG16] Iqbal, Umar ; Garbade, Martin ; Gall, Juergen: Pose for Action -
Action for Pose. In: Proceedings of the 12th IEEE International Conference on
Automatic Face and Gesture Recognition (FG). Washington, DC, Mai 2016

[JE10] Johnson, Sam ; Everingham, Mark: Clustered Pose and Nonlinear
Appearance Models for Human Pose Estimation. In: Proceedings of the
2010 British Machine Vision Conference (BMVC). Aberystwyth, UK, August
2010, S. 12.1–12.11

[JGZ+
13] Jhuang, Hueihan ; Gall, Juergen ; Zuffi, Silvia ; Schmid, Cordelia

; Black, Michael J.: Towards understanding action recognition. In:
Proceedings of the 2013 International Conference on Computer Vision (ICCV).
Sydney, AU, Dezember 2013, S. 3192–3199

[KF18] Kong, Yu ; Fu, Yun: Human Action Recognition and Prediction: A Survey.
In: arXiv:1806.11230 [cs] (2018), Juni. http://arxiv.org/abs/1806.11230.
– arXiv: 1806.11230

[KJG+
11] Kuehne, Hildegard ; Jhuang, Hueihan ; Garrote, E. ; Poggio, Tomaso

; Serre, Thomas: HMDB: A large video database for human motion
recognition. In: Proceedings of the 2011 International Conference on Computer
Vision (ICCV). Barcelona, ES, November 2011, S. 2556–2563

[KMS08] Kläser, Alexander ; Marszałek, Marcin ; Schmid, Cordelia: A Spatio-
Temporal Descriptor Based on 3D-Gradients. In: Proceedings of the 2008
British Machine Vision Conference (BMVC). Leeds, UK, September 2008

[KSH12] Krizhevsky, Alex ; Sutskever, Ilya ; Hinton, Geoffrey E.: ImageNet
Classification with Deep Convolutional Neural Networks. In: Advances
in Neural Information Processing Systems 25. 2012, S. 1097–1105

[KTS+
14] Karpathy, Andrej ; Toderici, George ; Shetty, Sanketh ; Leung, Thomas

; Sukthankar, Rahul ; Fei-Fei, Li: Large-scale Video Classification

http://arxiv.org/abs/1806.11230

132 bibliography

with Convolutional Neural Networks. In: Proceedings of the 2014 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Columbus,
OH, Juni 2014, S. 1725–1732

[KY18] Khalid, Muhammad U. ; Yu, Jie: Multi-Modal Three-Stream Network
for Action Recognition. In: Proceedings of the 24th International Conference
on Pattern Recognition (ICPR). Beijing, CHN, August 2018, S. 3210–3215

[Lap05] Laptev, Ivan: On Space-Time Interest Points. In: International Journal of
Computer Vision 64 (2005), September, Nr. 2, S. 107–123

[Llo82] Lloyd, S.: Least squares quantization in PCM. In: IEEE Transactions on
Information Theory 28 (1982), März, Nr. 2, S. 129–137

[LLS09] Liu, Jingen ; Luo, Jiebo ; Shah, Mubarak: Recognizing realistic actions
from videos “in the wild”. In: Proceedings of the 2009 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Miami, FL, Juni 2009, S.
1996–2003

[LMSR08] Laptev, Ivan ; Marszałek, Marcin ; Schmid, Cordelia ; Rozenfeld, Ben-
jamin: Learning Realistic Human Actions from Movies. In: Proceedings
of the 2008 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Anchorage, AK, 2008

[LPT18] Luvizon, Diogo C. ; Picard, David ; Tabia, Hedi: 2D/3D Pose Estimation
and Action Recognition Using Multitask Deep Learning. In: Proceedings
of the 2018 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Salt Lake City, UT, Juni 2018, S. 5137–5146

[LTP17] Luvizon, Diogo C. ; Tabia, Hedi ; Picard, David: Human Pose Regres-
sion by Combining Indirect Part Detection and Contextual Information.
In: arXiv:1710.02322 [cs] (2017), Oktober. http://arxiv.org/abs/1710.

02322. – arXiv: 1710.02322

[Mac67] MacQueen, James: Some methods for classification and analysis of
multivariate observations. In: Proceedings of the 5th Berkeley Symposium on
Mathematical Statistics and Probability Bd. 1, 1967

[Max] Max Planck Institute for Intelligent Systems: JHMDB Dataset Puppet
tool. http://jhmdb.is.tue.mpg.de/puppet_tool

http://arxiv.org/abs/1710.02322
http://arxiv.org/abs/1710.02322
http://jhmdb.is.tue.mpg.de/puppet_tool

bibliography 133

[MLS09] Marszałek, Marcin ; Laptev, Ivan ; Schmid, Cordelia: Actions in
Context. In: Proceedings of the 2009 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Miami, FL, Juni 2009, S. 2929–2936

[MP43] McCulloch, Warren S. ; Pitts, Walter H.: A logical calculus of the ideas
immanent in nervous activity. In: The Bulletin of Mathematical Biophysics 5

(1943), Nr. 4, S. 115–133

[Nes83] Nesterov, Yurii: A method for unconstrained convex minimization
problem with the rate of convergence o(1/k^2). In: Doklady AN USSR
269 (1983), S. 543–547

[NH10] Nair, Vinod ; Hinton, Geoffrey E.: Rectified Linear Units Improve
Restricted Boltzmann Machines. In: Proceedings of the 27th International
Conference on Machine Learning (ICML). Haifa, ISR, Juni 2010, S. 807–814

[NYD16] Newell, Alejandro ; Yang, Kaiyu ; Deng, Jia: Stacked Hourglass Net-
works for Human Pose Estimation. In: Proceedings of the 14th European
Conference on Computer Vision (ECCV). Amsterdam, NL, Oktober 2016, S.
483–499

[PSF12] Prest, Alessandro ; Schmid, Cordelia ; Ferrari, Vittorio: Weakly
Supervised Learning of Interactions between Humans and Objects. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (2012),
März, Nr. 3, S. 601–614

[Ram07] Ramanan, Deva: Learning to parse images of articulated bodies. In:
Advances in Neural Information Processing Systems 19. MIT Press, 2007, S.
1129–1136

[RHW86] Rumelhart, David E. ; Hinton, Geoffrey E. ; Williams, Ronald J.:
Learning representations by back-propagating errors. In: Nature 323

(1986), Oktober, Nr. 6088, S. 533–536

[RMH+
14] Ramakrishna, Varun ; Munoz, Daniel ; Hebert, Martial ; Bagnell, J. A. ;

Sheikh, Yaser: Pose Machines: Articulated Pose Estimation via Inference
Machines. In: Proceedings of the 13th European Conference on Computer
Vision (ECCV). Zürich, CH, 2014, S. 33–47

[RMRHF18] Reining, Christopher ; Moya Rueda, Fernando ; Hompel, Michael
ten ; Fink, Gernot A.: Towards a Framework for Semi-Automated

134 bibliography

Annotation of Human Order Picking Activities Using Motion Capturing.
In: Proceedings of the 2018 Federated Conference on Computer Science and
Information Systems (FedCSIS). Poznań, PL, September 2018, S. 817–821

[Roj96] Rojas, Raúl: Neural Networks: A Systematic Introduction. 1996

[Rud18] Rudolph, Günther: Lecture notes from Introduction to Computational
Intelligence. https://ls11-www.cs.tu-dortmund.de/people/rudolph/

teaching/lectures/CI/WS2018-19/lecture.jsp. Version: Oktober 2018

[Sah18] Saha, Sumit: A Comprehensive Guide to Convolutional Neural
Networks — the ELI5 way. https://towardsdatascience.com/

a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.
Version: Dezember 2018

[SAS07] Scovanner, Paul ; Ali, Saad ; Shah, Mubarak: A 3-dimensional Sift
Descriptor and Its Application to Action Recognition. In: Proceedings of
the 15th ACM International Conference on Multimedia. Augsburg, DE, 2007,
S. 357–360

[SF68] Sobel, Irwin ; Feldman, Gary: A 3x3 isotropic gradient operator for image
processing. Stanford, CA, 1968

[Sif14] Sifre, Laurent: Rigid-Motion Scattering For Image Classification, Echole
Polytechnique, PhD Thesis, 2014

[SIVA17] Szegedy, Christian ; Ioffe, Sergey ; Vanhoucke, Vincent ; Alemi, Alexan-
der A.: Inception-v4, Inception-ResNet and the Impact of Residual
Connections on Learning. In: Proceedings of the 31st AAAI Conference on
Artificial Intelligence. San Francisco, CA, Februar 2017, S. 4278–4284

[SLC04] Schuldt, Christian ; Laptev, Ivan ; Caputo, Barbara: Recognizing hu-
man actions: a local SVM approach. In: Proceedings of the 17th International
Conference on Pattern Recognition (ICPR) Bd. 3. Cambridge, UK, August
2004, S. 32–36

[SSLW17] Sun, Xiao ; Shang, Jiaxiang ; Liang, Shuang ; Wei, Yichen: Compositional
Human Pose Regression. Venice, IT, Oktober 2017, 2602–2611

[ST13] Sapp, Benjamin ; Taskar, Ben: MODEC: Multimodal Decomposable
Models for Human Pose Estimation. In: Proceedings of the 2013 IEEE

https://ls11-www.cs.tu-dortmund.de/people/rudolph/teaching/lectures/CI/WS2018-19/lecture.jsp
https://ls11-www.cs.tu-dortmund.de/people/rudolph/teaching/lectures/CI/WS2018-19/lecture.jsp
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

bibliography 135

International Conference on Computer Vision (ICCV). Sydney, AU, Dezember
2013

[SWGH17] Song, Jie ; Wang, Limin ; Gool, Luc V. ; Hilliges, Otmar: Thin-
Slicing Network: A Deep Structured Model for Pose Estimation in Videos.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Honolulu : IEEE, 2017. – ISBN 978–1–5386–0457–1, 5563–5572

[SZ14] Simonyan, Karen ; Zisserman, Andrew: Two-Stream Convolutional
Networks for Action Recognition in Videos. In: Ghahramani, Z. (Hrsg.)
; Welling, M. (Hrsg.) ; Cortes, C. (Hrsg.) ; Lawrence, N. D. (Hrsg.)
; Weinberger, K. Q. (Hrsg.): Advances in Neural Information Processing
Systems 27. 2014, S. 568–576

[SZS12] Soomro, Khurram ; Zamir, Amir R. ; Shah, Mubarak: UCF101:
A Dataset of 101 Human Actions Classes From Videos in The Wild.
In: arXiv:1212.0402 [cs] (2012), Dezember. http://arxiv.org/abs/1212.
0402. – arXiv: 1212.0402

[TBF+
15] Tran, Du ; Bourdev, Lubomir ; Fergus, Rob ; Torresani, Lorenzo ;

Paluri, Manohar: Learning Spatiotemporal Features With 3D Convolu-
tional Networks. In: Proceedings of the 2015 IEEE International Conference
on Computer Vision (ICCV). Santiago, CL, Dezember 2015, 4489–4497

[TS14] Toshev, Alexander ; Szegedy, Christian: DeepPose: Human Pose Es-
timation via Deep Neural Networks. In: Proceedings of the 2014 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Columbus,
OH, Juni 2014, S. 1653–1660

[VL01] Vincent, E. ; Laganiere, Robert: Detecting planar homographies in an
image pair. In: Proceedings of the 2nd International Symposium on Image and
Signal Processing and Analysis (ISPA). Pula, HRV, Juni 2001, S. 182–187

[Wan18] Wang, Chi-Feng: A Basic Introduction to Separa-
ble Convolutions. https://towardsdatascience.com/

a-basic-introduction-to-separable-convolutions-b99ec3102728.
Version: August 2018

[WC07] Wong, Shu-Fai ; Cipolla, Roberto: Extracting Spatiotemporal Interest
Points using Global Information. In: Proceedings of the 2007 International

http://arxiv.org/abs/1212.0402
http://arxiv.org/abs/1212.0402
https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728
https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728

136 bibliography

Conference on Computer Vision (ICCV). Rio de Janeiro, BR, Oktober 2007, S.
1–8

[Wer74] Werbos, Paul J.: Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences, Harvard University, PhD Thesis, 1974

[WKSL13] Wang, Heng ; Kläser, Alexander ; Schmid, Cordelia ; Liu, Cheng-
Lin: Dense Trajectories and Motion Boundary Descriptors for Action
Recognition. In: International Journal of Computer Vision 103 (2013), Mai,
Nr. 1, S. 60–79

[WRKS16] Wei, Shih-En ; Ramakrishna, Varun ; Kanade, Takeo ; Sheikh, Yaser:
Convolutional Pose Machines. In: Proceedings of the 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Las Vegas. NV, Juni
2016, S. 4724–4732

[WS13] Wang, Heng ; Schmid, Cordelia: Action Recognition with Improved
Trajectories. In: Proceedings of the 2013 IEEE International Conference on
Computer Vision (ICCV). Sydney, AU, Dezember 2013, S. 3551–3558

[WXW+
16] Wang, Limin ; Xiong, Yuanjun ; Wang, Zhe ; Qiao, Yu ; Lin, Dahua

; Tang, Xiaoou ; Van Gool, Luc: Temporal Segment Networks: To-
wards Good Practices for Deep Action Recognition. In: Leibe, Bastian
(Hrsg.) ; Matas, Jiri (Hrsg.) ; Sebe, Nicu (Hrsg.) ; Welling, Max (Hrsg.):
Proceedings of the 14th European Conference on Computer Vision (ECCV).
Amsterdam, NL : Springer International Publishing, Oktober 2016, S.
20–36

[YR11] Yang, Yi ; Ramanan, Deva: Articulated pose estimation with flexible
mixtures-of-parts. In: Proceedings of the 2011 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Colorado Springs, CO, Juni 2011, S.
1385–1392

[YR13] Yang, Yi ; Ramanan, Deva: Articulated Human Detection with Flexible
Mixtures of Parts. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 35 (2013), Dezember, Nr. 12, S. 2878–2890

[ZFB12] Zuffi, Silvia ; Freifeld, Oren ; Black, Michael J.: From Pictorial Struc-
tures to deformable structures. In: Proceedings of the 2012 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Providence, RI, Juni
2012, S. 3546–3553

bibliography 137

[Zhu16] Zhu, Aichun: Articulated human pose estimation in images and video, Troyes,
PhD Thesis, 2016

[ZWN+
17] Zhang, Shugang ; Wei, Zhiqiang ; Nie, Jie ; Huang, Lei ; Wang, Shuang ;

Li, Zhen: A Review on Human Activity Recognition Using Vision-Based
Method. In: Journal of Healthcare Engineering 2017 (2017)

[ZZD13] Zhang, Weiyu ; Zhu, Menglong ; Derpanis, Konstantinos G.: From
Actemes to Action: A Strongly-Supervised Representation for Detailed
Action Understanding. In: Proceedings of the 2013 IEEE International
Conference on Computer Vision (ICCV). Portland, OR, Dezember 2013, S.
2248–2255

	1 Introduction
	2 Fundamentals
	2.1 Human Action Recognition
	2.1.1 Action Granularity
	2.1.2 Video-based HAR

	2.2 Pose Estimation
	2.3 Neural Networks
	2.3.1 Artificial Neural Networks
	2.3.2 Convolutional Neural Networks

	3 Related Work
	3.1 Pose Estimation
	3.1.1 Pictoral Structure Framework
	3.1.2 Deep Learning Methods

	3.2 Video-based Human Action Recognition
	3.2.1 Shallow Methods
	3.2.2 HAR using Two-Stream Convolutional Neural Networks
	3.2.3 HAR using pose information

	4 Method
	4.1 Deep HAR
	4.1.1 Approach
	4.1.2 Soft-argmax
	4.1.3 Architecture
	4.1.4 Intermediate supervision
	4.1.5 Limitations

	4.2 Proposed experiments

	5 Experiments
	5.1 Datasets
	5.1.1 MPII Human Pose
	5.1.2 Penn Action
	5.1.3 JHMDB

	5.2 Evaluation Metrics
	5.2.1 PCK
	5.2.2 PCKh
	5.2.3 Single- and Multi-Clip Accuracy

	5.3 Experimental Results
	5.3.1 Accuracy of Soft-argmax function
	5.3.2 Replication of Original Work
	5.3.3 Pose estimation on JHMDB dataset
	5.3.4 HAR on JHMDB Dataset
	5.3.5 Effect of Combining Loss Functions

	6 Conclusion
	6.1 Future Work

