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1
I N T R O D U C T I O N

Despite digital documents produced by electronic devices are used in many fields,
crucial documents, such as official documents with signature and historical documents
still rely on paper support and handwriting. Along with the improvement in image
processing, this large amount of handwritten documents are processed and preserved
in a digital form. Digitization of large collections of documents enables to copy and
display its contents via electronic devices. In order to effectively obtain knowledge
from these collections, it is necessary to develop methods that extracts information
from such a large number of handwriting documents images.

One crucial task is to recognize the word image contents, and convert it into a
transcription. This is called word recognition. Within the scope of segmentation-
based offline handwriting word recognition aided by a lexicon, the segmented words
are described by a set of features. These are used to train a classifier to build a
model. In order to perform recognition, the approach of Bag of Features (BoF) extracts
the features of an input image. Then, these features are classified based on the
trained model into one of the candidate words in the lexicon. Recently, Convolutional
Neural Network (CNN) are widely used as integrated framework which replaces
above pipeline from pre-processing to classification. CNNs are successfully used for
handwritten digit recognition in [LBD+

90], and first applied to the MNIST dataset for
handwritten digits recognition [LBBH98a]. As such, CNNs are not only originated
from handwriting word recognition, but recently used to achieve state-of-the-art results
in that birthplace as the form of CNN-RNN hybrid architecture [DKMJ18].

Whereas the CNN architecture is trained through supervised learning algorithm,
handwriting word recognition task is considered as a special case of zero-data learning.
Therefore, the direct use of a CNN as a conventional multi-class classifier with softmax
is not an optimal approach for handwriting word recognition. The reason is that CNNs
in such application cannot make prediction for unseen classes of words in a supplied
dictionary or lexicon. This problem is also called Out of Vocabulary (OOV) problem.
Here, attribute-based classification can be used to address the OOV problem. This
approach suggest to use attributes as intermediate representation for both images and
transcriptions of word. Images are transformed into probability of existing attribute
given an image called attribute score. Transcriptions are transformed into binary

3



4 introduction

attribute representation reflecting existence of attributes. Then, estimated attribute
scores are classified into a transcription of class.

In this thesis, attribute-based classification is used for handwriting word recognition,
and it is dubbed as attribute-based word recognition. A special type of deep CNN
called PHOCNet [SF18] is employed to estimate attribute scores from word images
in this work. The network is originally designed for word spotting, and achieves
state-of-the-art results for word spotting on several handwriting datasets. Based on this
results, the competence of PHOCNet that predicts attributes from image is exploited
to the attribute-based word recognition in this thesis.

With employing the PHOCNet, the recognition task is reduced to classify estimated
attributes score by PHOCNet into a class of lexicon. For this multi-class classification
task, similar works as [AGFV14] and [PW16] conventionally consider a simple nearest
neighbour search. They also propose to use Canonical Correlation Analysis (CCA) for
deriving new representations that maximize correlation between two different attribute
representations. In this thesis, each of the two methods is cascaded to the PHOCNet as
a baseline approach. Then, this thesis also proposes to employ a probabilistic classifier
called Direct Attribute Prediction (DAP) [LNH14] for attribute-based word recognition.
Additionally, the thesis introduces two novel methods called CCADAP and MLPs
with pseudo samples which can improve the recognition performance compared to
simple nearest neighbour search. CCADAP is a way of using CCA for a temporal
recognition of input handwriting documents predicted by DAP. MLPs with pseudo
samples proposes to train a conventional softmax MLPs with pseudo samples for
zero-data learning.

This thesis is structured as follows. Chapter 2 explains the fundamental concepts of
Artificial Neural Network (ANN) and CCA which are used in this thesis. In chapter
3, attribute-based classification is introduced, and two different CNNs estimating
attributes from image, PHOCNet and CNN-N-Gram, are described. Then, chapter 4

introduces attribute-based word recognition and its different methods. The experimen-
tal results of the methods in chapter 4 are evaluated in chapter 5. Finally, conclusions
are drawn from above chapters and discussed in chapter 6.



2
F U N D A M E N TA L S

2.1 artificial neural networks

Artificial Neural Networks (ANNs) is inspired by biological neural networks which
constitute animal brains. This computing system is based on a collection of connected
elementary units called artificial neurons. The chapter starts from the type of artificial
neuron called a perceptron which were inspired by earlier work called McCulloch–Pitts
(MCP) neuron, and introduces the motivation and the capability of its multi-layered
connection. The variation of perceptrons with learning algorithm, sigmoid neurons,
inspire current use ANN in machine learning. Therefore, the chapter also covers
sigmoid neurons, learning algorithm and different kinds of cost function. In addition,
the chapter also discuss one of the central challenges in machine learning called
generalization and its related issues. At the end of the chapter, Convolutional Neural
networks(CNNs) which have been widely used in object recognition is also introduced.
[Roj96], [Nie15].

2.1.1 Perceptrons and Multi-Layer Perceptrons (MLPs)

Perceptrons were developed in the 1950s and 1960s by the scientist Frank Rosenblatt
[Ros58], [Nie15]. A perceptron is the single computing unit which take binary inputs
and computes a single binary output. He proposed the use of real numbers weights
which express the importance of inputs for computing output. If weighted sum of
inputs is greater than real number threshold, θ, then the output is one, and otherwise
the output is zero. The algebraic expression of computing output is like as below.

y =


1 if

N∑
j=1

wjxj > θ

0 otherwise

(2.1.1)
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6 fundamentals

To simplify described perceptron, the threshold can be moved to the other side of
inequality, and the negative value of threshold is called bias.

y =


1 if

N∑
j=1

wjxj + b > 0, where,b = −θ

0 otherwise

(2.1.2)

In general, the task of perceptron can be interpreted as the simple model that makes
decisions by gathering weighted evidence. Technically, it can be used to compute
elementary logical functions. Let assume there are two inputs for perceptron, and it
then yields below expression.

y =

1 if x2 > −w1w2x−
b
w2

0 otherwise

(2.1.3)

The conditional statement for output above can be concerned as hyperplane. Com-
putability of logical functions of perceptron can be usually depicted as follows. The

Figure 2.1.1: Computability of logical functions of perceptron.

figure 2.1.1 shows that single perceptron separates plane in two half planes, and it
can then compute simple logical functions AND, OR, NAND and NOR. However,

Figure 2.1.2: XOR problem of perceptron.
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as shown in the figure 2.1.2, XOR problem cannot be solved by separating space in
two subspaces with hyperplane. This limitation of single perceptron and single-layer
perceptrons is tackled by adding a layer. Each percetron in first layer of the network

Figure 2.1.3: Solving XOR problem with three neurons in two-layers.

in figure 2.1.3 seperates space with each hyperplane, and perceptron of second layer
then make possible to solve XOR problem by computing logical function, ’AND’,
for outputs of first layer perceptrons. With generalize the task of two-layer percep-
trons depicted in figure 2.1.3, many perceptrons in second layer can identify convex
sets. A three-layer perceptrons theoretically have capability of identifying arbitrary
sets. Any arbitrary set can be partitioned into several convex sets, and these sets
can be representable by second layer. And those can then be combined in third layer.
Therefore, theoretically, more than three layers is not necessary, and a three-layer
perceptrons already has the capability of classifying any complex patterns. However,
even Multi-Layer Perceptrons (MLPs) have infinite theoretical possibility, it cannot be
fully exploited in practice because of the large number of perceptrons. It will not be
possible for person to tune the weights and biases of them manually. For that reason,
the learning algorithm for the network parameters is introduced.

2.1.2 Sigmoid Neurons

The learning algorithm of the network is based on the trial and error. In the network,
small change of weight in any neuron may cause a small change in network output as
shown in figure 2.1.4 The evaluation of changed output provide the clues following
small changes of the weight. With this simple learning algorithm, network change the
weights and biases iteratively to produce better output. However, the above simple
learning algorithm is not effectively applicable for perceptrons, because the output
of perceptron is whether one or zero, i.e.,binary. Specifically, changing of weights
only can cause flip the output, so learning algorithm hard to find proper direction
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Figure 2.1.4: General idea of learning algorithm for the network [Nie15].

and degree of changing weights. A sigmoid neuron was introduced to address the
problem. Each input for the sigmoid neuron is real values between 0 and 1. The
output is computed by squashing accumulated weighted input with sigmoid function.
It can be algebraically written as bellow.

output = σ(w · x+ b) (2.1.4)

σ(z) ≡ 1

1+ e−z
(2.1.5)

And, the shape of sigmoid function is plotted below 2.1.5 The use of sigmoid function

Figure 2.1.5: Sigmoid function [Nie15].

make possible for each neuron to have output as real number larger than 0 and smaller
than 1. And the smoothness of sigmoid activation function does important role in
network learning. With considering the smoothness of function as partial derivative,
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the small change of output with respect to small change of parameters can then be
written as (2.1.6) [Nie15].

∆output ≈
∑
j

∂output

∂wj
∆wj +

∂output

∂b
∆b (2.1.6)

The binary output of perceptron can be described as activation with not differentiable
signum function. But, in the case of sigmoid neuron, ∆output comes out as linear
function of ∆wj and ∆ b.

Rectified Linear Unit (ReLU)

The section only discuss about sigmoid neurons which used sigmoid as the activation
function. One of well-known variation on the sigmoid neuron is the rectified linear
neuron or rectified linear unit [Nie15]. The output of a rectified linear unit with input
x, weight vector w, and bias b is given by [Nie15]

max(0,w · x+ b) (2.1.7)

Graphically, the rectifying function max(0,z) looks like figure 2.1.6. Depending on

Figure 2.1.6: The rectifying function max(0,z) [Nie15].

the application, the use of above rectifying function as activation function, ReLU,
outperform sigmoid networks. It will be discussed in later section.

2.1.3 Loss Functions

From the outline of network learning shown in figure 2.1.4, more specific goal of
learning is to find weights and biases which minimize difference between network
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output and target value for all training inputs. To derive algebraic expression and
to apply mathematical optimization, the difference need to be mapped onto a real
number. This function is called a loss function or cost function.

Quadratic Cost

It is also known as the mean squared error. The function is described in equation
(2.1.8).

C(θ) =
1

2n

n∑
i=1

‖ŷ(i) − y(i)‖2 (2.1.8)

θ denotes the collections of all parameters in network, n is the total number of training
samples. And ŷ(i) is network output for i-th training sample, and y(i) is the target
value also called label of i-th training sample. The quadratic cost function is non-
negative because it is defined as summation of squared error. Therefore, learning
algorithm is simply find parameters which minimize above cost function.

Softmax log-Loss

In the use of ANN for multi-class classifier, the label of training sample can be one-hot
encoded vector which indicates target class as one. In the probabilistic point of view,
the goal of ANN is to estimate output class probability for each class in test. To get the
representation of probability as output, fully connected layer with softmax function is
widely used for output neurons’ activation. Let zLj as computed output for j-th neuron
in output layer L, and p̂j is the probability of j-th class, then softmax function can be
written as follows.

p̂j =
ez
L
j

K∑
k=1

ez
L
k

(2.1.9)

Each output of the softmax layer can be concerned as probability of each class, because
summation of all outputs is one.

K∑
j=1

p̂j =

K∑
j=1

ez
L
j

K∑
k=1

ez
L
k

= 1 (2.1.10)
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From above representation, loss function can be derived by computing cross-entropy.

E = −
1

N

N∑
i=1

l(i) · log p̂(i) (2.1.11)

The l(i) vector of above equation is one-hot encoded vector which contain one at the
index of class label of i-th sample.

Binary Logistic Loss

An ANN can be used as multi-label classifier as well as multi-class classifier. Especially,
when the network is used to predict binary n-out-of-k representations, the Binary
Logistic Loss function is mainly used for learning in the network. The loss function can
be derived from a probabilistic point of view. Let θ be the collections of all parameters
in network, and y(i) represents the target output given input x(i). The goal of learning
which stated in the beginning of this subsection is then can be interpreted as to find
parameters, θ̂, which maximize the likelihood of correct prediction, label y(i), given
input for total n number of samples [SF17].

θ̂ = argmax
θ

n∏
i=1

p(y(i) | x(i), θ) (2.1.12)

To derive loss function from above objective equation, let assume conditional indepen-
dence for M number of each output given input. Then each likelihood can be written
as below product form.

p(y1, ...,yM | x(i), θ) =
M∏
m=1

p(ym | x(i), θ) (2.1.13)

The binary label ym only has the value one or zero, and each prediction can be denoted
as ˆym and 1− ˆym respectively.

p(ym = 1 | x(i), θ) = ŷm (2.1.14)

p(ym = 0 | x(i), θ) = 1− ŷm (2.1.15)
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From (2.1.14), each output probability, ŷm, follows Bernoulli distribution. Therefore,
the product of each likelihood (2.1.13) can be rewritten as below.

M∏
m=1

p(ym | x(i), θ) ∼
M∏
m=1

ŷymm (1− ŷm)(1−ym), ym ∈ {0, 1} (2.1.16)

Finally, the Binary Logistic Loss function is negative-log of (2.1.16).

l(ŷ,y) = −
1

M

M∑
m=1

[ym log ŷm + (1− ym) log(1− ŷm)] (2.1.17)

2.1.4 Learning with Gradient Descent

With combining the statement about learning in seciont 2.1.2 and 2.1.3, the goal of
network train is to find network parameters which make the cost, also called loss, as
small as possible. Because the loss function of ANN depends on very large number of
parameters, computing derivatives for all parameters with calculus to find extremum
of loss function is not reasonable. For this reason, Gradient Descent (GD) is adapted
as learning algorithm for ANN. In this subsection, the weights are only considered as
parameters to derive analytic representation, and will generalize to bias. The change
of cost function with respect to the change of N number of weights analytically can be
written as

∆C ≈ ∂C

∂w1
∆w1+, ...,+

∂C

∂wN
∆wN. (2.1.18)

The direction of change, ∆C, should be negative because the goal is to find minimum
of C. Let define a vectors of changes in weight as ∆w and gradient of C which is a
vector of partial derivatives as ∇C.

∆w = [∆w1, ...,∆wN]T (2.1.19)

∇C = [
∂C

∂w1
, ...,

∂C

∂wN
]T (2.1.20)

Then (2.1.18) can be written as

∆C ≈ ∇C ·∆w. (2.1.21)
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Now, let assume the change rule of weight, ∆w, with positive learning rate η as below.

∆w = −η∇C (2.1.22)

Then (2.1.21) guarantees negative direction of changing C, ∆C, because

∆C ≈ −η∇C · ∇C = −η‖∇C‖2. (2.1.23)

With the proof of ∆C 6 0 in (2.1.23), the assumed change rule of weight in (2.1.22)
is applicable. Therefore, the rule of changing weight can be written as below with
notation w ′ as updated weight.

w→ w ′ = w− η∇C (2.1.24)

In the iteration of gradient descent, update rule of each parameter can then be written
as below with denoting k and l as each weight and bias respectively.

wk → w ′k = wk − η
∂C

∂wk
(2.1.25)

bl → b ′l = bl − η
∂C

∂bl
(2.1.26)

Stochastic Gradient Descent (SGD)

As shown in the loss functions, (2.1.8) and (2.1.11), they are an average over costs for
individual training samples. When N is the number of samples, It can be analytically
written as

C =
1

N

N∑
i=1

Cxi . (2.1.27)

Therefore, when use a large amount of training samples, above (2.1.27) full batch
gradient descent requires huge computation, and slow down the training. To tackle
those problems, Stochastic Gradient Descent (SGD) randomly take small number of
training samples, and compute gradient with them to estimate the overall gradient.
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The subset of full batch, Xmini, which contains randomly choosen M samples is called
minibatch.

{x
(rnd)
1 , ..., x(rnd)M } ∈ Xmini ⊂ X (2.1.28)
M∑
j=1

∇C
x
(rnd)
j

M
≈

N∑
i=1

∇Cxi

N
= ∇C (2.1.29)

With above estimation, the update rule of each parameter in SGD can be written as

wk → w ′k = wk − η
1

M

M∑
j=1

∂C
x
(rnd)
j

∂wk
(2.1.30)

bl → b ′l = bl − η
1

M

M∑
j=1

∂C
x
(rnd)
j

∂bl
. (2.1.31)

SGD takes unfolded subset, Xmini, in iteration until covers entire training sample set,
X, and it is called to complete an epoch of training.

2.1.5 Backpropagation

In previous section 2.1.4 the way of updating network parameters with using gradient
is only discussed. However, an efficient computing of gradient also matter for learning
in ANN. A fast gradient computing algorithm known as backpropagation is widely
used for learning in neural networks. The backpropagation algorithm was originally
introduced in the 1970s, but its importance wasn’t fully appreciated until a famous
1986 paper [DR88] by David Rumelhart, Geoffrey Hinton, and Ronald Williams
[Nie15]. That paper describes several neural networks where backpropagation works
far faster than earlier approaches to learning, making it possible to use neural nets
to solve problems which had previously been insoluble [Nie15]. The idea behind
backpropagation is that the error propagates back. it can be derived from simple two
layer example below, and can generalize to other MLPs which have more than one
hidden layers. In figure 2.1.7, xi denotes inputs, and yj and zk are values after L-1 and
L layer respectively. And let assume both layer use sigmoid activation (2.1.4). Then
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Figure 2.1.7: Example of two layer network to derive back propagation algorithm.

output of j-th neuron in L-1 layer and that of k-th neuron in L layer can be written as
follow.

yj = σ

( I∑
i=1

wijxi

)
= σ(wTj · x), wherewTj = [w1j, ...,wIJ]T (2.1.32)

zk = σ

( J∑
j=1

ujkyj

)
= σ(uTk · y), whereuTk = [u1k, ...,uJK]T (2.1.33)

Let substitute yj in (2.1.33) to (2.1.32).

zk = σ

( J∑
j=1

ujk · σ
( I∑
i=1

wijxi

))
(2.1.34)

And then, with the target output, z∗k, the cost for inputs can be written as

Cx =

K∑
k=1

(zk − z
∗
k)
2. (2.1.35)
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The cost, Cx, can be written with respect to parameters by substituting zk of (2.1.35)
to (2.1.33) and (2.1.34).

Cx =

K∑
k=1

[
σ

( J∑
j=1

ujk · σ
( I∑
i=1

wijxi

))
− z∗k

]2
(2.1.36)

Cx =

K∑
k=1

[σ(uTk · y) − z∗k]2 (2.1.37)

From update rule of weights derived in (2.1.25), the partial derivatives need to be
computed.

Cx

ujk
= 2[σ(uTk · y) − z∗k]σ ′(uTk · y)yj (2.1.38)

Derivative of sigmoid is directly determinable from function values.

σ ′(z) = σ(z)(1− σ(z)) (2.1.39)

With using (2.1.39), the equation (2.1.39) can be rewritten as

Cx

ujk
= 2[σ(uTk · y) − z∗k]σ(uTk · y)(1− σ(uTk · y))yj (2.1.40)

= 2[zk − z
∗
k]zk(1− zk)︸ ︷︷ ︸
δk

yj. (2.1.41)

Let define δk as error signal for k-th output in layer L, and then inspect how the
error signal propagated in preceding layer with deriving partial derivatives of Cx with
respect to w.

Cx

wij
= 2[σ(uTk · y) − z∗k]σ ′(uTky)ujkσ ′(wTj )xi (2.1.42)

= xiyj(1− yj)

K∑
k=1

2[zk − z
∗
k]zk(1− zk)ujk (2.1.43)

= xi yj(1− yj)

K∑
k=1

δkujk︸ ︷︷ ︸
δj

= xiδj (2.1.44)
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From above relation between δk and δj, back- propagating error can be generalized
to MLPs more than two layers. Let oj be the output of j-th neuron in any layer, and
assume ANN have L > 2 layers. Then error signal for all layers can be generally
defined as below.

δj =


oj(1− oj)(oj − z

∗
j ) if j ∈ output layer L

oj(1− oj)
∑

k∈m+1

δkwjk if j ∈ layer m < L
(2.1.45)

Based on above generalization, update rule of weights between i-th neuron of current
layer and j-th neuron of following layer (2.1.25) can be written with regard to back-
propagating error.

wij → w ′ij = wij − ηoi δj (2.1.46)

As shown in (2.1.45), the error in output layer is determined by the output of its
neurons and target value (i.e. label). On the other hand, (2.1.45) also shows that
the error of all non-output layer is defined with error of all neurons of subsequent
layer and weights of associated connections. In stand point of errors, they are firstly
determined at output neurons. And that computed errors in output layer are then
used to calculate errors of the preceding layer, and the errors of current layer are again
used to compute errors its preceding layer. Thus, the error is propagated backwards
from output layer to first layer, and this error back-propagating algorithm is called
backpropagation.

2.1.6 Generalization and Regularization

Until previous section 2.1.5, the learning algorithm only concerned to minimize
training error (i.e. optimizing loss function). However, the reason why train machine
learning model is to apply it for previously unseen inputs, and the learning algorithm
discussed so far may not always guarantee optimized output for test samples. In such
a case, Generalization and Regularization should be additionally considered to get
reliable results in application.

Generalization

The ability of machine learning model to perform well on previously unobserved
inputs is called generalization [GBC16]. Specifically, in addition to minimize training
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error, another requirement for machine learning model such as ANN is to minimize
the gap between training error and test error. The test error is also called generalization
error, and it is defined as the expected value of the error on a new inputs [GBC16]. With
regard to above two different goals, the model can be evaluated by underfitting and
overfitting. Underfitting occurs when the model cannot sufficiently minimize training
error [GBC16]. Overfitting occurs when the learning from training cannot sufficiently
generalize to test. The relation between generalization and under/overfitting can be
easily described by model capacity. In general, machine learning can be considered as
to variate model capacity [GBC16]. Trained model with insufficient capacity are unable
to solve complex tasks even in given labeled training samples. On the other hands,
too high capacity with over-train can solve given specific complex task, but it may
not proper model to solve the present task such as classifying previously unobserved
patterns. As regards the model of ANN, underfitting can be rather easily avoided with
increasing the number of neurons, and regularization techniques are widely used to
prevent overfitting.

Regularization

“Regularization is any modification we make to a learning algorithm that is intended
to reduce its generalization error but not its training error” [GBC16]. According to the
explanatory definition above, many approaches can be categorized as regularization
technique. Among them, the subsection covers Data Augmentation, Weight Decay and
Dropout.

(i) Data Augmentation

Training and generalization error vary as the size of the training set varies. Expected
generalization error can never increase as the number of training examples increases
[GBC16]. The larger number of labeled training samples make possible for learning
model to reduce gap between training and generalization errors. However, in most
cases in machine learning, the labeled training samples are scarce, and the number
of those are limited. Data Augmentation is one of regularization techniques which
increases the amount of training data using previously given original training data.
Depending on specification of problems, various data augmentation techniques can be
applied. One of the most intuitive examples is image augmentation for visual object
classification tasks. Below figure, 2.1.8, shows augmentation of training word image
labeled as "move". Let assume word images given in figure 2.1.8 are used for training
word image classifier. Then the augmented image, (b) of figure 2.1.8, help classifier
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(a) Original (b) Augmented

Figure 2.1.8: Example for image augmentation with affine transform.

train more various visual pattern of images for class "move". Thus, the additional
learning based on augmented samples is obviously advantageous to classify unseen
images of that class in test.

(ii) Weight Decay

Weight decay is also known as L2 regularization. The idea of the technique is to
add regularization term to the loss function. Let unregularized and original function
discussed in section 2.1.3 as C0, then the regularized loss function can be written as
below.

C = C0 +
λ

2
‖w‖22 = C0 +

λ

2
wTw (2.1.47)

In regularization term, the squared magnitude of all weights, same as squared L2-
norm, is scaled by a factor λ/2, where λ > 0 is known as the regularization parameter
and 1/2 is used for cancelling 2 appeared by gradient with respect to parameters w.
The intuitive interpretation of L2 regularization is to make the ANN used to learn
small weights by penalizing peaky weight vectors. In other words, it can be interpreted
as a way of trade-off between finding diffuse weights and minimizing the original
loss function. The comprise between original loss function and regularization term
depends on the value of regularization parameter λ. The preference of small weights
can be algebraically specified by generalized form of (2.1.25).

w→ w− η
∂C

∂w
(2.1.48)

The derivative of regularized loss function (2.1.47) is as follow.

∂C

∂w
=
∂C0
∂w

+ λw (2.1.49)
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With substituting partial derivative term in (2.1.48) to (2.1.49), the update rule of
weight with regularization can be written as below.

w→ w− η

(
∂C0
∂w

+ λw

)
(2.1.50)

= (1− ηλ)w− η
∂C0
∂w

(2.1.51)

The rescaling factor (1− ηλ) makes the weights smaller, and it is then referred to as
weight decay. This suppressing weights help to avoid too high model capacity related
to description of generalization in section 2.1.6. Hence, relatively simple models with
weight decay tend to reduce overfitting [Nie15].

(iii) Dropout

Previously discussed regularization techniques are common for other machine learning
as well as ANN. Different to them, dropout is a technique for reducing overfitting in
neural networks by modifying the network itself. In each iteration of training, specified
ratio of randomly selected hidden neurons in the network are temporarily deleted. In
particular, dropout technique is same as to train several different networks which have
same number but different combination of neurons in hidden layer. And then, the
output is decided by using some kind of averaging or voting scheme for outputs of
large number of different networks. Below figure 2.1.9 shows a iteration of dropout
for one hidden layer MLPs with ratio 0.5.

(a) no dropout (b) dropout 0.5

Figure 2.1.9: Example for dropout [Nie15].
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In terms of classification task, the dropout also means that forced to learn more
robust features that are useful in conjunction with many different random subsets of
the other neurons [KSH]. In summary, dropout procedure with large iteration is same
as to average the effects of a very large number of different networks. Consequently,
the dropout technique which reflects different ways of overfit from different networks
will be to reduce oveffiting[Nie15].

2.1.7 Convolutional Neural Networks

A shallow network with one hidden layer discussed in section 2.1.1 shows theoretically
ideal capability in complex pattern classification. However, in practice, a deeper
network is advantageous in learning to solve complex visual pattern recognition
problem. Such network can use intermediate layers to build up multiple level of
abstraction. For instance, the neurons in the first hidden layer can be used to recognize
edges of given visual images, and the neurons of second hidden layer can learn to
recognize region or contour built up from edges. Even in the case of more than two
hidden layers, the following hidden layers until output layer can be used to learn more
abstracted complex shapes. Hence, Deeper networks promise enhanced capabilities
in visual pattern recognition. However, those networks have much larger amount
of parameters than shallow networks. Training of such large amount of parameters
was not feasible for many years because of several limitations such as computational
power, vanishing gradient and overfitting problem. After several years has passed, the
advent and wide use of General-Purpose computing on Graphics Processing Units
(GPGPU) enabled massive parallel processing, and it made possible to train huge
amount of parameters. Different to the physical limitation, the vanishing gradient
problem is inherited from the error back propagation algorithm and small upper
bound of the gradient value of a sigmoid or hyperbolic tangent activation function.
The problem was moderately addressed by using Rectified Linear Units (ReLU) non-
linear activation function. Even though parallel computation with GPGPU has been
used for training, deeper network still had large amount of parameters to be trained
if all the layers are fully connected like as shallow networks discussed before. The
special architecture network called Convolution Neural Network (CNN) make possible
to shrink the number of independent parameters to be trained and avoid overfitting
problem. CNN is one of the most widely used types of deep network[Nie15]. The
origins of convolutional neural networks go back to the 1970s[Nie15]. But the seminal
paper establishing the modern subject of convolutional networks was a 1998 paper
[LBBH98b] [Nie15]. In the paper, CNN is applied to MNIST dataset for handwritten
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digits recognition. And CNNs use three basic ideas: local receptive fields, shared
weights and pooling[Nie15].

(i) Local receptive fields

The first architectural characteristics of CNN is to use local receptive fields for connect-
ing a small region of input image in previous layer to each neuron in following hidden
layer. In convolutional network terminology, a small window is often referred to as the
kernel. The output, kernel responses of input image, is referred to as the feature map.
And overlapped region in the input image by the kernel is called the local receptive
field for the hidden neuron. In CNN, as shown in its name, the operation of the local
receptive field is convolution. Let two-dimensional input image as I and kernel as K,
then the algebraic expression of convolution of spatial position x,y in the feature map,
S(x,y), can be written as (2.1.52).

S(x,y) = (K ∗ I)(x,y) =
a∑

s=−a

b∑
t=−b

I(x− s,y− t)K(s, t) (2.1.52)

In above, the kernel size is m×n with m = 2a+ 1 and n = 2b+ 1. And the kernel is
assumed to be flipped relative to input. For example, as for visual pattern recognition,
the neurons of input layer is depicted as 28× 28 with pixel intensities of image instead
of vertical line of neurons as usual in MLPs. The local receptive field with 5× 5 kernel
slides across the entire input image with starting from its top-left corner. Then the
local receptive field slides over by one pixel to the right, to connect to the second
neuron from the left corner in first hidden layer. And so on,the first hidden layer
will be build up with 24× 24 neurons. The example is concretely illustrated in figure
2.1.10. The idea of using local receptive field is also referred to as sparse interactions
to distinguish it from fully connection between traditional neural network layers.

(ii) Shared weights

As described in (2.1.52), each unit of m× n kernel has each different weight with
respect to its spatial position s, t. In other words, each hidden neuron has a bias and
m×n weights connected to its local receptive field. The idea of shared weights is to
use the same weights and bias for each of the hidden neurons. For that, let suppose
σ is the neural activation function. b is the shared value for the bias. ws,t is a m×n
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Figure 2.1.10: Illustration of sliding local receptive field over by one pixel from top-left corner
(top) to the right (bottom) [Nie15].

array of shared weights. And, similar to (2.1.4), the output of each neuron of spatial
position x, y can then be written as below with convolution operation (2.1.52).

σ

( ∑
s

∑
t

Ix−s,y−t ·ws,t + b

)
(2.1.53)

The response of the local receptive fields with shared weights is same notion for linear
filter response of image filtering process in typical computer vision. So, it means
that all the neurons in the hidden layer detect exactly the same visual feature for
each feature map, just at different spatial position in the image. The illustrations in
figure 2.1.10 can detect just a single kind of localized feature with one feature map.
However, a number of localized features are needed to visual pattern recognition, so
a convolutional layer typically consists of several different feature maps as shown
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in figure 2.1.11. The advantages of sharing weights and biases not only capturing

Figure 2.1.11: Illustration of 3 different feature maps with each different 5× 5 shared weights
[Nie15].

localized feature but greatly reducing the number of parameters. In the case of
example in figure 2.1.11, with 28× 28 = 784 input neurons, it assumed 5× 5 shared
weights and a single shared bias for each feature map. Each feature map requires
26 parameters, and the convolutional layer is then defined by a total of 26× 3 = 78

parameters. On the other hand, let assume a fully connected layer with relatively
modest 5 hidden neurons instead of convolutional layer for comparison. It requires a
total of 784× 5 weights, plus an extra 5 biases, overall 3, 925 parameters. Hence, even
in this example, the fully connected layer would have more than 50 times as many
parameters as the convolutional layer. For sure, the example cannot exactly represent a
direct comparison between the number of parameters, because the convolutional and
fully connect layer are different in essential ways. It is clear that the sharing weights
with convolutional layer would reduce the number of parameters compared to fully-
connected layer which results in the same performance especially for large networks.
The reduced number of parameters, in turn, make possible the deep networks to be
trained with using convolutional layers.

(iii) Pooling

A convolutional network typically contains a set of three layers in a row. the first
layer, convolutional layer, performs feature mapping with local receptive fields. In the
following layer called ReLU layer, each linear activation is run through the rectified
linear activation function. Lastly, in the pooling layer, a pooling function is applied
to modify the output of the nonlinear activation. A pooling function replaces the
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output of the net at a certain location with a summary statistic of the nearby outputs
[GBC16]. The max pooling operation, one of the most widely used pooling function,
reports the maximum output within a rectangular neighbourhood and prepares a
condensed feature map. In a concrete example, a pooling unit simply outputs the
maximum activation in the 2× 2 input region, as illustrated in the following figure.
Note that since the example shown in figure 2.1.12 have 24× 24 neurons output from

Figure 2.1.12: Illustration of max-pooling with a region of 2× 2 neurons [Nie15].

the convolutional layer, after 2× 2 max-pooling it has 12× 12 neurons for each feature.
Finally, the convolutional layer mentioned above usually involves more than a single

Figure 2.1.13: Illustration of convolutional, pooling and fully connected layer [Nie15].

feature map, and max-pooling is applied to each feature map separately. So, the
intuitive interpretation is that once a feature has been detected by linear activation
(i.e. convolution), the convolutional networks efficiently take care of its rough location
relative to other features instead of the exact positional information. This pooling
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offers a crucial benefit which reduces the number of parameters needed in later layers.
For example, in figure 2.1.13, total 3× 12× 12 = 432 neurons are fully-connected to 10
neurons in the last layer. If the network does not involve pooling layer, then a larger
number of parameters are required for 3× 24× 24 = 1, 728 neurons to fully-connect to
10 neurons.

2.2 canonical correlation analysis (cca)

In a scientific process, the object or the data can be described by two sets of variables
corresponding two different views. The analysis of the relations between those
two representations resulted from two views may improve the understanding of
the underlying process. For example in the field of visual object recognition with
machine learning, one variables can be comprised by feature extraction of humans’
understanding. The another variable can be resulted from the machine learning model.
Identifying the relations between two feature representations which are extracted
from same visual object can improve the understanding of machine learning model
and its output. Additionally, the relation could provide new information about the
functioning of the system. Canonical Correlation Analysis (CCA) is the method that
determines and analyses the relation described above. CCA was first introduced by
H.Hotelling [Hot36] as a method for finding relationships between variables, and
first applied in an economics study [Wau42]. Recently, the applicability of CCA
has been demonstrated in modern fields of science such as neuroscience [LCJ15],
machine learning [XBSY13] and bioinformatics [JRFR13]. The section begins with an
introduction to the principles of CCA. After introducing principles, the following
subsection formulates and solves CCA problem with mathematics. Additionally,
one extension of CCA to under-determined setting, regularised CCA, is discussed
[UMK+

17].

2.2.1 The Basic Principles of CCA

CCA is a method for finding linear relations between two multidimensional datasets.
The principle of CCA is to find position vectors which have minimally enclosed angle
between their unit norm vector images in the new coordinate system after linear
transformation with two different datasets respectively. In other words, CCA is to find
two positions in the two data spaces respectively that have images on a unit ball such
that the angle between them is minimised [UMK+

17]. The following notation can be
used to derive more specific illustration of principle. Two different views of the data
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comprise multiple variables on a set of observations. Because the thesis only covers
the topic of visual object recognition, let the set of variables are the attributes (i.e.
feature) representation of the visual objects and be denoted by A for the further use of
these notations. And then, the datasets of different views x and y are denoted by the
matrices Ax ∈ IRn×p and Ay ∈ IRn×q respectively where n represents the number of
observations and p and q are defined by the dimensions of two different representation
of features. Throughout the thesis, all the description about CCA assume that the
variables are standardised to zero mean and unit variance. As mentioned above, the
goal of CCA is to analyse the linear relation between the variables of Ax and Ay based
on linear transformation. For the aim, let the position vectors and their images are
denoted by wx ∈ IRp and wy ∈ IRq and zx ∈ IRn and zy ∈ IRn respectively. The
positions are also referred to as canonical weight vectors, and the images are typically
termed as canonical components. With the notations above, the linear transformations
can be algebraically expressed as below.

Axwx = zx , Aywy = zy (2.2.1)

The data matrices Ax and Ay represent linear transformations of the positions wx and
wy onto the images zx and zy [UMK+

17]. In other words, the canonical components,
zx and zy, are the vectors in the linear subspace spanned by column vectors of Ax
and Ay respectively. There are two constraints of these mapping of CCA. The first
constraint is that canonical components are unit norm vectors. And the second one is
that the enclosing angle between them, θ ∈ [0,π/2], should be minimised [GZ95]. For
the enclosing angle, the minimised angle is same as maximised cosine value. Therefore,
two constraints can be formulated as below.

max
< zx, zy >
‖zx‖2‖zy‖2

= max < zx, zy >= max corr(zx, zy) (2.2.2)

‖zx‖2 = 1, ‖zy‖2 = 1 (2.2.3)

The minimised enclosing angle constraint is also referred to as the canonical correlation,
because it is same for maximizing correlation between unit norm canonical components.
Hence in summary with above notations, the principle of CCA is to find weight
vectors, wx and wy, that are mapped onto an n-dimensional unit ball after the linear
transformations Ax and Ay with the constrains of their images, max < zx, zy >
[UMK+

17].
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2.2.2 Mathematical Definitions of CCA

This subsection formulates CCA problem based on the principles and notations
introduced above, and solve that through eigenvalue problem. Let the smallest angle
is denoted by θ1 resulted from the images zx and zy. And then, it determines the first
canonical correlation, cosθ1, with unit norm constraint of images.

objective : cosθ1 = max < zx, zy >

constraints : ‖zx‖2 = 1, ‖zy‖2 = 1
(2.2.4)

Let the maximum above is obtained by first pair of canonical components, z1x and
z1y. The second smallest angle, θ2, is found by z2x and z2y that are orthogonal to each
preceding canonical components respectively. The procedure is continued until the
number of pairs reaches pre-defined number d 6 min(p,q). This number of canonical
correlations, d, corresponds to the dimensionality of CCA, and it should be less than
or equal to smaller dimension of two variables because it determines the number
of patterns which can be extracted from given two datasets. Hence (2.2.4) can be
recursively generalised to below expression.

objective : cosθd = max < zdx , zdy > (2.2.5)

constraints

‖z
d
x‖2 = 1, ‖zdy‖2 = 1 (unit norm)

< zdx , zrx >= 0, < zdy, zry >= 0, ∀d 6= r (orthogonal)
(2.2.6)

Theoretically, CCA is solved iteratively by finding d number of canonical components
pair. However, in practice, the large dimensionality of CCA for extracting enough
pattern from data requires intensive computing. For this reason, instead of solving it
iteratively, H.Hotelling proposed solving a standard eigenvalue problem as eigenvalue-
based methods for CCA [Hot36]. Alternatively, a generalised eigenvalue problem
approach is widely adapted for computing libraries of CCA [BJ02]. In the technique of
solving CCA with eigen-value based method, the formulation focuses on finding the
positions wx and wy at first, and obtaining the components zx and zy based on their
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linear relation (2.2.1). The objective and constraints, (2.2.4), can then be expanded to
(2.2.7) with respect to weight, w, and data, A.

< zx, zy >=< Axwx,Aywy >= wTxA
T
xAywy

‖zx‖2 = zTxzx = wTxA
T
xAxwx = 1

‖zy‖2 = zTyzy = wTyA
T
yAywy = 1

(2.2.7)

To make convenient to formulate CCA as eigenvalue problem, the multiplication of
data matrices can be rewritten in terms of sample covariance matrices Cxy and Cyx
and the empirical variance matrices Cxx and Cyy. Let each variables is represented by
column vector of data matrix, a.

Ax =


| |

ax,1 · · · ax,p

| |

 , Ay =


| |

ay,1 · · · ay,q

| |

 (2.2.8)

Then, the sample covariance matrix Cxy is defined by 1
n−1A

T
xAy as derived in (2.2.9).

Cxy =


cov(ax,1,ay,1) · · · cov(ax,1,ay,q)

...
. . .

...

cov(ax,p,ay,1) · · · cov(ax,p,ay,q)



=
1

n− 1


aTx,1ay,1 · · · aTx,1ay,q

...
. . .

...

aTx,pay,1 · · · aTx,pay,q


=

1

n− 1
ATxAy

(2.2.9)
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And the empirical variance matrices Cxx and Cyy are given by 1
n−1A

T
xAx and

1
n−1A

T
yAy respectively based on (2.2.10).

Cxx =


cov(ax,1,ax,1) · · · cov(ax,1,ax,p)

...
. . .

...

cov(ax,p,ax,1) · · · cov(ax,p,ax,p)



=
1

n− 1


aTx,1ax,1 · · · aTx,1ax,p

...
. . .

...

aTx,pax,1 · · · aTx,pax,p


=

1

n− 1
ATxAx

(2.2.10)

Now, previously formulated CCA problem (2.2.7) can be rewritten by (2.2.11) in terms
of Cxy, Cxx and Cyy.

< zx, zy >=< Axwx,Aywy >= wTxA
T
xAywy = wTxCxywy

‖zx‖2 = zTxzx = wTxA
T
xAxwx = wTxCxxwx = 1

‖zy‖2 = zTyzy = wTyA
T
yAywy = wTyCyywy = 1

(2.2.11)

In (2.2.11), the factor 1
n−1 can be neglected, because the correlation between zx and zy

does not change with their scaling, because the factor is always cancelled.

corr(zx, zy) =
< zx, zy >
‖zx‖2‖zx‖2

=
1
n−1√
1
n−1

√
1
n−1

·
wTxCxywy√

wTxCxxwx

√
wTyCyywy

(2.2.12)

Substituting (2.2.11) into the defined problem (2.2.4), the objective and constraints can
be summarized as shown below.

objective : max (wTxCxywy)

constraints : wTxCxxwx − 1 = 0, wTyCyywy − 1 = 0
(2.2.13)
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Without loss of generality for unit norm representation, the constraints are expressed
in squared form . Finally, the Lagrange function (2.2.14) can be obtained, and solved
using the Lagrange multiplier technique.

L = wTxCxywy −
ρ1
2
(wTxCxxwx − 1) −

ρ2
2
(wTyCyywy − 1) (2.2.14)

Two Lagrange multipliers are denoted by ρ1 and ρ2 respectively, but ρ1 = ρ2 = ρ
since wTxCxxwx = 1 and wTyCyywy = 1. The goal of solving CCA problem is to find
position vectors, wx and wy. For the purpose, the algebraic expression (2.2.14) is
differentiated with respect to wx and wy.

∂L

∂wx
= Cxywy − ρCxxwx = 0, (2.2.15)

∂L

∂wy
= Cyxwx − ρCyywy = 0 (2.2.16)

The problem comprises two equation for two unknown. The equation (2.2.14) can be
written by (2.2.17).

wx =
C−1
xxCxy

ρ
wy (2.2.17)

With substituting wx of (2.2.17) into (2.2.16), the equation is expressed merely about
wy.

CyxC
−1
xxCxywy = ρ2Cyywy (2.2.18)

If the sample covariance matrix Cyy of above is non-singular, then the problem is
same as to solve below standard eigenvalue problem.

C−1
yyCyxC

−1
xxCxywy = ρ2wy (2.2.19)

The square roots of eigenvalues of the matrix C−1
yyCyxC

−1
xxCxy correspond to the

canonical correlations, and those are found by solving below characteristic equation.

|C−1
yyCyxC

−1
xxCxy − ρ

2I| = 0 (2.2.20)
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After finding eigenvalues by solving above characteristic equation (2.2.20), the position
vector, wb, can be obtained by computing eigenvectors which satisfy the equation.

(C−1
yyCyxC

−1
xxCxy − ρ

2I)wy = 0 (2.2.21)

Since the relation between two position vectors, wa and wb are already known, the
another weight vectors wa can be simply computed based on algebraic expression
(2.2.17). On the other hand, the Lagrange function can also be formulated and solved
through the generalised eigenvalue problem. In here, instead of finding corresponding
pairs of position vectors separately, they are formulated and founded at once from the
simultaneous representation of the equations, (2.2.15) and (2.2.16).

Cxywy = ρCxxwx

Cyxwx = ρCyywy
(2.2.22)

And above simultaneous equations can be represented as a generalised eigenvalue
problem of the form βLw = αRw where the pair (β,α) is an eigenvalue of the pair
(L,R) [Saa11] [UMK+

17]. 0 Cxy

Cyx 0

wx
wy

 = ρ

Cxx 0

0 Cyy

wx
wy

 (2.2.23)

Specifically, the generalised eigenvalue problem can be expressed in the below form.

Lw = ρRw

where L =

 0 Cxy

Cyx 0

 , R =

Cxx 0

0 Cyy

 , w =

wx
wy

 (2.2.24)

Let p is lower than q, then the generalised eigenvalues comprises in pairs.

ρ = {0, ρ1, −ρ1, ρ2, −ρ2, ..., ρp−1, −ρp−1, ρp, −ρp} (2.2.25)

The generalised eigenvectors which is position vectors wx and wy are computed from
the corresponding positive generalised eigenvalues.

In summary, CCA is to find two position vectors wx and wy having images zx
and zy on a unit ball such that the angle between images is minimised after linear
transformations Ax and Ay respectively. In practice, it is computed by applying
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eigenvalue-based methods, and the eigenvalues are canonical correlations and the
eigenvectors are the position vectors that want to compute by solving CCA.

2.2.3 Regularised CCA

The objective of CCA discussed in section 2.2.1 and 2.2.2 is to extract linear relations
in overdetermined datasets. In other words, standard CCA assumes that the number
of observations, n, exceeds the number of variables, p and q, in either dataset. This
assumption of overdetermined setting enables to guarantee the non-singularity of
the covariance matrices, Cxx and Cyy in (2.2.17), (2.2.18) and (2.2.19) of section 2.2.2.
However, when the sample size is insufficient or many of the variables are co-linear,
then CCA is ill-posed in underdetermined setting. It can be algebraically expressed by
the notation used in section 2.2.1.

n < min(p,q) (2.2.26)

If the number of observations n less than the number of variables, p and q, then the
eigenvalue problem cannot be solved without regularisation, because (2.2.26) hurts
the invertibility of the covariance matrices. The regularisation technique for CCA in
underdetermined setting (2.2.26) was proposed in the work of [Vin76]. The idea is to
add arbitrary constants, λ1 > 0 and λ2 > 0, to the diagonal elements of covariance
matrices, Cxx + λ1I and Cyy + λ2I, respectively for improving the invertibility of Cxx
and Cyy. With considering regularisation, the optimisation problem of CCA (2.2.13)
can be rewritten by below.

objective : max (wTxCxywy)

constraints : wTx(Cxx + λ1I)wx − 1 = 0, wTy(Cyy + λ2I)wy − 1 = 0
(2.2.27)

After applying Lagrange multiplier technique similar to the mathematical steps in
section 2.2.2, the CCA problem reduces to below standard eigenvalue problem.

(Cyy + λ2I)
−1Cyx(Cxx + λ1I)

−1Cxywy = ρ2wy (2.2.28)

Similarly, the eigenvalues are obtained by solving below characteristic equation.

|(Cyy + λ2I)
−1Cyx(Cxx + λ1I)

−1Cxy − ρ
2I| = 0 (2.2.29)
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Alternatively, the position wx and wy also can be found by solving the generalised
eigenvalue problem like as (2.2.23). 0 Cxy

Cyx 0

wx
wy

 = ρ

Cxx + λ1I 0

0 Cyy + λ2I

wx
wy

 (2.2.30)

This regularization technique enables to avoid singular problem of covariance matrices,
but it inevitably introduces non-negative regularisation parameters λ1 > 0 and λ2 > 0.
And choosing the parameters likely affects to the optimality of the solution of CCA,
such that cannot resolve ill-posed condition with too small parameters or the covariance
matrices are dominated by λI with too large parameters. A cross-validation procedure
can be used for automatically selecting the optimal regularisation parameters in CCA.
This regularisation technique is firstly proposed in [Lar31], and it is a well-established
non-parametric model selection procedure to evaluate the validation of statistical
predictions. In general, the procedure starts from partitioning the observations into
the subsamples. And then, the training of CCA, estimating a statistic, is first occurred
on one subsample. The other hold-out subsamples are utilized for the validation
purpose. The cross-validation approach specifically developed for CCA has been
further extended in [SWZ08] [UMK+

17]. When the sample size is too small and
not enough to split the data into several folds, then a leave-one-out cross-validation
procedure is an option. However, in most cases the sample size is large enough
to partition the observations into k-folds, and each fold is then used for estimating
parameters in turn until the iteration of folds covers all the samples. This iterative
approach is known as k-fold crossvalidation, and usually the procedure is repeated
until an optimal set of parameters are searched for. Algorithm 1 outlines k-fold
cross-validation to determine the optimal regularisation parameters, λ1 and λ2, in
CCA [UMK+

17].
Regularised CCA is introduced to resolve singularity of covariance matrices in

under-determined conditions such as more variables than observations and excessive
colinearity of variables. The regularisation procedure is to find proper non-negative
scalar parameters such that result in optimal solution of CCA problem by improving
invertibility of the covariance matrices under eigenvalue-based methods.
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Algorithm 1 : Repeated k-fold cross-validation for regularised CCA [UMK+
17].

Input: Data matrices Ax and Ay, number of repetitions R, number of folds F
Output: Regularisation parameter values λ1 and λ2 maximising the correlation on test
data
Pre-defined ranges for values of λ1; λ2;
Initialise r = 1;

repeat
Randomly partition the observations into F folds;
for all values of λ1 do

for all values of λ2 do
for i = 1, 2..., F do

Training set: F− i folds, test set: i fold;
Standardise the variables in the training and test sets;
For the training data, solve |(Cyy+ λ2I)

−1Cyx(Cxx+ λ1I)
−1Cxy− ρ

2I| = 0;
Find wy corresponding to the greatest eigenvalue satisfying
((Cyy + λ2I)

−1Cyx(Cxx + λ1I)
−1Cxy − ρ

2I)wy = 0;

Find wx using w1x =
(Cxx+λ1I)

−1Cxyw
1
y

ρ1
;

Transform the training positions wx and wy using the test observations
Ax,testwx = zx and Ay,testwy = zy;
Compute cos(zx, zy) =

<zx,zy>
‖zx‖2‖zy‖2 ;

end for
Store the mean of the F values for cos(zx, zy) obtained at λ1 and λ2;

end for
end for

until r = R;
Compute the mean of the R values for cos(zx, zy) obtained at λ1 and λ2;
Return the combination λ1 and λ2 that maximises cos(zx, zy)





3
R E L AT E D W O R K

The handwriting word recognition, the work presented in this thesis, conventionally
employs machine learning techniques with assuming the standard supervised learning
setting. This means manually labeled training samples for each class are required for
learning task, and the number of them highly affects classification accuracy. Although
the requirement, preparing large number of labeled samples per class, is obvious,
it is hard to meet such a requirement becuase the handwriting samples are often
very scarce and it is very exhaustive to label the handwriting images manually in the
case of multi-class classification with large number of classes. For example, a typical
desk dictionary may define about 100,000 english vocabulary items [ACW14]. And
let assume the recognition system requires at least 10 samples per class to cover the
differences in writing styles, then overall 1,000,000 samples are needed to achieve good
classification accuracy for unspecified test set. Obviously, one million different samples
are not plausible amount to be manually labeled and to be sufficiently trained by
system. Therefore, in general, it is plausible for recognition system to be given only a
description of the classes without labeled training samples. The machine learning tasks
in this environment is called zero-data learning [LEB08]. Since the handwriting word
recognition can be seen as a special case of zero-data classification, the approaches
in zero-data learning have begun to be used to classify handwriting word image in
recent years

In computer vision, one of the reliable and efficient approach for the object recogni-
tion including word recognition is the Bag of Features (BoF) methods with machine

Figure 3.0.1: Processing pipeline of Bag of Features (BoF)-Approach.
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Figure 3.0.2: Computability of logical functions of perceptron.

learning techniques. The method comprises processing pipeline as shown figure 3.0.1.
In general, the low-level features of the images such as SIFT or HoG were extracted.
And then, visual words and its histogram are computed. At the last step, the ma-
chine learning techniques such as K-Nearest Neighbors algorithm (k-NN) or Support
Vector Machine (SVM) are typically adapted for classification tasks. Recently, the
ANN, discussed in section 2.1, is widely used as an alternative of above step-by-step
approach as shown in figure 3.0.2. The use of ANN offers the advantages of integrated
framework and synthetical optimization.

The chapter mainly introduces attribute-based classification [LNH14] to tackle
aforementioned zero-data problem in handwriting word recognition. It begin with
the outline of attribute-based classification, and discusses about semantic attributes
as well as introduces a special attribute representation of words called Pyramidal
Histogram of Characters (PHOC) [AGFV14]. After that, the second part of the chapter
introduces two different deep CNNs [SF16] [PW16] which are designed for extracting
attribute scores from word images. At the end of the chapter, an another kind of
attribute based classifier called Direct Attribute Prediction (DAP) and its probabilistic
realization [LNH14] are explained.

3.1 attribute-based classification

Attribute-based classification is a way of zero-data learning in the scope of recognizing
classes of patterns or objects. Zero-data learning can be defined as a machine learning
process when no labeled training data are available for several classes (i.e. zero-data
classes) but the descriptions of those classes are given. The idea of realization of such
learning is to effectively utilize the descriptions of the classes in order to compensate
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Figure 3.0.3: Non-discriminative attribute representation of words.

the lack of labeled data. This idea is originated from the capability of human learning
which can identify new classes only with its description. For example, from the phrase
"an animal included in horse family with distinctive black and white striped coat.",
people may reliably identify zebra if they can distinguish different colors and shapes
on the images even if they have never seen an image of zebra with label before. From
the above example, a set of semantically meaningful high-level properties such as
black and white stripes derived from its description called attributes. In summary,
attribute-based classification is to identify and to classify objects based on semantic
features called attributes that are shared by classes to distinguish them based on the
presence or absence of attribute

Attributes of words

As clarified above, an attribute is a distinctive semantic property of an object. So, one
of the most intuitive attributes of word might be the presence of characters. However,
these simplest attributes are not an word discriminative representation, because
different sequence of same set of characters possibly comes out as different word. For
example, the words, "tame" and "mate", would have same attributes representation in
this case. Therefore, suitable attributes of words should encode not only presence of
character but its spatial position to distinguish the words which contain same set of
characters. The attribute representation satisfied above requirements was introduced by
Almazan et al. in [AGFV14], and it was dubbed as Pyramidal Histogram of Characters
(PHOC) by them. As shown in its terminology, the attributes are represented as
binary histogram based on estimating whether certain fraction of word contains
certain characters or not. The term pyramidal in the above context represents level-
wise approach in the way of splitting word. Specifically, the spatial split of word is
determined by level, i.e., the word is split into equal n parts in the level n. For example,
contained characters in the first half of word determines one histogram in level 2,
and characters of second half of word determines another histogram. Therefore, with
adapting enough high level, the concatenation of each histogram throughout entire
levels can result in word discriminative representation. In addition, the linguistic
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Figure 3.1.1: Example of three level PHOC representation [SF16].

point of view, two or three consecutive character may help distinguish different words.
These one, two and three consecutive character attributes are called unigram, bigram
and trigram respectively. However, the previous works, [SF17] and [PW16], already
shown that the use of bigram and trigram does not lead to meaningful improvement in
word spotting or word recognition tasks, even though it increases the dimensionality
of PHOC representation.

3.2 deep cnns for attribute prediction

While the transformation from transcription of a word into attribute is trivial, that
from an image to an estimated representation of attributes may be learned with
modern machine learning techniques. In document image analysis, such as word
spotting and word recognition, AttributeSVMs were adapted to estimate a binary
attribute representation from a word image in the work of Almazán et al. [AGFV14].
A more recent work, [SF18] and [PW16], uses a deep CNN as integrated framework
for estimating attribute instead of deciding vector encoding method and classification
algorithm separately, and the work of Sudholt et el. [SF18] showed that learning
attribute representations with PHOCNet results in state-of-the-art performances for
segmentation-based word spotting in Handwritten Documents [PZG+

16]. Another
specially designed deep CNN estimating attributes was proposed by Poznanski et
al. [PW16], and they dubbed it as CNN-N-Gram. The network is used for estimating
PHOC attributes from handwritten word image in the process of segmentation-based
word recognition.

Based on the outperforming results of the PHOCNet in segmentation-based word-
spotting, the PHOCNet is used for segmentation-based word recognition in this thesis.
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Figure 3.2.1: The architecture of the SPP-PHOCNet [SF16].

And the experimental results of the recognition tasks in this thesis are compared with
those of [PW16].

3.2.1 PHOCNet

A PHOCNet is inspired by VGG16 [SZ14], but specially designed for estimating PHOC
representation from the segmented word images that typically have arbitrary size.
Because its work can be assorted as multi-label classification task, PHOCNet places
sigmoid activation functions in its last layer with Binary Cross Entropy Loss as cost
function for training the network. In the test, the PHOCNet computes each posterior
of attribute being 1 given an image as each of its sigmoid outputs respectively. The
overall architecture of the SPP-PHOCNet is depicted in figure 3.2.1.

The PHOCNet is a specially designed CNN architecture suitable for estimating
attributes from document images, and its architecture is inspired by VGG16 which
is one of the proposed networks in [SZ14]. The network showed state-of-the-art
result in large-scale natural image recognition tasks, and therefore PHOCNet inherits
most of design choices of VGG16 in its convolutional part which is responsible for
feature extraction from the image. These networks replicate convolutional layers with
increasing the number of filters and include max-pooling layer between convolutional
layers, so that the networks learn large number of more abstract features from reduced
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spatial representations in higher convolutional layer. In addition, PHOCNet uses only
3× 3 filters for imposing a regularization in [SZ14].

While the previous design choices are suitable for both natural images and word
images, following two aspects have to be considered when designing an attribute
CNN architecture for document analysis. At first, in the case of segmentation-based
word spotting and recognition, the input images of the network rather largely vary in
their size. Besides, traditional strategies to generate fixed size images such as resizing
and cropping possibly causes semantic distortion. Secondly, typical CNN used for
natural image classification like proposed in [SZ14], is assorted as multi-class classifier.
It works to predict one out of a number of target classes for a given image with
softmax activation just before the output layer of network. However, this scenario is
not feasible for Attribute CNN, because estimating attributes vector representation can
be concerned as multi-label classification task. With considering above two aspects,
the PHOCNet introduces following two differences to the VGG16.

Spatial Pyramid Pooling (SPP) and Temporal Pyramid Pooling (TPP) layer

One of the basic ideas of CNN, convolution with local receptive field, enables to extract
feature from input images that vary in size. And varying size of input images then re-
sults in different number of parameters of feature maps at the end of the convolutional
part. However, fully-connected layers assign fixed number of neurons that cannot
take into account varying number of parameters from preceding convolutional layers.
To address this problem, the PHOCNet employs a Spatial Pyramid Pooling (SPP)
layer between the last convolution layer and first fully-connected layer. In order to
achieve fixed number of parameters regardless of the size of feature maps, a SPP layer
divides each feature map into fixed number of spatial bins, and then applies pooling
operations for each bins. The term ’Pyramid’ means that divided spatial bins are
respectively subdivided in the following level. In detail, each cell is divided both along
the horizontal and vertical axis. And max pooling operation is then applied to each
cell. Let the number of feature maps and levels are denoted as k and l respectively.
The number of output from the first SPP layer is same as the number of feature maps,
k. On the second level, each k number of spatial bin of the first level is divided by
both axes and therefore max pooling is applied for 4 · k bins. With one more step of
iteration, the third level of SPP layer produces 16 · k. After all, the pooling output are
stacked throughout all the levels, and the SPP layer then always provides

∑
l 4
l−1 · k

inputs to the following fully-connected layer.
However, according to the argument in the [SF18], a fine grained spatial partition

along the horizontal axis is much more important than that along the vertical axis
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Figure 3.2.2: The visualization of the TPP Layer [SF18].

when dealing with word images. Based on the claim, the author proposed a modified
version of the SPP layer which divides image representations into spatial bins only
along the horizontal axis rather than both axes. Proposed layer is dubbed as Temporal
Pyramid Pooling (TPP) layer, because the concatenation of different spatial splitting
along the axis of writing direction for all the levels represents the temporal progress of
writing. The idea of TPP layer is visualized in figure 3.2.2. As shown in the figure, the
number of horizontal splitting for each feature map is same as level l . Hence, the TPP
layer yields only

∑
l l · k which is much smaller number of outputs than SPP layer

without loss of performance. Indeed, both SPP layer and TPP layer enable to fed into
fixed size input for MLP-part despite arbitrary number of parameters of feature maps
from last convolutional layer.

When Sudholt et al. uses TPP layer in [SF18], the proposed attribute CNN architec-
ture is named TPP-PHOCNet to distinguish it from the firstly proposed PHOCNet
employing SPP layer in [SF16]. Because only the modified version, TPP-PHOCNet,
is used in this thesis work, the term ’PHOCNet’ in the rest of the chapters indicates
TPP-PHOCNet of [SF18] to avoid confusion.

Sigmoid Activation (estimated PHOC)

Different to heavily used traditional CNNs used for predicting the most probable
class for a given natural image with softmax (2.1.9), the goal of the attribute CNN for
document analysis application is to estimate attribute vector for a given word image.
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In other words, in the attribute-based classification tasks, CNNs are used as multi-label
classifier rather than multi-class classifier. With using the same notation in (2.1.12)
except specifying output representation y as attribute a, the aim of the attribute CNNs
can be written as below from a probabilistic point of view.

θ̂ = argmax
θ

N∏
i=1

p(a(i) | x(i), θ) (3.2.1)

As explained in section 3.1, the PHOC considers the presence of attributes with the
form of binary histogram. If M number of attributes a1, ...,aM for a given sample are
assumed to be dependent variables each other, then they follow multivariate Bernoulli
distribution.

p(a1, ...,aM | x(i), θ) (3.2.2)

The approach make the network have to estimate all of the following posteriors.

p(a1 = 0,a2 = 0, ...,aM−1 = 0,aM = 0 | x(i), θ)

p(a1 = 1,a2 = 0, ...,aM−1 = 0,aM = 0 | x(i), θ)
...

p(a1 = 1,a2 = 1, ...,aM−1 = 1,aM = 0 | x(i), θ)

p(a1 = 1,a2 = 1, ...,aM−1 = 1,aM = 1 | x(i), θ)

Even without considering bi-gram and tri-gram , the PHOC representation with
5 levels requires the length of 36 · (1 + 2 + 3 + 4 + 5) = 540 = M for 26 letters of
English alphabet and 10 letters of digits. It means that the network should compute
at least 2540 different terms and therefore the output layer size also is 2540. However,
2540 ≈ 3.599 · 10162 is practically infeasible number to implement and to compute.
As usual, the conditional independence of attributes is assumed based on empirical
evidence to make the problem tractable. Then, (3.2.2) can be re-written as below

p(a1, ...,aM | x(i), θ) =
M∏
m=1

p(am | x(i), θ). (3.2.3)

Here, the problem is reduced to compute p(am | x(i), θ). A multi-label classifier such
as PHOCNet traditionally employs sigmoid activation which maps the linear input
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to (0,1). Its output represents pseudo probability of presence of the attribute, and
therefore the attribute can be interpreted as Bernoulli distributed variables.

Regarding the learning of the PHOCNet, it employs a binary logistic-loss for multi-
label classification. The output of m-th sigmoid function, estimation of being ’1’ of
m-th attribute given sample, is denoted by p(am = 1 | x(i), θ). And âm denotes the
label of that attribute. By taking into account above notations, the equality of the
output of the network and its label can be expressed as

p(am = 1 | x(i), θ) = âm, p(am = 0 | x(i), θ) = 1− âm (3.2.4)

M∏
m=1

p(am | x(i), θ) =
M∏
m=1

âamm (1− âm)(1−am), am ∈ {0, 1}. (3.2.5)

The negative log-likelihood of (3.2.5) is given by

L(â(i),a(i)) = −
1

M

M∑
m=1

[am log âm + (1− am) log (1− âm)]. (3.2.6)

Finally, the loss function can be computed by summing it all up for N samples in a
batch

L(â,a) = −
1

N ·M

N∑
i=1

M∑
m=1

[a
(i)
m log â(i)m + (1− a

(i)
m ) log (1− â

(i)
m )]. (3.2.7)

3.2.2 CNN-N-Gram for Handwriting Word Recognition

Attribute-based classification was introduced by Lampert et al. [LNH14] especially
for zero-shot recognition of natural image. Handwriting word recognition can be
considered as a special case of fine-grained zero-shot classification, because the task
includes the case of classifying a word image into classes which are not necessarily
covered by training data. Therefore, as clarified in [AGFV14], word recognition with
embedded attributes proposed by Almazán et al. is closely related to attribute-based
classification. In their work, the input image is transformed into the vector of attribute
scores with choosing Fisher Vecotrs (FV) and linear SVMs as encoding method and
classification algorithm respectively. On the other side of that, the ground truth label
of an input image, i.e., the transcription of the word image is also transformed into
the PHOC representation in a deterministic way. With regard to the recognition task,
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ahead of processing the input image, each word in the closed lexicon that includes
all words appearing in training and test are encoded into the binary vector of its
ground truth attributes, i.e., PHOC. Here, the attribute score represents estimated
presence of attribute given input image, and it has the same vector length to the
PHOC representation with each element valued (0,1). Indeed, the recognition task,
obtaining a transcription of the word image, becomes to find the nearest neighbour
of the input among lexicon words. Additionally, Almazán et al. propose a Common
Subspace Regression(CSR) in order to bring the imperfect attribute score of the word
image to their ground truth binary value in a common subspace. The use of CSR
for this purpose derives same formulation to CCA which learns a common subspace
maximizing correlation of them. After applying CSR same as CCA, the recognition
task is again to search the nearest neighbour on such a learned common subspace.

The recognition approach of [PW16] is closely related to that of [AGFV14]. A major
difference is the way of estimating attribute vector from word image. In [PW16], a deep
CNN called CNN-N-Gram is used to replace AttributeSVMs used in [AGFV14]. The
task of the network is to estimate n-gram frequency profile which is same as PHOC
given word image. Even [PW16] and [SF18] use identical attribute representation,
the tasks of the network in their works are different. The PHOCNet is designed for
handwriting word retrieval and the CNN-N-Gram is designed for handwriting word
recognition. Because both networks are commonly inspired by VGG [SZ14] with
respect to their architectures and have similar output representation, they have similar
layout.

However, there are also architectural differences in detail. The convolutional part
of CNN-N-Gram is inspired by VGG [SZ14]. The number of convolutional layers
and filters in CNN-N-Gram is slightly different to the that of PHOCNet, and the
CNN-N-Gram employs less conventional maxout activation rather than ReLU (2.1.2)
used in the PHOCNet.

According to the claim of [PW16], the novelty of their network is separating the
fully-connected layers into multiple parallel branches. They split the output of the last
convolutional layer into 19 branches where each branch has two hidden layers and
sigmoid activation so that they make each branch specialize in certain spatial section
respectively. They assert that the usage of splitting parallel fully-connected layers not
only allows the convolutional layer to learn visual feature of the characters regardless
of their spatial position in the word, but also enables the fully-connected layers to
learn spatial information.

There are similarities and differences to the PHOCNet with respect to the training
procedure. The layout of each branch is similar to the fully-connected layers of the
PHOCNet, and therefore [PW16] uses the Binary Cross Entropy Loss as cost function.
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However, proposed branching architecture requires huge number of neurons and
parameters compared to conventional non-splitting fully-connected layer used in the
PHOCNet. Those large number of parameters need huge computational resources for
learning. To address exploding computational cost in the training of their branched
network, they propose a gradual way of learning which is similar to incremental
training employed in [JSVZ14]. The training is based on the iteration of partial
convergence of learning parameters. At first, the network is trained with only one
branch of fully-connected layers. When the parameters are partially converged after
initial training, one of remaining branches is added with an initial learning rate. Then,
the remaining branches are being added iteratively.

While the PHOCNet is able to accept the input images of arbitrary size by the use of
a SPP-layer, the CNN-N-Gram requires input images of fixed size. To generate fixed
size input images, they resize the input image 100× 32 without preserving the aspect
ratio.

After training the network, [PW16] apply CCA to learn a common subspace and
projections which maximize the canonical correlation between estimated attribute of
word images and binary attribute of their ground truth label. At test, the recognition
is to find the best output class which has a minimum cosine distance from an input
image among lexicon words in the common subspace learned with CCA.

3.3 probabilistic classifier with attributes

Proposed solution of handwriting word recognition in [AGFV14] can be seen as a
special case of attribute-based classification introduced by [LNH14]. In [LNH14], they
utilize their own notation and graphical representation to demonstrate that attribute-
based classification is a proper solution to the zero-shot learning task. They denotes
input image as x ∈ X, and the K number of training classes are given by {y1, ...,yK} ∈ Y.
Assuming a fixed length of M of the binary attribute representation, the k-th class in
Y induces a binary vector: ayk = (ayk1 , ...,aykM). Similarly, they denote L number of
test classes as {z1, ..., zL} ∈ Z where all test classes are zero-shot classes not appeared
during training. However, Z∩ Y = ∅ is not necessary and adopted as a representative
situation for the sake of clarify. For handwriting word recognition, Y and Z are joint
sets in general, and only a few zero data classes appeared during the test. They also
clarify that Z ⊆ Y is sufficient. Under these zero-shot learning setting, the task of
attribute-based classification is to learn a non-trivial classifier which classify an input
image to the previously unseen classes: X→ Z by transferring information between
the classes in Y and Z through attributes.
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To implement the idea, they offer a method that decouple the images from the layer
of classes with using an in-between attribute layer and term it as Direct Attribute
Prediction (DAP) to distinguish it from another method called Indirect Attribute
Prediction (IAP). The graphical representation of DAP is depicted in figure 3.3.1 While
the input images and label classes of training input are always observed, in-between
attributes are not observed but embedded. In detail, DAP method starts by extracting
attribute representation az = {az1, ...,azM} from the classes of training sample z ∈ Z in
a deterministic way. During training, the parameters of attribute embedding method
βm are learned with employing any supervised machine learning algorithms. For
instance, Almazan et al. [AGFV14] uses FVs and SVMs for the encoding and learning
algorithm, and this thesis work employs a specific CNN called PHOCNet explained in
section 3.2.1. At test, the attribute score of query image can directly be estimated and
then used for predicting output classes even for zero-data classes.

The graphical representation of DAP, figure 3.3.1, is realized by probabilistic model.
From a probabilistic point of view, the classification task is to find the best class which
maximizes the posterior of test class given a query image:

argmax
i=1,...,L

p(zl | xi) (3.3.1)

The novelty of DAP is to use in-between layer of attribute. Taking that into account,
they first form a model for the image− attribute layer and then attribute− class
layer. Then they combine them with marginalization. Initially, the probabilistic
representation of image− attribute layer is given by

p(a1, ...,aM | xi) (3.3.2)

The method assumes that the trained classifier estimates each attribute given an image
respectively, p(am | xi). To reflect the output of the trained classifier to the model,
they assume conditional independence. Hence the complete image− attribute layer
is represented by

p(a1, ...,aM | xi) =

M∏
m=1

p(am | xi) (3.3.3)
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Figure 3.3.1: Illustration of graphical representation of DAP [LNH14].

On the attribute− class layer, the classification task is to predict the test class from
an input attribute pattern. They apply Bayes’ rule to derive model so that it implies
the descriptions of test class.

p(class | pattern) =
p(class,pattern)
p(pattern)

=
p(pattern | class)p(class)

p(pattern)

Because every test class induces its attribute vector in a deterministic way, the colored
likelihood term, p(pattern | class), make possible to derive the probabilistic represen-
tation of the model with considering the descriptions of test class. In specific, while
the model of attribute− class layer should provide posterior each test class given
attribute pattern, p(zl | a1, ...,aM), the given information is that the only one attribute
pattern aligned to a test class make likelihood be one. Otherwise, the likelihood and
resulting posterior are always zero:

p(a1 = a
zl
1 , ...,aM = azlM | z = zl) = p(a = azl | z = zl) = 1 (3.3.4)

p(a1 = a
zk
1 , ...,aM = azkM | z = zl) = p(a = azk | z = zl) = 0 (3.3.5)
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where k = 1, ..., l− 1, l+ 1, ...L. To formulate above case statement, they use Iverson’s
bracket notation [Knu92] given by

p(a | zl) = [[a = azl ]], [[a = azl ]] =

1, if a = azl

0, otherwise

(3.3.6)

By applying Bayes’ rule and Iverson’s bracket notation, The complete image −
attribute is defined as

p(zl | a) =
p(a | zl)p(zl)

p(a)
=

[[a = azl ]]p(zl)

p(azl)
(3.3.7)

In (3.3.7), only p(a = azl) is considered as denominator because the posterior is
always zero in other cases based on the case statement of (3.3.6).

Two derived models can be combined through marginalizing for all attribute pat-
terns:

p(zl | xi) =
∑

p(zl | a)p(a | xi), for a ∈ {0, 1}M (3.3.8)

By substituting (3.3.3) and (3.3.7) into (3.3.8), each term of summation can be refor-
mulated as

p(zl | a)p(a | xi) =
p(zl)

p(azl)
[[a = azl ]]p(a | xi) =


p(zl)
p(azl)p(a

zl | xi), if a = azl

0, otherwise

(3.3.9)

The [[a = azl ]] term in the right-hand side of (3.3.7) makes the model neglect all
other cases except a = azl . Hence, with previous steps of probabilistic realization, the
posterior of a test class given an image can be calculated by

p(zl | xi) =
∑

a∈{0,1}M
p(zl | a)p(a | xi) =

p(azl | xi)p(zl)

p(azl)
(3.3.10)

The remaining task of probabilistic realization of DAP is to assign the best output
class from all test classes z1, ..., zL to a input image xi based on calculated posteriors
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by (3.3.10), and it is also known as the maximum a posteriori (MAP) estimation. The
complete probabilistic model of DAP is derived by substituting (3.3.10) into (3.3.1)

ẑMAP(xi) = argmax
l=1,...,L

p(zl | xi) = argmax
l=1,...,L

p(azl | xi)p(zl)

p(azl)

= argmax
l=1,...,L

p(azl1 , ...,azlM | xi)p(zl)

p(azl)

(3.3.11)

Applying the conditional independence of attributes given image already assumed at
(3.3.3) the estimation of the best output class is given by

ẑMAP(xi) = argmax
l=1,...,L

∏M
m=1 p(a

zl
m | xi)p(zl)

p(azl)
(3.3.12)





4
AT T R I B U T E - B A S E D W O R D R E C O G N I T I O N

In word recognition, the goal is to obtain a transcription of the word image, usually
aided by a lexicon. In this thesis, attribute-based word recognition is an approach that
achieves above goal by using an intermediate layer of attributes which allows to derive
a common representation for word images and transcriptions. This approach offers
two major benefits. First, it can be a solution to the problem of recognizing out of
vocabulary (OOV) which means input words of test never appeared during training. It
is because the use of attributes enables the recognition system to transfer information
between word classes in a lexicon. The other is that it facilitates comparing images
and strings based on a fixed length common representation.

An overview of an attribute-based word recognition is depicted in figure 4.0.1. It
starts with determining an attribute representation of the words. In this thesis, the
PHOC is chosen as attribute embedding on the basis of what is described in section
3.1. Then, as specified in section 3.2, the PHOCNet is employed to estimate attribute

Figure 4.0.1: Overview of an Attribute-Based word recognition.
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scores ~axi from an input image xi. At the same time, each word in the lexicon zl
is transformed into the PHOC of transcription ~azl in a deterministic way that does
not require learning. Attribute scores ~ax and PHOCs of transcription ~az are always
fixed length vector. Therefore, an arrow over those vectors is omitted in the rest of
the thesis: ax and az. Consequently, the recognition task is reduced to the problem of
classifying attribute scores of an input image axi into one of the classes in a lexicon
transformed to PHOCs az1 , ...,azL . For the former, the algorithm used at the lower
half of the figure 4.0.1, can be considered as a multi-label classifier. In the latter, the
algorithm used at the upper half of the figure, is included in a multi-class classifier.
Therefore, the overall performance of recognition is determined by the cascade of both
classifiers. In particular, this thesis mainly focus on the multi-class classifiers for the
following reasons.

Recognition results are influenced by the design of multi-class classifier as well as
by the way of estimating attribute scores, because the algorithm estimating attribute
score is trained for minimizing loss per attribute rather than difference in whole
transcription of word. In [AGFV14], attribute-based prediction algorithm requires
one classifier per attribute. Besides, the PHOCNet used in this work also assumes
conditional independence of each attribute given image in order to be a multi-label
classifier with sigmoid activation. Then, the loss function of PHOCNet derived in
(3.2.6) is simply to sum up the loss per attribute with negative log. This means the
PHOCNet only learns and estimates the presence of each character independently
in a certain spatial position from word images. However, a precise estimation of
independent character existence not always guarantee the best word recognition result
regardless of the way of multi-class classification.

One example, illustrated in figure 4.0.2, is taken from one experiment in order to
show that the use of different multi-class classifiers can lead to different recognition
results under same experimental configuration. The input of the example is a seg-
mented word image with its ground truth label of ’obscene’. The values of 1-level
attribute scores histogram are the first 26 outputs of the PHOCNet trained under same
setups as [SF18]. Each of them represents the posterior probability of the presence of
the English alphabet letters from a to z given word image. As discussed in section
3.2.1, employing the PHOCNet yields state-of-the-art results for word spotting in
handwritten documents. It means the PHOCNet detects visual pattern of handwritten
characters very well. Additionally, in the example, the PHOCNet predicts that the
characters contained in the ground-truth label, such as ’b’,’e’,’o’ and ’s’, would be
present in the input image. However, this successful detection of visual pattern is not
always profitable for handwriting word recognition because of visual ambiguity. In the
example, whereas the input word does not contain character ’u’ but includes the ’n’ as
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Figure 4.0.2: Example of recognition results from using different multi-class classifiers.

its sixth character, the PHOCNet yields a higher probability of 0.69 for the character ’u’
than the character ’n’ with a probability of 0.18. It can be a instance of the claim that
the output of the PHOCNet is reliable, because the visual appearance of the character
is more close to ’u’ than ’n’ even in the recognition of a human. However, especially
in the case of Method 1 which represents the most naive approach, this strong belief
of existing character ’u’ overwhelms existence of ground-truth ’n’ and misleads to
incorrect lexicon word in recognition. On the other hand, one other superior method
to Method 1 introduced in this chapter can classify given attribute scores to correct
class of lexicon same as ground-truth label. The reason is that this Method 2 involves
learning algorithm so that the multi-class classifier of given attribute scores enables
compensate visual ambiguity or uncertainty of handwriting.
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In this chapter, four different multi-class classifiers are introduced to improve the
performance of attribute based word recognition. At first, the most naive approach that
find nearest neighbour with cosine distance is introduced. Additionally, the cascade of
classifiers in terms of probability, already introduced in section 3.3 as DAP, is used
for handwriting word recognition. Third, a method termed CCADAP is proposed to
avoid overfitting problem of CCA by using a temporal recognition of the word image.
In the end, a conventional softmax MLPs is used as multi-class classifier, and a pseudo
samples approach is introduced to train MLPs classifier for zero-data classes.

4.1 direct attribute matching (dam)

The PHOCNet can successfully estimate attribute scores of an input image, and the
transcription of each word in lexicon can be encoded as PHOC representation. After
getting those attribute-based representations, the matching procedure in recognition
can be simply done by suitable distance measure and nearest neighbour search
between them, because attribute scores of an input image and PHOC of lexicon
words lie on similar space of same dimensionality. Each of the score is spanned
between 0 and 1 because the value is the output of a sigmoid function, and PHOC has
binary representations. In the thesis, this conventional matching method for common
representation is termed as Direct Attribute Matching (DAM).

DAM classifier is realized using the following notations. Let the number of attributes
and classes be denoted by M and L respectively. An input image at test time and a
word in the lexicon are denoted by xi and zl. Then, the vector of attribute scores is
defined by

axi = (axi1 , ...,axiM) = (p(a1 = 1 | xi), ...,p(aM = 1 | xi)), axi ∈ (0, 1)M. (4.1.1)

The vector axi is the ordered set of M PHOCNet outputs where each of them is a
posterior probability of a attribute existence given an image: p(am = 1 | xi). Likewise,
the M dimensional PHOC vector of a lexicon word is defined by

azl = (azl1 , ...,azlM) , where azl ∈ {0, 1}M. (4.1.2)

The vector azl is the ordered set of M different binary numbers determined by logical
encoding in PHOCs. Thus the cosine distance between axi and azl is given by

dcos(a
xi ,azl) = 1−

< axi ,azl >
‖axi‖2‖azl‖2

(4.1.3)
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where <,> denotes inner product between two vectors and ‖·‖2 represents L2-norm
of a vector. The rest of the thesis also follows these notations. Since both vectors have
same length and lie on fixed low dimension, it is very fast to compute distance between
them. Finally, the recognition is to find the nearest neighbour based on computed
distances:

l∗ = argmin
l=1,...,L

dcos(a
xi ,azl) = argmin

l=1,...,L

(
1−

< axi ,azl >
‖axi‖2‖azl‖2

)
(4.1.4)

where l∗ indicates the index of the best output class. In addition, the Bray-Curtis (BC)
dissimilarity also can be considered as a distance metric that measures dissimilarity
between two vectors. BC dissimilarity is defined as

dBC(a
xi ,azl) =

∑
|axi − azl |∑
(axi + azl)

. (4.1.5)

However, only cosine distance is considered as metric for DAM in the thesis, because
all other similar works that are the benchmark for evaluating performances use cosine
distance. Hence, in the rest of the thesis, cosine DAM is a baseline method which helps
evaluate performance by comparing experimental results with other works [AGFV14],
[PW16], and methods introduced in following sections 4.2, 4.3.2 and 4.4.

4.2 direct attribute prediction (dap) model

As discussed in section 3.3, a probabilistic realization of DAP computes the posterior
of a lexicon word given an image:

p(zl | xi) =

∏M
m=1 p(a

zl
m | xi)p(zl)

p(azl)
. (4.2.1)

Thus, the overall posterior probability is determined by defining p(azlm | xi), p(zl)
and p(azl).

∏M
m=1 p(a

zl
m | xi) refers to the product of attribute scores estimated by

PHOCNet. To compute it, ’one minus PHOCNet output’ is required to estimate the
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probability of complement state, because the output of PHOCNet, i.e., attribute score,
only represents the probability of the attribute being present given an image:

p(am = azlm | xi) =


p(am = 1 | xi), if a

zl
m = 1

p(am = 0 | xi) = 1− p(am = 1 | xi), if a
zl
m = 0

(4.2.2)

where p(am = 1 | xi) is the output of the PHOCNet. The factor implies that the
DAP method exploits much more information from an image than cosine DAM in the
process of recognition, since DAP utilizes the score of false attributes which are not
being present in the class zl. The example depicted in the table 4.2.1 explicitly specifies
the advantage of the DAP method. The example considers only three attributes: M=3.
For l-th class, the first attribute is present, but the remaining two attributes are not.
Estimation performance of the PHOCNet for all attributes is assumed to be identical
so that it gives 0.9 if present, otherwise 0.1. Then, based on (4.2.2), the first factor is
given by

3∏
m=1

p(azlm | xi) = p(a1 = a
zl
1 | xi)p(a2 = a

zl
2 | xi)p(a3 = a

zl
3 | xi)

= p(a1 = 1 | xi)p(a2 = 0 | xi)p(a3 = 0 | xi)

= p(a1 = 1 | xi)(1− p(a2 = 1 | xi))(1− p(a3 = 1 | xi))

= 0.9 ∗ 0.9 ∗ 0.9.

(4.2.3)

zl azl1 azl2 azl3

PHOCs 1 0 0

PHOCNet Outputs p(a1 = 1 | xi) p(a2 = 1 | xi) p(a3 = 1 | xi)

Attribute Scores 0.9 0.1 0.1

Table 4.2.1: Example of attribute representations and their values for the purpose of comparing
DAP and DAM.
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To compare, cosine distance is calculated by substituting the values of the table 4.2.1
into (4.1.3):

dcos(a
xi ,azl) = 1−

< axi ,azl >
‖axi‖2‖azl‖2

= 1−
p(a1 | xi)a

zl
1 + p(a2 | xi)a

zl
2 + p(a3 | xi)a

zl
3

‖axi‖2‖azl‖2

= 1−
p(a1 | xi) · 1+(((((((

p(a2 | xi) · 0 +(((((((
p(a3 | xi) · 0

‖axi‖2‖azl‖2

= 1−
p(a1 | xi)

‖axi‖2‖azl‖2
.

(4.2.4)

In DAP, all outputs of the PHOCNet are used for classification, whereas cosine distance
does not reflect scores of false attributes. Specifically, DAP reflects non-presence of
false attribute given image by subtracting aligned PHOCNet output from 1. However,
cosine distance only take into account attribute score of true attribute, because the
scores of false attributes are cancelled by multiplying zero in the linear combination
of the inner product term. As discussed in 3.1 and 3.2.1, the PHOC representation
with 5 levels requires the length of 36 · (1+ 2+ 3+ 4+ 5) = 540 =M for 26 letters of
English alphabet and 10 letters of digits. However, according to the [BS12], the average
length of English words is 5.1. Therefore, even if the average length of an English
word is supposed to be 6 with all different characters, the number of true attributes of
English word is only 36 out of 540 in average. This means that estimation of almost 500

attribute scores is redundant for every class while DAP always uses all 540 attribute
scores. In addition, in this work, to use more attribute scores including false attributes
is more advantageous for the classification. Because the PHOCNet is trained not
only for true attribute but also for false attribute of training samples. Taking the
table shown 4.2.1 as an example, cosine distance between axi and azl , (4.1.4), does
not exploit p(a2 | xi) and p(a3 | xi) by multiplying zeros. However, ignoring those
estimation is a huge loss, because the PHOCNet is trained and can estimate scores of
attribute not appeared in word image as 0.1 for both a2 and a3.

The second component of the DAP model (4.2.1), p(zl), represents a prior probability
of lexicon class. In other words, it indicates the probability of z = zl as classification
result in a future test. One possible assumption also proposed by [LNH14] is a uniform
distribution:

p(zl) = p(z = zl) =
1

L
, for all l = 1, ...,L (4.2.5)
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where L is the number of words in the lexicon. It considers the absence of specific
knowledge about the classes of upcoming test image. However, frequencies of words
in a large number of training samples induces a reliable belief of class of upcoming
word for document image analysis applications. Thus, it deserves to contemplate an
empirical distribution of training classes p(zl)train which indicates the number of
training samples for each classes over total number of training samples. Then, the prior
probability p(zl)test is assumed to follow p(zl)train. The reason is that p(zl)train
induces a term frequency (TF) of training documents, and therefore it can be used as a
common feature unless train and test documents belong to totally different categories:

p(zl)test ∼ p(zl)train =
# training samples for zl

# training samples
=

# certain word
# words in document

= TF

(4.2.6)

To apply empirical distribution for the DAP, a smoothing technique is required to
avoid zero posteriors which are given by

p(zk)train =
# training samples for zk

# training samples
=

0

# training samples
= 0 (4.2.7)

p(zk | xi) =

∏M
m=1 p(a

zk
m | xi)p(zk)

p(azl)
=

∏M
m=1 p(a

zk
m | xi) · 0

p(azl)
= 0 (4.2.8)

where zk represents zero-data class. As formulated in (4.2.7), the probability of zk
from training is always zero, because there is no training sample for that class. The
assumption proposed in (4.2.6) makes test prior of zk to zero. Then, the output class
of DAP will never be zk, because the posterior of a zero-data class always goes to
zero by multiplying p(zk) = 0. In order for (4.2.8) to be zero-data learning, a pseudo
count is added to every class. Considering the pseudo count also called smoothing
parameter, the empirical distribution is smoothed as follows:

p(zl)train =
# training samples for zl +α

# training samples +α · L
(4.2.9)
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where α is a smoothing parameter. This technique is called Laplace smoothing and
often referred to as add− one smoothing where α = 1. After laplace smoothing,
(4.2.7) is rewritten by

p(zk)train =
# training samples for zk +α

# training samples +α · L
=

α

# training samples +α · L
6= 0.

(4.2.10)

Hence, in the rest of the thesis, smoothed empirical distribution of training classes is
considered as test class prior to address zero probability problem.

The last term of DAP computation is the denominator p(azl). Since M = 540

induces too large number 2540 outcomes for joint probability p(a), attributes are
assumed to be statistically independent to each other, i.e., p(a) is assumed to follow a
factorial distribution:

p(a) = p(a1, ...,aM) =

M∏
m=1

p(am). (4.2.11)

As defined in 3.1, an attribute has only two possible states, true and false, written as
1 and 0 respectively. Therefore, estimating probability of independent attribute can be
considered as a Bernoulli trial:

p(am = azlm) =

p(am = 1), if azlm = 1

p(am = 0) = 1− p(am = 1), if azlm = 0.
(4.2.12)

In the process of Bernoulli trials, it is reasonable to assume unbiased attribute which
means the probability of presence is the same at every test time as 1/2:

p(azlm) = p(am = azlm) =
1

2
for allm = 1, ...,M. (4.2.13)

This assumption simplifies the classification task of DAP, because the denominator
of (4.2.1) always being constant (1/2)M for all classes. Similar to class prior p(zl),
empirical approach can be considered for p(am) by estimating M different distributions
from training samples. The probability of an attribute being present is assumed to be
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biased. Let the number of training samples be N, then p(am)train is determined by
counting the number of occurrences of am in N independent experiments:

p(atestm = 1) ∼ p(atrainm = 1) =
# samples of (atrainm = 1)

N
. (4.2.14)

The above experiments is iterated M times to derive the probability of all attributes.

4.3 ccadap

In this section, the application of CCA similar work [AGFV14] is discussed first, and
then problems of the CCA application in this work are discussed. Lastly, CCADAP is
proposed to address those application problems of CCA.

4.3.1 CCA

As discussed in 2.2, the motivation of CCA is to analyse the relation between two fea-
ture representations resulting from two different views. With respect to attribute-based
word recognition, the attribute of word appears in two different representations. One
representation is attribute score estimated by the PHOCNet. The other representation
is the binary PHOC. Then, CCA is a method to learn relation between the attribute
score and PHOC of word. Taking one step further, practically, the goal of CCA in
this work is to make estimated imperfect scores get closer to perfect binary values
by learning a common subspace of them. To achieve this goal, a ridge regression is
possibly a more intuitive solution than CCA, because it learns to minimize the distance
between the space spanned by attribute scores and binary PHOCs directly rather than
learning common subspace and projection like as CCA. However, CCA has advantage
of exploiting the correlation between scores, the correlation between PHOCs and the
correlation between those two, whereas a ridge regression does not take advantage of
all such correlations.

Similar to the notations used in section 2.2, let N be a number of training samples,
and let M be the dimension of attribute representations. Then, the datasets of estimated
score Ax ∈ (0, 1)N×M and label PHOC Ay ∈ {0, 1}N×M are defined by

Ax =


| |

ax,1 · · · ax,M

| |

 , Ay =


| |

ay,1 · · · ay,M

| |

 (4.3.1)
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In order to find a weight W which minimizes linear distance between those two, a
ridge regression problem is defined by

W∗ = argmin
W

1

2
‖AxW −Ay‖22 +

1

2
Ω(W) (4.3.2)

where Ω(W) is a regularization term. Then, based on [HK70], the closed form solution
of W from (4.3.2) is given by

W = (ATxAx + ρI)
−1ATxAy (4.3.3)

The term ATxAx implies that the solution of ridge regression exploits correlation
between attribute scores. As assumed in 2.2, the attributes are standardized to zero
mean and unit variance. For the standardized variables, the covariance is equal to its
correlation and is defined by the inner product of variables:

corr(ax,ay) = cov
(
ax − ax
sx

,
ay − ay
sy

)
= cov(ax,ay) (4.3.4)

cov(ax,ay) =
< ax,ay >
N− 1

− axay =
< ax,ay >
N− 1

(4.3.5)

where a = 0 and s = 1 denotes mean and standard deviation respectively. Therefore,
ATxAx refers to a covariance matrix equal to a correlation matrix.

Cxx =


cov(ax,1,ax,1) · · · cov(ax,1,ax,M)

...
. . .

...

cov(ax,M,ax,1) · · · cov(ax,M,ax,M)

 =


corr(ax,1,ax,1) · · · corr(ax,1,ax,M)

...
. . .

...

corr(ax,M,ax,1) · · · corr(ax,M,ax,M)



=
1

N− 1


aTx,1ax,1 · · · aTx,1ax,M

...
. . .

...

aTx,Max,1 · · · aTx,Max,M


=

1

N− 1
ATxAx

(4.3.6)

Through the same interpretation as (4.3.2), Cxy, Cyx and Cyy are also defined as

CXY =
1

N− 1
ATxAy, CYX =

1

N− 1
ATyAx, CYY =

1

N− 1
ATyAy (4.3.7)
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Hence, with respect to the ridge regression, the correlations between scores ATxAx as
well as between score and binary label ATxAy are considered in the process of finding
solution W that minimizes the objective function (4.3.2).

In CCA, instead of analysing linear relation between scores ax and PHOC labels
ay directly, its objective is to minimize enclosing angle between images zx and zy in
the common subspace where zx and zy are projected from ax and ay respectively.
Specifically, as explained in section 2.2, the images in the new coordinate system, zx
and zy, are algebraically expressed as (2.2.1). CCA pursues above objective by finding
canonical weights wx ∈ IRM and wy ∈ IRM which holds constraints of zx and zy
described in (2.2.2) and (2.2.3). By the formulation of CCA problem described in
section 2.2, the problem is reduced to find eigenvalues of the matrix C−1

yyCyxC
−1
xxCxy

by solving the characteristic equation written in (2.2.20). Then, the weight vector
of PHOC labels wy can be obtained by computing eigenvectors of (2.2.21), and the
weight vector of attribute scores wx is induced by the relation between wx and wy
defined at (2.2.17). Thus, the learning weights of CCA, wx and wy, are determined
by the matrix C−1

yyCyxC
−1
xxCxy. It implies that CCA exploits the correlation between

scores Cxx, between score and PHOC label Cyx, Cxy and between PHOC labels Cyy.
To compare CCA with a ridge regression, the solution of a ridge regression (4.3.3) can
be expressed by covariance matrices:

W = (ATxAx + ρI)
−1ATxAy = (Cxx + ρI)

−1Cxy (4.3.8)

Cyy is not considered in the regression but is considered in CCA. The covariance
matrix of PHOC labels Cyy is given by

Cyy =


cov(ay,1,ay,1) · · · cov(ay,1,ay,M)

...
. . .

...

cov(ay,M,ay,1) · · · cov(ay,M,ay,M)

 =


corr(ay,1,ay,1) · · · corr(ay,1,ay,M)

...
. . .

...

corr(ay,M,ay,1) · · · corr(ay,M,ay,M)


(4.3.9)

where ay,m ∈ {0, 1}N for all M attributes. In other words, CCA additionally takes
into account correlation between binary PHOCs representing ground-truth attribute
labels. Therefore, CCA deserves to be considered as a better learning algorithm than
the regression in this application. The reason is that CCA analyses and reflects more
relations between attribute representations than the case of regression.

Using a machine learning model such as CCA to learn relations between attribute
representations may result in better recognition performances than without using
that. However, the attribute-based word recognition model used in this thesis already
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employs the machine learning model called PHOCNet to estimate attribute score. In
the case of using these multiple machine learning models, duplicated use of training
samples from different learning method can cause overfitting problems. The most
intuitive choice of training data for CCA is to use the training samples of handwriting
word recognition benchmark dataset which is also used to train PHOCNet. Let the
data matrix of estimated scores from such training samples be Atrainx . And let the
data matrix of encoded binary PHOCs from their ground-truth labels be Atrainy . Then,
with reference to the formulas in (2.2.4) and (2.2.7), the objective of CCA for this case
is given by

wtrainx , wtrainy = argmax
wx,wy

< Atrainx wx, Atrainy wy > (4.3.10)

where learned weights by CCA are denoted by wtrainx and wtrainy . In the test,
Atestx ∈ (0, 1)Q×M represents attribute scores estimated from input images, and
Alexicony ∈ {0, 1}L×M contains binary PHOCs encoded from transcription of lexicon
words. Let A[i] refers to i-th row of matrix A. Then, as specified in section 4.1,
employing DAM classifier without CCA is written by

~o∗ = (o∗1, ..., o∗Q) = argmin
l=1,...,L

dcos
(
Atestx [q] , Alexicony [l]

)
for q = 1, ..., Q

(4.3.11)

where the vector element oq indicates the index of output class resulted from q-th
input word. Q is test sample size which indicates the number of input image that goes
into the recognition system at one time during test, and therefore the smallest possible
number of Q is one. According to these notations, the classification task with CCA
can be described by

~o∗ = (o∗1, ..., o∗Q) = argmin
l=1,...,L

dcos
(
Atestx wtrainx [q] , Alexicony wtrainy [l]

)
. (4.3.12)

Please note that ′for q = 1, ..., Q ′ is omitted in here and the rest of thesis. In detail,
test samples and lexicon words are projected on to the new coordinate system which
maximizes correlation by wtrainx and wtrainy . These projection weights are learned
from training samples and their ground-truth labels where training samples of CCA
are also used to train PHOCNet. Using the same dataset for training PHOCNet
and CCA in this way causes overfitting for CCA because of a bias. To begin with,
the PHOCNet is trained by given training sample in handwriting word recognition
benchmark dataset. After the training, trained PHOCNet estimates attribute scores
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Figure 4.3.1: A k-fold cross validation scheme.

of those training samples. At this point, the output scores of PHOCNet are explicitly
biased, because input images are already used to train PHOCNet. Then, those biased
outputs of PHOCNet are used for training CCA. Hence, from the standpoint of the
CCA, the training samples of its learning are severely biased, and those biased samples
can not provide enough information for the learning enough to generalize to the test.

One of regularization techniques called cross-validation is considered as the solution
to address above overfitting problem. As illustrated in figure 4.3.1, the idea of a k-fold
cross-validation is to split the entire dataset into training set and validation set so
that the model can be validated by unobserved samples during training. A training
and validation process iterates k times for different configurations of samples until
it covers entire data set. Then, a global model can be obtained by averaging all k
models. The usage of cross-validation in this thesis is as follows. For each iteration,
samples in the training split are used for training PHOCNet, and then samples in
validation split are fed into trained PHOCNet. The output of the PHOCNet for that
input is used for training CCA. After all iterations, each parameter of k different
PHOCNet is averaged to yield global model. However, in general, the training of a
deep convolutional network such as PHOCNet requires huge computational resources
and time. According to the training details in [SF18], they run training 80 000 iterations
or more for different settings. Not only is the number of iteration high, but there are
many parameters that need to be updated in each iteration. Hence, with considering
these limitations, the application of cross-validation is not a practical solution.
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4.3.2 CCADAP

As well as the practical limitations mentioned above, the cascaded use of different
machine learning models can occur trade-off problem between minimizing training
error of preceding model and minimizing the test error of subsequent model. In this
case, the capability of minimizing error between image of training sample and its label
means that the model is able to give extremely biased scores for the images already
learned. On the other hand, the subsequent model, CCA, requires a large number
of unbiased samples of attribute scores to exploit large variation of attribute scores
possibly estimated from upcoming test images. Therefore, the better the classifier
is used to estimate the score, the less information from training samples the CCA
can learn. No matter how many word images are provided to train PHOCNet, the
CCA can be suffered from the lack of training samples which possibly lead to inferior
recognition results because of generalization error.

To overcome above problem, this chapter proposes CCADAP which learns common
subspace from between test images and their temporal classes rather than between
training images and their ground-truth labels. An overview of CCADAP is illustrated
in figure 4.3.2. It starts with training the CCA on the test document images instead of
training document images. In this context, the test document is the set of segmented
handwriting words to be recognized. Therefore, CCADAP requires an assumption
that recognition systems process several words at once, not just one word for each time
during test. However, it is reasonable assumption in many document image analysis
applications which do not need to recognize each word independently. In this case,
different to the conventional use of CCA (4.3.10), the learning requires ground-truth
labels of test images. To know a ground-truth of upcoming input is impossible, and
therefore this scenario has a explicit contradiction. To tackle this problem, CCADAP
uses predicted classes of input images by DAP instead of using unknown ground-truth
labels. Given test documents, the recognition system first predicts temporal classes
of words with DAP. From those predicted classes, binary PHOCs are encoded from
their transcription. Let Apred.

y ∈ {0, 1}Q×M be constructed by those binary attribute
representations of temporal classes, then the objective of learning of CCADAP is given
by

wtestx , wtemp.
y = argmax

wx,wy
< Atestx wx, Apred.

y wy > (4.3.13)

where wtestx and wtemp.
y represent canonical weights which leads a maximum correla-

tion between Atestx and Apred.
y on their common subspace. After finding such weights,
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Figure 4.3.2: Overview of the CCADAP.

remaining process of recognition is same as the process explained in section 4.3.1. At
first, Atestx and Alexicony are transformed into new representations by learned weights
wtestx and wtemp.

y respectively. Then, the recognition task is reduced to find nearest
neighbour of those new representations:

~o∗ = (o∗1, ..., o∗Q) = argmin
l=1,...,L

dcos
(
Atestx wtestx [q] , Alexi.y wtemp.

y [l]
)
. (4.3.14)

Thus, CCADAP is a recognition technique to find transcriptions of handwriting word
images in documents by reading them multiple times. It is close to handwriting word
recognition process of human, because human also can improve recognition accuracy
by repetitive reading. For instance, when handwriting documents are given to a person,
a person provisionally determines the transcription of words at the first reading, and
then learns the relation between handwriting words and his belief from first reading.
Based on the learning, a person can change his mind to correct recognition from
incorrect prediction in his second reading. From the viewpoint of machine learning,



4.4 mlps classifier with pseudo samples 69

there is no generalization problem for the CCADAP. Another advantage is that, the
performance of CCADAP is proportional to that of the PHOCNet. As discussed in
previous section 4.3.1, well-trained multi-label classifier can cause overfitting problem
to CCA by extremely biased scores. However, In CCADAP, bias of estimated scores
is advantageous for first prediction by DAP, And after all, CCADAP can offer better
recognition result than such DAP, because CCAPDAP exploits and learns additional
relation between data from the result of DAP. One of the limitations of CCADAP
is that CCA possibly learns wrong correlations by incorrect labels when preceding
classifier gives too imprecise scores and results in too wrong predictions for DAP.
However, the state-of-the-art retrieval results with PHOCNet in the expriments of
[SF18] imply that trained-PHOCNet can successfully estimate attribute scores. And
therefore, in this thesis, CCADAP assumes that PHOCNet shows stable performance
enough to learn proper correlations from predicted classes of DAP, even if there are
small fraction of wrong predictions by DAP.

4.4 mlps classifier with pseudo samples

A MLP classifier with softmax log-loss described in section 2.1.1 is a multi-class classi-
fier. Considering the use of this MLP classifier in the recognition system discussed
in this thesis, the input layer receives attribute scores and one of lexicon words is
determined as output throughout a hidden layers as depicted in figure 4.4.1. Therefore,
with respect to training such network, the input pattern is the output of the PHOCNet
for a word image. The ground-truth label is the one-hot encoded index of that word
in lexicon. However, when this MLP classifier is cascaded to the PHOCNet, overall
recognition system no longer has zero-data learning capabilities. The reason is that
MLPs utilize a supervised learning technique called backpropagation as introduced
in section 2.1.5. In addition to that, following the definition of attribute-based clas-
sification specified in section 3.1, the proposed recognition system belong to neither
zero-data learning nor attribute-based classification, because it never use class de-
scription to transfer knowledge as well as never use attributes of a class. Hence, the
conventional use of MLP classifier in this recognition system cancels out the benefits
of using attributes.

Based on the idea of attribute-based classification in section 3.1, in order to make
a classifier applicable for attribute-based classification, the description of the classes
should be reflected to the classifier in the process of learning. To achieve such
requirement, this chapter proposes training MLP classifier with pseudo score samples
briefly called pseudo samples in the rest of this thesis. The idea is to generate highly
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likely attribute score samples for zero-data classes in order to train the MLP for those
classes. Specifically, to generate such samples, the distribution of each attribute score
is estimated from the output of the PHOCNet. Because the attribute in this work
represents the presence and spatial position of characters, score distribution of all
attributes can be computed from training samples. After estimating the distribution of
all possible state of all attribute, pseudo samples for zero-data classes are generated
by random sampling from those distribution. As depicted in figure 4.4.2, true or false
state of binary PHOC of zero data class is observed first. After that, a probable score
value is picked up by random sampling from aligned distribution, and the score value
is then assigned to a pseudo sample. Finally, the MLP classifier is trained by the
generated pseudo samples as well as given training samples. The detailed process of
estimating attribute score distribution and generating pseudo samples is described in
algorithm 2

Figure 4.4.1: Graphical representation of the mlps classifier where the input is attribute scores
and the output is words in the lexicon.
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Figure 4.4.2: The visualization of the process of generating pseudo samples.

Using proposed pseudo samples enables the MLP classify input attribute scores
into zero-data classes for the following reasons. At first, for the attribute-based
classification, attributes are used to transfer information between classes. In this case,
attributes are also used to transfer knowledge from trained classes to zero-data classes.
The reason is that the score distribution is estimated from the samples of trained classes.
Then the knowledge is transferred to zero-data classes by training MLPs with pseudo
scores sampled from such a distribution. Second, although severely biased output of
trained PHOCNet leads to overfitting problem for CCA as explained in section 4.3.1, it
helps ensure reliability of pseudo samples in this case. According to the assumption
specified in section 4.3.1, attribute scores estimated by the PHOCNet for trained
samples have severely biased mean and have very small variances. Therefore, sampled
values for pseudo scores from such distribution is highly likely to the expected output
of the PHOCNet for the input of zero-data classes. In other words, if the output
of the PHOCNet is not biased and distributed over wide range, then the generated
pseudo samples cannot represent the expected output of the PHOCNet. However,
similar to the argument in section 4.3.1, the biased output of the PHOCNet can cause
generalization problems for the MLP classifier. To suppress the problem, pseudo scores
are sampled from a normal distribution with estimated mean and variance rather than
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one of the scores from training samples directly. This approach can be categorized
as data augmentation introduced in section 2.1.6, and a large number of pseudo
samples can be generated from such normal distribution without using computational
resources. Then, training the network with those large number of samples from normal
distribution helps its learning generalize to upcoming test inputs.

Algorithm 2 : Estimating attribute score distributions and generating pseudo samples.

Initialization:
Attribute score and label matrix : Atrainx ,Atrainy ⊂ IRN×M

Zero-data class :zz ∈ Zzerod. ⊂ Zlex.

Pseudo sample :ap = zeros(1,M) = [ap.
1 , ...,ap.

M]

Estimating attribute score distribution:
form in range(M):
TrueAttrIdx = Atrainy (:,m)

FalseAttrIdx = 1−Atrainy (:,m)

aone, azero = 〈Atrainx (:,m), TrueAttrIdx〉, 〈Atrainx (:,m), FalseAttrIdx〉

µone, σone = mean(aone), std(aone)

µzero, σzero = mean(azero), std(azero)

Xone

m ∼ N(µone, (σone)2), Xzero

m ∼ N(µzero, (σzero)2)

returnXone, Xzero

Generating pseudo sample:
for zz inZ

zerod.:
for azzm ina

zz :
if azzm == 1 :
a
p.
m = random.sample(Xone

m)

else :
a
p.
m = random.sample(Xzero

m )

returnap.



5
E X P E R I M E N T S

In this chapter, the recognition systems proposed in chapter 4 is evaluated on com-
monly used handwriting recognition benchmark. The results of different methods are
not only compared with each other but compared to other works [AGFV14], [PW16].
The dimensionality of attribute representation is fixed to 540 for all experiments. The
length of 36 · (1+ 2+ 3+ 4+ 5) = 540 is defined by 5 levels unigram of 26 English
alphabet and 10 digits. In the first section, the database used in this thesis, IAM, is
introduced. Then, the evaluation metrics for the experiments, Word Error Rate(WER),
Character Error Rate(CER) and Out of Vocabulary-WER(OOV-WER) are defined. In
addition, the training details of the PHOCNet is specified. Lastly, under specified
protocols in section 5.2, the results of all the methods proposed in chapter 4 on the
dataset in section 5.1 are presented and compared.

5.1 dataset

The dataset used in this thesis is IAM which is widely used in the document analysis.
The IAM off-line handwriting database [MB02] includes 115,320 isolated and labeled
words of mostly cursive English text written by 657 different writers. The database
offers writer independent official partition of train, validation and test. This official
partition will be used throughout the experiments, since it is widely used and eases
comparison with results from the literatures. With regard to the lexicon, a closed
lexicon which contains all the words that appear in either train or test set is used,
analogous to other works, [AGFV14], [PW16]. In other words, the lexicon in this thesis
is defined by getting unique transcription from all words in the IAM. The number of
classes in such lexicon is 9,271. Out of Vocavulary (OOV) words refer to test words
of zero-data classes in the lexicon, and 1,746 OOV samples appears out of 11,601 test
samples.

73



74 experiments

5.2 protocol

5.2.1 Evaluation Metrics

In the experiments, Word Error Rate(WER) and Character Error Rate(CER) are used
to assess the performance of recognition systems. These two metrics are standard
measures for determining word recognition performance. As shown in its terminology,
WER refers the number of Word Error(WE) out of entire test samples:

WER(%) =
#WE

# test samples
× 100 (5.2.1)

where WE means that the output class of the word image is different to its ground-
truth label. Character Error (CE) is measured between the transcription of the output
class and ground-truth label of test input image. To define CER, a distance metric
between two strings called Levensthein distance is employed. It measures the distance
by counting the minimum number of character substitutions, deletions, and insertions
to transform an output string into the ground-truth label. Then, the CER of a word is
obtained by normalizing distance with the length of the word. Finally, the CER of the
entire test set is defined as the average of them.

As discussed in section 3.1, word recognition can be considered as a special case
of zero-data classification. One reason to use attribute-based approach is to make
the recognition system classify future samples of classes for which no training data
is available, i.e., zero-data classes. In this context, WER cannot fully assess the
performance of attribute-based word recognition systems. The reason is that WER
cannot distinguish whether word errors result from samples of trained classes or result
from OOV samples of zero-data classes. Therefore, to evaluate the performance of
recognizing OOV words, OOV-WER is additionally used in this thesis as evaluation
metric. This OOV-WER indicates the number of word error among OOV over the
entire number of OOV words in the test set:

OOV-WER(%) =
# (WE ∩ OOV)

#OOV
× 100 (5.2.2)

Therefore, OOV-WER is 100% under standard supervised learning.



5.2 protocol 75

5.2.2 Training Details of PHOCNet

All proposed methods in chapter 4 employ a trained PHOCNet to estimate attribute
scores of input images. Training details of the PHOCNet in this thesis are similar to
those in [SF18] that firstly introduces PHOCNet for word spotting in handwritten
documents. The ground is that the PHOCNet is used to estimate attribute scores
from input word image in both [SF18] and this thesis. The network is trained using a
binary logistic-loss which is derived in (3.2.7). For optimizing loss function, Stochastic
Gradient Descent (SGD) is employed with using a momentum of 0.9 and batch size of
10.

As shown in the architecture of the PHOCNet in figure 3.2.1, it contains huge
number of parameters that have to be trained especially in between fully connected
layers. On the other hand, there is only a limited number of training samples in given
dataset. Therefore, overfitting can easily occur in the PHOCNet. Three regularization
techniques introduced in section 2.1.6, dropout, data augmentation and weight decay,
are used to prevent overfitting in this thesis. Dropout is applied to fully connected
layers with probability of 0.5 except last two layers which contain the same number
of neurons as the length of attributes, 540. With respect to image augmentation, a
random affine transform is applied to randomly sampled word images per class. In

Figure 5.2.1: The train loss and Error Rates(ERs) over training iterations of the PHOCNet on
the IAM dataset.
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detail, three points in the middle of the sampled image are obtained by selecting
fixed relative coordinates. Then, each of taken coordinates is multiplied by a random
number uniformly sampled from [0.8,1.1]. From the first points, the homography is
computed as new coordinates of the corresponding first points in a synthetic image.
An affine transformation derived from above steps is applied to generate augmented
images. The number of training images per class set to 50 with image augmentation.
Lastly, for the weight decay, the L2 penalty multiplier set to 5 · 10−5 which is same
value used in [SZ14] because of the similarity of network architecture.

Training is run for 640,000 iterations with an initial learning rate of 10−4, and the
learning rate is divided by 10 every 200,000 iterations. For word spotting in [SF18], a
maximum number of iterations of 240,000 is used on the IAM. In the case of recognition
in this thesis, the training continues after 240,000 iterations, because training loss
continues to decrease beyond 240,000 iterations without increasing generalization
error as shown in figure 5.2.1. Even though there is still no problem of increasing ERs
beyond 640,000 iterations, both train and test errors are already converged around
480,000 iterations. Hence, when a maximum number of iterations is larger than 480,000,
it does not significantly affect the recognition results.

5.3 results

5.3.1 DAM

As explained in section 4.1, DAM refers to a multi-class classification method that
finds nearest neighbours with distance measurement between two different attribute
representations. In the experiments, test samples are fed into a trained PHOCNet to
estimate their attribute scores. Then, DAM method finds the nearest word class in the
lexicon to estimated scores of test samples by computing (4.1.4). DAM is the most

Method Specification
Results(%)

WER CER OOV-WER

DAM
Cosine 13.93 7.20 19.41

Bray-Curtis 13.72 7.09 18.90

Table 5.3.1: Recognition error rates using different configurations for DAM method on the
IAM dataset.
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naive of the methods proposed in this paper, and requires much less computation
time than others. For that reasons, recognition errors using the DAM method shown
in the table 5.3.1 are used as baseline results. Experimental results in table 5.3.1
show that the Bray-Curtis (BC) dissimilarity yields lower error rates than the case of
using cosine distance. However, in this chapter, cosine distance is considered mainly
as metric for DAM to compare results with other works as shown in table 5.3.2,
because they use only cosine distance as metric. The results in table 5.3.2 represent
the performance of different method of estimating scores. The reason is that all
given experiments use DAM method to find output class on the IAM dataset. For
the experiment of [AGFV14], they uses FVs with SVMs to estimate attribute scores,
and then they find nearest neighbour class based on cosine distance. [AGFV14] only
introduces their best recognition results with KCSR which is close to kernel CCA
[Aka01]. [AGFV14] claim that KCSR clearly outperforms CSR, i.,e, CCA, because a
kernalized approach enables to analyse non-linear relation between attribute scores
and binary PHOCs. The first and third experiments in the table 5.3.2 which use a
deep CNN as multi-label classifier give better results than [AGFV14] even without
CCA. It implies that using one integrated multi-label classifier, a CNN, is a better way
to estimate attribute scores from visual pattern of image for the recognition than using
separated classifier per attribute with independent feature vector encoding proposed
in [AGFV14]. The experiment in [PW16] which employs different CNN architecture
called CNN-N-Gram shows better result than experiment of using the PHOCNet. The
difference possibly comes from enlarged network architecture of CNN-N-Gram with
branching fully-connected layers described in section 3.2.2.

Method
measuring scores

Multi-class
classifier

Specification
Results(%)

WER CER

PHOCNet
DAMcos

withoutCCA 13.93 7.20

FVs with SVMs [AGFV14] KCSR 20.21 11.27

CNN-N-Gram [PW16] withoutCCA 8.83 5.93

Table 5.3.2: Comparison of results using DAM method with different configurations on the
IAM dataset.
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5.3.2 DAP

The experiments with DAP is to compute probabilistic model equation (3.3.12) derived
in section 3.3. Considering computability of joint probability p(azl), attributes are
assumed to be statistically independent to each other as denoted in (4.2.11). Then, the
baseline DAP model which is used in the following experiments is given by

ẑMAP(xi) = argmax
l=1,...,L

∏M
m=1 p(a

zl
m | xi)p(zl)∏M

m=1 p(a
zl
m)

(5.3.1)

As discussed in section 4.2,
∏M
m=1 p(a

zl
m | xi) is determined by the output of a

trained PHOCNet. Therefore, the variants of DAP experiments come from different
assumptions for class prior p(zl) and attribute prior p(azlm).

The first result of DAP in table 5.3.3 is induced by assuming uniform distribution
for p(zl) and unbiased for p(azlm) which are given by (4.2.5) and (4.2.13) respectively.
With these assumptions, the output class of DAP is only determined by the output
score of the PHOCNet, because p(z) and p(am) are same for all classes:

ẑMAP(xi) = argmax
i=1,...,L

∏M
m=1 p(a

zl
m | xi)p(zl)∏M

m=1 p(a
zl
m)

=
c1
c2

argmax
i=1,...,L

M∏
m=1

p(azlm | xi) (5.3.2)

where c1 = 1
L and c2 =

(
1
2

)M
. Even though (5.3.2) is the most simplified form of

DAP, it already gives better WER and CER than DAM as shown in table 5.3.3. As

Method Specification
Results(%)

WER CER OOV-WER

DAM Cosine 13.93 7.20
19.41

DAP

p(z) : uniform
12.79 6.79 21.53

p(am) : unbiased

p(z) : empirical
11.89 6.21 22.45

p(am) : unbiased

Table 5.3.3: Results for the DAP under two different assumptions comparing with cosine DAM.



5.3 results 79

Method p(z)
Results(%)

WER CER

DAP
uniform 12.79 6.79

empirical 11.89 6.21

DAM results 11.86 6.19

(a) Results for DAP with respect to different p(z)

Method p(am)
Results(%)

WER CER

DAP
unbiased 11.89 6.21

empirical 16.31 9.73

(b) Results for DAP with respect to different p(am)

Table 5.3.4: Results for the DAP under different assumption for either p(z) (a) or p(am) (b).

discussed in section 4.2, a very likely reason is that DAP exploits all scores of both
true and false attributes, whereas DAM only considers true attributes.

The second scenario is to assume that class prior follows smoothed empirical
distribution derived by (4.2.6) and (4.2.9), but p(am) is still assumed to be unbiased:

ẑMAP(xi) =
1

c2
argmax
i=1,...,L

M∏
m=1

p(azlm | xi)p(zl)train (5.3.3)

According to second result of DAP in table 5.3.3, using p(zl)train gives better WER and
CER than assuming uniform distribution. It implies that p(zl)test is close to p(zl)train.
It can be demonstrated by Chi-Square goodness of fit test χ2. Let observation O is
DAM recognition result that has about 86% word accuracy from the table 5.3.3, and
first and second hypotheses, H1 and H2, are empirical and uniform distribution
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(a) OBS-H1 plot (b) OBS-H2 plot

Figure 5.3.1: Q–Q plots comparing an observed word frequency by DAM with a hypothesized
distribution

respectively. In this Chi-Square test, DAM recognition result of 86% word accuracy is
assumed to be enough to estimate word frequency of test set. Then χ2 is given by

χ2 =
∑ (O− E)2

E
(5.3.4)

where E represents an expectation asserted by hypothesis H. The computed value of
(5.3.4) with each hypothesis is compared with a chi-squared distribution to evaluate
the goodness of fit:

χ2H1 = 915 < 36028,

χ2H2 = 448713 > 36028
(5.3.5)

where 36028 is value of the Chi-Squared distribution with L− 1 degree of freedom
and 0.05 significant level. Chi-Squared test statistic of first hypothesis χ2H1 is smaller
than critical value 36028. It indicates that empirical distribution is acceptable, and the
frequency of words in train set is close to test set. However, hypothesis of uniform
distribution, yields much larger difference statistics χ2H2 than critical value. This
means that term frequency of test is not uniformly distributed, and therefore H2
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is not acceptable. These closeness of between distributions can be visualized by a
Quantile-Quantile (Q-Q) plot as depicted in figure 5.3.1. In Q-Q plot, the linearity
of the points on the 45◦ line suggests that the data obtained by hypothesis is close
to observation. Therefore, the left sub-figure proves that word distribution in test
documents generally follows empirical distribution of train set except a few outliers.
Contrary to (a) of figure 5.3.1, (b) shows that observed word frequency in the test is
completely different to uniform distribution. Hence, on the IAM dataset, the word
frequency of train set help predict the number of appearances of word in the test.
As a result, using empirical distribution for p(z) gives better recognition result than
ignoring it by assuming uniform. However, p(z)test ∼ p(z)train on the IAM dataset
cannot always generalize to other applications. It can be argued that above assumption
possibly gives inferior results than using uniform distribution, depending on datasets
or test documents. There are two solutions to address above limitations. First of all, it
is possible to prepare a number of p(z) distributions depend on document categories.
As specified in (4.2.6), p(z) refers term frequencies (TF) which are used to categorize a
text document in bag-of-words model. Therefore, assigning the most likely predefined
TF histogram as p(z) depend on document categories can help the recognition task
of DAP. If no prior knowledge of the category of documents is given, then TF can be
constructed from output classes of DAM recognition. Although the result of DAM is
different to ground-truth label of test images, it can offer comprehensive information
about TF of test documents. The result of table 5.3.4 (a) shows that this solution gives
better recognition results than ignoring class prior p(z).

On the other hand, employing empirical distribution for p(z) gives inferior results
in OOV-WER. It is because one-additive smoothing enables DAP avoid the problem of
zero posteriors but still assumes relatively very small prior for zero-data classes. In
other words, weighting factors for computing posterior written in (5.3.3) set to the
smallest value for zero-data classes. Thus, using word frequency information of train
set can help reduce WER and CER, but can be disadvantageous for recognizing OOV
words.

Up to this point, p(am) is assumed to be unbiased for all m. As derived in (4.2.14),
empirical approach also can be applied to p(am). Let class prior p(z) be assumed to
follow empirical distribution. Then, DAP with empirical approach for both p(z) and
p(am) is given by

ẑMAP(xi) = argmax
i=1,...,L

∏M
m=1 p(a

zl
m | xi)p(zl)train∏M

m=1 p(a
train
m = azlm)

(5.3.6)
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with M=540 different p(atrainm = 1) defined in (4.2.14). However, as shown in table
5.3.4 (b), the result of experiment with (5.3.6) inferior to the result of neglecting p(am)

with unbiased probability, 0.5. In this case, it is hard to analyse the reason for increasing
error rates. Different to the case of p(z) which estimates only one distribution, M
number of fitness between p(atestm = 1) and p(atrainm = 1) should be considered.
Furthermore, it is hard to conclude that which of p(am) largely affects word errors,
because all M estimated p(am) are multiplied. Meanwhile, when p(atestm = 1) is
assumed to be observed, WER of this ideal case is even worse than 16.31% of WER in
table 5.3.4 (b). This implies that assuming independence of attributes in DAP model
hurts the recognition performance expect for unbiased attributes:

ẑMAP(xi) = argmax
i=1,...,L

∏M
m=1 p(a

zl
m | xi)p(zl)

p(azl1 , ...,azlM)
6= argmax
i=1,...,L

∏M
m=1 p(a

zl
m | xi)p(zl)∏M

m=1 p(a
zl
m)

(5.3.7)

To sum up: two assumptions, empirical distribution for p(z) and unbiased for p(am),
gives the best WER and CER in DAP experiments. Hence, the second result of DAP in
table 5.3.3 is considered as baseline result of DAP in the rest of thesis.

5.3.3 CCADAP

Table 5.3.5 compares the result of CCA to DAM. CCA method offers slightly better
error rates than DAM with the optimal set of hyperparameters derived by algorithm
in section 1. Please note that CCA method in the rest of thesis refers regularized
CCA which is explained in section 2.2.3. As denoted in section 4.3.1, even though
there are a large number of training samples on the IAM dataset, CCA can be ill-
posed in underdetermined setting. It is because most of attributes are not only
co-linear with level-wise representation of PHOC, but also biased by the PHOCNet.
For the specification of CCA in section 5.3.5, r1 = r2 = r refers the dimensionality
of new representation on the common subspace after applying CCA, and λ1 =

λ2 = λ denotes regularisation parameters. This very large value of parameters
hinders improving performance of CCA. As discussed in section 2.2.3, non-negative
regularisation parameters λ is used to avoid singular problem of covariance matrices in
regularized CCA. However, large parameters which are needed to suppress overfitting
dominates learning of CCA. On account of this limitation from regularization, DAP
method can achieve better recognition results than CCA in WER and CER. Whereas
CCA shows better recognition for OOV than DAP, the standard measurements, WER
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Method Specification
Results(%)

WER CER OOV-WER

DAM Cosine 13.93 7.20
19.41

CCA
r : 150

13.61 6.97 18.55

λ : 106

DAP
p(z) : empirical

11.89 6.21 22.45

p(am) : unbiased

CCADAP
r : 120

10.06 5.03 16.66
λ : 103

Table 5.3.5: Comparison of the best results of each of four methods.

and CER, explicitly have higher priority to evaluate recognition performance of
methods. Hence, in the experiments of this thesis, using CCA is inferior option than
using DAP in attribute-based recognition.

As listed in table 5.3.5, CCADAP achieves 10.06% WER, 5.03% CER and 16.66%
OOV-WER that are lower error rates than results of any other methods presented
previously in this thesis. For the temporal reading of CCADAP, the result of DAP in
table 5.3.5 is used. Since CCA learns the correlation between attributes rather than
words, CCA can learn proper relations from correct attribute predictions of error words.
This means that the performance of CCADAP is largely affected by CER rather than
WER of DAP. In this case, from 6.21% CER of DAP, CCADAP can learn correlation
from 93.79% accurate temporal learning by DAP. In addition, the dimensionality of
new representation by CCADAP is set to 120 which is much smaller than 540, but
CCADAP still gives superior results after a large degree of dimensionality reduction.
Because CCADAP learns relation from temporal predictions of test documents instead
of training set, the ovefitting problem in the CCADAP is not as decisive as in the CCA.
Therefore, regularisation parameters λ are set to 103 which is much smaller than 106

of CCA. Compared to DAP, the upper bounds of error rates of CCADAP are those of
DAP that are already superior than DAM. Especially, CCADAP reduces OOV-WER by
about 6% over DAP method. Indeed, CCADAP compensates increasing OOV-WER
problem of DAP.
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One limitation of CCADAP is the value of Q. Here, as defined in section 4.3.1, Q
indicates the number of input image that goes into the recognition system at one
time during test. Therefore, CCADAP requires proper size of Q enough to learn the
correlation by CCA. For the CCADAP in table 5.3.5, Q is set to be same as the number
of test samples in the IAM data set, 11,601. This is the best scenario to use CCADAP
on the IAM dataset, so that CCADAP fully exploits test samples for its learning. In
order to assess the performance of CCADAP according to the value of Q, 6 test batches
of different sizes are constructed by random sampling from IAM test set. Table 5.3.6
shows that results of three methods for different batch size, and is visualized by the
graph in figure 5.3.2. Because test batches includes randomly selected samples from
entire test set, three batches are generated per size. Then, the results are averaged
for each size to increase reliability of experiments. Please note that the comparison
of three different methods for the value Q is only matter in this experiments, and
the absolute number of error rates in table 5.3.6 are not related to the objective of
experiments. When Q is smaller than the number of attributes, CCADAP does not
need to be considered because CCA is explicitly ill-posed in underdetermined setting.
In this case, CCADAP determines its output as temporal results by DAP. Then, the
recognition results are same as DAP. When Q is same as M=540 or slightly larger than
M, CCA is applicable for the results of DAP. However, the improvement is still trivial,

Q ratio
Results(%)

DAM DAP CCADAP

WER CER WER CER WER CER

116 < M 1% 12.64 6.35 10.62 4.88 10.62 4.88

540 = M 5% 13.08 6.64 11.47 6.24 11.10 5.91

812 > M 7% 13.74 6.85 11.9 6.13 11.07 5.56

2320 > M 20% 14.62 7.42 12.22 6.20 11.21 5.62

5800� M 50% 13.83 7.14 11.75 6.17 10.29 5.06

11601� M 100% 13.93 7.20 11.89 6.21 10.06 5.03

Table 5.3.6: Comparison of the results of CCADAP and two other methods on Q where Q
indicates the number of input images that goes into the recognition system at one
time during test.
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Figure 5.3.2: The graph of recognition errors for CCAPDAP over different number of test
samples Q randomly sampled from IAM test set.

because the learning of CCA from Q number of samples is not enough to correct
wrong prediction of temporal results. Afterwards, the performance of CCADAP
is proportional to the number of Q. In the figure 5.3.2, the green line representing
WERs of CCADAP is always below the blue line of DAP. Furthermore, as the Q value
increases, the gap between the two lines also increases. In the best case of entire IAM
test set, CCADAP can give about 1.8% lower WER than DAP and about 3.8% lower
WER than DAM. Hence, the results of experiments demonstrates that DAP is better
method than DAM and CCADAP is superior method than such DAP, regardless of
the number of input images.

5.3.4 Classification with MLPs

For the MLPs classifier described in figure 4.4.1, its architecture and training details
are determined by the results on the validation set with changing hyperparameters.
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Method Number of Szz
Results(%)

WER CER OOV-WER

MLPs

0 24.23 10.49 100

50 12.44 6.32 20.56

150 12.17 6.37 17.64

500 12.17 6.45 14.66

Table 5.3.7: Recognition error rates using different number of pseudo samples per zero-data
class Szz for MLPs method on the IAM dataset.

Figure 5.3.3: The graph of recognition errors for MLPs over different number of pseudo
samples per zero-data class Szz .
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As specified in section 4.4, the number of neurons in input and output layers are the
dimension of attribute representation M = 540 and the number of classes in lexicon
L = 9, 271 respectively. Based on heuristics, a hidden layer is defined by one layer of
4 · L ≈ 34, 000 neurons. The mini-batch size of SGD sets to 800, and the momentum
sets to 0.9. An initial learning rate of 0.1 is used. Then it is divided by 10 when the
training error plateaus. The maximum number of iteration for training sets to 10,000

with approximately 500,000 training samples, but the training is only run for about
four epochs until training error is converged.

Table 5.3.7 shows the result of MLPs method trained with 50 training samples
per data class Szl and different number of pseudo samples per zero-data class Szz .
As argued in section 4.4, trained MLPs cannot recognize OOV words when pseudo
samples are not considered. 100% of OOV-WER results in inferior overall WER and
CER to any other experiments. Then, with using pseudo samples to train MLPs, the
network begin to recognize OOV words. When each zero-data class is trained by
50 pseudo samples, MLPs can recognize about 79.4% of OOV words, and WER and
CER decreases to 12.44 and 6.32 respectively. Then, with using more pseudo samples,
the network can recognize more OOV words. In general, to learn classifying OOV
words, MLPs requires larger number of pseudo samples per zero-data class than the
number of given training samples per class. The reason is that the output scores of
the PHOCNet for OOV words have larger variance than scores for images in trained
classes. This large variance of scores of OOV inputs is covered by learning based on a
large number of pseudo samples. For more than 500 of Szz , the recognition error rates
hardly change. The graph in figure 5.3.3 visualizes the results in table 5.3.7. Below
two lines present that WER and CER are not improved beyond 50 of Szz . On the other
hand, the top graph in the figure shows that the performance of recognizing OOV
words is proportional to the number of Szz .

To sum it all up: increasing the number of pseudo samples helps to recognize OOV
words, but it can cause similar amount of additional recognition errors for the words
of trained classes. Although increasing Szz does not decrease WER and CER, it is
explicitly advantageous to use a large number of pseudo samples. The reason is that
lower OOV-WER for the same WER enables the recognition system guarantee stable
results for any input documents regardless of the number of OOV words.

Following the algorithm 2, the pseudo samples are sampled from estimated normal
distribution N(µtrain,σtrain) rather than taken from scores of training samples atrain.
Here, mean and standard deviation of the normal distribution, µtrain and σtrain,
are derived from scores of all training samples. The results of table 5.3.8 shows that
sampling from the normal distribution always gives better results than arbitrarily
taking one of the scores on the training sample. The histogram in the figure 5.3.4 shows
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Method Number of Szz Sampling from
Results(%)

WER CER OOV-WER

MLPs

50

atrain 12.78 6.55 22.45

N(µtrain,σtrain) 12.44 6.32 20.56

150

atrain 12.29 6.37 18.61

N(µtrain,σtrain) 12.17 6.37 17.64

500

atrain 12.39 6.52 15.69

N(µtrain,σtrain) 12.17 6.45 14.66

Table 5.3.8: Comparison of results of different number of pseudo samples sampling from
estimated normal distribution N(µtrain,σtrain) and attribute scores of training
samples atrain

the reason why above results came out. The data of histograms in the figure is the
output of a trained PHOCNet also called attribute scores of all samples in IAM dataset.
For example, sub-figure(e) represents the score of non-presence of character ′d ′ in
an image x, p(a4 = 0 | x). For already trained images, the PHOCNet yields severely
biased score to zero as shown in grey color histogram. However, estimated scores
of OOV words by the PHOCNet, red color histogram, are not that much biased to
zero, and are spread out over rather wide range of score. Thus, if pseudo samples are
generated from the scores of grey histogram and MLPs is trained by them, then MLPs
is hard to classify widely spread scores of OOV images. On the other hand, when the
large number of pseudo samples are randomly sampled from normal distribution, the
learning of MLPs can cover spread scores of OOV images as shown in yellow color
distribution. Sub-figure(f) also represents the scores of fourth attribute but for the
presence. Sub-figure(a),(b) and (c),(d) depict that above statement is also valid for
first and second attributes respectively. The figure 5.3.4 only includes histograms of
representative three attributes, but overall tendency of biasing score of trained samples
and spreading score of OOV samples are same for most of 540 attributes.
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(a) p(a1 = 0 | x) histograms (b) p(a1 = 1 | x) histograms

(c) p(a2 = 0 | x) histograms (d) p(a2 = 1 | x) histograms

(e) p(a4 = 0 | x) histograms (f) p(a4 = 1 | x) histograms

Figure 5.3.4: The histograms of attribute scores estimated from all samples in IAM dataset by
PHOCNet

5.3.5 Comparison

The methods proposed in this thesis are evaluated by comparing their experimental
results with results of DAM as shown in table 5.3.9. DAP results in lower WER and
CER than DAM regardless of the assumptions for class prior, but it gives inferior results
in terms of OOV-WER. In this thesis, CCA cannot make a significant improvement
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in the error rates because of overfitting. By solving this problem with combining
CCA and DAP, CCADAP offers the best results for WER and CER. Table 5.3.9 also
shows that MLPs with pseusdo samples yields higher WER and CER than the best
results of DAP and CCADAP. However, the MLPs method can make better results
than DAM, CCA and DAP without using a bag of words of training set. Even though
MLPs method does not give the best results in terms of WER and CER, it offers the
best recognition performance for OOV words.

Table 5.3.10 shows segmentation-based word recognition results on the IAM to
compare the best result of this work by CCADAP with results of other works. All
presented results use the same evaluation protocols such as using closed lexicon for
making predictions and using WER and CER as metrics. The reuslts of [AGFV14]
which uses Fisher Vecotrs (FV) and linear SVMs are inferior to any other methods in
table 5.3.10 that employ ANN. [DKN14] introduces to use Long Short-Term Memory
Recurrent Neural Networks (LSTM-RNN), and it offers superior results than [AGFV14].
Afterwards, a method of employing a CNN for handwriting word recognition was
proposed by Poznanski et al. in [PW16]. It outperforms the RNN based approach

Method Specification
Results(%)

WER CER OOV-WER

DAM Cosine 13.93 7.20
19.41

CCA
r : 150

13.61 6.97 18.55

λ : 106

DAP
p(z) : uniform

12.79 6.79 21.53

p(am) : unbiased

MLPs #Szz : 500 12.17 6.45 14.66

DAP
p(z) : empirical

11.89 6.21 22.45

p(am) : unbiased

CCADAP
r : 120

10.06 5.03 16.66

λ : 103

Table 5.3.9: Comparison of all proposed methods.
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Method
Results(%)

WER CER

CCADAP 10.06 5.03

Almazan et al. [AGFV14] 20.01 11.27

Doetsch et al. [DKN14] 12.20 4.70

Poznanski et al. [PW16] 6.45 3.44

Dutta et al. [DKMJ18] 4.80 2.52

Table 5.3.10: Comparison of the result of CCADAP to results presented by other works on the
IAM dataset.

from [DKN14]. CCADAP proposed in this thesis also gives better result than [DKN14]
in terms of WER. However, compared to the CNN based approach, 6.45% of WER by
[PW16] is lower than 10.06% of WER by CCADAP. Although the quantitative error
rates of CCADAP cannot be matched to the numbers of [PW16] in table 5.3.10, the
work of this thesis presents competitive results with employing the PHOCNet that
has a more compact architecture than the CNN-N-Gram. In other words, the CNN
of this thesis uses fewer number of neurons and parameters that have to be trained,
especially in the fully connected layers. This means that it spends fewer computational
resources and learning time. Furthermore, when both this work and [PW16] employs
a CNN to estimate attribute scores, CCADAP is explicitly superior to CCA method of
[PW16] in classifying estimated scores to the output classes. It is because CCADAP
can reduce WER by about 3.9% from DAM, whereas [PW16] presents improving only
about 2.4% of WER from DAM based on CCA. Currently, the state-of-the-art method
of handwriting word recognition on the IAM dataset is to employ CNN-RNN hybrid
networks. One of such approach, [DKMJ18], presents 4.80% of WER and 2.52% of
CER as shown in the best results of table 5.3.10.





6
C O N C L U S I O N

This thesis introduces an approach to recognize segmented handwritten words based
on intermediate representation of attribute. This approach formalizes the way of
applying attribute-based classification to handwriting recognition, and it is dubbed as
attribute-based word recognition.

In this thesis, a PHOC is used as attribute representation, because it is an explicit
word discriminative representation based on the presence of character and its spatial
position. Then, the proposed recognition system is defined by two cascaded machine
learning models. First, the PHOCNet is employed to estimate attribute scores from an
image. Second, this thesis introduces four different methods of classifying estimated
scores into a class of lexicon and evaluates them by comparing their experimental
results on the IAM dataset.

DAM refers nearest neighbour search with distance measurement. Because this
simple method is also used in similar work [PW16] with different architecture of
CNN called CNN-N-Gram, the recognition results of DAM allow to compare the
performance of two different CNN architectures. Even though employing CNN-N-
Gram shows better recognition accuracies than employing PHOCNet under same
evaluation settings, PHOCNet has more compact architecture with much smaller
number of network parameters that have to be trained. However, the work of this
thesis demonstrates that the performance of an attribute-based word recognition
system is determined by the way of multi-class classification as well as the architecture
of CNNs. The experiments of DAP shows that using a probabilistic classifier can offer
better recognition results than using simple DAM regardless of prior assumptions. It
is because DAP reflects predictions of non-present attributes which are neglected in
DAM. This means that DAP fully utilizes estimated attribute score of the input images
but DAM is not. Another experiment proves that adapting the term frequency(TF) of
training documents as class prior can improve the performance of DAP.

This thesis not only discusses above methods already introduced in other papers
but also introduces two novel methods called CCADAP and MLPs with pseudo

samples. CCADAP is the way of using CCA for a temporal recognition of input
handwriting documents by DAP. This method enables to resolve overfitting problem of
standard CCA and to learn correlation between estimated scores and predicted binary
representation of target documents. As a result, CCADAP shows the best recognition

93
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performance among all proposed method in this thesis. MLPs with pseudo samples
proposes to train a conventional softmax MLPs with pseudo samples for zero-data
learning. The recognition performance of this method is proportional to the number
of pseudo samples per zero-data classes. Even though MLPs does not give the best
results in terms of WER and CER, it offers the best recognition performance with
respect to OOV words.

Finally, this thesis concludes that the performance of attribute-based word recog-
nition can be improved by analysing attribute representations and by introducing
optimal multi-class classifier. It is based on the fact that DAP, CCADAP and MLPs out-
perform DAM. Furthermore, CCADAP noticeably decreases WER and CER by about
3.9% and 2.2%, respectively, from DAM. Even though this thesis achieves improve-
ment from its own baseline method, the recognition accuracy still cannot match to the
state-of-the-art results of [DKMJ18]. Recent works show that sequence model such as
CNN-RNN [DKMJ18] outperform holistic method in different word recognition tasks.

Regarding future work, employing architectures based on Residual Network (ResNet)
[HZRS16] can be designed and applied to estimate attribute scores. The architecture of
the convolutional part of PHOCNet is inspired by VGG. Given that generally ResNets
show better results than VGG for image recognition, [Sud18] proposes aforementioned
network called PHOCResNet. Experiments of [Sud18] show that this network outper-
forms PHOCNet in word spotting. Therefore, employing PHOCResNet is highly likely
to improve handwriting word recognition. In addition, considering kernel methods
for CCA of CCADAP give improvement. The reason is that kernel CCA can reflect
non-linear relation between attribute scores and the binary attributes. However, since
the given data for the CCA, attribute representations, are composed by large number
of samples with high dimensionality, the problem of requiring huge computational
cost should be addressed whether kernel methods use Gram matrices or feature maps.
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