
TRANSFER LEARNING FOR WORD
SPOTTING IN HANDWRITTEN

DOCUMENTS

Master Thesis

Neha Gurjar
May 26, 2017

Supervisors:

M. Sc. Sebastian Sudholt

Prof. Dr.-Ing. Gernot A. Fink

Fakultät für Informatik

Technische Universität Dortmund

http://www.cs.uni-dortmund.de

C O N T E N T S

1 introduction 3

2 fundamentals 5

2.1 Basics of Machine Learning 5

2.2 Artificial Neural Networks 8

2.2.1 Perceptron 8

2.2.2 Multi-Layer Perceptron 10

2.2.3 Learning with Gradient Descent 11

2.3 Convolutional Neural Networks 17

2.3.1 Convolution 17

2.3.2 Convolutional Layer 19

2.3.3 Pooling Layer 21

2.3.4 Rectified Linear Unit 22

2.3.5 Fully connected Layer 23

2.4 Transfer Learning 23

3 word spotting 27

4 related work 31

4.1 Approaches using CNNs 31

4.1.1 PHOCNet 31

4.1.2 Triplet-CNN 35

4.2 Approaches using Synthetic Training Data 37

4.2.1 Training a Recognizer without Handwritten Data 37

4.2.2 Word Spotting in Latin Script 40

5 method 43

5.1 Learning With Weak Supervision 43

5.1.1 Necessity for CNN 44

5.1.2 Transfer Learning using Synthetic Data 45

5.1.3 Finetuning with Handwritten Data 47

5.2 Regularization 47

6 experimental evaluation 51

6.1 Datasets 51

6.2 Word Spotting Protocol 53

6.3 Training Set-up 55

6.4 Experiments and Results 56

1

2 Contents

6.4.1 Transferring Knowledge from Modern to Historic Data 56

6.4.2 Training with Synthetic Data 57

6.4.3 Finetuning with Handwritten Data 58

6.4.4 Effect of Synthetic Data 59

6.4.5 Effect of Augmentation 62

6.4.6 Bray-Curtis Measure vs. Cosine Metric 65

6.5 Discussion 67

7 conclusion 69

1
I N T R O D U C T I O N

Document analysis is a broad field which includes the study of efficient indexing and
digitizing of handwritten documents. Image libraries contain several handwritten
documents of cultural and historical significance. Owing to the handwritten nature of
the documents, the information contained in them cannot be easily accessed. Hence,
unlocking this information through digitization and making it easier to browse or
search through the documents is the primary motivation for the study of document
analysis. One of the approaches used for digitization and indexing such documents
which has achieved great success is called word spotting. Word spotting is defined as
an approach which annotates words in handwritten documents, typically to generate
an index, by matching them to other words in the collection and clustering them.
Word spotting is more efficient as compared to the traditional handwriting recognition
approaches, since it does not require an exhaustive processing and recognition of all
the document contents.

Historic documents are of particular interest for document analysis. However, they
are also quite challenging to analyze because the images obtained from them are often
of poor quality. For example, as stated in [RM07], the George Washington collection is
not scanned from the originals, but from microfilms, further decreasing the quality of
the images. Several supervised and unsupervised approaches have been developed for
word spotting which achieve good results for such datasets. Supervised approaches
require training data which is labelled, as opposed to unsupervised approaches where
no annotation is required. Some unsupervised techniques in word spotting such as
[RVF12, RATL15] make use of local features extracted from word images which are
used in Bag-of-Features representations. On the other hand supervised approaches
use annotated training data to train a model for word spotting. Such a supervised
approach which makes use of Support Vector Machines is introduced in [AGFV14].
Another supervised approach which learns a Convolutional Neural Network(CNN)-
based model is described in [SF16]. Supervised approaches outperform unsupervised
approaches in word spotting. They are designed to be robust to a large variation
within a dataset such as that which occurs in handwritten documents. However, this
means that the dataset used for learning the model must be large enough to span
this range of variation. Annotating a large amount of training data is a tedious task
which requires a large amount of manual effort and time. Hence, it is desirable to

3

4 introduction

explore techniques which allow a reduction in the amount of handwritten training
data required while retaining the high performance shown by a supervised approach.
This is the motivation behind the methodology presented in this work.

A CNN-based model is learned for word spotting in this approach. In order to
reduce the amount of handwritten data, this work uses the approach of transfer
learning. In transfer learning, knowledge from one domain is used to improve a
task in another domain. In the method presented here, the CNN is first trained
on synthetically generated data which emulates handwriting and the variation in
handwritten documents. Since this data is generated by rendering word strings
using various fonts in a specific manner, no extensive manual effort is required to
obtain annotations for this dataset. The network performance is then evaluated on
handwritten data. Hence, in this approach, the knowledge obtained by the network
using the synthetic data is used to accomplish the task of word spotting in handwritten
documents. It is expected that the network faces limitations because of the difference
in the visual appearance of the synthetic and handwritten datasets. In this case, it is
finetuned with a small amount of handwritten data in order to boost its performance.
Thus, with this approach, the CNN is trained using weak supervision, i.e., a fraction
of the training data normally used for supervised approaches. As a result, the amount
of manual effort required for annotating handwritten training data and the time
required for training the network are also reduced. Thus, transfer learning and weak
supervision are used to overcome the challenges which occur in word spotting using a
CNN.

The next chapters describe the tools and concepts which are required for this ap-
proach of transfer learning for word spotting in handwritten documents and discuss
the experiments ad results supporting this approach. Chapter 2 explains the funda-
mental concepts in machine learning which have been used in this method. It gives a
detailed explanation of the origin and development of connectionist systems as well as
that of transfer learning, whereas chapter 3 defines word spotting and the terminology,
and describes various approaches in word spotting. Chapter 4 explains the approaches
which have most prominently inspired this thesis. The proposed approach uses a
Convolutional Neural Network called the PHOCNet introduced by [SF16]. Hence,
the approaches showing merits of Convolutional Neural Networks in the field of
word spotting are discussed in this chapter. Additionally, the approaches [AF15, KJ16]
discussed in the chapter are credited as the primary sources of inspiration for the idea
of implementing transfer learning using synthetic training data. Chapter 5 explains
the method proposed in this work, whereas chapter 6 provides the details of the
experimental set-up. This chapter further discusses the results of the experiments.
Finally, chapter 7 provides a summary of the thesis and the conclusions drawn.

2
F U N D A M E N TA L S

Word spotting in handwritten documents uses several supervised and unsupervised
learning techniques. In this work, the supervised approach using a Convolutional
Neural Network is explored. Transfer learning is implemented in order to reduce
the amount of human effort needed to prepare training data. This chapter aims
at familiarizing the reader with the fundamental tools, concepts and terminology
associated with machine learning, and transfer learning for word spotting using a
Convolutional Neural Network.

In this chapter, section 2.1 gives a brief overview about the concepts in Machine
Learning which have been used in this work. Section 2.2 explains the evolution of the
concept of Artificial Neural Networks, whereas section 2.3 introduces Convolutional
Neural Networks and their salient features. Finally, section 2.4 provides an overview
of the scope of transfer learning and its types.

2.1 basics of machine learning

Arthur Samuel (1959) coined the term machine learning and defined it as the “field of
study that gives computers the ability to learn without being explicitly programmed”
[Mun14]. In simple terms, machine learning is the study of of systems that improve
their behaviour by learning through experience [DR08]. In several cases, the experience
is a collection of observations or examples within a domain relevant to the task at
hand. One aims to observe a pattern and define classification rules over this data in
order to provide insights into that domain. The learning process typically involves
refining of the classification rules with the help of the aforementioned experience.
Some of the tasks under machine learning include clustering of data, classification, and
regression over data. Two broad categorizations of learning techniques are supervised
and unsupervised Learning. Supervised Learning techniques require labeled training
examples, i.e. the data samples used for training need to be manually assigned the
correct label prior to training. On the other hand, unsupervised learning techniques do
not require an assignment of labels for the data. The key difference between supervised
and unsupervised learning defined by [GBC16] is that unsupervised learning involves
observing several examples of a random vector, and attempting to learn the probability

5

6 fundamentals

distribution, or some properties of that distribution of that random vector, whereas
supervised learning is concerned with observing several examples of a random vector
and an associated label, and learning to predict the label for a given example, usually
by estimating the probability of the label given the data sample.

A branch of machine learning which focuses on the recognition of regularities and
patterns in given data is pattern recognition. Specifically, pattern recognition aims at
categorizing input data into classes through the extraction of significant attributes of
the input. Two broad categories of tasks in pattern recognition are recognition and
retrieval. In the recognition task, a system is developed in order to directly recognize a
pattern, i.e. assign a label to it. However, in the retrieval task, a pattern sample is used
as a query for the system. The relevant patterns, i.e. patterns which are similar to the
query with respect to the significant attributes, from a given collection of patterns are
retrieved. This helps to cluster and label similar patterns without explicitly recognizing
and labeling each of them individually. Tools and techniques defined in machine
learning are commonly used to accomplish tasks in pattern recognition. A neural
network is one of the supervised machine learning techniques capable of learning a
model from the given data and classifying the data samples into an arbitrary number
of classes.

Consider a task of classifying input data samples from a certain domain D (e.g.
animal image domain, text image domain etc.) into n classes and assigning each of
them a label y. For this purpose, it requires labeled training data, i.e. data samples
from the same domain D with suitable corresponding labels, known as the target
output. For a classification task, this may be in the form of a 1-hot vector in which
each label has all zero elements except for a single element of value 1. The index of
the element with value 1 indicates the class label which corresponds to the given data
sample. Other examples of target output are embedding vectors or descriptor vectors
pre-defined for the class to which the data sample belongs.

Given the labeled data, a model must be learned for classification of the data. Clas-
sification with a neural network is an optimization task, i.e., it involves minimization
or maximization of some function by altering the variables on which the function
depends. The question that now arises is: considering that the variables in this case
are the parameters of the neural network, what function can one define over these
parameters the minimization of which achieves a good classification over given data?
In this example, the input is first fed to the network and the output is calculated at the
last layer. This output depends on the input as well as the parameters of the network.
This step is known as the forward pass. The network output and the target output are
compared using a loss function which is a computationally feasible function represent-
ing the penalty for inaccuracy of predictions. Mathematically, the loss function maps

2.1 basics of machine learning 7

the values of the target output and network output on to a real value representing the
cost or penalty of the event. Few of the typically used loss functions for the network
output y and target output ŷ are listed below. Here, yi and ŷi are the ith elements of
the network output and target output respectively.

• Total Sum Squared Error (TSSE)

TSSE =

n∑
i=1

‖yi − ŷi‖2 (2.1.1)

where n is the number of training examples, and ‖.‖ is the Euclidean distance
between the vectors y and ŷ .

• Total Mean Squared Error (TMSE)

TMSE =
1

n · l

n∑
i=1

‖yi − ŷi‖2 (2.1.2)

where n is the number of training examples, l is the number of output neurons
and ‖.‖ is the Euclidean distance between the vectors y and ŷ.

• Cross Entropy Loss (CEL)

CEL = −
1

l

l∑
i=1

[ŷi logyi + (1− ŷi) log(1− yi)] (2.1.3)

where l is the number of output neurons.

Depending on factors such as the nature of the output, one function may be chosen.
For example, the cross entropy loss is typically chosen for multi-class labeling tasks.

An error value is calculated for each output neuron. It is propagated backwards
from the output layer to the input layer till each neuron has an error value associated
with it which approximately represents its contribution to the output error. The
parameters of the network are adjusted in order to minimize this error. This step is
known as the backward pass. One forward pass and one backward pass are together
considered to be one iteration. The parameters are updated at each iteration for several
such iterations using all the training data samples to acquire a trained model which
maps the data from domain D on to the correct corresponding label.

The primary tool used to accomplish the task of word spotting in this thesis is a
Convolutional Neural Network. A Convolutional Neural Network has a different

8 fundamentals

structure and types of layers as compared to a classic neural network described above.
The input given to a neural network is required to be in the form of a vector. Each
element of the input represents one input neuron. For example, pixel intensities of an
image may be restructured into a 1-dimensional vector before being fed to the network.
However, in a Convolutional Neural Network, the input is visualized in the form of a
2-dimensional structure. The merits, specific terminology and details of the layers of a
Convolutional Neural Network will be discussed in the section 2.3.

2.2 artificial neural networks

The previous section provided an overview of the working of a neural network. This
section discusses the details of the structure of a neural network, the parameters as
well as the technique used for training a neural network. To understand the concept
of neural networks, it is important to know how it evolved from the basic idea of a
neuron.

The basic unit of an artificial neural network, the artificial neuron was introduced by
Warren McCulloch and Walter Pitts in 1943 [MP43]. It was modeled after the biological
neuron. The McCulloch-Pitts neuron is shown in Fig.2.2.1 [Nie15]. This simple model
considered only binary inputs and outputs. The neuron is activated (value equals 1) if
the sum of the binary inputs exceeds a pre-defined threshold. Mathematically, it is
expressed as follows:

f(x1, ..., xn) =

1, if

n∑
i=1

xi > θ

0, otherwise
(2.2.1)

where the threshold θ > 0. The function f of the inputs is called the activation
function. The value of the function for any arbitrary inputs is called the output of the
neuron. Since the model parameters are not learned, this model is static in nature.
Frank Rosenblatt (1958) [Ros58] developed the perceptron, which was inspired by the
McCulloch-Pitts Neuron. The following sections discuss the concept and evolution of
the perceptron into neural networks.

2.2.1 Perceptron

The perceptron introduced weights to the model corresponding to each of the inputs.
The weights are real numbers demonstrating the impact each input has in order to
determine the output. The neuron is activated when the weighted sum of inputs

2.2 artificial neural networks 9

Figure 2.1.1: Perceptron as developed by Frank Rosenblatt takes weighted inputs. The condi-
tion for which the output of the neuron is 1 is shown within the neuron in the
image.

Figure 2.2.1: Model of the McCulloch-Pitts Neuron. The neuron may have an arbitrary number
of binary inputs. The activation function f for the neuron has been specified in
equation 2.2.1

10 fundamentals

exceeds the threshold value, which is also a real number. The perceptron is visualized
in Fig.2.1.1 The mathematical model for such a perceptron can be given by:

f(x1, ..., xn,w1, ...wn) =

1, if

n∑
i=1

wixi + θ >= 0

0, otherwise
(2.2.2)

where θ is the threshold and wi are the weights. This is visualized in Fig.2.1.1.
The higher the weight associated with an input, the greater is the influence which

that input has over the output. This perceptron is used to model the logic gates AND,
OR, NOR, NAND and NOT.

A further development was made to this model by Marvin Minsky and Seymor
Papert (1969) [MP69]. The perceptron by Rosenblatt considered only binary values as
inputs. However, the Minsky-Papert perceptron (MPP) accepted real values within
the interval [0,1] as input. Geometrically, this perceptron was capable of dividing an
n-dimensional space into two parts or classes by modeling a separating function. This
allowed the MPP to model linear equations in addition to Boolean functions and the
logic gates. Hence, the MPP is found to be atleast as powerful as the McCulloch-Pitts
neuron.

2.2.2 Multi-Layer Perceptron

Although the perceptron can be used to model simple logic and linear functions, it
has limitations in the face of more complex functions. Some of the limitations include
modeling of the exclusive-OR (XOR) logic gate and determination of parity. These
limitations can be overcome by using non-linear separating functions or by using
multiple layers of perceptrons. For example, an XOR logic gate can be modeled with a
multi-layer perceptron (MLP) as shown in Fig.2.2.2.

The parameters of a simple perceptron were traditionally tuned manually. However,
learning algorithms can be developed to tune the parameters automatically. This
tuning takes place in response to external stimuli, without direct manual intervention
[Nie15]. Instead of explicitly calculating the parameters or laying out a circuit of logic
gates, networks with multiple layers of perceptrons can simply learn to solve problems
of arbitrary complexity.

Multi-layer perceptron networks are commonly known as artificial neural networks.
Each of the layers may contain one or more neurons all connected to each neuron of
the preceding and succeeding layers with certain weights. The inputs of a network
are typically shown to be neurons with no input. However, they can be considered to

2.2 artificial neural networks 11

Figure 2.2.2: XOR logic gate over arbitrary binary inputs x1 and x2 modeled by a multi-layer
perceptron. The input neurons shown in the image are special units used to
define input values [Nie15].

be special units used to define the input values [Nie15]. The layers between the input
and output are known as hidden layers. A neural network with one hidden layer is
shown in Fig.2.2.3.

2.2.3 Learning with Gradient Descent

Multi-layer perceptrons are capable of learning models of arbitrary complexity. Their
parameters can be trained using a training algorithm. One of the underlying principles
of network training algorithms most commonly used is back propagation of error with
gradient descent. As explained in section 2.1, the error between the target output and
the network output is calculated and the parameters are corrected in order to minimize
the error. The parameters of the output layer are updated first and subsequently the
previous layers till the first layer is reached. Hence, this is called back-propagation of
error and was first introduced by [WH86].

In order to understand the method of training of multi-layer perceptrons, the nature
of a single perceptron must be explained. The activation condition of the Rosenblatt
perceptron from equation 2.2.2 can be written as follows.

n∑
i=1

wixi + b > 0 (2.2.3)

12 fundamentals

Figure 2.2.3: An Artificial Neural Network such as the one shown in this figure has an arbitrary
number of input, hidden, and output neurons. Each neuron of each layer is
connected to each neuron of the preceding and succeeding layers. It may also
have multiple hidden layers.

2.2 artificial neural networks 13

where b is called the bias. The parameters, i.e. the weights and biases must be adjusted
gradually such that the error approaches its minima. The error is, thus, defined as a
smooth function of the parameters. This acts as the cost function to be minimized.

C(w,b) ≡ 1

2n

∑
x

‖y(x) − a‖2 (2.2.4)

where C is the cost function of weights w and biases b, n is the number of training
inputs, y(x) is the desired or target output vector, a is the output vector of the network
with input x. The network output a is also dependent on w, b and the activation
function of the neuron h such that a = h(wx+ b). ‖.‖ denotes the L2 norm of a
vector. C is called the quadratic cost function or the mean squared error (MSE) [Nie15].
The cost function C(w,b) is non-negative, since every term in the sum is a square.
Moreover, the cost function C(w,b) is approximately 0, when y(x) is approximately
equal to the output, a, for all training inputs x. Thus, the goal of the training algorithm
is defined to find weights and biases for which C(w,b) ≈0. This is achieved using an
algorithm known as gradient descent using back-propagation of error.

In order to find the minimum of the cost function 2.2.4, the gradient vector of ∇C
is determined which indicates the change in the value of the function. The network
parameters are updated such that the function value decreases, i.e. the gradient is
followed along the negative direction. Since C is a function of the weights w and
biases b, the gradient vector has the components ∂C/∂w and ∂C/∂b. Hence for an
arbitrary weight and bias, the gradient descent update rule can be defined as:

wi → w ′
i = wi − η

∂C

∂wi
(2.2.5)

bi → b ′
i = bi − η

∂C

∂bi
(2.2.6)

where η is the learning rate. It is a small positive scalar which is typically used to limit
the rate at which the parameters are updated. A large change in the parameters may
cause the function value to change drastically which may result in a divergence or an
oscillation of the error between two values. By repeatedly updating the weights and
biases with this rule, the direction of the negative gradient of the function is followed
in order to seek the minimum. However, in order to obtain the partial derivative
terms ∂C

∂wi
and ∂C

∂bi
, the terms ∂a

∂wi
and ∂a

∂bi
must be calculated. Since a = h(x), where

h is the activation function of the layer, the partial derivative terms can be further

14 fundamentals

expressed as ∂h(x)
∂wi

and ∂h(x)
∂bi

. However, the classically defined activation function for
an arbitrary input u is given by:

h(u) =

1, if u > θ

0, otherwise
(2.2.7)

This function, also called the signum function, is not continuous in nature. This is
evident from the graphical representation of the function in Fig.2.2.4. Hence, it can be
differentiated across the domain except at 0, its point of discontinuity. Although the
derivative for the function can be approximated to 0 across the domain, it cannot be
used for back-propagation. Hence, a class of functions known as sigmoid functions is
used as a substitute for the signum function. The sigmoid functions are approximations
of the signum function. They are continuous in nature and, hence, differentiable. The
following are examples of sigmoid functions:

• Logistic Function

The following equation shows the logistic function for an arbitrary input u.

output =
1

1+ exp(−u)
(2.2.8)

It can be visualized in Fig.2.2.5

• Hyperbolic Tangent

The Hyperbolic tangent function is shown in Fig.2.2.5. The asymptotes of the
function at y = −1 and y = 1 limit the values at the Y-axis between that interval.

output = tanh(u) (2.2.9)

Neurons with sigmoid activation functions are referred to as sigmoid neurons. Due
to the almost linear nature of their output for input values close to zero, a small
change in the weights and biases results only in a small change in output as opposed
to the flip between 0 and 1 caused when the input crosses 0 using a signum function.
Moreover, input values farther from 0 result in an output bound between the limits of
the function. Therefore, the output of a sigmoid neuron in terms of the inputs, weights
and biases with, in this case, a logistic activation function can be given by:

aj+1 =
1

1+ exp(−
∑

jwjxj − b)
(2.2.10)

2.2 artificial neural networks 15

−6 −4 −2 0 2 4 6

0

0.25

0.5

0.75

1

1.25

Figure 2.2.4: The figure shows that the Signum Function is not continuous in nature. The
discontinuity exists at 0 where the value of the function is both 0 and 1.

The parameters of the network are updated first at the output layer, next at the
layer preceding the output layer and so on till the input layer. Thus, the network is
trained till the error is sufficiently low or till the training completes a certain number
of iterations. One iteration consists of passing one input sample through the network,
computing the gradient and updating the parameters.

As shown in 2.2.4, the cost function is an average of cost functions computed for
each individual training input. However, in practice the gradient is calculated for each
individual training input and is averaged over the number of training samples. If the
number of training samples is large, the computation of gradient for each training
example at a time can slow down the learning process. In this case, Stochastic Gradient
Descent is used to lower the number of parameter updates during the learning process.
The training data is divided into random mini-batches. All training samples are fed to
the network to generate a cumulative error. The gradient is then computed for this
entire mini-batch instead of a single input sample and averaged over the number of
samples. Provided the batch size is large enough, it can be expected that the average
value of the gradient calculated for a batch will be roughly equal to the average over
the entire training set [Nie15].∑m

j=1∇CXj

m
≈

∑
x∇Cx

n
= ∇C, (2.2.11)

16 fundamentals

−6 −4 −2 0 2 4 6

0.5

1

(a) Logistic Function

−6 −4 −2 0 2 4 6

0

1

(b) Hyperbolic Tangent Function

Figure 2.2.5: The Logistic function and the Hyperbolic Tangent function are continuous in
nature. The Logistic function is bounded on the Y-axis between 1 and 0, whereas
the Hyperbolic tangent function is bounded between 1 and -1.

2.3 convolutional neural networks 17

wherem is the number of training samples in the mini-batch. Thus, Stochastic Gradient
Descent increases the speed of learning. The update rule for the network parameters
according to Stochastic Gradient Descent can be given by:

wi → w ′
i = wi −

η

m

∑
j

∂CXj

∂wi
(2.2.12)

bi → b ′
i = bi −

η

m

∑
j

∂CXj

∂bi
, (2.2.13)

2.3 convolutional neural networks

So far, the working of Artificial Neural Networks with fully connected layers has been
discussed. That is, all neurons of a layer are connected to all other neurons in the
preceding and succeeding layers. However, this structure treats input data points that
are spatially far apart the same as if they were close together and vice versa. This
means that the network does not take into account the spatial structure of the input
data. In order to include this information in the model to be learned, the structure
called Convolutional Neural Network (CNN) can be used.

CNNs typically consist of several types of layers. The architecture of a particular
network can be determined by defining a combination of these layers which is best
suited to the task for which the model is to be trained. This sections introduces the
types of layers in a CNN.

2.3.1 Convolution

Classically, convolution is defined as a mathematical operation over two continuous
functions which gives the integral of the product of the functions when one is reversed
and translated as shown in equation 2.3.1.

f ∗ g(t) =
∫∞
−∞ f(τ)g(t− τ)dτ (2.3.1)

where f and g are arbitrary continuous functions in domain t.
Convolution can also be defined for discrete spaces. In this case, the function may

have any value at discrete points of the independent variable. An example of such a
discrete function in space is an image. Each of the pixel intensities occur at a discretely
defined location, known as a pixel, in a 2-dimensional space. Moreover, this is an

18 fundamentals

Figure 2.3.1: This figure gives an example of convolution in a 2-dimensional discrete space.
The top figure shows the first step of convolution with a 2 × 2 filter. The figure
on the bottom shows the second step with stride 1.

2.3 convolutional neural networks 19

example of a finite signal since each image has a finite number of pixels. Convolution
for such a function with another 2-dimensional kernel is shown in Fig.2.3.1. Consider
the input to be pixel intensities of a 3 × 3 gray image. The filter parameters are
multiplied element-wise with the pixel values of a part of the input which has the
same dimensions as that of the filter. The sum of these products represents the
corresponding output element. The filter is then slid over the input by 1 pixel and
the process is repeated to give the next output element. The number of pixels by
which the filter slides at each step is known as the stride. In the example shown in
Fig.2.3.1, the filter slides over the input with stride 1. This process is repeated for the
entire 2-dimensional input. This is known as discrete convolution. It is used in the
convolutional layers of a CNN as discussed further in this section.

2.3.2 Convolutional Layer

Consider the input layer to be a 2 dimensional matrix of neurons. A convolutional
layer of a CNN consists of multiple filters which, when convolved with the input
during the forward pass, extract one feature each from any region of the input. The
result of this convolution is used to activate the neurons in that layer. The activations
of these layers are known as feature maps. In contrast to the vector output of a neural
network, the feature maps from the convolutional layers are 2-dimensional. The values
of the filters within the convolutional layer are called the weights of the network.
Similar to neural networks, the layers between the output and input layers are called
hidden layers.

In contrast to a fully connected network, the filters in a convolutional layer connect
to the input at only a small local neighborhood at a time. In the context of CNNs, it is
known as the local receptive field. Each local receptive field at the input is associated
with one neuron in the next layer. This field is slid over the entire input in steps in
order to extract features. Typically, the field moves one pixel at a time, i.e., a stride of
1 as shown in Fig.2.3.2. But, the stride length can be adjusted if necessary.

Each of the hidden neurons has weights and a bias associated with it which maps
the local receptive field onto it. The same weights are used to map all local receptive
fields onto respective neurons in that hidden layer. This means that the same filter
values determine the mapping of an input layer onto the particular hidden layer.
In other words, all the weights and biases in a convolutional layer are shared. An
advantage of sharing parameters is that the number of parameters necessary is greatly
reduced as compared to a fully connected network [Nie15]. This limits the degrees of

20 fundamentals

Figure 2.3.2: Local receptive field sliding over an input with stride = 1 [Nie15]. In the top
figure, a 5×5 local receptive field is shown to be associated with the first hidden
neuron in the first row whereas. The bottom figure shows that when the local
receptive field is slid over the input by 1 pixel, the new 5×5 neighbourhood is
associated with the second hidden neuron in the first row.

2.3 convolutional neural networks 21

freedom of the model and, in turn, avoids overfitting. For neuron (j,k) in a particular
hidden layer, the output is given by

output = σ

(
b+

n∑
l=0

n∑
m=0

wl,maj+l,k+m

)
. (2.3.2)

where σ is the activation function of the neurons, w,b are weights and biases respec-
tively, n is the length of the local receptive field, and a is the input. This implies
that all the neurons in a hidden layer detect the same feature at different locations
of the input [Nie15]. This makes CNNs robust to translational shift in input. That
is, it can detect a feature in the input regardless in which region of the input the
feature exists. Moreover, a layer of a network consists of several feature maps resulting
from convolutions with several filters in order to detect more features, especially for a
recognition task.

2.3.3 Pooling Layer

The pooling layer does not have any trainable parameters. It is visualized as a matrix
of neurons similar to a convolutional layer. Each neuron is activated by a suitable value
from a small local neighborhood of the previous layer. The value which activates the
neuron is determined by the pooling function. The local receptive field of a pre-defined
size slides over the input feature map with a pre-defined stride. Note that here, the
input feature map refers to the entire set of output activations of the previous layer.

There are several pooling functions which are used in practice. The neurons in a
max-pooling layer output the maximum value within the associated local receptive
field. An example of max-pooling is shown in Fig.2.3.3. Similarly, for an average-
pooling layer, the neurons output the average of the receptive field. L2 pooling layer
is also a commonly used layer [Nie15] which takes the square root of the sum of the
squares of activations in the receptive field of the input feature map.

The feature map contains the exact locations of the features extracted from the input.
However, to classify an input or generate a descriptor, it is enough to understand the
location of the extracted features relative to each other. The pooling layer discards
the exact spatial information about the features, but retains the relative positions
of the features. Thus, pooling condenses the information in the feature maps and
down-samples them.

22 fundamentals

Figure 2.3.3: Max-pooling advancing with stride 2. The maximum value from a 2×2 local
neighbourhood is taken as the output of a max-pooling layer.

2.3.4 Rectified Linear Unit

The Rectified Linear Unit (ReLU) shown in Fig.2.3.4 is an activation function used to
introduce a non-linearity. Mathematically, ReLU function for input u is given by:

output = max(0,u). (2.3.3)

ReLU is a substitute for the sigmoid neuron. The output of a traditionally used sigmoid
neuron saturates to 1 when the weighted sum of the inputs to the neuron is high. The
gradients calculated for sigmoid neurons are typically small fractions especially for
such inputs. Moreover, the gradients of a layer in the network are calculated via the
chain rule as products of the gradients of the succeeding layers. Hence, as a result of
the multiplication of the fractional gradient values of the outer layers, the gradients of
the layers closer to the input layer are much smaller as compared to those of the outer
layers. This is known as the problem of vanishing gradients. It results in the inner
layers of the network learning much slower as compared to the outer layers. Since
the sigmoid neurons are susceptible to the problem of vanishing gradients [PMB13],
a network built with sigmoid neurons can be of limited complexity since a deeper
structure results in extremely slow learning of the inner layers. ReLU can be used to
overcome this limitation, since it can never be saturated. It can produce an output
which is not bounded by an upper limit when the weighted input exceeds 0. Since the
change in inputs is not inhibited at the output of ReLU, neither are the gradient values.

2.4 transfer learning 23

Hence, the sigmoid activation function is replaced by ReLU for a deep structure such
as in a CNN.

2.3.5 Fully connected Layer

The fully connected layer consists of a number of neurons all connected to the neurons
of the preceding and succeeding layers. Multiple fully connected layers, which are
structurally similar to an MLP, are commonly used as a classifier at the end of the
CNN.

A CNN is typically built using a combination of the above mentioned layers. The
complexity of the task dictates the complexity and depth of the network. Each of the
layers can be used in the network architecture as many times as required in any desired
order. Together it forms a system which is capable of detecting features and classifying
the input into pre-defined classes. It may also be tuned to assign embeddings of an
arbitrary dimensionality to the input examples. This system can be trained end-to-end,
thus tuning the feature detection and classification together.

In this work, a CNN is used to achieve a competitive performance in word spotting
using the technique of transfer learning. The concept of transfer learning as well as its
types have been explained in the next section.

2.4 transfer learning

Transfer learning is a broad term which encompasses the concept of using the knowl-
edge gained from a source task and domain in order to achieve a high performance
for a target task and domain.

According to [PY10] domain is defined to have two components, the feature space
and the probability distribution of the elements in the feature space. This term is
related to the nature of the data which is associated with the learning task at hand.
A task consists of a label space and a predictive function which maps the data to the
labels. This function is learned from the training data. Domains are said to be related
if there is any relationship between their feature spaces. On the other hand, tasks are
said to be the same if the label spaces and the predictive functions of both the tasks
are the same.

In traditional machine learning, the source and target domains and tasks are the
same. For example, the training and test samples belong to the same dataset and
the exact model which learns from the training samples is used to map the test data
samples to the labels. However, in several real-world applications, this common

24 fundamentals

−2 −1 0 1 2

−0.5

0

0.5

1

1.5

2

Figure 2.3.4: The Rectified Linear Unit (ReLU) activation function has a linear response to
positive inputs. This helps to avoid the problem of vanishing gradients and is,
hence, used as a substitute for the sigmoid activation function.

domain may not have enough training data which a different but related domain may
contain. In another case, it may be much more difficult to produce labeled training
data in one domain, but relatively easier in another related domain. The technique of
transfer learning may be implemented in such cases in order to use the knowledge
gained from a related source domain and task to accomplish a desired target task with
the target domain.

Transfer learning or knowledge transfer have been categorized into 3 basic types by
[PY10] as shown in Table 2.4.1.

Table 2.4.1: Types of Transfer learning

Types Source and Target Domains Source and Target Tasks

Traditional Machine Learning the same the same

Inductive Transfer Learning the same different but related

Unsupervised Transfer Learning different but related different but related

Transductive Transfer Learning different but related the same

2.4 transfer learning 25

• Inductive Transfer Learning

Inductive learning aims at improving the learning of the target function using
the knowledge of the source domain and target where the source and target
tasks are different. The source and target domain labels are available in this case.

Transfer learning is a setting in which several approaches can be implemented.
The instance-transfer approach with Inductive learning states that although the
source domain cannot be directly used for transferring knowledge, certain parts
of it along with labeled target data can contribute to the target domain [PY10].
Another approach is the feature-representation-transfer, which aims at finding
good feature representations that minimize the domain divergence and model
error.

• Unsupervised Transfer Learning

Unsupervised transfer learning aims at improving the learning of the target
predictive function using the knowledge of the source domain and task where
the labels of the source and target domain are not observable.

Examples of unsupervised transfer learning can be seen in the examples of the
feature-representation-transfer approach such as Self-taught clustering [DYXY08]
and transferred discriminative analysis [WSZ08] algorithms. They transfer the
problems of clustering and dimensionality respectively.

• Transductive Transfer Learning

According to [PY10], transductive transfer learning aims to improve the learning
of the target predictive function given the source task and domain where the
source and target domains are different but the tasks are similar. Some unlabeled
target domain data is required at training time in addition to labeled training
data.

An example of transductive learning is shown by the structural correspondence
learning algorithm proposed by [BMP06]. It makes use of unlabeled target
domain data to extract relevant features in order to reduce the difference between
the domains [PY10].

Transfer learning is similar to the multitask learning approach i.e., the source and
target domain are used to induce a predictive model in the target domain. However,
the multitask learning approach aims at learning the target and source models simul-
taneously, whereas transfer learning attempts to achieve a high performance in only
the target task by transferring knowledge from the source task.

26 fundamentals

An example of transfer learning in word spotting in the field of document analysis
is shown in [KJ16]. One of the experiments described in this work uses synthetic data
(source domain) to pre-train a CNN for word spotting in handwritten documents
(target domain). Here, the network pre-trained using synthetic data is finetuned using
the training partition of the handwritten dataset before evaluating the performance
using the same handwritten dataset. The authors state that, in this case, transfer
learning is performed from the synthetic domain to the real world domain. The
performance of this CNN surpasses the state-of-the-art performance of the Support
Vector Machine-based approach in word spotting described in [AGFV14].

Most of the tools and concepts introduced in this chapter are used for word spotting
in handwritten documents in this work. The following chapter describes the concept of
word spotting in detail and gives a brief idea about some of the established approaches
in word spotting.

3
W O R D S P O T T I N G

The term word spotting originally stems from the field of audio processing where
it was used to detect certain key words in an audio stream. The concept of word
spotting has received attention in the field of document analysis and handwriting
recognition. It was first introduced to the field of handwritten document analysis
by [MHRC96] and its use for indexing historic documents is discussed in [RM07].
Word spotting is defined by [RM07] as an approach which involves grouping of word
images into clusters of similar words by using image matching to find the similarity.
The word spotting approach in [MHRC96] treats collections of documents as a pool of
word images. By comparing all images in this word image collection pair-wise, they
are clustered in such a manner that ideally, images in a cluster are all assigned the
same annotation. The clusters with content most interesting from the point of view
of generating an index for the document are manually assigned a label. A partial
transcription of the document collection by assigning the cluster labels to all word
images contained in a cluster. This in turn, creates a partial index for the collection and
allows a retrieval of text portions that contain the manually assigned labels. Hence,
word spotting can be viewed as a retrieval task which is accomplished in the approach
presented in [MHRC96] through clustering. In a typical retrieval task in the context
of word spotting, one word from the collection is provided at a time as a query.
This query made to a word spotting system generates a retrieval list from the given
collection of words and every word image in this retrieval list is ranked according to
the query. Eventually, each word in the collection is used as a query. The performance
in word spotting is evaluated based on the relevance of the words in the retrieval list
to the query and their order determined by the ranking. Ideally, a retrieval list should
contain all the words from the given set matching the query and the best matches
should have the top ranks. This is distinguished from a handwriting recognition
task which aims at recognizing words in a handwritten dataset. The robustness of a
recognizer lies in its ability to map a word from its image to its string representation
and vice versa. For example, the task accomplished in [SF16] is a word spotting task,
whereas that in [AF15] is a recognition task. In fact, word spotting aims to efficiently
access textual information without processing and recognizing all contents of the
document. It is especially suitable for handwritten documents, which text recognizers
find especially challenging.

27

28 word spotting

Word spotting can be achieved in a segmentation-based or a segmentation-free
scenario. A segmentation-free environment considers entire documents as inputs.
The document is not segmented into lines or words before being used as input for
a segmentation-free word spotting system. On the contrary, a model used for word
spotting in the segmentation-based environment takes single words as input. Several
query representations have been introduced for word spotting. Among these, the
two approaches associated with this work are Query-by-Example Query-by-String. In
the Query-by-Example, the query is a word image and the relevance of the retrieved
images is based on the visual similarity of the two word images. However, this
approach has some limitations. In practical applications, an instance of the key-word
must be identified by the user. If this word used as query does not appear frequently
in a large collection, it is a tedious task for the user to manually extract a desired
query image. Additionally, if the word does not appear in the collection, it may
already be the solution for this task [ARTL13]. This limitation may be overcome by the
Query-by-String approach. The string representation of a word is provided by the user
as a query in this approach. A retrieval list is then generated from all the relevant word
images in the collection. The earlier approaches involving Query-by-String focused on
creating character templates from a typed string to synthetically generate an example
of the query. Despite these approaches being user-friendly, they pose a challenge
that the textual representation must be mapped on to the image representation of the
word. Hence, one of the several approaches in word spotting aims to find a common
subspace in which the image of a word and a string representing the word can be
represented by the same point. The queries are then used to rank all images in the
dataset and the retrieval list, thus obtained, is evaluated for its precision.

Several methods have been used for word spotting in handwritten documents. An
early approach in this field used XOR-maps and Euclidean Mapping in order to spot
key words in binarized handwritten images [MHR96]. The later approaches focus
on word spotting in historic documents using sequential models such as Dynamic
Time Warping [RM07] and Hidden Markov Models (HMMs) [RSP09]. These are
unsupervised approaches, i.e. they do not require annotated training data. Since word
spotting is based on image matching, other methods from computer vision also find
an application. For example, an unsupervised approach which combines HMMs with
the Bag-of-Feature approach is described in [RVF12]. In this approach, the document
images are represented by local features. SIFT features extracted from densely sampled
patches in the document image are used for this purpose. Next, a query is initialized
and trained on the sequence of Bag-of-Features representations obtained from the
bounding box for the query word image. Finally, the model is decoded on the entire

word spotting 29

Figure 3.0.1: This image taken from [AGFV14] visualizes their approach where the image and
text representation of a word is mapped through their respective representations
on to a common subspace.

document collection. For the final word retrieval, the patches are ranked with respect
to their scores and the performance of the model is evaluated for this retrieval list.

The unsupervised approaches in word spotting are, however, outperformed by
supervised approaches at the cost of having to annotate data for training. One
of the most prominent approaches in recent times is introduced in [AGFV14]. In
this segmentation-based approach, word spotting is achieved by images and labels
are embedded on to a common subspace. The word images are first encoded into
feature vectors, which are then used along with label embeddings to learn Support
Vector Machine-based attribute models. These are referred to as AttributeSVMs. The
approach is visualized in Fig.3.0.1. First, the images are embedded in the attribute
space where each dimension encodes how likely it is that a spatial region of a word
contains a character, whereas the labels are represented with a binary vector called
Pyramidal Histogram of Characters or PHOC. The PHOC representation introduced in
[AGFV14] encodes the presence of a particular character in a spatial region of a string
and is a key element used in this thesis. It will be explained further in detail in the
following chapter. Both the embeddings have the same dimensionality. However,
they are not perfectly comparable since the PHOC vector is binary and the attribute
representation for the images is not. Therefore, they are then projected onto a common
learned subspace where the representations are comparable and word strings as well
as images which are relevant to each other are brought together.

However, the authors of [AGFV14] state that there is no need to use Fisher vectors or
SVMs in particular, and that any encoding method which transforms the input image
into its attribute representation could be used to replace them. The approach defined

30 word spotting

in [SF16] confirms this statement by using a CNN to transform input images into their
PHOC representation directly. The CNN called the PHOCNet which is introduced in
this work is specifically designed for word spotting and has achieved state-of-the-art
performance.

The PHOCNet is the primary tool used word spotting in this thesis. Further
information about the PHOC representation, the PHOCNet and the other related
academic contributions which have inspired this thesis most prominently are discussed
in detail in the following chapter.

4
R E L AT E D W O R K

In this chapter, the established methods in word spotting and handwriting recognition
are discussed, each of which have, in part, inspired the development of the approach
presented in this work. The use of synthetic data for training a CNN-based model is
the basis of the approach presented in this work. Hence, section 4.1 explains some
of the approaches in word spotting which use Convolutional Neural Networks and
discusses the features and merits of these methods. Section 4.2 discusses some of
the approaches which use computer generated data to train a model in the field of
document analysis.

4.1 approaches using cnns

CNNs have been empirically shown to achieve exceptional results in several fields of
computer vision such as image recognition, video analysis etc. Since word spotting
is an image matching problem, CNNs find an application in this field. In fact, CNN-
based methods have achieved state-of-the-art performance in word spotting. Some of
these methods are discussed in this section. The choice of using the CNN as a model
for word spotting in this thesis has been inspired by these related methods.

4.1.1 PHOCNet

The PHOCNet is a network specifically designed for word spotting. It has been
shown to achieve a high performance using limited amounts of training data. It takes
images of words as input and generates a PHOC representation of the words. Here,
the approach using the PHOCNet is discussed which has achieved state-of-the-art
performance in word spotting.

PHOC Representation

The PHOCNet maps images of words on to their PHOC representations. PHOC or
Pyramidal Histogram of Characters is a binary representation of words introduced
in [AGFV14]. An example of a three-level PHOC representation of the string beyond
has been shown in Fig.4.1.1. It encodes whether a particular character is present in

31

32 related work

Figure 4.1.1: A 3-level PHOC representation of the word ’beyond’. L1 represents the first level
where the complete word is considered, whereas L2, and L3 represent levels 2

and 3 levels at which the word is split into 2 and 3 parts respectively. A binary
vector indicating the presence of a character in that split of the word is generated
for each part in each level. These vectors are concatenated to obtain the PHOC
representation. This image has been taken from [AGFV14].

4.1 approaches using cnns 33

a particular region of the word. Each of these characters is referred to as unigram.
A frequently occurring combination of two such unigrams, which is called a bigram,
can also be included in the PHOC representation. An attribute vector, or Histogram
Of Characters, is developed for a word representing the presence of such attributes in
the word from amongst a pre-defined set of attributes. This is done for multiple levels
by dividing the word into an increasing number of splits at each level. For example,
at level 2, the word string is split into 2 parts, i.e. a six-character word is divided
into 2 parts containing 3 characters each as shown in Fig.4.1.1. An attribute vector
indicating the presence of the characters within the half-word is developed for each
half. Assume that only lower case letters of the Latin alphabet are used as unigrams
to generate a PHOC vector in this example. The attribute vector generated for each
split of the word at each level thus contains 26 bins, each representing a unigram. As
shown in Fig.4.1.1, at level 2 (L2), the first half contains the letters b,e,y. From this,
a vector with 26 elements is obtained. The values of all bins are zeroes except the 3

bins representing the letters b,e,y which have the value 1. Another 26 element vector is
similarly generated for the next split of the word containing the letters o,n,d. This is
repeated for a desired number of levels, i.e. the word may be split into 3 parts at level 3,
4 parts at level 4 and so on. These attribute vectors are concatenated to give the PHOC
representation of the word. Learning the character attributes independently allows
straightforward out-of-vocabulary word spotting and recognition. Out-of-vocabulary
word spotting has formerly been accomplished using unsupervised techniques such
as Dynamic Time Warping [RM07], Hidden Markov Models (HMM) [RSP09], and
Bag-of-Feature HMMs [RRF13, RF15].

In [SF16], for the datasets in Latin script the authors use all 26 letters of the alphabet
in the lower case, numbers 0 to 9, as well as 50 commonly occuring bigrams in levels
2,3,4,5 to generate the PHOC representation.

In order to gain a verbatim understanding, it is desirable for the string and image
representations of the same word to be represented by the same point in a common
subspace. In other words, the string and image representations of a word should result
in the same PHOC representation. Hence, character attributes must be learned from
the image of a word in order to assign a PHOC representation to it. Light is shed over
the characteristics of the CNN which has been used to learn these attributes.

PHOCNet Architecture

The architecture of the PHOCNet is similar to that presented in [SZ14]. It has been
designed to learn abstract features and to prevent overfitting. Similar to [SZ14], the
PHOCNet contains an increasing number of filters from the lower to the higher layers

34 related work

Figure 4.1.2: The figure shows the architecture of the PHOCNet. This image is taken from
[SF16].

because of which the network learns fewer features for small receptive fields and a
larger number of abstract features at the higher level. The PHOCNet also uses only
3×3 convolutions in the convolutional part of the network since this has shown better
results as compared to larger convolutions [SZ14]. The smaller receptive fields impose
a regularization on filter kernels, thus preventing overfitting. An important feature
of the PHOCNet is the Spatial Pyramidal Pooling or SPP Layer. First introduced in
[HZRS14], it enables the network to process inputs of varying size while still producing
ouputs of a constant size, which is necessary for training the network. The output
of the SPP layer with max-pooling consists of the maxima taken from local spatial
bins of the input feature map. The entire feature map is divided into an increasing
number of bins in subsequent steps for a fixed number of steps. Since the bins have
sizes proportional to the input feature map, the number of bins, and hence the size
of the output of the SPP layer, is fixed despite a varying size of input images. The
structure of the PHOCNet is shown in Fig.4.1.2.

Training labels for CNNs in recognition tasks are, usually, 1-hot vectors signifying
the target class of the input. However, multiple elements in a PHOC vector can be 1.
Hence, the PHOCNet uses the sigmoid activation function instead of a softmax function
[SF16]. Each output of the last fully connected layer of the PHOCNet represents an
attribute in the PHOC. The sigmoid activation function is connected to each of these

4.1 approaches using cnns 35

outputs to give a pseudo probability of the presence of that attribute in that PHOC. In
Fig.4.1.3, âi is the pseudo-probability for the presence of attribute i in the given word.

The experiments conducted using the PHOCNet in [SF16] show that a CNN does
not necessarily require large amounts of training data. The experiment on the George
Washington dataset with 3645 training images outperforms other methods such as
AttributeSVM-based word spotting[AGFV14]. Additionally, the same set of param-
eters can be used in all experiments. Hence, PHOCNet is robust with respect to
parametrization. Moreover, a high performance of PHOCNet on a modern hand-
written dataset written by multiple authors shows its robustness for recognition in a
multi-writer dataset. The results for the PHOCNet experiments will be discussed in 6

as a benchmark for the work presented in this thesis.

4.1.2 Triplet-CNN

The triplet-CNN is introduced in [WB16] as a model for word spotting in a segmentation-
based scenario. In this approach, word images and the text representation of the words
are embedded in a common embedding space. The approach and the results achieved
in word spotting using the triplet-CNN are discussed below.

Obtaining Embeddings using Triplet-CNN

For obtaining the image representation, the triplet-CNN, which is a set of three
identical CNNs sharing weights, is used. The input to the triplet-CNN is a set of three
images consisting of two of the same class (positive images) and one of a different
class (negative image). Each of these images is propagated through one of the CNNs
in the triplet-CNN each. The output of each of the CNNs is a descriptor for each of the
images. The distance between the images is calculated using these descriptors. Using
the SoftPN loss [BJTM16], the similarity that is smallest between the two positive
images and the negative image is selectively back propagated as well as the distance
between the two positive images. Thus a model is learned on triplets of images. One
of the three CNNs is then used to extract a feature vector for images. In order to learn
the embedding from this descriptor, a two-layer fully connected neural network is
used. The embedding generated from the text representation of the word is used as
the target output to train the neural network to map the image feature vector on to
the embedding space. The hand-crafted representations PHOC and DCToW (Direct
Cosine Transform of Words) [WB16] are used to generated words embeddings from
text representations. Additionally, LSTMChar-Large model from [KJSR16] is used to
learn a language model from separate text data in order to obtain two conceptually

36 related work

Figure 4.1.3: Difference between a softmax layer and sigmoid layer. The image is taken from
[SF16].

different word representations. These embeddings are called the n-gram and semantic
embedding respectively. The n-gram embedding groups the verbally similar words
together whereas the semantic embedding groups the words based on their semantic
similarity or relevance. The performance is evaluated and a comparison is drawn for
all these text representations. This approach is visualized in Fig.4.1.4.

Results and Discussion

The results obtained by triplet-CNN are competitive to that obtained using the PHOC-
Net. In fact, the triplet-CNN outperforms the PHOCNet using atleast one embedding
in experiments conducted for each of the datasets in QbE and QbS scenario.

One of the most interesting features of this approach using the semantic embedding
is that the model is capable of retrieving words of semantic relevance to a query. For
example, for a query two from a historic dataset, the top word classes retrieved include
two, twelve, twenty, ten, as well as words signifying fuzzy quantities several and some.
The authors state that word spotting using semantic embeddings may be desirable
when the user does not have a definitive idea about what must be searched while
browsing a collection of documents. The authors also state that using the spatial

4.2 approaches using synthetic training data 37

pyramidal pooling layer, such as that used in the PHOCNet, would be a possible
improvement for their model since it allows the input to the CNN to be of variable
size.

To sum up, this is one of the several established methods which confirms that using
a CNN as a model yields a high performance in word spotting. Besides, the approach
is directly comparable to that using the PHOCNet since both perform word spotting
in the segmentation-based scenario using a CNN. Hence, this work also provides a
benchmark for the performance of the PHOCNet.

4.2 approaches using synthetic training data

This section discusses the methods which use synthetically generated data in order
to training a model for text recognition. The approaches discussed here inspire the
idea that it is possible to generate training data cheaply, thus limiting the need for the
tedious task of annotating handwritten data and reducing manual effort.

4.2.1 Training a Recognizer without Handwritten Data

The focus of the work presented in [AF15] is on recognition of handwritten text with-
out using handwritten training data. The authors investigate four main approaches
including, computer generated text in different typefaces as training data, unsuper-
vised adaptation, and using recognition hypothesis on the test sets as training data.
The idea behind this work as well as the conclusions drawn point us toward developing
a method to recognize handwritten text with minimal manual annotation effort.

Recognition in Arabic Script

The authors define four approaches, each building on the success of the previous. First,
text is generated synthetically with several different font typefaces. One classifier is
trained for recognition of text in each typeface. This sheds light over how the classifiers
trained on computer generated text perform depending on the visual complexity of
the typefaces.

In the next approach, a recognizer is trained for all font typefaces. This helps to
determine how the recognizer trained on a dataset using diverse fonts performs in
comparison to the classifiers trained on text generated using single typeface.

Next, unsupervised HMM adaptation techniques are used to enhance the perfor-
mance of the recognizer. These techniques use the new data they see during recognition

38 related work

Figure 4.1.4: This image visualizes the approach in word spotting using the triplet-CNN. The
image embedding is obtained by propagating the word image through one of the
CNNs from the triplet-CNN and then by passing the feature descriptor obtained
at the output of the CNN through a 2-layer neural network. The word embedding
is either hand-crafted using the PHOC representation [AGFV14], the DCToW
[WB16] or with the trained LSTMChar-Large model introduced in [KJSR16]. This
image is taken from [WB16].

in order to re-calibrate the trained parameters. The model parameters related to the
data part i.e. the mixture means and variances, are adapted, whereas the model length
and the transition probabilities are the same. The task of adaptation is to update to
the new model parameters by fine tuning the original model parameters such that
the likelihood of the new adaptation data is maximized. Maximum Likelihood Linear
Regression (MLLR), a common technique used for HMM adaptation, estimates linear
transformations for the mixture means and variances in order to adjust them such that
they better fit the adaptation data.

Finally, a recognition hypothesis is generated for the handwritten test set using
the system developed through the first three approaches. This hypothesis is then
used to train the recognizer. When the recognizer achieves a reasonably satisfactory
performance on the test data, using the test set to bootstrap the system is hypothesized
to be an effective approach. The authors state that in this regard, the first three
approaches can be seen as initialization steps for the recognizer. This step may also be
repeated iteratively in order to improve the model performance on the condition that
the approach leads to a reasonable improvement [AF15] in the first iteration.

The recognizer model used in this work is the Arabic sub-character model based
HMM recognizer as presented in [ARFM13, AFM14]. The recognizer is a continuous
HMM system built using HTK tools [YEG+

02]. It uses 97 sub-character HMMs to
model all the characters and the variations in character shapes. A sub-character model

4.2 approaches using synthetic training data 39

based HMM system is used since the authors of [AF15] claim that it is more robust
and effective, especially under constrained training environments.

Results and Discussion

One of the aims of this thesis is to develop a method to reduce the manual annotation
effort that is taken to prepare training data for CNNs. The work [AF15] does not only
show that data can be generated synthetically, but also comments on the nature of a
dataset that can yield the best results. For example, in the first approach, the authors
train a classifier for text in each of eight font typefaces. Since both, the machine
printed and the handwritten text in Arabic script are cursive, the machine printed text
resembles the handwritten text, although with a smaller degree of variability. The
results show that irrespective of the complexity of the typeface in terms of visual
appearance, the classifiers yield a low percentage Word Recognition Rate (WRR), the
maximum being 26.92%.

However, in the second approach of training one classifier for text in multiple
typefaces, the performance of the model improves greatly. It achieves a WRR score
of 61.35%. This indicates that a recognizer trained using diverse dataset with a large
variance in writing performs better as compared to a recognizer trained using any
single typeface.

The third approach, where the parameters of the model trained with text in multiple
typefaces are recalibrated using HMM adaptaion, achieves a WRR score of 70.47%.
Finally, the recognizer iteratively finetuned with handwritten test data leads to the
best performance among all four approaches with a WRR score of 90.23% after 5

iterations. This shows that a recognizer trained on computer generated data is a
good initialization for the model which can then be reinforced well using additional
knowledge.

To sum up, this work inspires the idea that training data can be generated syntheti-
cally. Using such a dataset may lead to greatly reduced the manual effort needed for
annotation of training data. Moreover, the conclusion drawn by [AF15] that a better
performance can be achieved using a diverse training dataset with multiple typefaces
instead of that with a single typeface provides an insight into the nature of a suitable
synthetic training dataset. A dataset in the Latin script fulfilling these requirements
has been introduced by [KJ16]. The characteristics of this dataset called HW-SYNTH
will be discussed in the further chapters.

40 related work

4.2.2 Word Spotting in Latin Script

Early approaches using synthetic data in document image analysis aimed at increasing
the training data size of already existing datasets in order to improve classification
performance in handwriting recognition tasks [VB03, VB04] or supplying datasets for
new script types for which obtaining document images and annotations is difficult
[MP01].

One of the prominent approaches which involves training of a CNN using synthetic
data in the Latin script is defined in [KJ16]. The main aim of this work is to predict a
similarity between two handwritten documents written by different individuals. A
similarity score is computed for a pair of document images by identifying patterns
of text re-usages between them irrespective of variations in word ordering, word
morphology, layout and paraphrasing of the text. The primary tool used in this work
is a CNN called the HW-Net defined by the authors. The HW-Net is used to extract
a feature representation from word images. To account for the lack of handwritten
data for training the CNN, the authors generate a synthetic dataset in Latin script
called the HW-SYNTH. This dataset is an important aspect of the approach presented
in this thesis, and hence will be described in detail in chapter 6 along with the other
datasets used. In the approach described in [KJ16], this training data is normalized by
imitating the process of stemming in the visual domain by labeling the training data
in terms of the corresponding root words given by the Porter stemmer [Por80]. The
root of a word is obtained from a word string by stripping off common suffixes from
the word. The HW-Net is trained using this normalized data which then learns the
visual representation of word images and their invariance to inflectional suffixes. This
network is then finetuned over the training partition of the handwritten dataset over
which it is to be evaluated. This model is used for word spotting in both the documents
and it retrieves semantically similar words (normalized words). The similarity scores
are calculated for the documents in terms of number of matching words as well as the
location of words in the document images. The authors demonstrate the use of this
approach in detecting plagiarism in handwritten assignments.

The most significant feature of this work with respect to this thesis is the synthetic
dataset generated by the authors. Moreover, this work also shows that this synthetic
dataset can be used for transfer learning for word spotting in handwritten documents
to yield a high performance. In fact, the performance in word spotting using the fine-
tuned HW-Net surpasses the state-of-the-art performance of the SVM-based approach
shown in [AGFV14]. Hence, the method and results of the intermediate stage of word
spotting presented in [KJ16] play an important role in determining the methodology
to be used in this thesis.

4.2 approaches using synthetic training data 41

The established methods described above help shape the idea from which the
approach presented in this work stems. Some of the concepts from these established
approaches described in this chapter are brought together in order to develop a method
to reduce the amount of handwritten annotated data required for training a supervised
system for word spotting. This methodology is further explained in the next chapter.

5
M E T H O D

The previous chapters explained the various concepts and tools which have inspired
this approach for word spotting. This chapter gives an introduction to the proposed
methodology in word spotting based on the related work. The interpretation of weak
supervision in the context of word spotting is defined in section 5.1. Additionally, it
defines a two-phase proposed method for word spotting which aims at limiting the
annotated training data to a minimum and consequently reducing the manual effort
taken to prepare that data. Section 5.2 gives a detailed account of the regularization
techniques used in this method in order to avoid overfitting of the learned model on
the training data.

5.1 learning with weak supervision

In this approach, a system is introduced which retains the ability of the supervised
techniques to adapt to visual variation in data while keeping the amount of training
data low, and hence reducing the annotation effort. For this purpose, a CNN is
trained using weak supervision. In order to explain weak supervision in the context
of word spotting, the concepts of unsupervised and supervised learning are briefly
recapitulated. Unsupervised learning in the context of machine learning implies
that the learning of features does not require any annotated training labels. Gener-
ating a Bag-of-Features representation [RATL15, ARTL13, AGFV14] is an example of
unsupervised learning of features. On the other hand, with supervised learning, a
model is trained with the help of labeled training data which typically requires human
effort. For example, a partition containing approximately 75% of words in a dataset
is manually annotated and used to train a convolutional neural network for word
spotting, as shown in [SF16]. In the context of word spotting, weak supervision may
be defined as training with minimal manual annotation effort. The learning, in this
case, requires labeled training data. However, the amount of data to be annotated and
the effort for computation is much lower than what is used for supervised learning.
As a result, the human effort and time taken in order to prepare the training data is,
also, reduced to a large extent.

43

44 method

In the approach presented here, a CNN is trained with weak supervision, i.e., using
very little training data while retaining a high performance. This eliminates one of the
crucial disadvantages of using CNNs: having to prepare a large amount of training
data. The following section explains the salient features of a CNN and why that makes
it the preferred choice of model for the proposed approach.

5.1.1 Necessity for CNN

Training a CNN is a supervised approach. Supervised approaches have an advantage
over unsupervised approaches since they are able to differentiate between the types
of variances in the given dataset. This leads to the question: what are the different
types of differences? And why is it advantageous to be able to differentiate between
them? Variations in a dataset can be classified into two types, namely, inter-class
and intra-class variation. Intra-class variation, in the context of word spotting, may
include the difference in the visual appearance of one word written by multiple
authors because of the difference in their writing styles and the writing materials they
use. Moreover, intra-class variation may also include the visual difference that exists
between two instances of one word written by the same author because of human error.
However, inter-class variation is the difference between the visual appearance of the
words, or classes, in the dataset. Unsupervised techniques are unable to differentiate
between these two types of variations of a dataset. On the other hand, supervised
techniques are able to identify different classes because of the annotated training labels.
For example, if two word images representing the same word have different visual
appearances, the training labels enable the system to identify the images as belonging
to the same word class. On the other hand, if two word images representing different
words are similar in their visual appearance, the training labels separate these two
images into their respective word classes. Hence, they are inherently designed to
distinguish between inter-class and intra-class variation of the given dataset.

All supervised techniques are thus capable of adapting to a large intra-class variation
or differentiating between classes despite a small inter-class variation in the dataset.
However, amongst the supervised techniques, CNNs have been empirically shown to
achieve a high result. Additionally, as discussed in the previous chapters, the presented
work uses transfer learning in order to achieve training with weak supervision. Transfer
learning with CNNs is achieved in a straightforward manner since the parameters
of the network retain the knowledge from the source domain and can be directly
transferred for use in the target task or for finetuning in the target domain. Due to
these advantages that a CNN poses over other approaches, it is used in this work.

5.1 learning with weak supervision 45

Figure 5.1.1: Abstracting of the method used by [SF16]

5.1.2 Transfer Learning using Synthetic Data

The aim of the thesis is to minimize the amount of training data required to train a
CNN for word spotting. The first step toward achieving this is discussed here. For
this purpose, a CNN is trained, specifically the PHOCNet introduced in [SF16]. As
discussed in chapter 4, the PHOCNet is the first system for word spotting which
can be trained end-to-end. In [SF16], the PHOCNet has been trained on the training
partition of a dataset and the performance of the trained model is evaluated using
the test partition of the same dataset. This can be visualized in an abstract manner in
Fig.5.1.1.

In the approach presented here, the PHOCNet is initially trained with synthetically
generated data. For this, a dataset of synthetically generated word images called HW-
SYNTH is used. It has been first introduced in [KJ16]. This diverse dataset consists of
several thousands of word images, which are expected to represent the variation in
visual appearance seen in handwritten documents. Yet, no manual annotation of words
is required. One may argue that this cannot be considered an unsupervised approach
in the context of word spotting, since the words are annotated, albeit synthetically.
On the other hand, the word images are generated synthetically from defined word
classes. This means that if the generation of images is considered a part of the learning
process, there is no manual supervision involved once the word classes have been

46 method

Figure 5.1.2: Top to bottom: Randomly sampled word images from the datasets HW-SYNTH,
IAM, Esposalles and George Washington respectively. This image shows the
differences in visual appearance of the contents of the four datasets.

chosen. In this work, this approach is defined as weak supervision. The question that
arises is: How well does the model trained only on the synthetic data adapt to the
real-world handwritten data?

The performance of this trained model is evaluated using handwritten datasets. This
makes up the first phase of the approach and can be visualized in Fig.5.1.3. According
to [PY10], given a source domain and task, transfer learning aims to improve the
learning of a target task in the target domain. The authors also define a domain to
have a feature space and a probability distribution. One can assume that there is a
difference between the distributions of the data in synthetic and handwritten datasets
in terms of the words used as well as the visual appearance of the word images.
The difference in the visual appearances of the contents of all four datasets is shown
through randomly extracted word images from each of the datasets in Fig.5.1.2. Based
on these assumptions, the synthetic dataset is defined to be of a different domain as
compared to each of the handwritten datasets. The synthetic data is said to be of
the source domain whereas the handwritten data is of the target domain. Since the
synthetic data in the source domain is used to enhance the target task of mapping
handwritten word images on to a PHOC representation, this approach can be defined
as transfer learning. The source and target tasks have the same predictive function, i.e.
the PHOCNet and the same feature space, i.e. PHOC vector space. This means that

5.2 regularization 47

the source and target tasks are the same. Hence, specifically, this approach is defined
as Transductive transfer learning.

This network model is capable of recognizing handwritten words to some extent,
but it can be expected to face limitations due to the difference in the visual appearance
between the synthetically generated and handwritten word images.

5.1.3 Finetuning with Handwritten Data

In order to improve the performance of the model trained only on the synthetic data,
the approach of finetuning is considered. A major advantage of finetuning is that the
amount of in-domain training data used to finetune a pre-trained network is much
smaller as compared to what would, otherwise, be required to train the network from
scratch. In order to introduce the characteristic visual appearance of a handwritten
dataset to this model, it is further trained using a small subset of the training partition
of that dataset. This makes up the second phase of the presented approach and can
be visualized in Fig.5.1.4. Since this approach uses very few manually annotated
training labels, the supervision is weaker as compared to that using the entire training
partition.

The evaluation of this finetuned model using the corresponding test partition is
expected to show a large improvement in the performance of the network. The
hypothesis is that the training of the network parameters using synthetic data is a
good initialization for the parameters to be finetuned over real-world data. Hence, it
follows that the network parameters approach an optimum within half the number of
iterations using fewer training data samples as compared to the first phase of training.
Consequently, the manual effort taken in order to annotate the training data is reduced
to a fraction of the training partition of the handwritten dataset while retaining the
high performance. Additionally, due to the low number of iterations required to
finetune the network, the time required for attaining a high performing word spotting
model is, also, greatly reduced once the model pre-trained on the synthetic data is
made available.

5.2 regularization

The complexity of the PHOCNet makes it prone to overfitting. Hence, the following
techniques are used for regularization.

Dropout [SHK+
14] in fully connected layers acts as a regularizer. The activations of

a layer with dropout are randomly set to 0. Any neuron following such a layer cannot

48 method

Figure 5.1.3: Training the PHOCNet on synthetic data and testing on handwritten data.

Figure 5.1.4: Model trained on synthetic data is finetuned using a few examples from the
handwritten dataset. The performance is evaluated using the test partition of the
handwritten dataset.

5.2 regularization 49

rely on neurons in the previous layer to be active for a given input. Similar to the
approach in [SF16], a dropout of 0.5 is applied to all fully connected layers except the
last.

The set of training images used for finetuning the PHOCNet is also augmented. The
method of augmentation presented here serves two purposes. It not only imposes
regularization on the network, but also generates additional training images from the
existing images without extra annotation effort. the expected number of images in
each class of the augmented training set is set to the maximum number of images in a
class in the original training set. The images in all the other classes are then augmented
to match that number. This concept can be visualized in Fig.6.4.5. For augmentation,
random images are sampled from each class and an affine transformation is applied to
each image, similar to [SF16]. The relative coordinates (0.5, 0.3), (0.3, 0.6) and (0.6, 0.6)
are selected from the image to be transformed and each coordinate value is multiplied
with a random number drawn with uniform distribution within the range [0.8, 1.1].
This method of augmentation is shown to achieve good results in [SF16]. Thus, with
this method of augmentation, each class in the augmented training set contains as
many images as the class with the maximum number of images in the original training
set. In some early experiments, it was observed that finetuning the CNN with an
augmented training set consistently shows better results during the evaluation phase
as compared to training without augmentation.

The next chapter discusses the experimental set-up and to implement the method
described here. This helps to quantify and verify the success of this method. Addition-
ally, experiments have also been set up to determine the use of certain experimental
parameters over others.

50 method

Figure 5.2.1: Augmentation of a dataset. The total number of images in a word class of
the augmented dataset is indicated by the complete (vertical) length of the box
representing the word class.

6
E X P E R I M E N TA L E VA L U AT I O N

The previous chapter describes the proposed method for word spotting which limits the
amount of manual effort that is taken to prepare training data. A further description
of the experimental set-up is provided in the current chapter. Additionally, the
conclusions drawn from these experiments provide a brief insight into the behaviour
of the PHOCNet and justify the parameters of the proposed experimental set-up.

The section 6.1 gives a description of the datasets on which the experiments have
been conducted. This includes popularly used handwritten datasets as well as a
synthetically generated dataset which is a crucial component of the presented approach.
Section 6.2 gives a description of the word spotting protocol. Section 6.3 provides
details about the training set-up of the experiments, whereas section 6.4 elaborates on
the experiments conducted and lists the results. Finally, the results from the presented
method are discussed in detail in section 6.5.

6.1 datasets

HW-SYNTH is a synthetically generated dataset introduced in [KJ16] consisting of
1 million images. The annotations in the dataset consist of all 26 letters of the Latin
alphabet and the numerals 0 to 9. It has been created using a set of 10,000 words from
the Hunspell dictionary such that no word in the set is repeated. Each word from this
set is randomly sampled using 100 out of a collection of 750 publicly available fonts.
These images are rendered by varying the inter character space, the stroke width, and
the mean foreground and background pixel distributions. Subsequently, the images
are smoothed using Gaussian filtering. In order to learn a case sensitive model, every
word class is rendered using all letters in the lower case, only the first letter capitalized,
and all letters capitalized. The data partition used for training consists of 750,000

images. No manual effort is needed for annotating the word images since each word
image is generated from a pre-defined word string.

The first handwritten dataset is the George Washington dataset1 which consists
of 4860 words. They are a part of a 20-page document of correspondence between
George Washington and his associates. Since there are no official available training

1 http://ciir.cs.umass.edu/downloads/old/data_sets.html

51

http://ciir.cs.umass.edu/downloads/old/data_sets.html

52 experimental evaluation

Figure 6.1.1: Top: Examples of random words in the HW-SYNTH dataset. Bottom: Examples
of a single word from the HW-SYNTH dataset showing a variation in fonts and
image rendering.

and test partitions for this dataset, the four fold cross validation method presented
in [AGFV14]2 is used. The training and test partitions in all four folds contain 3645

and 1215 images respectively. As the documents in the George Washington dataset are
obtained from the letterbook 2, which is not an original, but a later re-copied volume,
it can be assumed that the dataset has been produced by a single writer.

The second handwritten dataset is the historic Esposalles database [RFS+
13]3. It is

a multi-writer dataset consisting of 32,052 training images and 13,048 test images. The
database is an ancient marriage license register written between 1451 and 1905. This is
the only database used which consists of words in the Spanish language as opposed
to other datasets which are in English.

The third handwritten dataset is the IAM Handwritten Database4 written by 657

writers. It is a modern dataset which consists of 115,320 words. Apart from the
difference in time periods in which the contents of modern and historic datasets are
written, there exist a few key differences which set modern datasets apart from historic
datasets. For example, historic datasets require a large manual effort as compared
to modern datasets as well as expertise in historic literature for annotating the text.
Additionally, historic documents show a difference in the writing style and visual
appearance of words as compared to modern datasets. The data in IAM has been

2 Partitions available at https://github.com/almazan/watts/tree/master/data
3 http://dag.cvc.uab.es/

4 http://www.iam.unibe.ch/fki/databases/iam-handwriting-database

https://github.com/almazan/watts/tree/master/data
http://dag.cvc.uab.es/
http://www.iam.unibe.ch/fki/databases/iam-handwriting-database

6.2 word spotting protocol 53

generated solely for the purpose of academic experimentation by having several people
copy some provided articles in a specified manner [RMR06]. Therefore, deriving word-
by-word annotations for such a dataset is easier as compared to historic datasets.
Moreover, it is also easier to expand such a modern dataset by adding text from more
authors. For the purpose of training, the official partition for writer independent text
recognition is used. This partition provides 60,453 training words. Due to the large
intra-class variance within the dataset, it is a particularly challenging dataset for word
spotting.

6.2 word spotting protocol

The experiments conducted on the above mentioned datasets follow a standard word
spotting protocol. The details of this protocol are explained in this section.

The PHOCNet is evaluated for QbE and QbS in the segmentation-based case fol-
lowing the protocol in [AGFV14]. In the first phase, the PHOCNet is trained on the
HW-SYNTH dataset for 80,000 iterations. For QbE, each image in the test partitions
of the handwritten datasets is used as a query. The remaining images in the test
partition are ranked using the cosine metric. This is achieved by passing all images in
the test partition through the PHOCNet and obtaining their PHOC representations at
the output of the network. One image from the test partition is used as a query at a
time. Then the PHOC vectors for all the remaining images (non-query images) in the
test partition are compared to the PHOC vector for the query image using the cosine
metric to determine the similarity of each of the non-query images to the query image.
The images are then ranked based on the cosine distance such that those most similar
to the query image are assigned the top ranks. This process is repeated for all images
in the test partition, i.e., all test images are used as a query once. However, words
which appear only once in the test set are not used as queries, since there would be no
relevant retrieved image for that word. A retrieved image is said to be relevant for the
given query if they belong to the same word class. For QbS, all unique transcriptions
for words in the test set are extracted and their PHOC representations are used as
queries to rank all images on the test set.

The evaluation metric used for this approach is the mean Average Precision (mAP).
The Average Precision (AP) is a metric for the correctness of a retrieval list for a
single query. Mathematically, it is defined as the area under the precision-recall curve
associated with that query. The mean Average Precision is the mean of the AP scores
over several queries. An ideal retrieval list has an AP score of 1 if all the items relevant

54 experimental evaluation

to the query are included in the list and if all the relevant items are assigned the
top-most ranks. The AP score can be calculated using the following equation:

AP =

∑N
i=1 P(i)× R(i)

m
(6.2.1)

where P(i) is the precision at position i in the list, R(i) is the relevance indicator and
m is the number of all relevant items included in the retrieval list. R(i) takes binary
values, i.e. 1 if the item is relevant to the query and 0 otherwise. The precision at each
position is calculated as the fraction of the number of relevant items counted till that
position over the index of the position in the list. Then the precision is multiplied by
the relevance indicator associated with the item at that position. All these products
are averaged over the total number of relevant items in the retrieval list to obtain an
AP score for the retrieval list.

For example, consider the three cases of retrieval lists obtained in Fig.6.2.1. The
black retrieved items are relevant to the query whereas the white items are not relevant.
In this case, it is assumed that all relevant items are included in the retrieval list. In
the first case shown in Fig.6.2.1a, the relevant items are assigned the top ranks. Hence,
they have the highest AP score of 1 calculated as follows:

AP =

[
(
1

1
× 1) + (

2

2
× 1) + (

3

3
× 1) + (

3

4
× 0) + (

3

5
× 0)

]
/3 = 1 (6.2.2)

In the second case shown in Fig.6.2.1b, all the relevant items are assigned the last
ranks. This is the worst case scenario amongst the given examples. Hence, the AP
score calculated for this retrieval list is the least among all three cases. It is given by:

AP =

[
(
0

1
× 0) + (

0

2
× 0) + (

1

3
× 1) + (

2

4
× 1) + (

3

5
× 1)

]
/3 = 0.477 (6.2.3)

The AP score is similarly calculated for the third case shown in Fig.6.2.1c as follows:

AP =

[
(
1

1
× 1) + (

1

2
× 0) + (

2

3
× 1) + (

2

4
× 0) + (

3

5
× 1)

]
/3 = 0.75 (6.2.4)

Although one of the relevant items retrieved in this case is assigned the top rank, it is
not an ideal retrieval list since the items not relevant to the query are ranked higher
than atleast one relevant item. The retrieval list may be assigned the lowest AP score
of 0 if no relevant items are retrieved at all.

6.3 training set-up 55

(a) All relevant items are assigned the top ranks.

(b) All relevant items are assigned bottom ranks

(c) Relevant items are assigned ranks 1,3,5

Figure 6.2.1: The Average Precision score calculated for 3 retrieval lists of 5 items each. The
black items are the relevant items whereas the white items are not relevant with
respect to a query. Assume that in this case all the items relevant to the query
have been retrieved. The items are arranged in order of their ranks with the
left-most item being assigned the top rank.

6.3 training set-up

The initialization of parameters of a network plays a crucial role in learning the model.
The biases of the PHOCNet are initialized to zero whereas the weights are randomly
sampled from a normal distribution with mean 0 and variance 2

n [GB10]. Here, n is the
number of parameters in the layer to which the given parameter belongs. PHOCNet
is trained using stochastic gradient descent with a batch size 10. The first phase of
training with the HW-SYNTH dataset is run for 80,000 iterations. The initial learning
rate is set to 10

−4 and is divided by 10 after 70,000 iterations. The momentum is 0.9
and the weight decay is 5·10

−5. The second phase of training uses the momentum
vector from the previous training phase, and a constant learning rate of 10

−5. The
experiments are carried out using a single Nvidia GeForce GTX 1080 GPU.

The word images in the synthetic dataset have a fixed size of 48×128 pixels, whereas
those in handwritten datasets have varying, and often larger sizes (depending an the
resolution they were scanned with). In order to introduce a suitable variation in image
size to the model trained on purely synthetic data, the images in the synthetic dataset
are scaled by a random factor within the interval [1,2) before providing it as input to
the PHOCNet.

56 experimental evaluation

0 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000

10
20
30
40
50
60
70
80
90
100

Training Iteration

m
A

P
[%

]

GW
Esposalles

Figure 6.3.1: Mean Average Precision values for evaluating the performance of the PHOCNet
trained only on the IAM dataset on the two historic datasets. The results are
obtained for the QbE scenario.

6.4 experiments and results

The experiments conducted in this work serve two broad purposes. Firstly, the
first three experiments are conducted in order to gain a deeper understanding of
the effects of transfer learning using a CNN. The first experiment shows the initial
approach toward understanding transfer learning by transferring knowledge gained
from a modern dataset on to a historic dataset. The next two experiments show the
performance of the PHOCNet evaluated on handwritten datasets, when the network is
trained using only the synthetic data and when this trained model is finetuned using
the handwritten data. The other experiments are conducted in order to justify the use
of some parameters of the experimental set-up presented in this work.

6.4.1 Transferring Knowledge from Modern to Historic Data

As discussed in section 6.1, it easier to generate and annotate a dataset such as the
IAM handwritten database than it is to annotate a historic dataset. Hence, in an
initial approach to understand the effects of transfer learning, an experiment is set
up to train the PHOCNet for 80,000 iterations using the entire training partition of
the IAM dataset and the performance is evaluated in the QbE scenario using both
historic datasets, George Washington and Esposalles. The mAP scores are recorded
for every 1000 iterations. The result is visualized in Fig.6.3.1. At 80,000 iterations,

6.4 experiments and results 57

the performance evaluated on the George Washington dataset yields a mAP score of
72.82% and that on the Esposalles dataset yields 55.09%.

It can be inferred from the results that the network performance steadily improves
over the course of the training. That is, the PHOCNet steadily learns to map the
word images from the historic datasets on to their PHOC representations by being
trained with using a modern dataset. Based on the assumption that all three datasets
have different distributions in terms of visual appearance, words used etc. they are
said to belong to different domains. The difference in the visual appearance of the
contents of the datasets alone is visualized in Fig.5.1.2. Hence, in the context of this
experiment, IAM dataset belongs to the source domain, whereas each of the historic
datasets belongs to a different target domain. Here, the task is to map the word images
on to their PHOC representations. Since the source domain is used to improve the
task in both the target domains, this process is defined as transfer learning in both the
cases. Although the performance evaluated at 80,000 iterations is not comparable to
those achieved by the established approaches in word spotting, this experiment shows
that knowledge can be transferred from one domain to another to some extent for the
task of word spotting.

Although a dataset such as IAM is annotated with less effort as compared to historic
datasets, it still costs a considerable amount of manual effort to generate the data
explicitly for academic experimentation. Hence, the next experiment investigates the
effects of transfer learning in word spotting without using handwritten data.

6.4.2 Training with Synthetic Data

In order to achieve a high performance in word spotting using the PHOCNet, a large
partition of a dataset must be used for training. This means that a large partition
of the dataset needs to be manually annotated. This is a tedious task, especially for
historic datasets, as discussed in section 6.1. A possible solution to reduce the amount
of handwritten training data required is to train it using data which is easier to obtain
and annotate as compared to the real-world data and then test the performance for
the handwritten data. But, the question arises whether the network trained with
one dataset can perform well when evaluated using another dataset. To answer this
question, the PHOCNet is trained for 80,000 iterations using the synthetic dataset
HW-SYNTH and evaluated using the test partitions of each of the handwritten datasets.
As explained in chapter 5, this process is defined as transfer learning. The mAP scores
for evaluation of the PHOCNet performance recorded every 1000 iterations is shown
in Fig.6.4.1.

58 experimental evaluation

0 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000

10
20
30
40
50
60
70
80
90
100

Training Iteration

m
A

P
[%

]

GW
Esposalles
IAM

Figure 6.4.1: Mean Average Precision values for evaluating a PHOCNet trained on purely
synthetic data on the three respective datasets. The results shown in this figure
are obtained for the QbE scenario.

The mAP scores show a slight improvement of the network performance over
the course of training. However, experiment reveals that the learned model faces
limitations and it does not yield satisfactory results in word spotting. This is expected
to have occurred because of the considerable difference in the visual appearance of the
word images of the synthetic dataset as compared to those in each of the handwritten
datasets. Hence, it is considered worth investigating whether the performance of the
network improves when handwritten data is introduced to it. This leads to the next
experiment involving finetuning of the network.

6.4.3 Finetuning with Handwritten Data

In this experiment, the PHOCNet trained on HW-SYNTH is finetuned on a subset
of the training partition of a handwritten dataset. Subsets consisting of an absolute
number of images are used to finetune the model for 40,000 iterations. In this work,
subsets containing 100, 250, 500, and 1000 randomly drawn images have been used for
each dataset. This provides an insight into how the number of images used to finetune
the network affect its performance with an exponential granularity. The results of
these experiments have been shown in Table 6.4.1. However, Fig.6.4.3 shows the results
for the same experiments for the first 1000 iterations, since the largest improvement in
mAP scores is made within the first 1000 iterations. Hence, the rapid improvement in
performance of the network evaluated every 10 iterations can be well visualized in
Fig. 6.4.3. Moreover, the bottom part of Table 6.4.1 shows the results for established

6.4 experiments and results 59

methods in word spotting in order to provide a benchmark for the performance of the
method presented in this work.

The effect of the number of images in the subset used for finetuning the network on
the performance of the network is visualized for QbE and QbS scenarios in Fig.6.4.2a
and Fig.6.4.2b respectively. The graphs show a sharp increase in performance of the
network when the subset size is increased from 100 to 250. However, the performance
shows only a small improvement when the size of the subset is increased from 250 to
500, and an even smaller improvement from 500 to 1000.

Note that the PHOC representations generated as target outputs from the labels of
these subsets consist of the unigrams extracted from the words in the synthetic dataset.
Hence, the PHOC representation for words in the handwritten documents may ignore
characters which do not occur in the synthetic dataset. These subsets used to finetune
the network are augmented in order to impose a regularization as well as to increase
the number of images according to that specified in section 5.2.

This experiment proves that the PHOCNet pre-trained using synthetic data yields
a competitive result in word spotting when it is finetuned with a small amount
of real-world data. However, in order to confirm that the synthetic data plays an
important role in achieving this performance, it must be shown that the PHOCNet
trained using only the subsets used to finetune the pre-trained network would not
achieve comparable results. Therefore, the significance of the synthetic data in this
approach is investigated through the next experiment.

6.4.4 Effect of Synthetic Data

In order to find the effect that pre-training using the synthetic data has on the perfor-
mance of the PHOCNet after finetuning, an experiment is conducted eliminating the
use of the synthetic data. The three subsets containing 250 word images from each of
the three handwritten datasets are used to train the PHOCNet from scratch using the
set-up defined in section 6.3 for 80,000 iterations. It is expected that the conclusions
drawn from this experiment with the subset of 250 word images also hold true for the
subsets containing 100, 500, and 1000 word images. The results of this training are
compared to those achieved using finetuning over pre-training with synthetic data in
Fig.6.4.4.

It is seen that the results achieved by finetuning using the subset of 250 word images
are considerably higher as compared to those obtained by training the PHOCNet using
only that subset for all three datasets. This confirms that pre-training the PHOCNet
with synthetic data makes a substantial contribution to the network performance.

60 experimental evaluation

0 200 400 600 800 1 000
0

20

40

60

80

100

Size of subset used for fine-tuning PHOCNet

m
A

P
[%

]

GW
Esposalles
IAM

(a) The effect of the size of the subset used for finetuning
the network on its mAP score at 40,000 iterations for QbE
scenario.

0 200 400 600 800 1 000
0

20

40

60

80

100

Size of subset used for fine-tuning PHOCNet

m
A

P
[%

]

GW
Esposalles
IAM

(b) The effect of the size of the subset used for finetuning
the network on its mAP score at 40,000 iterations for QbS
scenario.

6.4 experiments and results 61

Table 6.4.1: Results for experiments with different amounts of training images in mAP [%]

Method
Training

Subset Size
GW IAM Esposalles

QbE QbS QbE QbS QbE QbS

proposed 0 39.89 48.92 26.21 36.57 34.92 10.30

proposed 100 83.05 86.69 38.45 56.47 89.67 71.15

proposed 250 90.76 92.39 43.78 60.90 94.06 82.43

proposed 500 93.86 94.82 52.41 68.33 95.14 85.42

proposed 1000 95.74 96.59 55.39 74.09 96.27 89.18

AttributeSVM
[AGFV14]

complete 93.04 91.29 55.73 73.72 − −

PHOCNet
[SF16]

complete 96.71 92.64 72.51 82.97 97.24 93.29

Deep Features
[KDJ16]

complete 94.41 92.84 84.24 91.58 − −

Triplet-CNN
[WB16]

complete 98.00 93.69 81.58 89.49 − −

62 experimental evaluation

0 200 400 600 8001 000

10
20
30
40
50
60
70
80
90
100

GW

Training Iteration

m
A

P
[%

]

100

250

500

1000

0 200 400 600 8001 000

Esposalles

Training Iteration

100

250

500

1000

0 200 400 600 8001 000

10
20
30
40
50
60
70
80
90
100

IAM

Training Iteration

100

250

500

1000

Figure 6.4.3: Mean Average Precision values for the finetuning experiments on the three
handwritten datasets. The numbers in the legend indicate how many images
were selected for finetuning from the training images. The results shown in this
figure are obtained for the QbE scenario.

Another factor which is expected to contribute to the high performance of the
finetuned PHOCNet is the augmentation of the subsets. The following experiment is
conducted in order to to investigate the effects of augmentation.

6.4.5 Effect of Augmentation

The augmentation of the subsets used for finetuning the network requires compu-
tational effort. One may question whether the merit of augmentation outweighs
this additional computational effort. Hence, an experiment is set up to show the
how the PHOCNet would perform on being finetuned with a non-augmented subset.
Non-augmented subsets containing 250 randomly sampled words are taken for each
of the three handwritten datasets. These subsets are further augmented as specified
in section 5.2 to give three augmented subsets. The PHOCNet pre-trained using
synthetic data is finetuned for 40,000 iterations using each of the non-augmented and
the augmented subsets. The mAP scores are obtained for each of the six episodes of
finetuning the pre-train network. The results for all three datasets using an augmented
and a non-augmented subset each are compared in Fig.6.4.5. It clearly shows an
improvement in results when the subset used for finetuning is augmented. In fact the
performance is shown to improve by up to approximately 5%. The performance is
evaluated for the QbE scenario.

6.4 experiments and results 63

Figure 6.4.4: This graph compares the results obtained by training the PHOCNet from scratch
for 80,000 iterations on a subset of 250 images of the handwritten dataset to that by
finetuning the pre-trained PHOCNet for 40,000 iterations using the same subset
for all 3 handwritten datasets. The figure clearly shows a higher performance
when the subset is used to finetune the pre-trained model than when it is used to
train the PHOCNet by itself. The results are obtained for the QbE scenario.

64 experimental evaluation

GW Esposalles IAM

40

60

80

100

85.87
90.04

42.66

90.76
94.06

43.78

m
A

P
[%

]

Without Augmentation
With Augmentation

Figure 6.4.5: The figure shows results in terms of percentage mAP scores evaluated for the QbE
scenario when the PHOCNet pre-trained with the synthetic dataset is finetuned
using a subset of 250 randomly drawn images from the handwritten dataset.
The results for finetuning using augmented and non-augmented subsets are
compared.

6.4 experiments and results 65

It is expected that the conclusions drawn from this experiment with the subset of 250

word images also hold true for the subsets containing 100, 500, and 1000 word images.
This shows that using augmentation consistently results in a better performance of the
network. Hence, the subsets used for finetuning the PHOCNet are augmented in this
work.

6.4.6 Bray-Curtis Measure vs. Cosine Metric

The PHOCNet used in this approach has been taken from [SF16]. Hence, the method
presented here adopts most of the other parameters of the experimental set-up stated
in the same related work which are expected to achieve an optimal performance for
experiments using the PHOCNet. However, it can be expected that changing a few of
these parameters may marginally improve the performance. One of the key differences
is that the approach presented here uses the cosine metric as opposed to the Bray-
Curtis measure used by [SF16]. The hypothesis is that the cosine metric is a preferred
measure for this approach since Bray-Curtis measure is designed for the comparison
of multivariate distributions or histograms, whereas the cosine metric is a commonly
used measure for quantifying the similarity of orientation of two vectors such as the
PHOC vectors in this case. Note that none of these are formal distance metrics since
they do not satisfy the triangle inequality. Mathematically, for any distance metric, the
triangle inequality states that the sum of distances computed from any arbitrary point
A to an arbitrary point B and from the point A to an arbitrary point C must be greater
than or equal to the distance computed between the points B and C. Nevertheless, the
Bray-Curtis measure and the cosine metric provide a measure of dissimilarity between
two data samples. An experiment is set up to empirically determine which metric
yields the better results. The PHOCNet is trained on the training partition of all three
handwritten datasets for 80,000 iterations and the performance is evaluated using the
test partition of the corresponding dataset using both, the cosine metric as well as the
Bray-Curtis measure, to obtain the mAP score. The cosine metric is shown to yield the
same or a better mAP score in each experiment as compared to that obtained using
the Bray-Curtis measure. This is visualized in Fig.6.4.6 for Query-by-Example and
Fig.6.4.7 for Query-by-String. Hence, the proposed set-up uses the cosine metric to
rank images during a query.

Additionally, the approach by [SF16] uses 50 commonly occurring bigrams in the
PHOC representation which are not used in the PHOC generation for the approach
presented here. Pre-experiments show that the overall set-up proposed in this work

66 experimental evaluation

GW Esposalles IAM

86

88

90

92

94

96

98

100

96.4
97.39

89.16

96.36
97.38

88.55

m
A

P
[%

]

Cosine Metric
Bray-Curtis measure

Figure 6.4.6: Cosine Metric vs Bray-Curtis measure. The results shown are obtained for Query-
by-Example for all 3 handwritten datasets.

GW Esposalles IAM

80

85

90

95

100

95.46
93.75

89.81

94.63

92

82.21

m
A

P
[%

]

Cosine Metric
Bray-Curtis measure

Figure 6.4.7: Cosine Metric vs Bray-Curtis measure. The results shown are obtained for Query-
by-String for all 3 handwritten datasets.

6.5 discussion 67

shows a marginal improvement in performance as compared to that by [SF16] for a
similar training protocol.

6.5 discussion

Several inferences can be drawn from the experiments. Firstly, from the results in Table
6.4.1, one can observe that training the PHOCNet only on the HW-SYNTH data set (i.e.
synthetic data) does not allow the CNN to perform better than common unsupervised
techniques such as [SF15] which uses local descriptors in a Bag-of-Features approach.
However, after finetuning the model, its performance for the historic datasets surpasses
that of the aforementioned unsupervised technique using merely 100 images from the
handwritten dataset.

Secondly, the training set size is reduced by 86% for GW and almost 98% for IAM
and still achieve results competitive to those of an AttributeSVM [AGFV14]. Moreover,
when a subset of 14% of training images from IAM is used for finetuning, the results
obtained are greatly improved. The mAP score is 65.81% for QbE and 86.11% for QbS.

The low amount of annotation effort that the method presented here demands
can be further put into perspective. The ICFHR2016 Handwritten Keyword Spotting
Competition [PZG+

16] states that, for practical applications of keyword spotting,
annotating 40 pages of handwritten documents is not a significantly tedious task, and
that even annotating 154 pages is affordable. With the proposed set-up, this number
drastically reduces further. For example, each page of the George Washington dataset
consists of approximately 250 words on an average. This implies that, merely 4 pages
must be annotated in order to obtain high performance.

Another significant feature of this method is the low training time. Although some
time is required to train the model on the synthetic data, this phase of training does
not need to be repeated for performing the task of word spotting in every handwritten
dataset. In fact, once the model pre-trained on the synthetic data is made available, the
training time to be considered for any practical application would be only that needed
for finetuning the model on the desired handwritten dataset. The time required to
finetune the pre-trained model for 1000 iterations ranges from approximately 7 to
11 minutes, depending on the dataset and the machine used for computation. From
Figure 6.4.3, one can observe that the largest leap in the mAP scores is made within the
first 1000 iterations. The next iterations bring about an improvement of approximately
2-3% in the mAP scores. Under ideal computing conditions, the training time can be
considered to increase linearly with the number of iterations.

68 experimental evaluation

During the finetuning phase using a subset of 1000 images, 79-87% of the final mAP
score (at 40,000 iterations) is reached within the first 200 iterations for all 3 datasets.
That is, for a batch size of 10, the network needs to merely observe 2000 images in
order to achieve 79-87% of the final mAP score. From this, it can be interpreted that
the network is capable of learning the visual appearance of the word images in a
dataset as a whole as opposed to individual words, since the network performance
makes a leap without having observed more than a fraction of the available training
words especially for the IAM and Esposalles datasets. This may explain the lower
performance for the IAM as compared to George Washington and Esposalles datasets.
IAM consists of more visual diversity in writing styles as compared to those in the
other handwritten datasets, hence making it more difficult to learn the model.

7
C O N C L U S I O N

One of the primary challenges of word spotting in handwritten documents is that it
is difficult for a word spotting system to adapt to the diversity in visual appearance
of handwritten words. Supervised approaches are best equipped to overcome this
challenge. In a supervised approach such as training a CNN, the system requires
training data which spans this diversity. This means that the amount of handwritten
training data must be large enough to take into account the variation in the visual
appearance of the text. However, annotating a large amount of training data is a time
consuming and tedious process. Hence, it is desirable to explore techniques which
allow a system to perform well despite a decrease in the amount of data used for
training it. In this work, transfer learning is introduced as an approach to reduce the
amount of handwritten data used to train the PHOCNet for word spotting.

The PHOCNet, is trained to map word images on to their PHOC vector representa-
tion. The PHOC representation is extracted from the text or string representation of a
word and it encodes the presence of a character within a spatial region of the word.
The PHOC vector space is thus a common subspace on to which an image as well as
the text representation of a word can be mapped. Hence, this approach enables word
spotting in the QbE as well as the QbS scenario. The network is first trained using
synthetically generated data, namely the HW-SYNTH dataset. The contents of this
dataset are designed to emulate the variation in handwriting. The performance of
the PHOCNet thus trained is evaluated using handwritten data. That is, knowledge
from the source domain of the synthetic data is transferred to the target domain of
handwritten data. However, one can observe that the PHOCNet faces limitations
because of the difference in the visual appearance of the contents of the synthetic and
handwritten datasets. Hence, the visual characteristics of handwriting are introduced
to the PHOCNet by finetuning the network pre-trained over the synthetic data using
handwritten data. Finetuning is carried out using augmented subsets of 100, 250, 500,
and 1000 images randomly sampled from the training partitions of each of the three
handwritten datasets. This shows how the performance is affected by the number
of images used for finetuning with an exponential granularity. As expected, the
performance of the network improves with the increase in size of the subset used for
finetuning. In fact, the results obtained using 1000 images for finetuning surpass that
obtained by training AttributeSVMs [AGFV14]. Although this is achieved by finetun-

69

70 conclusion

ing over the largest subset of handwritten data, it is still a fraction of the training
data used by established supervised approaches in word spotting. Consequently, the
manual effort for annotating the training data is reduced to a large extent. Additionally,
once the PHOCNet model pre-trained on the synthetic data is made available, the
effective training time for practical applications is only that required to finetune the
network using a subset of the desired handwritten dataset. Thus, the training time is
also reduced to a fraction of that required for other supervised approaches such as
[AGFV14] and [SF16].

To sum up, the approaches of transfer learning and finetuning allow the PHOCNet
to retain a high performance in word spotting in handwritten documents while greatly
reducing the amount of handwritten data required to train the network. As a result,
this approach also reduces the manual effort and time required to prepare the training
data and to train the network.

B I B L I O G R A P H Y

[AF15] Ahmad, Irfan ; Fink, Gernot A.: Training an Arabic handwriting recog-
nizer without a handwritten training data set. In: 2015 13th International
Conference on Document Analysis and Recognition (ICDAR), IEEE, aug 2015. –
ISBN 978–1–4799–1805–8, S. 476–480

[AFM14] Ahmad, Irfan ; Fink, Gernot A. ; Mahmoud, Sabri A.: Improvements
in Sub-character HMM Model Based Arabic Text Recognition. In: 2014
14th International Conference on Frontiers in Handwriting Recognition. Crete :
IEEE, sep 2014. – ISBN 978–1–4799–4334–0, S. 537–542

[AGFV14] Almazán, Jon ; Gordo, Albert ; Fornés, Alicia ; Valveny, Ernest: Word
Spotting and Recognition with Embedded Attributes. In: Pattern Analysis
and Machine Intelligence 36 (2014), Nr. 12, S. 2552–2566

[ARFM13] Ahmad, Irfan ; Rothacker, Leonard ; Fink, Gernot A. ; Mahmoud,
Sabri A.: Novel Sub-character HMM Models for Arabic Text Recognition.
In: 2013 12th International Conference on Document Analysis and Recognition.
Washington DC : IEEE, aug 2013. – ISBN 978–0–7695–4999–6, S. 658–662

[ARTL13] Aldavert, David ; Rusinol, Marcal ; Toledo, Ricardo ; Llados, Josep:
Integrating Visual and Textual Cues for Query-by-String Word Spotting.
In: International Conference on Document Analysis and Recognition, 2013. –
ISBN 978–0–7695–4999–6, S. 511–515

[BJTM16] Balntas, Vassileios ; Johns, Edward ; Tang, Lilian ; Mikolajczyk, Krys-
tian: PN-Net: Conjoined Triple Deep Network for Learning Local Image
Descriptors. In: arXiv abs/1601.0 (2016)

[BMP06] Blitzer, John ; McDonald, Ryan ; Pereira, Fernando: Domain adapta-
tion with structural correspondence learning. In: Proceedings of the 2006
conference on empirical methods in natural language processing Association for
Computational Linguistics, 2006, S. 120–128

[DR08] De Raedt, Luc: Logical and relational learning. Springer Science & Business
Media, 2008

71

72 Bibliography

[DYXY08] Dai, Wenyuan ; Yang, Qiang ; Xue, Gui-Rong ; Yu, Yong: Self-taught
clustering. In: Proceedings of the 25th international conference on Machine
learning ACM, 2008, S. 200–207

[GB10] Glorot, Xavier ; Bengio, Yoshua: Understanding the Difficulty of Training
Deep Feedforward Neural Networks. In: AISTATS 9 (2010), S. 249–256

[GBC16] Goodfellow, Ian ; Bengio, Yoshua ; Courville, Aaron: Deep Learning.
MIT Press, 2016. – http://www.deeplearningbook.org

[HZRS14] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Spatial
Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
In: European Conference on Computer Vision (2014), S. 346–361

[KDJ16] Krishnan, Praveen ; Dutta, Kartik ; Jawahar, C.V.: Deep Feature
Embedding for Accurate Recognition and Retrieval of Handwritten Text.
In: International Conference on Frontiers in Handwriting Recognition, 2016, S.
289–294

[KJ16] Krishnan, Praveen ; Jawahar, C.V.: Matching Handwritten Document
Images. In: European Conference on Computer Vision, 2016

[KJSR16] Kim, Yoon ; Jernite, Yacine ; Sontag, David ; Rush, Alexander M.:
Character-aware neural language models. In: Thirtieth AAAI Conference on
Artificial Intelligence, 2016

[MHR96] Manmatha, R ; Han, Chengfeng ; Riseman, E.M.: Word Spotting: A New
Approach to Indexing Handwriting. In: Computer Vision and Pattern Recog-
nition (1996), S. 1–29. http://dx.doi.org/10.1109/CVPR.1996.517139. –
DOI 10.1109/CVPR.1996.517139. – ISBN 0–8186–7258–7

[MHRC96] Manmatha, R ; Han, Chengfeng ; Riseman, Edward M. ; Croft, W B.:
Indexing handwriting using word matching. In: Proceedings of the first
ACM international conference on Digital libraries ACM, 1996, S. 151–159

[MP43] McCulloch, Warren S. ; Pitts, Walter: A logical calculus of the ideas
immanent in nervous activity. In: The bulletin of mathematical biophysics 5

(1943), Nr. 4, S. 115–133

[MP69] Minsky, Marvin ; Papert, Seymour: Perceptrons. (1969)

http://www.deeplearningbook.org
http://dx.doi.org/10.1109/CVPR.1996.517139

Bibliography 73

[MP01] Märgner, V. ; Pechwitz, M.: Synthetic Data for Arabic OCR System De-
velopment. In: International Conference on Document Analysis and Recognition,
2001. – ISBN 0769512631, S. 1159–1163

[Mun14] Munoz, Andres: Machine Learning and Optimization. In: URL:
https://www. cims. nyu. edu/˜ munoz/files/ml_optimization. pdf [accessed 2016-
03-02][WebCite Cache ID 6fiLfZvnG] (2014)

[Nie15] Nielsen, Michael A.: Neural networks and deep learning. In: URL:
http://neuralnetworksanddeeplearning. com/.(visited: 01.11. 2014) (2015)

[PMB13] Pascanu, Razvan ; Mikolov, Tomas ; Bengio, Yoshua: On the Difficulty
of Training Recurrent Neural Networks. In: International Conference on
Machine Learning, 2013. – ISSN 1045–9227, 1310–1318

[Por80] Porter, Martin F.: An algorithm for suffix stripping. In: Program 14 (1980),
Nr. 3, S. 130–137

[PY10] Pan, Sinno J. ; Yang, Qiang: A survey on transfer learning. In: IEEE
Transactions on knowledge and data engineering 22 (2010), Nr. 10, S. 1345–1359

[PZG+
16] Pratikakis, Ioannis ; Zagoris, Konstantinos ; Gatos, Basilis ; Puigcerver,

Joan ; Toselli, Alejandro H. ; Vidal, Enrique: ICFHR2016 Handwritten
Keyword Spotting Competition (H-KWS 2016). In: International Conference
on Frontiers in Handwriting Recognition, 2016, S. 613–618

[RATL15] Rusiñol, Marçal ; Aldavert, David ; Toledo, Ricardo ; Lladós, Josep:
Efficient segmentation-free keyword spotting in historical document col-
lections. In: Pattern Recognition 48 (2015), Nr. 2, S. 545–555. http://dx.doi.
org/10.1016/j.patcog.2014.08.021. – DOI 10.1016/j.patcog.2014.08.021.
– ISSN 00313203

[RF15] Rothacker, Leonard ; Fink, Gernot A.: Segmentation-free Query-by-
String Word Spotting with Bag-of-Features HMMs. In: International Confer-
ence on Document Analysis and Recognition, 2015. – ISBN 978–1–4799–1805–8,
S. 661–665

[RFS+
13] Romero, Verónica ; Fornés, Alicia ; Serrano, Nicolás ; Sánchez, Joan A.

; Toselli, Alejandro H. ; Frinken, Volkmar ; Vidal, Enrique ; Lladós,
Josep: The ESPOSALLES database: An ancient marriage license corpus for
off-line handwriting recognition. In: Pattern Recognition 46 (2013), Nr. 6, S.

http://dx.doi.org/10.1016/j.patcog.2014.08.021
http://dx.doi.org/10.1016/j.patcog.2014.08.021

74 Bibliography

1658–1669. http://dx.doi.org/10.1016/j.patcog.2012.11.024. – DOI
10.1016/j.patcog.2012.11.024. – ISSN 00313203

[RM07] Rath, Tony M. ; Manmatha, R.: Word Spotting for Historical Doc-
uments. In: International Journal on Document Analysis and Recognition
9 (2007), S. 139–152. http://dx.doi.org/10.1007/s10032-006-0027-8. –
DOI 10.1007/s10032–006–0027–8. – ISBN 0–7695–1960–1

[RMR06] Rothfeder, Jamie ; Manmatha, R ; Rath, Toni M.: Aligning transcripts
to automatically segmented handwritten manuscripts. In: International
Workshop on Document Analysis Systems Springer, 2006, S. 84–95

[Ros58] Rosenblatt, Frank: The perceptron: A probabilistic model for information
storage and organization in the brain. In: Psychological review 65 (1958), Nr.
6, S. 386

[RRF13] Rothacker, Leonard ; Rusinol, Marcal ; Fink, Gernot A.: Bag-of-Features
HMMs for Segmentation-Free Word Spotting in Handwritten Documents.
In: International Conference on Document Analysis and Recognition, 2013. –
ISBN 978–0–7695–4999–6, S. 1305–1309

[RSP09] Rodríguez-Serrano, José A. ; Perronnin, Florent: Handwritten word-
spotting using hidden Markov models and universal vocabularies. In:
Pattern Recognition 42 (2009), Nr. 9, S. 2106–2116. http://dx.doi.org/10.
1016/j.patcog.2009.02.005. – DOI 10.1016/j.patcog.2009.02.005. – ISSN
00313203

[RVF12] Rothacker, Leonard ; Vajda, Szilard ; Fink, Gernot A.: Bag-of-Features
Representations for Offline Handwriting Recognition Applied to Arabic
Script. In: International Conference on Frontiers in Handwriting Recognition,
2012

[SF15] Sudholt, Sebastian ; Fink, Gernot A.: A Modified Isomap Approach to
Manifold Learning in Word Spotting. In: German Conference on Pattern
Recognition, 2015, S. 529–539

[SF16] Sudholt, Sebastian ; Fink, Gernot A.: PHOCNet : A Deep Convolu-
tional Neural Network for Word Spotting in Handwritten Documents. In:
International Conference on Frontiers in Handwriting Recognition, 2016

[SHK+
14] Srivastava, Nitish ; Hinton, Geoffrey ; Krizhevsky, Alex ; Sutskever,

Ilya ; Salakhutdinov, Ruslan: Dropout : A Simple Way to Prevent Neural

http://dx.doi.org/10.1016/j.patcog.2012.11.024
http://dx.doi.org/10.1007/s10032-006-0027-8
http://dx.doi.org/10.1016/j.patcog.2009.02.005
http://dx.doi.org/10.1016/j.patcog.2009.02.005

Bibliography 75

Networks from Overfitting. In: Journal of Machine Learning Research (JMLR)
15 (2014), S. 1929–1958. – ISBN 1532–4435

[SZ14] Simonyan, Karen ; Zisserman, Andrew: Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In: arXiv (2014), S. 1–13

[VB03] Varga, Tamás ; Bunke, Horst: Generation of Synthetic Training Data for
an HMM-based Handwriting Recognition System. In: Proceedings of the
International Conference on Document Analysis and Recognition, ICDAR Bd.
2003-Janua, 2003. – ISBN 0769519601, S. 618–622

[VB04] Varga, Tamás ; Bunke, Horst: Comparing Natural and Synthetic Training
Data for Off-line Cursive Handwriting Recognition. In: International
Workshop on Frontiers in Handwriting Recognition, 2004. – ISBN 0769521878,
S. 221–225

[WB16] Wilkinson, Tomas ; Brun, Anders: Semantic and Verbatim Word Spotting
using Deep Neural Networks. In: International Conference on Frontiers in
Handwriting Recognition, 2016, S. 307–312

[WH86] Williams, DRGHR ; Hinton, GE: Learning representations by back-
propagating errors. In: Nature 323 (1986), Nr. 6088, S. 533–538

[WSZ08] Wang, Zheng ; Song, Yangqiu ; Zhang, Changshui: Transferred dimen-
sionality reduction. In: Machine learning and knowledge discovery in databases
(2008), S. 550–565

[YEG+
02] Young, Steve ; Evermann, Gunnar ; Gales, Mark ; Hain, Thomas ;

Kershaw, Dan ; Liu, Xunying ; Moore, Gareth ; Odell, Julian ; Ollason,
Dave ; Povey, Dan u. a.: The HTK book. In: Cambridge university engineering
department 3 (2002), S. 175

	1 Introduction
	2 Fundamentals
	2.1 Basics of Machine Learning
	2.2 Artificial Neural Networks
	2.2.1 Perceptron
	2.2.2 Multi-Layer Perceptron
	2.2.3 Learning with Gradient Descent

	2.3 Convolutional Neural Networks
	2.3.1 Convolution
	2.3.2 Convolutional Layer
	2.3.3 Pooling Layer
	2.3.4 Rectified Linear Unit
	2.3.5 Fully connected Layer

	2.4 Transfer Learning

	3 Word Spotting
	4 Related Work
	4.1 Approaches using CNNs
	4.1.1 PHOCNet
	4.1.2 Triplet-CNN

	4.2 Approaches using Synthetic Training Data
	4.2.1 Training a Recognizer without Handwritten Data
	4.2.2 Word Spotting in Latin Script

	5 Method
	5.1 Learning With Weak Supervision
	5.1.1 Necessity for CNN
	5.1.2 Transfer Learning using Synthetic Data
	5.1.3 Finetuning with Handwritten Data

	5.2 Regularization

	6 Experimental Evaluation
	6.1 Datasets
	6.2 Word Spotting Protocol
	6.3 Training Set-up
	6.4 Experiments and Results
	6.4.1 Transferring Knowledge from Modern to Historic Data
	6.4.2 Training with Synthetic Data
	6.4.3 Finetuning with Handwritten Data
	6.4.4 Effect of Synthetic Data
	6.4.5 Effect of Augmentation
	6.4.6 Bray-Curtis Measure vs. Cosine Metric

	6.5 Discussion

	7 Conclusion

