
Densely Connected Convolutional Networks
for Word Spotting in Handwritten Documents

Master Thesis

Fabian Wolf
September 25, 2018

Supervisors:

Prof. Dr.-Ing. Gernot A. Fink

Wilmar Fernando Moya Rueda, M.Sc.

Fakultät für Informatik

Technische Universität Dortmund

http://www.cs.uni-dortmund.de

Contents

1 introduction 3

2 fundamentals 5

2.1 Word Spotting 5

2.2 Artificial Neural Networks 8

2.2.1 Perceptron 9

2.2.2 Feedforward Networks 9

2.2.3 Activation Functions 10

2.2.4 Gradient Descent 12

2.3 Convolutional Neural Networks 13

2.3.1 Convolutional Layer 14

2.3.2 Pooling Layer 15

2.3.3 Fully Connected Layer 17

2.3.4 Softmax Activation for Classification 17

2.3.5 Maxout Layer 18

3 related work 19

3.1 Deep Network Architectures 19

3.1.1 Residual Networks 20

3.1.2 Densely Connected Networks 21

3.2 Word Spotting with Convolutional Networks 24

3.2.1 PHOCNet 24

3.2.2 Triplet CNN 28

4 method 31

4.1 Word Spotting with Dense Convolutional Networks 31

4.1.1 DenseNet-121 32

4.1.2 PHOC-DenseNet 34

4.1.3 Hybrid Approach 36

4.2 Regularization 38

5 experimental evaluation 39

5.1 Datasets 40

5.2 Training Setup 41

1

2 Contents

5.3 Evaluation Protocol 42

5.4 Experiments and Results 43

5.4.1 DenseNet-121 44

5.4.2 PHOC-DenseNet 46

5.4.3 Resized Images 58

5.4.4 Hybrid Approach 59

5.4.5 Comparison 62

6 conclusions 67

1
I N T R O D U C T I O N

Reading and understanding written text constitutes a complex task, which humans are
able to perform almost perfectly after years of training. Written document collections
provide a huge amount of information, which is manually accessible, but the shier
extent makes an automated process desirable. Powered by the progress in fields as
computer vision and machine learning, document image analysis has become an active
field of research.

Different methods tackled the task of processing and transcribing written text and
they have been quite successful with regards to machine-written documents. When
it comes to handwritten documents, accuracies decrease and the performances of
classic approaches are limited. This observation is mainly due to the structural
differences between hand- and machine-written text. Machine-written text generally
has a uniform visual appearance independent of the writer. In case of handwriting,
no two words share the exact same visual appearance even when written by the
same person. Considering documents written by different writers, their handwritings
show huge variation in style and visual appearance. A system to identify a specific
word has to cope with this high intra-class variance. Furthermore, even a single
misidentified character results in misclassification. Recognition methods that aim at
directly transcribing a handwritten text often struggle when confronted with these
requirements.

Another approach for understanding handwritten text follows the concept of word
spotting. Instead of considering the problem as a recognition problem, it is interpreted
as a form of retrieval task. The entire document is treated as a collection of individual
word images. Word spotting is then defined as the task of retrieving all images that are
relevant with respect to a given query. The query can be either a word image itself or a
string. Different methods have achieved good results, making word spotting a suitable
method for indexing and retrieving information from handwritten text automatically.

The general requirement of a word spotting system is to map the word image
onto a representation that allows to rank the image collection according to their
relevance with respect to a query. Here, attribute representations, which are based
on character occurrences and location, found popular use. Still, approximating the
mapping between visual appearance and attribute representation is highly complex.
Most popular methods rely on machine learning techniques. Considering the applied

3

4 introduction

methods, similar developments took place in the fields of computer vision and word
spotting. Feature based approaches, which have been popular at first, were recently
replaced by methods based on convolutional neural networks (CNN). CNNs have
been shown to be an extremely powerful tool and strongly influenced the field of word
spotting.

The performance of these methods is highly determined by network architectures.
Driven by the increasing possibilities in terms of computational power and memory,
CNNs have become increasingly complex, and especially they employ high numbers
of layers. A lot of work on different network architectures continuously increased
performances in various applications. Recently, different networks incorporating
identity paths in their network architecture have become popular. One of these highly
powerful architectures applies the concept of densely connected neural networks.
This dense network structure is based on connecting each layer of the network to
all subsequent layers. Following this design pattern allows each layer to access all
previously generated feature maps. This pattern is combined with small numbers of
filters. Experiments show that the network highly benefits from this idea of feature
reuse.

This thesis investigates the capabilities of the dense connectivity pattern in the
context of word spotting and is inspired by a method using the so called PHOCNet.
Different dense network architecture are proposed as a model to approximate the map-
ping between word image and attribute representation. While the dense connectivity
pattern only provides a general network structure its actual architecture is determined
by several hyperparameters. Therefore, another focus of this work is to get an insight
on how different hyperparameters affect the network’s properties and performance.

This thesis is structured as follows. Chapter 2 introduces the fundamental concepts
the proposed method is based on. Therefore, a brief overview on the basic concepts and
methods in the field of word spotting is given. Since neural networks and especially
CNNs have become the state-of-the-art method and they are an essential tool for
the proposed method, their fundamental concepts are discussed. Chapter 3 presents
the works that inspired this thesis. The first part will discuss recent developments
in the field of deep network architecture, which are focused on the utilization of
identity paths. Furthermore, two influential works using CNNs for word spotting are
presented in the second part of chapter 3. Chapter 4 discusses the proposed method,
which is evaluated by the experiments presented in chapter 5. Finally, the conclusions
drawn from the experimental evaluation are summarized and discussed in chapter 6.

2
F U N D A M E N TA L S

This chapter covers the fundamental tools and concepts which motivated the proposed
method. Section 2.1 introduces the problem of word spotting and discusses how it
has been addressed in research. Systems based on CNNs have become increasingly
popular and outperformed traditional approach. Taking this as a motivation, the
proposed method also relies on the use of a CNN. Therefore, section 2.2 introduces
the fundamental concepts of artificial neural networks. Due to their relevance for this
thesis, convolutional neural networks are discussed in more detail in section 2.3.

2.1 word spotting

Handwritten text is a major source of information. While a vast amount of data is pro-
vided in form of handwritten documents, extracting relevant parts is often tedious and
time-consuming. Especially the exploration of historic document collections, which
are not annotated and often poorly indexed, is troublesome. Therefore, transcribing,
indexing and analyzing handwritten documents in an automated fashion, is of special
interest in many fields of research.

Optical character recognition (OCR) methods aim at directly transcribing a document
image. Even though these approaches render relative good results for machine printed
text, they struggle when facing handwritten documents. In contrast to machine printed
text, the appearance of handwriting shows a huge variability. The performance of OCR
methods is further limited by document degradation, especially present in historic
documents [GSGN17].

One of the most popular approaches to overcome these limitation is the concept
of word spotting, first proposed by [MHRC96]. Instead of transcribing a document
entirely, the authors proposed to first segment the images of document pages into word
images. Transforming the document into a collection of words, allows the creation of
word clusters. The images in one cluster are visually similar and therefore probable
to share the same annotation. As discussed in [RM07], this is particularly suitable
for indexing historic documents. A label can be assigned manually to a cluster of
interest, leading to a partial transcription of the document. Thereby, access to the

5

6 fundamentals

textual information is granted without requiring the transcription of the document’s
entire content.

In a more general form, word spotting can be considered as a retrieval task. A
specific query word is provided to the word spotting system, which returns a subset of
the collection of word images. The relevance of the retrieved word images with respect
to the query determines the system’s performance. A perfectly accurate system would
return all occurrences of the word in the considered document, with no additional
irrelevant words.

In the literature different word spotting systems mainly address the two scenarios of
segmentation-based and segmentation-free word spotting. In case of segmentation-free
word spotting, an entire document page is considered. No further information on the
position or extent of individual words and lines is provided. Extracting the collection
of word images is considered to be part of the word spotting task. This work addresses
the second scenario. It is assumed that the problem of segmenting the document into
words is solved independently. Hence, the word spotting task is only concerned with
finding those word images relevant with respect to a given query.

Another factor determining the design and performance of a word spotting system
is the representation of the query word. The two most prominent paradigms are
query-by-example (QbE) and query-by-string (QbS). In case of query-by-example, the query
word is provided in form of an example image. Therefore, the retrieval task is reduced
to finding those images, which are visually similar to the query image. The biggest
drawback is the problem of manually identifying the query word. This can be tedious
if the relevant word rarely occures in the text. Furthermore, the system is useless for
checking whether a specific word is present in a document. This special case is already
solved by the manual identification of the query image. The query-by-string paradigm
overcomes these limitations. Instead of using a word image, the query is represented
by a string. Even though this solves the problem of identifying a query image, a new
requirement is imposed to the system. Retrieving a subset of word images from a
query string, cannot be based solely on visual similarity. A query-by-string system
needs a mapping between word image and a corresponding textual representation.

One of the first methods in the field of segmentation-based word spotting was
proposed by [MHRC96]. In a first step, the considered word images are binarized by
thresholding. A designated query word is then matched against all other words of
the document. Matching is performed by simply XOR’ing two images and the use
of Euclidean Distance Mapping [Dan80]. Other approaches investigated the use of
sequential models for matching word images. In [RM07] the distribution of ink along
one axis of the word image is used to generate a characteristic word profile. Two
profiles of the same word are unlikely to line up due to variations in handwriting.

2.1 word spotting 7

Therefore, Dynamic Time Warping (DTW) [SK99] is used to align two profiles to
improve the significance of the distance measure. [RSP09] and [FKFB10] investigated
Hidden Markov Models (HMMs) in the context of word spotting and showed that the
trained subword models outperform the matching approaches based on DTW.

Holistic representations became increasingly popular, especially when combined
with local descriptors. In [RATL11] the authors use SIFT features to represent image
patches. Based on local descriptors, a bag-of-visual-words model is used to perform
segmentation-free word spotting. The method was further refined in [RATL15] by
latent semantic analysis and product quantization. In general, the predominant local
descriptors in the field of word spotting are SIFT descriptors [RATL11], [ARTL13],
[RATL15], [RF15], [SF15], geometric features [RM07], [FFMB12] and HOG-based de-
scriptors [AFV13], [GMAJ13]. Many approaches based on matching word images do
not incorporate any information on the transcription of an image during training.
While this relieves the requirement of annotated training data, it comes with the
drawback that query-by-string word spotting cannot be performed directly.

One of the most influential methods in the field of segmentation-based word spotting
was presented in [AGFV14]. The authors proposed to use an attribute representation
called Pyramidal Histogram of Characters (PHOC) (see section 3.2.1). This binary
word string embedding encodes the presence of a character in a specific split of the
word. While generating a PHOC vector from a string is trivial, finding the attribute
representation for a word image is not. In a first step, the word images are projected
into an attribute space using Fisher Vectors [PSM10]. Based on the corresponding
labels, represented by PHOC vectors, a set of Support Vector Machines (SVM) is trained.
A common subspace between Fisher Vectors and PHOC embeddings is learned,
making word image and string embedding comparable. Therefore, the matching step
of word spotting can be performed by projecting the word images into a common
subspace and comparing them by a suitable distant measure. By incorporating word
labels in the supervised training procedure, which requires annotated training data,
most unsupervised approaches were outperformed. Furthermore, the existence of a
common subspace between string embedding and word images allows query-by-string
word spotting. As discussed in [AGFV14], the method is not restricted to Fisher Vectors
and SVMs. In general, every method which is able to predict a PHOC representation
from a word image is suitable.

Inspired by the success in the field of computer vision, Convolutional Neural
Networks (CNNs) found their way into word spotting. [KDJ16] improved the method
of [AGFV14] by using a CNN as a feature extractor. Training the SVMs is then based
on the features extracted by the CNN, effectively replacing Fisher Vectors. The method
presented in [SF16] further exploits the use of a CNN in combination with an attribute

8 fundamentals

representation. Learning the PHOC vector of a word image is considered a multi-label
classification task. By training a designated CNN to learn the mapping between
image and PHOC representation, other methods were outperformed, making it the
state-of-the-art approach up to today.

A slightly different method was proposed by [WB16]. Instead of training the
mapping between word string embedding and word image in an end-to-end fashion,
a triplet network is used. Three identical CNNs, sharing the same weights, are used
to learn a feature vector. This is done by providing triplets of images, with two
images of the same and one of a different class. The loss function used in [WB16]
aims at minimizing the distance between two feature vectors of the same class, while
maximizing the minimal distance between two feature vectors, corresponding to word
images of different classes. After the CNN is trained to map a word image on a
discriminative feature vector, a multi layer perceptron (MLP) is trained. The MLP
projects the feature vector on a word string embedding such as PHOC. The results
presented in [WB16] did not show any significant improvement compared to [SF16],
but still outperformed methods not based on CNNs.

For a detailed and extensive survey of word spotting methods and challenges see
[GSGN17].

2.2 artificial neural networks

Word spotting methods are highly influenced by the field of machine learning, which
relies on computational models that are used to approximate arbitrary complex func-
tions. One of these models took inspiration from how human beings and animals
process information. A biological neural network (BNN) realizes essential functions
of computation such as storing, processing and transmitting information. The fun-
damental building blocks of a BNN are small structures called neurons. A neuron
essentially receives signals and generates a composite signal which is then transmitted
to another neuron [Kon05]. Everything the human brain is capable of is based on
the interconnection and communication of a large number of such neurons. This
insight on the basic functionalities of a biological nervous system inspired the idea of
artificial neural networks. A powerful computational model is realized by a network
of numerous simple basic functions. Nowadays, in many state-of-the-art applications,
neural networks are the predominant tool due to their performance and flexibility.

2.2 artificial neural networks 9

2.2.1 Perceptron

An artificial neural network (ANN) can be considered as a network of primitive
functions [Roj96]. An artificial neuron is a computing unit, first proposed by Warren
McCulloch and Walter Pitts in 1943 [MP43]. This simple computation unit takes n
binary signals as an input and processes them in two parts. First, the sum of the
neuron’s inputs is computed, which is followed by a non-linear function, mapping the
output on a finite range. In the case of the McCulloch-Pitts neuron, the non-linear step
function with a threshold of θ is used. Therefore, the output of the neuron, given an
arbitrary number of binary inputs x1, x2, ..., xn, is defined by:

f (x1, x2, ..., xn) =

1, if
∑n

i=1 xi > θ

0, otherwise
(2.2.1)

Despite its simple structure, a single McCulloch-Pitts neuron is capable of approximat-
ing different monotonic logical functions such as AND, NOR or NOT. The capabilities
of the artificial neuron were further extended by Frank Rosenblatt [Ros58], who intro-
duced weights corresponding to each input. This so called perceptron was generalized
by Minsky and Papert [MP69]. In contrast to the classic perceptron, input signals with
a real value in the interval x ∈ [0, 1] are used. Furthermore, the weights are not set to
a fixed value. By adapting the corresponding weights the Minsky-Papert perceptron
can be used to approximate different functions and solve different problems, such as
linear classification. It was shown that if a Minsky-Papert perceptron is capable of
representing a specific function, a corresponding set of weights can be learned [MP69].

2.2.2 Feedforward Networks

An artificial neural network is based on the composition of perceptrons as basic
computing units as introduced in section 2.2.1. The simplest form of a neural network
is the single layer perceptron as shown in figure 2.2.1. It consists of a single perceptron
and defines a mapping y = f (x) depending on its weight vector w and a bias b. The
output of the single layer perceptron simply results from the composition of the dot
product of inputs and weights and the non-linear activation function ϕ:

f (x) = ϕ(wTx + b) (2.2.2)

The activation function corresponds to the thresholding part of the classic percep-
tron. Popular activation functions replace the simple thresholding behavior by more

10 fundamentals

complex functions, as discussed in section 2.2.3. Since information flows through
the network without any cycles or feedback connections, such a network is called
feedforward network [Kon05]. Even though a single perceptron already implements
a variety of functions, its capabilities are still quite limited. Following the analogy
with biological neural networks, more complex functions are realized by composing
multiple perceptrons.

The information flow and composition of functions in a feedforward network can
be described by an acyclic graph [GBC17]. A simple and commonly used structure is
based on a consecutive evaluation of basic functions. Consider such a chain structure
with three basic functions f (1), f (2) and f (3) [GBC17]. The overall output of the network
is given by f (x) = f (3)(f (2)(f (1)(x))). Each function of the chain is called a layer of the
network, while the length of the chain determines the depth [GBC17]. The arbitrary
complex combination of network structures, activation and basic functions makes
artificial neural networks a powerful and flexible model of computation suitable for a
variety of tasks in machine learning and computational intelligence.

2.2.3 Activation Functions

As discussed in section 2.2.2, a neuron usually composes two functions. In a first
step, the input data is processed based on the corresponding weights and biases.
Second, the neuron’s output is generated by a non-linear activation function ϕ(·). The
following section discusses the predominant types of activation functions and their
derivatives.

The sigmoid non-linearity is similar to a step function. It takes a single real number
and maps it to the finite range of [0, 1]. As shown in figure 2.2.2a, the sigmoid
function is close to zero for high negative input values. For high positive inputs, the

x0

x1

x2

xn

b
w0

w1

w2

wn

φ(·) y

Figure 2.2.1: The single layer perceptron (SLP) as a simple feedforward network [Roj96].

2.2 artificial neural networks 11

sigmoid function approaches one. Again, the behavior can be interpreted analogue
to the behavior of a biological neuron. The neuron is either not activated, in case
of high negative values, or completely activated, in case of high positive inputs.
Mathematically, this behavior is realized by the following continuous and differentiable
function [Roj96]:

ϕ(x) = sg(x) =
1

1+ e−x
ϕ ′(x) = sg ′(x) =

e−x

(1+ e−x)2
(2.2.3)

Even though the sigmoid activation function was historically popular, it is rarely
used nowadays. A major drawback of the sigmoid activation are its not zero-centered
outputs. This is unfavorable for the training procedure with stochastic gradient descent.
The undesirable dynamics introduced by the sigmoid function can be elevated by
using a scaled and translated sigmoid function. The resulting hyperbolic tangent
function (see figure 2.2.2b) is defined as [Roj96]:

ϕ(x) = tanh(x) = 2(sg(x) − 1) =
1− e−x

1+ e−x
(2.2.4)

ϕ ′(x) = tanh ′(x) = 1− tanh2(x)) (2.2.5)

Although the hyperbolic tangent is zero-centered, it shares another undesirable prop-
erty with the sigmoid function. As discussed in section 2.2.4, training a network
relies on calculating gradients. It can be easily seen that the gradient of the sigmoid
and hyperbolic tangent is close to zero for values close to saturation at zero or one.
Especially in the case of deep networks, the gradient vanishes, while information flows
through the network. This hinders the network to efficiently learn a set of weights
[PMB12].

[GBB11] proposed a different activation function. The rectified linear unit (ReLU)
thresholds the input value at zero and performs a linear mapping for positive inputs
(see figure 2.2.2c). The resulting function can be summarized as:

ϕ(x) = f(x) = max(0, x) ϕ ′(x) =

1, if x 6 0

0, ifx > 0
(2.2.6)

As shown by [KSH12], using a ReLU instead of sigmoid or hyperbolic tangent
activation strongly improves performance. Due to its linear, not saturating form,
stochastic gradient descent converges faster to an optimal set of weights. Furthermore,
a ReLU is computationally simple. It can be implemented by simply thresholding a
value, opposed to the complex calculation of exponential functions, in case of sigmoid
or hyperbolic tangent activation. These properties make the ReLU one of the most
widespread used activation functions in state-of-the art networks.

12 fundamentals

−5 0 5

0

0.5

1

(a) Sigmoid

−5 0 5

−1

0

1

(b) Hyperbolic Tangent

−5 0 5

0

2

4

6

(c) ReLU

Figure 2.2.2: Common activation functions [FFJK17].

2.2.4 Gradient Descent

In order to implement a desired function with an artificial neural network, a set
of weights and biases is required. With increasing network complexity, finding
a corresponding set of parameters is not trivial and might not be possible in a
deterministic way. A popular approach to solve this problem relies on learning a set
of parameters. Therefore, the network is trained on a given training data set and the
gradient descent algorithm is used to minimize a cost function [GBC17][Roj96].
The cost function quantifies how well a given set of parameters approximates the
desired function. As a simple example for a cost function, the mean squared error
is considered [Nie15]. For a given set of weights w and biases b, the output of the
network f (x) is determined for n training examples x. With y as the desired output of
the network, the mean square error function C is defined as follows.

C(w, b) =
1

2n

∑
x

||f (x) − y||2 (2.2.7)

By minimizing a suitable cost function, an optimal set of parameters can be learned by
approximating an arbitrary function. This optimization problem is commonly solved
by the algorithm of gradient descent, well known from the field of machine learning.
The general idea behind gradient descent is to iteratively update a set parameter in
order to minimize an objective function. The direction of the update is given by the
gradient of the objective function ∇C. Furthermore, a small positive parameter η
called learning rate is introduced. The learning rate scales the changes made at each
iteration. A small value of η results in small steps and a high training time, while
a big value could result in an overshoot increasing the value of the cost function.

2.3 convolutional neural networks 13

Equation (2.2.8) defines the update rule for an arbitrary set of parameters v at each
iteration [Nie15].

v→ v ′ = v − η∇C (2.2.8)

In case of an artificial neural network the parameter vector v consist of the weights w
and biases b of the network. Equation (2.2.8) can be used as an update rule to find an
optimal set of weights and biases. Following this basic formulation of the gradient
descent algorithm, the gradient is calculated and averaged over the whole training
set. Computing the gradient for a large training set might require big computational
resources for a complex network. Considering only a smaller subset of training images
can speed up the training procedure while still finding a good set of parameters. In
the case of stochastic gradient descent only a single training example is considered at
each iteration. Batch gradient descent compromises between taking the whole training
set and a single example, by averaging over a small batch of training examples [Nie15].
All these versions of gradient descent require a fast and efficient computation of
the gradient for a given parameter set. As proposed by David Rumelhart, Geoffrey
Hinton, and Ronald Williams in 1986 [RHW86], the backpropagation algorithm offers
an efficient computation strategy for neural networks. The underlying principle of the
algorithm is to find an expression for each partial derivative ∂C/∂wk and ∂C/∂bl. In
a first step, the output of the network is computed for a given input sample following
the forward path of the network. Based on the output, the corresponding error is
determined, which is then backpropagated. Following this procedure, the partial
derivatives can be calculated layer-wise and allow for an efficient training by gradient
descent.

2.3 convolutional neural networks

As discussed in section 2.2, an ANN consists of multiple layers, where each layer can be
considered the combination of multiple neurons. The combination of different types of
layers determines the networks’ architecture and properties. Especially Convolutional
Neural Networks (CNN), first proposed by [FM82], have been proven to be a powerful
computational model. Due to good performances and flexibility, CNNs have become
the predominant model in pattern recognition and computer vision. The following
section gives a brief overview of the layers typically used in state-of-the-art CNNs.

14 fundamentals

2.3.1 Convolutional Layer

Convolutional layers were designed for networks which work with images as input
data. An image can be represented by a volume of data points, with its width and
height corresponding to the image’s dimensions. The depth of the volume depends
on the pixel representation and is typically one, in case of gray scaled images, or three
for RGB images.

Consider the task of classifying an image. Image classification is typically based
on finding specific features in the input image. A neuron designed to identify such
features only requires the pixel data from an enclosing patch of the image. Therefore,
finding a feature can be realized by evaluating a set of subvolumes of the input data.
For each subvolume the neuron can use the same weights, since the characteristics of
a feature are independent of its spatial position.

A layer that implements the previously discussed characteristics can be derived
from the convolution operation [GBC17]. Consider two arbitrary continuous functions
x and w. For an integer valued time index t, the discrete convolution is defined as:

f (t) = (x ∗w)(t) =
∞∑

a=−∞ x(a)w(t− a) (2.3.1)

In the context of CNNs, x is often called the input and w is referred to as the kernel.
The output f (t) is typically named feature map. To implement a convolution operation
with an input image I, Equation (2.3.1) has to be generalized to two dimensions.
Therefore, a two-dimensional kernel K is used:

F(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i, j)K(i−m, j−n) (2.3.2)

Figure 2.3.1 shows an example of a convolution of an image I (size 3x3) and a 2x2
kernel. The output is calculated by the dot product between a patch of the image and
the kernel. The image patch, used as an input of the neuron, is called receptive field
and is continuously shifted. In the example, the receptive field is shifted by one pixel
at each step. This parameter is named stride s. The values of the kernel define the
weights of the neuron and can be learned according to the respective task [FFJK17].

A convolutional layer defines a number of k filters with d kernels, where d is
equal to the depth of the input volume. The input data is often padded by zeros
enclosing the original data. Overall, a convolutional layer is entirely defined by the
four hyperparameters of the number of filters k, their spatial extent f, the stride s and
the amount of zero padding p [FFJK17]. Consider an input volume of size [W1,H1,D1].

2.3 convolutional neural networks 15

1

1

0

2

0

2

1

2

1

1

1

0

2

2

5

4

4

1

1

0

2

0

2

1

2

1

1

1

0

2

2

5

4

4

I K I ∗K

Figure 2.3.1: A convolutional layer with a single kernel K performs the discrete convolution
operation (Equation (2.3.2)) on image I. The receptive field is slid over the input
image with a stride of one.

A convolutional layer with corresponding hyperparameters produces the following
output volume [W2,H2,D2]:

W2 =
W1 − f− 2p

s+ 1
H2 =

H1 − f− 2p

s+ 1
D2 = k (2.3.3)

This type of layer implements the previously motivated properties. Each neuron
only considers a subregion of the input data at once. Its activation depends on
a total number of weights given by f · f ·D1 · k. Learning these weights can be
interpreted as identifying a specific feature in a region of its input data. A common
choice of hyperparameters, which is used in various state-of-the-art networks like
[SZ14],[HZRS16a] or [HLMW17], are f = 3, s = 1,p = 1. In this case, the convolutional
layer does not change width and height of the data volume. The depth of the output
volume is determined by the chosen number of filters. In addition to the filter weights,
a convolutional layer often utilizes a learnable set of biases.

2.3.2 Pooling Layer

The structure of a pooling layer is similar to a convolutional layer. Each neuron
processes the information of a receptive field, with a spatial extent of f. The receptive
field is moved over the input data with a stride s. In contrast to a convolutional layer,
a pooling layer is not connected with a set of learnable weights. Instead, a predefined
operation is performed. A pooling layer essentially downsamples the input data and
therefore reduces its spatial extent. For each distinctive receptive field, a single value
is computed, following a predefined pooling strategy. L2-norm pooling is based on
the square roots of the sum of the squared values in the receptive field. An average

16 fundamentals

1

2

6

2

0

3

0

0

4

3

7

2

5

(a) L2 Norm

1

2

6

2

0

3

0

0

4

3

7

2

5

(b) L2 Norm

1

2

6

2

3

5

3

0

4

2

4

2

3

(c) Average

1

2

6

2

3

5

3

0

4

2

4

2

3

(d) Average

1

2

6

2

3

5

3

0

4

3

6

3

5

(e) Max

1

2

6

2

3

5

3

0

4

3

6

3

5

(f) Max

Figure 2.3.2: Example of an pooling layer with stride s = 1 and spatial extent f = 2 operating
on an input with dimension 3x3. Each correspond to a different pooling strategy.
After pooling the input is downsampled to a size of 2x2.

pooling layer computes the averages over each receptive field. The most commonly
used pooling strategy is called max pooling. Its output is the maximum value, which
has been proven to perform well in many applications and is computationally simple.
Figure 2.3.2 shows an example of the different pooling strategies, for a pooling layer
with stride s = 1 and spatial extent f = 2.

In general, pooling layers are inserted in between convolutional layers to reduce the
spatial extent of the feature maps. This also corresponds to a reduction of parameters,
while the essential information is carried on. A lower amount of parameters benefits
the training procedure and makes the network less prone to overfitting. Consider
an input data volume of size [W1,H1,D1]. The dimensions of the output volume
[W2,H2,D2], generated by a pooling layer with stride s and size f, are given by
[FFJK17]:

W2 =
W1 − f

s+ 1
H2 =

H1 − f

s+ 1
D2 = D1 (2.3.4)

2.3 convolutional neural networks 17

2.3.3 Fully Connected Layer

The simplest form of a layer in a CNN is the fully connected layer. It closely follows
the idea of a perceptron as introduced in section 2.2.1. Each neuron of the layer is
connected to all data points of the input volume [FFJK17]. Consider an input volume
of shape [W1,H1,D1]. The input data can also be represented by a one dimensional
vector of shape [(W1 ·H1), 1]. The neuron’s output results from the dot product of
the input and weight vector, with an added bias. A fully connected layer is entirely
defined by the number of neurons, which can be considered a hyperparameter. The
output volume, produced by a fully connected layer, is a one dimensional vector
with a length equal to the number of neurons. Analogue to the concept of a single
layer perceptron (see section 2.2.2), an activation function (see section 2.2.3) usually
introduces a non-linearity to the layer.

2.3.4 Softmax Activation for Classification

CNNs are highly suitable to perform classification tasks. The use of multiple convolu-
tional layers allows to learn a set of filters, which generate a feature representation
of the input data. Classification is then usually performed by standard classifiers
for example such as a Multilayer Perceptron (MLP), which consists of multiple fully-
connected layers. In case of single label classification, the aim of the network is to
assign the input data to its corresponding class. Therefore, a special type of activa-
tion function is typically used. In contrast to the activation functions discussed in
section 2.2.3, the softmax activation does not only consider a single neuron [Bis11].
Instead, it generates a set of pseudo-probabilities based on the activation of all input
neurons.

Assume that a given network shall assign some input data to one out of k classes. The
last layer is fully connected and produces an output vector. To perform classification,
this vector is supposed to be mapped to another vector where each value represents
the probability of the input data belonging to class k. Such a mapping is realized by
the softmax activation function [Bis11]. The probability pi of the input data belonging
to class i results from input vector x as follows:

ϕ(x)i = sm(x)i =
exi∑k

j=1 exj
(2.3.5)

18 fundamentals

2.3.5 Maxout Layer

The idea of maxout layers stems from the approach of improving the model averaging
capabilities of dropout [GWFM+

13]. The combination of dropout and maxout aim to
improve network optimization and prevent overfitting [SHK+

14]. As an additional
advantage, maxout layers are further used for other application such as network
compression [RGF17]. In general, a maxout layer constitutes a special kind of activation
function and can also be considered a cross channel pooling operation. For a given
input layer X = [x0, x1, x2, . . . , xN] with N neurons, the following output is computed:

h(X) = max[xjk+0, xjk+1, xjk+2, . . . , xjk+(k−1)] ∀j ∈ [0,N/(k− 1)] (2.3.6)

A single maxout unit calculates the maximum across a number of k neurons. As
shown by [GWFM+

13], this corresponds to the implementation of an universal ap-
proximator. The combination of several neurons approximates an arbitrary complex
function in a piecewise linear fashion. Figure 2.3.3 shows a two-dimensional example,
where a single maxout unit approximates different activation functions. Even though
the example only visualizes the behavior for one dimensional inputs, it can be general-
ized to multiple dimensions and arbitrary complex convex functions. Based on this
approximation capability, multiple neurons are combined to a single, complex neuron.

x

h
(X

)

(a) ReLU

x

h
(X

)

(b) Absolute Value

x

h
(X

)

(c) Quadratic

Figure 2.3.3: Example of a maxout unit as an universal approximator. By taking the maximum
of two inputs, a rectified linear (subfigure a) and an absolute value rectifier
activation function (subfigure b) are implemented. Subfigure (c) shows the
approximation of a quadratic function by combining four one dimensional inputs
[GWFM+

13].

3
R E L AT E D W O R K

This chapter presents an overview on the established architectures and methods, which
inspired the proposed method. Since the field of word spotting is strongly influenced
by the application of CNNs, this work will investigate the use of densely connected
networks for word spotting. This special design paradigm is motivated by and closely
related to residual networks. Both network architectures achieve highly competetive
results and are introduced in detail in section 3.1. Section 3.2 covers two established
methods which successfully use CNNs to perform the task of word spotting.

3.1 deep network architectures

Driven by the success of neural networks in machine learning and computer vision,
exploring different network architectures has been of special interest in research. Im-
proving the performance of convolutional neural networks traditionally corresponded
to an increase in the number of layers in a network. LeNet5 [LBBH98], which was one
of the first networks used for document recognition, employed only 5 convolutional
layers. The popular VGGNet [SZ14] used 19 convolutional layers and improved sev-
eral benchmarks in image classification. This trend shows that increasing the depth
of a network often benefits the performance. However, simply adding more layers
can complicate optimization and thus hinders efficient application. This has been
shown by investigations of deeper networks which was allowed by the increase in
computational power. Nonetheless, several networks as Highway Networks [SGS15],
Residual Networks (ResNet) [HZRS16a] or Densely Connected Convolutional Net-
works (DenseNet) [HLMW17] efficiently employed more than 100 layers and improved
the state-of-the-art. In order to optimize and still to benefit from the extremely deep
architecture, all these network share a common property. Additional paths are added
to the traditional feedforward architecture to bypass layers. The following sections
discuss how ResNets and DenseNets utilize these skip-connection in a systematic pat-
tern and thereby achieves cutting-edge performances. Even though both connectivity
patterns are quite similar, their approach and interpretation differ.

19

20 related work

3.1.1 Residual Networks

As discussed in [SGS15] and [HZRS16a], a new problem emerges when optimizing
increasingly deep networks. Adding layers to a traditional feedforward network leads
to an increase in performance that saturates at some point. Increasing the network’s
depth beyond this point results in a significant drop in accuracy. [HZRS16a] argues
that this degradation is not explained by overfitting, since accuracies also degrade
for training. It is argued that the deeper model is still more powerful, but harder to
optimize. Therefore, the shallower model outperforms the deeper network.

Residual Networks address this problem by the approach of deep residual learning.
Consider a traditional feedforward network. One or multiple layers can be summa-
rized as a non-linear mapping H(x) of some input data x. Optimizing the network
corresponds to finding a set of weights, such that the function H(x) approximates
the underlying mapping F(x) determined by the task. Even though it is still an open
question in research [MPCB14], it is assumed that multiple layers can asymptotically
approximate arbitrary complex functions. Following this assumption, [HZRS16a]
proposed to not approximate the underlying mapping directly. Instead, the layers
shall approximate the residual function F(x) − x.

Consider a feedforward network with ` indexing each layer. The output of a layer
x` is given by x` = H(x`−1). Residual learning is then introduced by adding identity
connections to the network by bypassing one or multiple layers. Assume that only a
single layer is skipped by the identity path. The output of layer ` is given by:

x` = H(x`−1) + x`−1 ≈ F(x`−1) (3.1.1)

with

H(x`−1) ≈ F(x`−1) − x`−1 (3.1.2)

The added paths do not increase the number of parameters nor the computational
complexity. Nonetheless, the experiments presented in [HZRS16a] show that deep
networks benefit form the deep residual learning approach. The authors argue
that this is due to the better preconditioning of the optimization problem. A layer
initialized with weights equal to zero constitutes an identity mapping due to the
additional, bypassing path. Hence, the identity mapping is learned more easily.
Further experiments showed that the residual functions of a deep network usually
have small responses. Therefore, one can conclude that the target functions of the
weight layers are closer to an identity- than to a zero-mapping, which is an explanation
for the improved optimization behavior.

3.1 deep network architectures 21

The proposed architecture achieved highly competitive results and outperforms
other more shallow networks. Introducing identity paths enables an efficient opti-
mization of increasingly deep architectures. It has been shown that the network’s
performance often benefits from deeper structures. [HZRS16a] also investigated ex-
tremely deep residual networks with more than a thousand layers. The experiments
indicate that such a deep network may be optimized efficiently, but still might be too
large for a given task, resulting in problems such as overfitting.

3.1.2 Densely Connected Networks

Inspired by networks like Highway Networks [SGS15] or ResNets [HZRS16a], the
concept of densely connected networks aims to further exploit the application of
identity paths. [HLMW17] proposes a simple connectivity pattern, based on the
insight that the heavy use of skip-connections benefits optimization and performance
of a convolutional network. Densely connected networks employ an identity path to
each layer. The probably most influential difference between the concepts of residual
learning and dense connectivity, lies in how each architecture combines the layer’s
output and identity. Residual learning is implemented by the summation of output
and identity function (see Equation (3.1.1)). In a densely connected network the
summation is replaced by the concatenation operation.

Analogue to section 3.1.1, consider a feedforward network with a layer index `.
Let x0, x1, . . . , x` denote the feature maps produced by each layer. By concatenating
identity and output of each layer, the input of the following layer includes the input
of the preceding layer. Following this design pattern, the input of layer ` consist of
the concatenation of feature maps, generated by layers 0 up to `− 1. This tensor is
denoted by [x0, x1, . . . , x`−1]. Therefore, the output of a layer computing the non-linear
function H(·) is given by:

x` = H([x0, x1, . . . , x`−1]) (3.1.3)

A direct consequence of this design pattern is that each layer has access to the feature
maps of all preceding layers. The DenseNets proposed in [HLMW17] employ the
composition of three operations as weight layers. First batch normalization is used
as a regularizer. Hence, mean and variance of the mini-batch are used for scaling
and shifting the layer’s inputs. Using this normalization improves the training and
optimization behavior of the network [IS15]. The batch normalization operation is
then followed by a ReLU and a convolutional layer with kernel size of 3× 3. This
composition stems from [HZRS16b], where it is employed efficiently for residual
learning.

22 related work

See figure 3.1.1 for an example of the described design pattern, with batch nor-
malization (BN), ReLU and the convolution operation as layers. Even though the
dense connectivity pattern is implemented by introducing skip-connections to each
individual layer, the structure can be interpreted as follows. By concatenation, each
layer has access to all previously generated feature maps. This corresponds to a direct
connection from each layer to all preceding layers. The network in figure 3.1.1 consists
of 4 densely connected layers. The input data x0 has 6 channels and passes through
the network. Due to dense connectivity, the input is also connected to all other layers.
Layer H1 computes 4 feature maps from the input data x0, which are again connected
to all succeeding layers. At the end of the example network, the so called transition
layer receives the concatenation of the original data and all generated feature maps,
[x0, x1, x2, x3, x4]. Since each weight layer adds a total of 4 feature maps to the overall
concatenation tensor, the output has a depth of 22.

The number of feature maps added by each layer is a hyperparameter which
significantly determines the network’s properties. Following the terminology of
[HLMW17], we refer to this parameter as growth rate k. The number of feature maps
used as an input to a layer increases towards the end of the network. Layer ` has an
input with a number of k0 + k(`− 1) channels, where k0 denotes the channels of the
original input data. Experiments have shown that even small growth rates achieve
competitive performances in image classification. Considering the convolutional layers
of the network, a small growth rate corresponds to very narrow layers, generating
only a small set of feature maps.

The use of convolutional layers with kernel sizes 3× 3 does not change the size of
the input. Therefore, the concatenation operation in Equation (3.1.3) is well defined.
Neural networks for typical tasks like image classification usually employ pooling
layers to reduce the size of feature maps towards the end of a network. This also
results in a reduction of parameters, since succeeding fully-connected layers require
less connections. DenseNets are organized in blocks to employ pooling and still
avoid the concatenation of differently sized feature maps. Each block of the network
follows the dense connectivity pattern with constant feature map sizes. Two blocks are
connected via transition layers. By using pooling layers only in the transitions between
dense blocks, the dense connectivity pattern can be implemented straightforwardly.

[HLMW17] presented a set of experiments that investigate the significance of indi-
vidual feature maps. The results indicated that each layer spreads its weights over
numerous preceding feature maps. Regarding transition and classification layers, it
was observed that these layers tend to make stronger use of feature maps created
late in the network. This insight motivates the introduction of a compression stage.
At the transition between two blocks, the number of feature maps is reduced by a

3.1 deep network architectures 23

Figure 3.1.1: Densely connected convolutional network with 4 weight layers and a growth rate
of k = 4. Image taken from [HLMW17].

compression factor θ. Since the following block is highly focused on the complex
feature maps generated at the end of the preceding block, the loss of information is
considerably low. Therefore, reducing the number of feature maps hardly influences
the performance of the network, while model compactness is significantly improved.
DenseNets implement the compression approach by employing a convolutional layer
with kernel size 1× 1 as an additional transition layer. Assume that the dense block
preceding the compression layer produces a number of m feature maps. The num-
ber of output channels of the convolutional layer is then set to θm with 0 < θ 6 1.
Compressing a network corresponds to a compression factor of θ < 1.

Inspired by its successful application in convolutional [SVI+16] and especially resid-
ual networks [HZRS16a], the use of bottleneck layers were also investigated for densely
connected networks. Before each weight layer (BN, ReLU, 3× 3 convolutional layer) a
bottleneck layer can be introduced. This bottleneck layer also uses the composition of
BN, ReLU and convolutional layer, but only employs a kernel size of 1× 1. A single
skip-connection, implemented as an identity path, bypasses weight and bottleneck
layer. The number of output feature maps of the bottleneck layer is set to 4k. Thereby,
the number of input feature maps of the weight layer is reduced. Especially towards
the end of the network, where a high number of feature maps have been produced, this
design significantly reduces the number of parameters and improves computational
efficiency.

24 related work

[HLMW17] investigated the proposed design pattern on different benchmark tasks
in the field of image classification. Depending on the datasets and especially the
image’s dimension, a reasonable number of pooling layers and densely connected
blocks needs to be defined. The authors evaluated networks with three and four dense
blocks, different growth rates and introduced the bottleneck and compression layers.
For all considered datasets, the DenseNet architecture outperforms former state-of-the
art networks. Furthermore, the presented DenseNets have been shown to be highly
parameter efficient. Especially, networks using bottleneck and compression layers were
able to achieve competitive results with a significantly lower number of parameters.

As argued by [HLMW17], the improved model compactness compared to other
architectures may mainly result from the reuse of features. The dense connectivity
pattern is comparable to building a "collective knowledge". By having a connection to
all preceding feature maps, each layer has access to all features learned in the earlier
stages of the network. Based on this knowledge a small number of higher-level and
more complex features are learned and added to the "collective knowledge". While
a layer in a traditional network has to either drop or relearn low-level features, this
information is preserved in a densely connected network. Similar to ResNets, the use
of identity connections improves the gradient and information flow, which benefits
the optimization behavior. In general, the experiments in [HLMW17] show that the
simple dense connectivity pattern results in a highly compact and powerful model.

3.2 word spotting with convolutional networks

3.2.1 PHOCNet

Word spotting systems based on CNNs got increasingly popular in recent years. This
section discusses the method proposed by [SF16], where a specifically designed CNN
named PHOCNet is used for word spotting. The CNN learns a mapping between a
word image and its attribute representation. By applying an attribute representation
which can be easily derived from a string, the method is suitable for query-by-example
and query-by-string word spotting. The PHOCNet outperforms other methods not
based on CNNs and yields state-of-the-art performances on different datasets for
segmentation-based word-spotting [PZG+

16].

3.2 word spotting with convolutional networks 25

Attribute representation

The idea of using an attribute representation in the context of word spotting was first
proposed by [AGFV14]. As argued by the authors, traditional word spotting methods
based on feature representations and sequential models do not share any information
between similar words. For example, two words which only differ in a single character,
require individual discriminative models, even though their images are visually similar.
This shared information is exploited by attribute based approaches, which have been
successfully applied for image classification and retrieval [FEHF09]. Two objects or
word images might share several attributes without belonging to the same class. By
sharing information, a more discriminative representation can be learned. Furthermore,
this approach is extremely suitable for word spotting, since an attribute representation
can also be generated for a word not included in the training vocabulary. The authors
propose a binary word embedding called pyramidal histogram of characters (PHOC),
also used by the PHOCNet.

A binary PHOC vector encodes a string by using multiple histograms of its characters
with respect to a considered alphabet. Character occurrences can be represented by a
vector, corresponding to the considered alphabet. In case of the English alphabet plus
digits, the respective histogram consists of 36 dimensions. If a character is present in
the word, the corresponding histogram value is set to one. In terms of attributes, this
represents if a word contains a specific character or not. Since a single histogram is not
word-discriminative, multiple histograms are generated in a pyramidal fashion. These
so called levels consider different splits of a string. On level two, the string is split into
two parts and for each of them a binary histogram is generated. This procedure is
continued for higher numbers of splits and histograms. A common choice of levels,
used in [AGFV14] and [SF16], is the use of levels 2, 3, 4 and 5. This results in a PHOC
vector with 504 dimensions, considering digits and the English alphabet. Furthermore,
the vector is extended by the 50 most common English bigrams at level 2. Figure 3.2.1
shows an example, where a PHOC vector for the word "place" is generated, using levels
1, 2, 3 without any bigrams. The resulting attribute representation encodes whether
a character is present in a specific split of the word. This leads to a discriminative
representation, which allows to share information on attributes between images from
different word classes.

Additionally, [SF17] investigated other attribute representations. The authors con-
clude that other word string embeddings, also based on character occurrence and
position, perform equally well, but not superior to PHOC vectors.

26 related work

Figure 3.2.1: PHOC vector for the word "place". Image taken from [SF16].

Architecture

The general PHOCNet architecture is heavily inspired by the convolutional network
VGGNet, proposed in [SZ14]. As shown by the experiments with VGGNet, convolu-
tional layers with small receptive fields achieve highly competitive results. The design
in [SZ14] only uses convolutional layers with kernel sizes of 3× 3. This paradigm is
adopted for the PHOCNet architecture. All convolutional layers use kernels of size
3× 3 in combination with a ReLU activation. This corresponds to a regularization of
the filter kernels, which prevents overfitting. In general, the number of filters increases
towards the end of the network. As argued in [SZ14] and [SF16], this results in a small
number of low level features for smaller receptive fields. By an increased number of
filters in the higher layers of the network, a bigger number of abstract, more complex
features are learned. The PHOCNet uses two max pooling layers with kernel sizes of
2× 2 and strides of 2. Therefore, the size of the feature maps is cut in half after two
and after four convolutional layers.

While many networks designed for image classification assume input images of
equal dimensions, the PHOCNet follows a different strategy. Since the aspect ratios of
word images are highly dissimilar, cropping or anisotropical rescaling might severely
influence the network’s performance. To cope with different image sizes, the PHOCNet
uses a Spatial Pyramid Pooling Layer (SPP) [HZRS15]. In contrast to convolutional
and pooling layers, fully-connected layers cannot process feature maps of varying
sizes. Therefore, a SPP layer generates an output of constant size independent of
the dimensions of the input feature map. This is done in a pyramidal manner. For
a SPP layer with three levels as used in the PHOCNet, each feature map is divided
into multiple spatial bins. On level one the input feature map is considered to be
a single bin and the max pooling operation is performed. On the second level the
feature map is split along each dimension, resulting in 4 separate bins. For each of
the 4 bins a single output is generated by max pooling. This procedure continues
for an increasing number of levels. Each individual bin is divided along its spatial

3.2 word spotting with convolutional networks 27

Figure 3.2.2: The figure shows the architecture of the SPP-PHOCNet. The number under each
layer corresponds to the number of filters for convolutional layers or number of
neurons for fully-connected layers. Image taken from [SF16].

dimensions, resulting in 16 bins on level three. Following this procedure for multiple
levels, a fixed number of outputs is generated. The SPP layer allows to use input
images of varying sizes by mapping the resulting feature maps to a feature vector
of constant size. Furthermore, this allows the application of a standard classification
strategy, which usually assumes inputs of fixed sizes. In another contribution, the
PHOCNet was enhanced by replacing the SPP layer with a new layer call Temporal
Pyramid Pooling layer (TPP) [SF17]. As argued by the authors, the subdivision along
the horizontal axis is more important for word images. Therefore, the TPP layer
only divides the feature maps along the horizontal axis. Here, a level determines the
number of horizontal bins. In [SF17], a five level TPP layer is used. It has been shown
that this newly introduced layer either achieves comparable accuracies or beats the
state-of-the-art.

The pyramid pooling layer connects the convolutional part of the network to a multi
layer perceptron (MLP) with two hidden layers of size 4096. The process of learning
a PHOC vector corresponds to a multi-label classification task. Instead of using a
softmax activation function to calculate the pseudo-probability that the input belongs
to a specific class, the sigmoid activation function is applied to each output. In terms
of learning an attribute representation, the output of the sigmoid activations can be
considered as the pseudo probability of the attribute being present in the input image.

28 related work

The overall architecture is depicted in figure 3.2.2. By training the network in an
end-to-end fashion, it is able to learn a mapping between word image and PHOC
vector. As discussed in [SF17] and [PZG+

16], the PHOCNet achieves state-of-the-art
accuracies on several benchmark experiments for segmentation-based word spotting
using standard evaluation protocols.

3.2.2 Triplet CNN

The method proposed in [WB16] also considers the task of segmentation-based QbE
and QbS word spotting. The approach is based on three identical CNNs that share
their weights. Training of this so called Triplet CNN is conducted simultaneously by
means of a specific loss function. Each string of the network processes a different
word image and it is supposed to generate a distinctive feature vector. The aim of
the training procedure is to map two images of the same class on two feature vectors
which are close to each other. Therefore, the network considers triplets of word images
during training. Each triplet T consists of two images from the same class (positive
samples p1,p2) and another word image from a different class (negative sample n).
The desired mapping is then learned by minimizing the SoftPN loss function [BJTM16]:

L(T) =(
ed(p1,p2)

emin(d(p1,n),d(p2,n)) + ed(p1,p2)
)2+

(
emin(d(p1,n),d(p2,n))

emin(d(p1,n),d(p2,n)) + ed(p1,p2)
− 1)2

(3.2.1)

By minimizing the loss, the distance between the two positive samples d(p1,p2) is
also minimized while the smallest distance between positive and negative sample
min(d(p1,n),d(p1,n)) is maximized. A triplet of three residual networks is trained
on resized word images of size 60× 160 pixels using a similar augmentation strategy
as [SF16] and [AGFV14]. After training, a single string of the network can be used to
generate a distinctive feature vector from a word image.

Word spotting is then be performed by mapping the space of feature vectors
onto a suitable word embedding space. The work of [WB16] investigates different
classic string based embeddings such as PHOC vectors, but also proposes a semantic
embedding space. A two layer fully connected network is used to learn the mapping
between feature vector and word embedding. First, one string of the triplet CNN is
used to generate the feature vectors of the training images. In a second step, this set of
feature vectors serves as training samples to learn a suitable mapping.

3.2 word spotting with convolutional networks 29

The Triplet CNN method achieves competitive results on various datasets, but it is
generally outperformed by the TPP-PHOCNet [SF17]. Even though both approaches
share many similarities, it seems favorable to directly learn the mapping between
word images and word embedding compared to the triplet based approach. Despite
their architectural differences, both CNN based approaches seem clearly superior to
non-CNN based methods.

4
M E T H O D

As discussed in section 2.1, convolutional neural networks has become the state-of-
the-art approach in word spotting. Considering recent developments in research on
network architectures, deep models and especially architectures incorporating identity
paths show promising results. Inspired by the cutting edge performances in the field
of image classification, this work investigates the use of densely connected networks
for word spotting. The general approach is similar to [SF15]. A CNN is used to
learn a mapping between word image and the respective attribute representation.
This work investigates how different architectures, which at least partly follow the
dense connectivity pattern, perform on different benchmark datasets for word spotting.
Section 4.1 discusses the proposed architectures and the general CNN based approach.
Since most proposed networks have a large number of parameters, they are prone
to overfitting. Therefore, several regularization measures are used for training the
networks which will be presented in section 4.2.

4.1 word spotting with dense convolutional networks

The proposed approach uses a densely connected network to learn an attribute
representation of a word image. Based on this representation, word images can be
ranked with respect to their similarity to a given query string or word image. Given
a dataset with already segmented word images and annotated training data, word
spotting is then performed by returning those images most similar to the query with
respect to their attribute representation.

As argued by [SF17], attribute embeddings only based on character positions and
occurrence give similar results, despite their different characteristics. Inspired by
[SF16], this work uses the PHOC representation as an attribute vector. The PHOC
vector consists of histograms for splits 2, 3, 4 and 5 following the approach discussed
in section 3.2.1. Besides individual character occurrences, the PHOC vector is extended
by the 50 most common bigrams on split 2. Given an annotated set of training data,
this representation can be straightforwardly derived from a word image’s label. The
resulting training data consists of word images and their corresponding binary PHOC
representation.

31

32 method

Learning the mapping between image and PHOC representation follows the same
approach as [SF16]. Despite their architectural differences, all networks employ a multi
layer perceptron (MLP) and sigmoid activations. The MLP uses two fully-connected
hidden layers of size 4096 to connect the preceding layer to a fully-connected layer
corresponding to the size of the PHOC vector. Sigmoid activations are then employed
to the last fully-connected layer and provide the network’s output. The output of a
sigmoid activation represents the pseudo-probability of whether the corresponding
attribute is present in the word image. Regarding the used PHOC representation,
the network generates a vector of pseudo-probability indicating whether a specific
character is present in a specific split of the word.

While the choice of attribute embedding and classification layers is analogue to
[SF16], this work investigates the use of a different design for the convolutional part
of the network. The original PHOCNet presented in section 3.2.1 employs 13 convolu-
tional layers, two max pooling layers and a pyramidal pooling layer which connects
convolutional part and MLP. The proposed method uses the dense connectivity pattern
(see section 3.1.2). The following sections describe the densely connected architectures
used in the latter experiments.

4.1.1 DenseNet-121

The concept of dense connectivity originally stems from the field of image classification.
[HLMW17] proposes multiple network architecture, specifically designed for the
ImageNet dataset. This dataset consists of 1.2 million training images of size 224× 224
from 1000 different classes and it has become one of the benchmark tasks in image
classification.

As a first approach, one of the network architectures, which was successfully
employed on the ImageNet dataset, shall be adapted for word spotting. Therefore, the
proposed network makes use of the same design as the DenseNet-121 presented in
[HLMW17]. DenseNet-121 successfully employs the dense connectivity pattern for
image classification and outperforms other popular networks as VGG-16 [SZ14] or
ResNet-34 [HZRS16a].

The proposed network architecture uses four densely connected blocks. In general,
the network uses the composition of batch normalization (BN), ReLU and convolutional
layer as weight layers. Before the first block, a 7× 7 convolutional layer and a 3× 3 max
pooling layer, both with a stride of 2, are used to reduce the size of the input images.
Each block follows the dense connectivity pattern by bypassing the combination of
a bottleneck and convolutional layer with an identity path. The convolutional layers

4.1 word spotting with dense convolutional networks 33

employ a kernel size of 1× 1 in case of bottleneck layers and 3× 3 otherwise. The
number of output channels is mainly determined by the networks growth rate of
k = 32. The first convolutional layer with kernel size 7× 7 produces 2k feature maps.
For bottleneck layers, the number of outputs channels is set to 4k. Transition layers,
which consist of a compression (BN, ReLU, 1× 1 convolution) and a 2× 2 average
pooling layer, connect the dense blocks. Each compression layer drops half of the

Layer Output Size DenseNet-121 PHOC-DenseNet-121

Convolution 112× 112 7× 7 conv, stride 2

Pooling 56× 56 3× 3 max pool, stride 2

Dense Block
(1)

56× 56

 1× 1 conv

3× 3 conv

× 6
Transition Layer

(1)
56× 56 1× 1 conv, θ = 0.5

28× 28 2× 2 ave pool, stride 2

Dense Block
(2)

28× 28

 1× 1 conv

3× 3 conv

× 12
Transition Layer

(2)
28× 28 1× 1 conv, θ = 0.5

14× 14 2× 2 ave pool, stride 2

Dense Block
(3)

14× 14

 1× 1 conv

3× 3 conv

× 24
Transition Layer

(3)
14× 14 1× 1 conv, θ = 0.5

7× 7 2× 2 ave pool, stride 2

Dense Block
(4)

7× 7

 1× 1 conv

3× 3 conv

× 16
Pooling 1× 1 global ave pool

Classification Layer
1000-d fc, Softmax 4096-d fc, ReLU, Dropout

4096-d fc, ReLU, Dropout

604-d fc, Sigmoid

Table 4.1.1: DenseNet-121 and the proposed architecture for word spotting based on PHOC
vectors. The layers denoted as "conv" represent the composition of BN, ReLU and
convolutional layer. The growth rate for both networks is k = 32. DenseNet-121

architecture taken from [HLMW17].

34 method

input feature maps, and therefore applies a compression factor of θ = 0.5. After the
last dense block a global average pooling layer is used to create a feature vector.

The original DenseNet-121 employs a fully-connected layer of size 1000 in combina-
tion with softmax activation to perform single label classification. In order to use the
DenseNet-121 architecture for word spotting, the following changes are applied. The
single fully-connected layer is replaced by the MLP discussed previously. Since learn-
ing the PHOC representation is not a single label classification task, softmax activation
is replaced by sigmoid activation to generate the respective pseudo probabilities.

Table 4.1.1 shows the architecture of DenseNet-121 and the changes introduced for
word spotting. A PHOC representation for the English alphabet plus digits is assumed,
resulting in a vector of size 604. Additionally, the size of the feature maps in each
block are given. Note, that the size is given with respect to an input image of size
224× 224. In case of common word spotting datasets, images are usually of different
sizes. The presented architecture also allows the use images of varying sizes, since
the global average pooling layer generates a feature vector of fixed size. The global
pooling fulfills a similar function as the pyramidal pooling layers used in [SF16] and
[SF17]. In other words, the global pooling layer corresponds to a pyramidal pooling
layer with only a single level.

4.1.2 PHOC-DenseNet

The architecture proposed in section 4.1.1 was specifically designed for the ImageNet
dataset. [HLMW17] investigates a different approach for other benchmark datasets.
This is mainly due to the differently sized images. While the ImageNet dataset consists
of images of size 224× 224, other benchmark datasets as CIFAR or SVHN only use
images of size 32× 32. Based on the sizes of its input, a suitable number of pooling
layers is employed in the network. In case of CIFAR and SVHN, [HLMW17] proposes
a general network architecture, using three dense blocks and different growth rates.

Consider the input data used for a word spotting task. Word images show highly
varying aspect ratios, since the depicted word can contain numerous characters or be
as short as a single one. Therefore, popular datasets used for word spotting usually
contain images of varying sizes. To define a suitable pooling strategy, the proposed
network architectures took inspiration from the PHOCNet, presented in section 3.2.1.
The PHOCNet employs two traditional pooling layers early in the network and a
pyramidal pooling layer right before its MLP. The proposed network architectures aims
at replicating this pooling strategy, while following the dense connectivity pattern.

4.1 word spotting with dense convolutional networks 35

Based on the number of pooling layers, the following basic architectural considera-
tions are made. The convolutional part of the network consists of either two or three
densely connected blocks. In case of three dense blocks, the network contains two
transition layers, each including a pooling layer. Since a network with two dense blocks
only employs a single transition layer, another pooling layer is added before entering
the first block. Furthermore, the transition layers include a 1× 1 convolutional layer,
which allows compression with θ. Inspired by [HLMW17], an initial convolutional
layer with kernel size 3× 3 is introduced at the beginning of the network, producing a
fixed number of 32 output channels. After the last dense block, a temporal pyramid
pooling layer with five levels produces a feature vector of fixed size. Again, the
combination of MLP and sigmoid activation is used as classification layers. Each block

Layer PHOC-DenseNet-b2 PHOC-DenseNet-b3

Convolution 3× 3 conv, stride 1

Pooling 3× 3 max pool, stride 2

Dense Block
(1)

[3× 3 conv]× b1

Transition Layer
(1)

1× 1 conv, θ

2× 2 ave pool, stride 2

Dense Block
(2)

[3× 3 conv]× b2

Transition Layer
(2)

1× 1 conv, θ

2× 2 ave pool, stride 2

Dense Block
(3)

[3× 3 conv]× b3

Pooling 5 level TPP

Maxout maxout K

Classification Layer
4096-d fc, ReLU, Dropout

4096-d fc, ReLU, Dropout

604-d fc, Sigmoid

Table 4.1.2: Densely connected networks for word spotting. The networks either employ two
(PHOC-DenseNet-b2) or three densely connected blocks (PHOC-DenseNet-b3).
Layers denoted as "conv" represent the composition of BN, ReLU and convolutional
layer. The number of output channels of each weight layer is determined by the
growth rate k.

36 method

is composed of densely connected weight layers, which consist of the composition of
BN, ReLU and 3× 3 convolutional layer.

The experiments in this work investigate different configurations of this densely
connected architecture. A network configuration is determined by the number of
weight layers in each dense block. The vectors c2 = [b1,b2] and c3 = [b1,b2,b3]
denote the configuration for networks using two or three densely connected blocks.
Different growth rates are applied to investigate their influence on the network’s
performance. Additionally, compressed and uncompressed networks are evaluated.
In the latter experiments, compressed means that the transition layers of the network
employ a compression factor of θ = 0.5. An uncompressed network corresponds to
θ = 1.

Motivated by the concept of compression, the proposed architectures uses a maxout
layer between TPP layer and MLP. Assuming that the last block and the pyramidal
pooling layer introduce redundancies into the network, it might be reasonable to
combine multiple neurons. This is especially beneficial, since the number of parameters
of the MLP grows with the number of feature maps generated by the network. Due
to the dense connectivity paradigm, the number of feature maps increases with the
depth of the network, which might lead to overparameterization when combined with
the MLP. The maxout layer counters this effect by combining a number of K neurons,
where K = 1 corresponds to a plain network without a maxout layer. Table 4.1.2 shows
an overview of the proposed architecture.

4.1.3 Hybrid Approach

The third approach, which is referred to as Hybrid-PHOCNet, only partly applies
the concept of dense connectivity. The PHOCNet provides a successful architecture
and pooling strategy that achieves high accuracies on typical benchmark sets. Both
pooling layers of the PHOCNet are employed relatively early in the network. Most
convolutional layers are located after the second pooling layer. The proposed archi-
tecture, which combines dense connectivity with the successful PHOCNet, replaces
the convolutional layers between second pooling layer and TPP layer by a single
densely connected block. By using the same initial convolutional and pooling layers,
it is ensured that the pooling strategy is suitable regarding the considered datasets.
Furthermore, the experiments conducted with the PHOCNet showed that the pro-
posed structure is able to learn a sufficient number of low-level features. Based on the
feature-maps provided by the initial layers, the proposed architecture employs a dense

4.1 word spotting with dense convolutional networks 37

block. Given a suitable number of low-level features, the dense connectivity scheme is
employed to learn features of increasing complexity.

The design of the dense block is analogue to section 4.1.2. Each weight layer uses
the composition of BN, ReLU and 3× 3 convolutional layer and it is bypassed by an
identity path. [HLMW17] uses compression layers only in combination with pooling.
While compression might also be a useful method to remove redundancies in the
proposed architecture, no additional pooling layers are introduced to the network. The
compressed variant of the proposed architecture uses a compression layer in the middle
of its dense block, without introducing an additional pooling layer. The architecture
combining the PHOCNet and dense connectivity is depicted in table 4.1.3. Latter
experiments investigate the use of different growth rates and depth. Again, the same
multi-label classification strategy is used to learn the PHOC attribute representation.

Layer Hybrid-PHOCNet Hybrid-PHOCNet-C

Convolution 3× 3 conv, stride 1, output channels 64

Convolution 3× 3 conv, stride 1, output channels 64

Pooling 3× 3 max pool, stride 2

Convolution 3× 3 conv, stride 1, output channels 128

Convolution 3× 3 conv, stride 1, output channels 128

Pooling 3× 3 max pool, stride 2

Dense Block
(1)

[3× 3 conv]× b1

Compression Layer 1× 1 conv, θ = 0.5
Dense Block

(2)
[3× 3 conv]× b2

Pooling 5 level TPP

Classification Layer
4096-d fc, ReLU, Dropout

4096-d fc, ReLU, Dropout

604-d fc, Sigmoid

Table 4.1.3: Hybrid-PHOCNet and its compressed variant. Initial four convolutional layers and
first two pooling layers are designed analogue to [SF16].

38 method

4.2 regularization

The proposed network architectures constitute a complex computational model, which
incorporates a high number of parameters. Since the proposed method for word
spotting requires annotated word images, the available training data is limited [SF16].
This makes the networks prone to overfitting. Common regularization techniques are
used to limit the effects of an overfitting model. To guarantee comparability, the same
regularization methods as presented in [SF16] are applied.

In this work, all networks employ the same set of classification layers, consisting of
a MLP followed by sigmoid activation. Encouraged by its successful use in different
image classification tasks [KSH12], [SZ14], the PHOCNet applies Dropout to its fully-
connected layers [SF16]. Dropout is based on randomly dropping neurons, which
corresponds to an activation of zero [SHK+

14]. Consider a neuron which is activated
for a specific input image. By applying dropout, the activation is set to zero with a
certain probability. Therefore, the following layer does not always see an activated
neuron for a specific input. Since Dropout introduces additional variations to the
neuron activations, the network is less likely to overfit the training data. Analogue
to [SF16], the proposed architectures apply a Dropout of 0.5 to the first two fully-
connected layers of the MLP.

Besides Dropout, the proposed method uses data augmentation to deal with the
limited amount of training data. This work applies the same augmentation strategy
used in [SF16]. Additional training word images are created synthetically, based on an
affine transformation of the original image. The augmented training dataset consists
of 500, 000 images, which is roughly five times the number of images in the biggest
dataset used in the latter experiments. The proposed augmentation strategy ensures
that the training set includes an equal number of images per class. If the number
of original images exceeds the number of images per class, the additional images
are dropped randomly. For all other classes, additional images are generated by the
following procedure.

A number of word images is sampled from the respective class. For each sample, an
affine transformation is derived from the homography, which transforms a previously
defined set of three relative coordinates. Analogue to [SF16], (0.5, 0.3), (0.3, 0.6) and
(0.6, 0.6) are chosen as source coordinates. The destination coordinates are obtained
by multiplying each coordinate value by a random factor drawn from a uniform
distribution with limits [0.8, 1.1]. Since the newly generated word images share
the same labels as the original images, no further annotation is required. Adding
additional training images and balancing the classes imposes further regularization
and helps to deal with the problem of overfitting.

5
E X P E R I M E N TA L E VA L U AT I O N

This chapter covers the experiments conducted to evaluate the method described
in chapter 4. Most of the experiments are performed for two datasets, namely the
IAM Handwritten (IAM) and Botany database, which are considered to be relatively
complex. The final comparison (section 5.4.5) with the state-of-the-art also includes
a dataset of lower complexity with the George Washington dataset. For a detailed
description of the considered datasets, see section 5.1.

Evaluation is based on a commonly used protocol, which is also applied in [AGFV14]
and [SF16]. As discussed in section 5.3, performance is measured in terms of mean
average precision (mAP) with respect to a set of queries. Both scenarios, query-by-
example and query-by-string, are considered. For most experiments, the training setup
described in section 5.2 is applied. While this setup might not be optimal for all
networks, it still allows to gather comparable results for the network’s performances.

In a first series of experiments, section 5.4.1 provides an evaluation of the adapted
DenseNet121. As discussed in section 4.1, PHOC-DenseNet-b2 and PHOC-DenseNet-
b3 only constitute a general network structure. Their actual architecture is determined
by multiple hyperparameters. Section 5.4.2 investigates their influence on the net-
work’s performance. Furthermore, the influence of compression and maxout layers
is evaluated. All networks employ a pooling layer right before its fully-connected
layers. An evaluation of different choices of types of pooling layers is provided in
section 5.4.2. Since some of the design choices of the proposed method are directly
linked to the respective datasets and especially their image sizes, section 5.4.3 evaluates
how resizing the word images influences the performance. An evaluation of different
networks following the hybrid approach is presented in section 5.4.4.

Some concepts employed in the presented densely connected network architectures
are also a reasonable approach for other networks such as the PHOCNet. Therefore,
the experiments on resized images, pooling and maxout layer are also conducted for
respectively adapted PHOCNet architectures. The last set of experiments (section 5.4.5)
compares the proposed method to the state-of-the-art.

39

40 experimental evaluation

5.1 datasets

The following experiments are conducted on multiple publicly available datasets. All
datasets provide a collection of word images with a corresponding annotation. The
problem of segmenting the entire document page images into word images has been
solved for all datasets sets. Training and evaluation is therefore solely performed on
the previously segmented word images provided by each dataset.

The majority of the experiments consider the IAM Handwritten Database (IAM)
and the Botany Database. Both datasets are considered relatively complex, making
them suitable benchmark tasks for this work. The IAM database stems from the
field of handwriting recognition and was specifically created for academic purposes
[MB02]. 687 different writers copied a designated set of texts to create the original
document images. Segmentation and annotation is publicly available resulting in a
total of 115320 annotated word images in modern handwriting. The experiments use
the official writer independent text line recognition partition. This partition defines a
training and test set, which are also used in several publications such as [SF16] and
[AGFV14]. Due to the high number of writers, the visual appearance of the same word
might be highly different. This high intra-class variation makes the IAM database an
especially challenging dataset.

The second dataset used in our experiments is the Botany database. This historic
document collection considers botanical observations in British India. It was used as
one benchmark task in the 2016 Keyword Spotting Competition [PZG+

16]. While the
actual competition also considered multiple subsets of the botany database to investi-
gate the influence of training set sizes, the experiments in this thesis are conducted
with respect to the split Train III [PZG+

16]. In this case, the training set consists of
16686 word images. Furthermore, a designated set of query strings and images is
provided. The corresponding test set contains 3318 word images.

For a general comparison of our method to the state-of-the-art, the George Wash-
ington (GW) dataset is considered as well. This dataset has become one of the most
prominent datasets and is considered a benchmark task for word spotting. The
database is based on 20 document pages of a correspondence from George Washing-
ton. Segmentation and transcription result in a total number of 4860 annotated word
images. For this data set, no official training and test sets have been published. The
best practice in most publications [SF16],[AGFV14], [WB16] is to follow a four fold
cross validation approach. Therefore, one quarter of the word images is used as a test
set, while the remaining images constitute the training set. The experiment is then ran
four times, such that each time a different split functions as a test set. The average
over all accuracies gives the actual performance measures.

5.2 training setup 41

All datasets used in the following experiments consist of images of varying sizes.
Some minor modification are introduced to the different datasets to meet the require-
ments of the networks. Current implementation of pooling layers require a feature
map of a minimal size. Therefore, all images with either a height or width of fewer
than 32 pixels are resized. The analysis of the different datasets shows that the number
of images significantly larger than the average is comparable low. Since memory
consumption is especially critical in the context of densely connected networks, all
images consisting of more than 50000 pixels are resized as well. While only a small
fraction of the dataset is resized and therefore only little information is lost, the mem-
ory requirements are significantly reduced. The aspect ratios of the images is kept
constant to avoid an anisotropic transformation.

5.2 training setup

Since one goal of the latter experiments is to gain an insight on how different hyper-
parameters influence the performance of the network, most experiments follow the
same training setup. The proposed training parameters might not be optimal for all
networks, but still allow for a comparison of the different architectures.

Training is performed by stochastic gradient descent and its parameters are based
on [SF16]. All networks are trained with a mini-batch size of 10, momentum of 0.9,
weight decay of 5 · 10−5 and an initial learning rate of 10−4. For all experiments except
the final comparison in section 5.4.5, the training procedure terminates after 100000
iterations. This corresponds to running the training for two epochs with respect to
the datasets, which were augmented according to section 4.2. After 70000 iteration the
learning rate is reduced, by dividing the initial learning rate by 10.

As indicated in [SF17], the PHOCNet is able to improve its accuracy for the IAM
database by training for more than 100000 iterations. Therefore, comparing the overall
performance of the proposed method uses a training setup with an increased number
of iterations. In this case, the network is trained for 250000 iterations, while the
learning rate is divided by 10 after 100000 and 200000 iterations.

Weight initialization follows the same approach presented in [GB10]. Layer biases
are initialized with zero. All other initial weights are randomly sampled from a
zero-mean uniform distribution. The corresponding variance is set to 2

n , where n
corresponds to the number of parameters in the respective layer. Training is carried
out on a single Nvidia Tesla P100 GPU with 16 Gb memory. Implementation is based
on the Caffe Framework [JSD+

14].

42 experimental evaluation

(a) Relevant items at 1,2,3.

(b) Relevant items at 1,2,5.

(c) Relevant items at 2,5,6.

Figure 5.3.1: Three example retrieval lists with six items. Items that are relevant with respect
to a given query are shown in black, irrelevant items in white.

5.3 evaluation protocol

All experiments follow the commonly used evaluation protocol originally proposed
in [AGFV14]. After training, the proposed networks approximate a function, which
maps word image to the respective attribute representation. Regarding the previously
discussed datasets, the task of word spotting corresponds to retrieving the subset of
word images from the test set, which are relevant with respect to a designated query.
First, the attribute representation of the query is derived. In case of PHOC vectors,
the attribute vector can be directly derived from a string. While this is suitable for
query-by-string, query-by-example requires to derive the attribute representation from a
query image. Here, the previously trained network is used.

Word spotting is then performed by ranking all images in the test set with respect
to the query, represented by a PHOC vector. Therefore, the network is used to map
all test images on their respective attribute representation. The test set is then ranked
by their distance to the query vector. Analogue to [SF17], the cosine distance is used
as a distance metric. The cosine distance d between two vectors v and u, with u · v
denoting the dot product, is then given by

d = 1−
u · v

||u||2||v||2
(5.3.1)

where ||v||2 denotes the L2 norm. If no specific queries are defined, each instance of
the test set will serve as a query once.

This results in a sorted list of images for each query. For a perfectly accurate system
this list starts with all word images relevant to a given query, while the rest of the list

5.4 experiments and results 43

only contains irrelevant items. The Average Precision (AP) constitutes a performance
metric, which gives a measure of the accuracy of the retrieval list. Mathematically,
Average Precision can be defined as:

AP =

∑n
i=1 p(i) · r(i)

t
(5.3.2)

Here, n is the length of the retrieval list and p(i) denotes the precision, with respect
to the first i elements. Precision corresponds to the fraction of elements relevant
to the query. r(i) denotes an indicator function. It returns 0 if the i-th element is
irrelevant with respect to the query and 1 otherwise. The denominator t denotes the
total number of relevant items in the retrieval list.

Consider the following example. Figure 5.3.1 shows three retrieval lists with 6
elements. Those elements relevant with respect to a given query are depicted in black.
The first retrieval list is perfectly accurate, since all relevant elements fill the top ranks.
The corresponding Average Precision is 1 and can be computed by:

APa =
1

3
·
[(
1

1
· 1
)
+

(
2

2
· 1
)
+

(
3

3
· 1
)
+

(
3

4
· 0
)
+

(
3

5
· 0
)
+

(
3

6
· 0
)]

= 1 (5.3.3)

The second retrieval list still has two relevant items at its top ranks and the third one
is ranked on position five. While this list is still fairly similar to the perfectly accurate
one, the third list shows a high dissimilarity. The first relevant item is at position two,
while the remaining relevant items are at the end of the list. Average Precision gives
a numeric value to summarize the obvious observation that list (b) is more accurate
than list (c). The respective precisions are given by:

APb =
1

3
·
[(
1

1
· 1
)
+

(
2

2
· 1
)
+

(
2

3
· 0
)
+

(
2

4
· 0
)
+

(
3

5
· 1
)
+

(
3

6
· 0
)]

= 0.87 (5.3.4)

APc =
1

3
·
[(
0

1
· 0
)
+

(
1

2
· 1
)
+

(
1

3
· 0
)
+

(
1

4
· 0
)
+

(
2

5
· 1
)
+

(
3

6
· 1
)]

= 0.47 (5.3.5)

The overall performance of the word spotting system is then given by the mean
Average Precision (mAP). This corresponds to the mean over all Average Precisions
computed for each query.

5.4 experiments and results

The following sections discuss the results of the different experiments. In order to
simplify the naming of the different architectures, the abbreviations given in table 5.4.1

44 experimental evaluation

are used. PHOC-DenseNet of configuration A refers to the network architecture
presented in section 4.1.1 based on the DenseNet-121. Its hyperparameters always use
the values of k = 32, c4 = [6, 12, 24, 16], θ = 0.5. Configuration B denotes the networks
following the method discussed in section 4.1. Here, the two variants B2 and B3

are distinguished depending on the number of densely connected blocks. In both
cases, the architecture is further specified by its growth rate k, the number of layers
in each block denoted by the vector c2, respectively c3, and the compression factor θ.
Section 4.1.3 introduces the hybrid approach strongly related to the original PHOCNet.
Configuration C refers to the Hybrid-PHOCNet and is entirely defined by its growth
rate k and the number of layers in the densely connected part of the network L . The
compressed variant of the Hybrid-PHOCNet is referred to as configuration D. All
networks of configuration D use a compression factor of θ = 0.5. Furthermore, the
overall number of densely connected layer is denoted as L.

Configuration Method Hyperparameters

A PHOC-DenseNet-121 k = 32, c4 = [6, 12, 24, 16], θ = 0.5

B2 PHOC-DenseNet-b2 k, c2 = [b1,b2], θ

B3 PHOC-DenseNet-b3 k, c3 = [b1,b2,b3], θ

C Hybrid-PHOCNet k,L = b1

D Hybrid-PHOCNet-C k,L = b1 + b2, θ = 0.5

Table 5.4.1: Abbreviations of the different network configurations and their corresponding
method. The actual network architectures depend on the given hyperparameters
which may vary for different experiments.

5.4.1 DenseNet-121

The first set of experiments investigate the use of a densely connected network
architecture, which has been designed for the purpose of image classification. As
presented in section 4.1.1, only some minor modifications are introduced to the original
DenseNet-121 architecture proposed by [HLMW17]. These modifications are only
introduced to the classification layers. The original fully-connected layer with softmax
activation is replaced by a MLP and sigmoid activation to serve the purpose of learning
the binary attribute representation. Training is performed for the IAM and Botany
database and follows the approach discussed in section 5.2.

5.4 experiments and results 45

Table 5.4.2 shows the results for QbE and QbS. For all datasets, the network is not
able to learn a mapping from word image to PHOC representation. The resulting
mAP scores show that no distinctive attribute representation is learned. Based on the
extremely low accuracies one can conclude that the network is not able to perform the
task of word spotting. Only the mAP in case of QbE for the IAM dataset surpasses
10%, which indicates that the trained network at least maps word images with the
same annotation on similar attribute representations. Nonetheless, the resulting
representation probably shows no similarity with the actual PHOC vector, which
explains the low accuracy for QbS.

Comparing the proposed architecture with the well-performing PHOCNet gives
some possible explanations why the proposed network fails. The probably most
apparent difference between both network architectures lies in their pooling strategy.
While the PHOCNet uses a total of three pooling layers, the DenseNet-121 employs five.
An additional convolutional layer, which also serves the purpose of down sampling,
is used at the beginning of the network. The pooling strategy of the DenseNet-121

is specifically designed for the ImageNet database. In this case the size of its input
images is [224× 224]. For its four densely connected blocks this gives a feature map
sizes of [56× 56], [28× 28], [14× 14] and [7× 7]. The datasets used for word spotting
highly differ from the ImageNet dataset. Word images of variable sizes are used and
especially their heights are significantly smaller that 224 pixels. The smallest images
in both datasets only consists of [32× 32] pixels. The extensive use of pooling layers in
the DenseNet-121 results in comparable small feature maps. This might prevent the
network form learning distinctive features, which are necessary to learn the PHOC
embedding based on character locations and occurrences.

Furthermore, the temporal pyramid pooling layer used in the PHOCNet is not
directly applicable to the DenseNet121. As discussed in [SF17], this layer splits the
generated set of feature maps following a pyramidal approach. Separating and pooling
over individual splits of the feature-maps benefited the performance of the PHOCNet.
Again, the small sizes of the resulting feature maps do not allow the application of a
TPP in a similar manner.

Method
IAM Botany

QbE QbS QbE QbS

DenseNet-121 29.17 2.21 6.59 7.39

Table 5.4.2: Results for the QbE and QbS experiments in mAP [%].

46 experimental evaluation

Overall, the direct application of the DenseNet-121 with only small modifications
does not yield any satisfying results. This might be explained by its pooling strategy,
which is not suitable for the data used for the word spotting experiments. Since
the PHOCNet provides a well performing architecture, the following experiments
investigate dense network architectures with a more similar pooling strategy.

5.4.2 PHOC-DenseNet

As indicated by the experiments presented in section 5.4.1, the network architecture of
the DenseNet-121 is not suitable for the given datasets and their requirements. The
following sections present a series of experiments focused on the network architectures
PHOC-DenseNet-b2 and PHOC-DenseNet-b3, respectively configurations B2 and B3,
as discussed in section 4.1. Their architectures follow a pooling strategy closely related
to the TPP-PHOCNet and took inspiration from the DenseNets used for datasets with
small input images presented in [HLMW17].

Section 5.4.2 investigates the performance of DenseNet configurations B2 and B3.
The presented experiments are concerned with different depth, growth rates and the
use of compression layers. Furthermore, the use of maxout layers and different types
of pooling layers are evaluated.

Depth and Growth Rate

The experiments on PHOC-DenseNet-b2 and PHOC-DenseNet-b3 investigate different
configurations of the basic architectural structure discussed in section 4.1.1. The
three different growth rates of k = 12, 24, 32 are used. Even though the resulting
convolutional layers are quite narrow, the experiments in [HLMW17] show that they
still perform well in several networks. For each of the different growth rates, multiple
network configurations are evaluated, resulting in increasingly deep networks. The
configurations of the PHOC-DenseNet-b2, which employs two densely connected
blocks, are c2 = [j, 2j] with j = 5, 10, 15, 20. Using twice the number of layers in the
second block of the network is motivated by the DenseNet-121. Furthermore, the size
and therefore also the memory consumption of the feature maps in the first block are
comparable high. Since the naive implementation of densely connected network is
highly memory inefficient, memory is a critical resource for increasingly deep models.
A small number of layers at the early stages of the network in combination with
an increased number for smaller feature maps sizes, helps in meeting the memory
requirements of the networks. The experiments on the PHOC-DenseNet-b3 consider
a similar set of configurations with c3 = [j, j, 2j] for j = 5, 10, 15. In comparison to

5.4 experiments and results 47

the PHOC-DenseNet-b2, this corresponds to adding an additional densely connected
block before the first pooling layer. Note that some combinations of high growth rates
and deep architectures are not evaluated, since they exceed the accessible memory.

All networks are trained following the training setup described in section 5.2. The
performances for QbE and QbS on the IAM and Botany database are evaluated
according to section 5.3. See table 5.4.3 for an overview on the results of the conducted
experiments.

The results show that the given networks are able to learn a set of weights which
allow the approximation of the mapping between word image and PHOC vector.
Consider the network configuration c2 = [5, 10] with a growth rate of k = 12. Already
this comparable shallow network with a considerable small growth rate achieves mAPs
above 50% on both datasets. Compared to the approach based on the DenseNet121,
the given architectures seem clearly superior. This reinforces the observation that the
pooling strategy used in the DenseNet-121 is highly unfavorable for the given data.

Considering the experiments concerned with the PHOC-DensNet-b2, two general
trends can be observed and are best demonstrated by the experiments regarding
the IAM database. First, the networks’ performances increase with an increasingly
deep network structure. If the growth rate remains unchanged, a deeper model will
perform at least equally well as its shallower counterpart. The performance gain can
be explained by the increased model capacity. By adding more layers to the network,
the number of parameters increases. The investigated networks seem able to use this
additional representational power to learn more complex filters and a more accurate
mapping between word image and PHOC vector.

A similar observation can be made with respect to the growth rate. For the IAM
database, increasing the network’s growth rates results in an improved or at least equal
accuracy. A bigger growth rate corresponds to an increased number of filters for each
convolutional layer, which also leads to an increased number of parameters. Again,
the different networks benefit from the additional parameters in terms of accuracy.

That the proposed densely connected networks generally benefit from an increased
model capacity, can also be easily seen in figure 5.4.1. Here, the mAP for the IAM
database is plotted with respect to the number of parameters of the different networks.
While the performance generally improves with an increased number of parameters,
the different growth rates all seem to saturate at a comparable level. Therefore, none
of the tested growth rate can be considered superior to the others regarding the overall
performance. Nevertheless, networks applying a small growth rate of k = 12 seem
to exploit their parameters most efficiently. For both scenarios, QbE and QbS, the
networks with k = 12 require less parameters to achieve similar accuracies as networks
with bigger growth rates. The experiments indicate that a small growth rate most

48 experimental evaluation

strongly profits from the concept of feature reuse inherent to the dense connectivity
pattern.

While the previously discussed observations hold true for the experiments on the
Botany database in case of a growth of k = 12 and k = 24, the networks with k = 32

slightly deviate. When the growth rate is increased from k = 24 to k = 32 for the
shallowest network, the accuracy increases in case of QbS, but slightly decreases for

IAM c2 = [5, 10] c2 = [10, 20] c2 = [15, 30] c2 = [20, 40]

k = 12 60.08 64.14 69.39 71.16

k = 24 64.04 69.42 70.94 −∗

k = 32 66.37 70.51 71.33 −∗

(a) Results for the QbE experiments on IAM.

IAM c2 = [5, 10] c2 = [10, 20] c2 = [15, 30] c2 = [20, 40]

k = 12 75.19 80.89 82.33 83.61

k = 24 78.18 82.86 83.31 −∗

k = 32 79.82 83.09 83.34 −∗

(b) Results for the QbS experiments on IAM.

Botany c2 = [5, 10] c2 = [10, 20] c2 = [15, 30] c2 = [20, 40]

k = 12 54.57 63.08 65.93 67.49

k = 24 61.77 63.83 67.92 −∗

k = 32 61.16 60.14 62.88 −∗

(c) Results for the QbE experiments on Botany.

Botany c2 = [5, 10] c2 = [10, 20] c2 = [15, 30] c2 = [20, 40]

k = 12 73.69 78.51 79.71 82.43

k = 24 75.98 79.21 80.18 −∗

k = 32 77.72 76.83 78.41 −∗

(d) Results for the QbS experiments on Botany.

Table 5.4.3: Results for different hyperparameter settings of DenseNet configuration B2. All
results are given in mAP [%]. The experiments marked with −∗ were not conducted
since they exceed the available memory resources.

5.4 experiments and results 49

40 60 80 100 120

60

65

70 k = 12

k = 24

k = 32

#params [106]

m
A

P
[%

]

(a) QbE

40 60 80 100 120

76

78

80

82

84

k = 12

k = 24

k = 32

#params [106]

m
A

P
[%

]
(b) QbS

Figure 5.4.1: QbE and QbS accuracies for the IAM database with respect to the number of
parameters of each network.

QbE. In case of the two deeper architectures, the networks perform worse than their
counterpart with a smaller growth rate.

This observation might possibly be explained by considering the proposed network
architecture. Since all feature maps generated in a densely connected network are
passed on to the succeeding layers, increasing depth or growth rate results in a
higher number of feature maps at the end of the network. The networks used for the
experiments employ a TPP-layer in combination with a MLP. If the TPP-layer considers
an increased number of feature maps, the size of the resulting feature vector and
thereby also the number of parameters of the MLP grow significantly. This increasingly
big MLP considers all feature maps generated by the network. As indicated by the
consideration on parameter efficiency, a smaller growth rate generates a set of feature
maps which are more distinctive compared to those generated with higher growth
rates. The combination of this increased number of feature maps of lesser individual
significance with an oversized MLP, constitutes a model which is more complex to
optimize and might suffer under overparameterization. Regarding the results on the
Botany database, which is prone to overfitting due to its comparable small number
of training images, this condition might explain why the networks are not able to
benefit from the additional representational power. Furthermore, it offers a possible
explanation for the saturating behavior of the increasingly deep models.

50 experimental evaluation

The results of the experiments using configuration B3 are summarized in table 5.4.4.
The same general behavior regarding growth rates and depth of the network can be
observed. In both cases an increase in number of parameters benefits the network’s
performance, while all growth rates achieve similar accuracies. Interestingly, adding an
additional densely connected block before the first pooling layer does not significantly
increase the network performance. In some cases, consider for example the network

IAM c3 = [5, 5, 10] c3 = [10, 10, 20] c3 = [15, 15, 30]

k = 12 57.31 63.63 69.64

k = 24 64.44 71.69 −∗

k = 32 65.89 −∗ −∗

(a) Results for the QbE experiments on IAM.

IAM c3 = [5, 5, 10] c3 = [10, 10, 20] c3 = [15, 15, 30]

k = 12 75.72 81.37 82.86

k = 24 79.88 83.47 −∗

k = 32 80.35 −∗ −∗

(b) Results for the QbS experiments on IAM.

Botany c3 = [5, 5, 10] c3 = [10, 10, 20] c3 = [15, 15, 30]

k = 12 52.95 60.42 60.37

k = 24 59.09 64.13 −∗

k = 32 58.33 −∗ −∗

(c) Results for the QbE experiments on Botany.

Botany c3 = [5, 5, 10] c3 = [10, 10, 20] c3 = [15, 15, 30]

k = 12 72.07 76.50 77.37

k = 24 75.68 75.68 −∗

k = 32 75.19 −∗ −∗

(d) Results for the QbS experiments on Botany.

Table 5.4.4: Results for different hyperparameter settings of DenseNet configuration B3. All
results are given in mAP [%]. The experiments marked with −∗ were not conducted
since they exceed the available memory resources.

5.4 experiments and results 51

configuration c3 = [5, 5, 10] with k = 24, the introduction of additional layers even
decreases the accuracies compared to the corresponding PHOC-DenceNet-b2 (c2 =

[5, 10],k = 24). This leads to the conclusion that the PHOC-DenseNet-b2 architecture
is more suitable for the considered scenarios.

Compression

All feature maps in a densely connected networks are passed on to their succeeding
layers. As discussed in [HLMW17], transition and especially classification layers are
highly focused on those feature maps generated at the end of each dense block. Due
to this design pattern, which is based on feature reuse, the network contains a com-
parable high amount of redundancies. [HLMW17] proposes the idea of compression
layers to reduce these redundancies and improve model compactness. The follow-
ing experiments investigate the use of compression layers in the proposed densely
connected networks for word spotting. As presented in section 4.1, the DenseNets
with configuration B2 and B3 use 1× 1 convolution layers as compression layers. The
experiments on growth rates and network depth apply a compression factor of θ = 1.0
which corresponds to an uncompressed network. In contrast to its uncompressed
version, the following experiments investigate a compression factor of θ = 0.5 for
different variants of the configurations B2 and B3. For a compression factor of θ = 0.5,
half of the feature maps are dropped at each transition layer. Furthermore, reducing
the number of feature maps reduces the memory consumption of the network. This
additional capacity in terms of memory is used to train the network configuration B2

with c2 = [30, 60] and B3 with c3 = [15, 20, 40]. All networks apply a growth rate of
k = 12, which has shown to be the most parameter efficient.

See tables 5.4.5a and 5.4.5b for the QbE and QbS results for the IAM and Botany
database using network configuration B2. The results show that almost all compressed
networks achieve accuracies on a comparable level to its uncompressed counterpart.
Especially in case of the Botany database, introducing compression to the network
architecture even results in an accuracy gain. This observation reinforces the argumen-
tation of [HLMW17]. The significance of feature maps differs and classification, or in
this case learning an attribute representation, is not necessarily based on all previously
generated feature maps. Although early feature maps are used to learn more complex
ones, dropping them at transition layers seems not to significantly affect the network’s
performance. The introduction of compression yields a more compact and smaller
set of feature maps. Regarding the proposed architectures, this also means a reduced
number of parameters in the MLP. This increased compactness might explain the slight
performance gains, which can be observed in some experiments.

52 experimental evaluation

Dataset θ c2 = [5, 10] c2 = [10, 20] c2 = [15, 30] c2 = [20, 40] c2 = [30, 60]

IAM 1.0 60.08 64.14 69.39 71.16 −∗

IAM 0.5 58.79 64.84 66.54 71.25 72.06

Botany 1.0 54.57 63.08 65.93 67.49 −∗

Botany 0.5 58.26 64.29 66.01 65.96 70.26

(a) Results for QbE experiments with configuration B2.

Dataset θ c2 = [5, 10] c2 = [10, 20] c2 = [15, 30] c2 = [20, 40] c2 = [30, 60]

IAM 1.0 75.19 80.89 82.33 83.61 −∗

IAM 0.5 75.71 80.79 81.79 83.57 84.11

Botany 1.0 73.69 78.51 79.71 82.43 −∗

Botany 0.5 74.55 80.51 80.75 82.08 82.95

(b) Results for QbS experiments with configuration B2.

Dataset θ c3 = [5, 5, 10] c3 = [10, 10, 20] c3 = [15, 15, 30] c3 = [15, 20, 40]

IAM 1.0 57.31 63.63 69.64 −∗

IAM 0.5 59.05 67.33 70.32 69.50

Botany 1.0 52.95 60.42 60.37 −∗

Botany 0.5 55.92 61.96 62.22 63.64

(c) Results for QbE experiments with configuration B3.

Dataset θ c3 = [5, 5, 10] c3 = [10, 10, 20] c3 = [15, 15, 30] c3 = [15, 20, 40]

IAM 1.0 75.72 81.37 82.86 −∗

IAM 0.5 76.22 80.98 83.20 82.90

Botany 1.0 72.07 76.50 77.37 −∗

Botany 0.5 72.09 77.97 75.43 79.34

(d) Results for QbS experiments with configuration B3.

Table 5.4.5: Results for different compressed DenseNets of configuration B2 and B3. All results
are given in mAP [%]. The experiments marked with −∗ were not conducted since
they exceed the available memory resources.

5.4 experiments and results 53

Another observation can be made with respect to the increasingly deep models. For
both databases the additional deep compressed networks perform better compared to
the uncompressed shallower variants. The investigated network architecture seems
to still improve their performance from increasingly deep models. The application of
compression layers reduces memory requirements and the number of parameters of
the model, without significantly harming its representational power.

The results on the network configuration B3 which are shown in tables 5.4.5c
and 5.4.5d confirm this observation. As discussed previously, the additional block
employed by the network configuration B3 does not significantly improve the net-
work’s performance. This holds also true for its compressed variants. Additionally,
the results show a performance gain for almost all compressed networks compared to
the uncompressed variants. Compared to configuration B2, the additional densely con-
nected block in configuration B3 seems to introduce redundancies without providing
significant representational power. Therefore, introducing compression layers enforces
a more compact model and improves the achieved accuracies. The experiments show
that also in its compressed version configuration B2 seems more favorable for the
given task and data. Consider for example the network of configuration B2 with
c2 = [20, 40]. Increasing the number of layers in each of the two densely connected
blocks to c2 = [30, 60] results in a performance gain for both datasets and query
strategies. Instead of increasing the numbers of layers inside the blocks, configuration
B3 with c3 = [15, 20, 40] adds another block with 15 layers. In contrast to configuration
B2, the network does not benefit from the additional layers and even shows lower
accuracies.

In summary, the introduction of compression layers to the proposed network ar-
chitecture has shown to result in more compact models. Compression constitutes a
suitable method to increase model compactness and reduces the number of parameters
and memory consumption.

Maxout

As the experiments on compression layers show, the set of feature maps generated
by the proposed architectures contain a lot of redundancies. Compression layers
offer a method to reduce the amount of redundancies at the transition between two
blocks. Nonetheless, the resulting set of feature maps, which is connected to the
classification layers by the last pooling layer, most likely still include redundant
information. Additionally, it is probable that the use of a TPP-layer introduces further
redundancies by its pyramidal pooling approach. A possible strategy to remove these
redundancies and thereby also reduce the number of parameters in the MLP, is the

54 experimental evaluation

introduction of a maxout layer between the TPP-layer and the fully-connected part of
the network, as presented in section 4.1. Removing redundancies and reducing the size
of the feature vector generated by the TPP-layer, also affects the number of parameters
in the fully-connected layers. This is especially reasonable, since the combination of an
oversized MLP with a redundant set of feature maps, might hinder the network from
learning a well-performing set of weights.

The experiments in this section investigate how the introduction of a maxout
layer affects the performance of different network architectures. The number of
neurons combined by each maxout unit is determined by the hyperparameter K.
For each network the values of K = 2, 4, 8 are evaluated. K = 1 corresponds to the
network without maxout layer. Two variants of the dense network configuration B2

are considered. First, an uncompressed network (θ = 1.0) with a high growth rate
of k = 32 and the configuration c2 = [15, 30] is evaluated. The high growth rate
results in reasonably high numbers of feature maps at the end of the network. Since
no compression layers and a high growth rate are employed, the network probably
contains many redundancies, which can be reduced by the introduction of a maxout
layer. The second architecture employs a small growth rate of k = 12, the configuration
c2 = [30, 60] and a compression factor of θ = 0.5. Compared to the first dense network
architecture, the application of a small growth rate and a compression layer already
gives a more compact model.

Not only the dense connectivity pattern is a possible source of redundancies, but
also the TPP-layer. Taking this as a motivation, a third series of experiments considers
an adapted TPP-PHOCNet. A maxout layer is introduced to the TPP-PHOCNet
architecture presented in section 3.2.1 in between the TPP-layer and the fully-connected
part of the network.

All networks are trained on the IAM and Botany database using the training setup
presented in section 5.2. Consider table 5.4.6 for the results for QbE and QbS evaluation
following the protocol in section 5.3. Regarding the IAM dataset, most networks show
only a marginal drop in accuracy for K = 2. In case of the uncompressed network with
a growth rate of k = 32, a slight increase in accuracy can be observed, which reinforces
the argument that the given network contains a significant amount of redundancies
and therefore even benefits from a reduced number of parameters. For an increased
value of K = 4 and K = 8 the accuracy loss is more significant.

The same observations holds true for the TPP-PHOCNet with respect to the Botany
dataset. While the underlying behavior seems similar, the loss of accuracy on the
Botany dataset is higher compared to the IAM dataset for both densely connected
networks. In case of QbE with the compressed network, a strong decrease in accuracy
can be observed already for a value of K = 2.

5.4 experiments and results 55

Network Dataset K = 1 K = 2 K = 4 K = 8

k = 32, c2 = [15, 30], θ = 1.0 IAM 71.33 71.51 68.73 65.31

k = 12, c2 = [30, 60], θ = 0.5 IAM 72.06 71.69 69.58 65.85

TPP-PHOCNet IAM 78.41 78.46 77.03 75.47

k = 32, c2 = [15, 30], θ = 1.0 Botany 62.88 61.58 60.47 58.41

k = 12, c2 = [30, 60], θ = 0.5 Botany 70.26 64.17 63.15 61.50

TPP-PHOCNet Botany 91.44 91.11 88.79 87.88

(a) Results for QbE experiments in mAP [%].

Network Dataset K = 1 K = 2 K = 4 K = 8

k = 32, c2 = [15, 30], θ = 1.0 IAM 83.34 84.01 81.42 79.38

k = 12, c2 = [30, 60], θ = 0.5 IAM 84.11 83.68 82.02 79.94

TPP-PHOCNet IAM 91.11 90.48 88.93 87.49

k = 32, c2 = [15, 30], θ = 1.0 Botany 78.41 76.09 78.09 74.65

k = 12, c2 = [30, 60], θ = 0.5 Botany 82.95 80.44 78.77 76.62

TPP-PHOCNet Botany 96.51 96.49 95.36 94.35

(b) Results for QbS experiments in mAP [%].

Table 5.4.6: Results for QbE (a) and QbS (b) experiments on the IAM and Botany datasets. K
denotes the number of neurons combined by each maxout unit.

The experiments show that the introduction of a maxout layer efficiently serves
the purpose of redundancy reduction. Most networks only show a marginal loss of
accuracy for K = 2. This is especially interesting with respect to the reduced number
of parameters in the network. While the achieved accuracies are only slightly reduced,
a value of K = 2 corresponds to a parameter reduction of 35% for the compressed
and 38% for the uncompressed densely connected network. The observation that the
feature vector generated by the TPP-layer contains a high amount of redundancies is
also true for the TPP-PHOCNet. Introducing a maxout layer with K = 2 reduces the
number of parameters in the TPP-PHOCNet by 26% without affecting the achieved
accuracy.

56 experimental evaluation

Pooling

As discussed in the context of the experiments on maxout layers, the TPP-layer might
be a possible source of redundancy in the proposed network architectures. The
main motivation for using a pyramidal pooling approach is that it allows differently
sized word images as inputs. Since the aspect ratios of word images strongly vary
depending on the length of the word, the approach presented for the PHOCNet avoids
to resize the images to a fix size. The architecture used for the DenseNet121 offers
another possibility to handle input images of varying sizes. All layers except the
fully-connected ones operate independently from the size of the input image or feature
map. Therefore, in order to consider a dataset with images of different sizes the
final set of feature maps needs to be mapped on a fixed number of values, which are
connected to the fully-connected layers. In case of the TPP-PHOCNet this mapping is
performed by the TPP-layer. Regarding the DenseNet121, the use of a global pooling
layer is able to serve the same purpose. Since the number of feature maps which are
generated over the course of the network does not depend on the size of the input
image, global pooling always results in a vector of the same size. From a theoretical
point of view, a global pooling layer is equivalent to a TPP-layer with only a single
level.

In this series of experiments the influence of different types of pooling layers on
the performance of three network architecture is considered. A TPP-layer with five
levels, a global max pooling or a global ave pooling layer, is employed as the last
pooling layer of a DenseNet of configuration B2 with k = 12, c2 = [30, 60] and θ = 0.5.
The same types of pooling layers are used in the PHOCNet architecture to connect
convolutional and fully-connected part of the network. The experiments on the
DenseNet configuration A, which is based on the DenseNet121, only investigate the
use of global pooling layers. Due to the extensive number of pooling layers in the
network, the size of the smallest feature maps does not allow a pyramidal pooling
approach with multiple levels.

Again, the training procedure uses the setup presented in section 5.2 and evaluation
is performed according to section 5.3. See table 5.4.7 for the results on the IAM and
Botany database for QbE and QbS. Considering the performance of the DenseNet
configuration B2, a decrease of accuracy can be observed when the TPP-layer is
replaced by a global pooling layer. Despite being inferior to the accuracies achieved
with a TPP-layer, the network with a max pooling layer is till able to learn the desired
mapping to some extend. Compared to the max pooling approach, the use of average
pooling results in a network unable to learn a set of weights, which allows to perform
the task of word spotting. A similar behavior can be observed with respect to the

5.4 experiments and results 57

PHOCNet architecture. The use of the TPP-layer achieves the highest accuracies. While
being clearly outperformed by the max pooling approach, the average pooling layer
still gives accuracies around 60% for both datasets and query paradigms. Changing
the last pooling layer from average to max pooling for the DenseNet configuration
A does not solve its inherent problems. For both pooling layers the networks fails in
learning a successful mapping from word image on PHOC embedding.

The results indicate that the activation of the feature maps is restricted to limited
areas. While this activation is preserved by a global max pooling layer, average pooling
averages over the entire feature-map. Especially in case of a big feature-map which is
only activated in a small region, this could result in a loss of information, explaining
the lower accuracies compared to a max pooling approach. The TPP-layer also achieves
the best results for the DenseNet configuration B2. The increased performance with
respect to global max pooling, indicates that the TPP-layer preserves some of the
spatial information of the feature map activation. This seems especially suitable for
learning PHOC vectors which are based on the spatial occurrences of characters. Even
though they might introduce additional redundancies, TPP-layers seem to be the best
approach for word spotting with densely connected networks.

Network Pooling
IAM Botany

QbE QbS QbE QbS

k = 12, c2 = [30, 60], θ = 0.5 TPP 72.06 84.11 70.26 82.95

k = 12, c2 = [30, 60], θ = 0.5 MAX 60.22 74.44 52.72 69.76

k = 12, c2 = [30, 60], θ = 0.5 AVE 14.05 0.22 6.85 1.95

PHOCNet TPP 78.41 91.11 91.44 96.51

PHOCNet MAX 72.35 81.53 83.45 90.73

PHOCNet AVE 58.07 60.31 58.32 61.53

DenseNet121 MAX 3.52 0.10 8.34 9.45

DenseNet121 AVE 29.17 2.21 6.59 7.39

Table 5.4.7: Results for QbE and QbS experiments in mAP [%] for different types of pooling
layers.

58 experimental evaluation

5.4.3 Resized Images

All networks used in the previously conducted experiments operate on word images
of varying sizes. This approach is also pursued by the PHOCNet which set state-of-
the-art accuracies on several benchmark datasets [SF17]. The Triplet-CNN approach
discussed in section 3.2.2 does not avoid resizing the original word images. Instead,
all images in the respective databases are converted to the fixed size of [60× 160]
pixels. Even though this approach is beaten by the PHOCNet for most scenarios, it
still achieves competitive results.

The following experiments investigate how resizing the training and test images to
a fixed size influence network performances. This is of special interest in case of the
DenseNet configuration A where the pooling strategy seems unsuitable especially with
respect to considerably small images. Following the Triplet CNN approach proposed
in [WB16], all training and test images are converted to the fixed sizes of [30× 80],
[60× 160] and [120× 320]. Training is then performed on the resized IAM and Botany
datasets according to the setup presented in section 5.2. QbS and QbE following the
protocol in section 5.3 are also performed on a resized test set and in case of QbE
with respect to resized query images. Besides the architectures following DenseNet
configuration A and B2 with k = 12, c2 = [30, 60] and θ = 0.5, the TPP-PHOCNet is
considered.

Table 5.4.8 summarizes the results for QbE and QbS word spotting. In case of
DenseNet configuration B2, resizing the word images results in a significant drop
of accuracy. For all scenarios, higher accuracies are achieved when word images of
variable sizes are used. The size of [60× 160] performs best for most scenarios, which
indicates that it is closest to the original average image sizes and preserves most
of the information. This observation is further supported by the results regarding
the TPP-PHOCNet architecture. The use of an image size of [60× 160] outperforms
the other two sizes. Interestingly, the application of a fixed image size of [60× 160]
achieves higher accuracies compared to the experiments regarding variable sizes for all
scenarios expect for QbE on the IAM dataset. Thereby, one can conclude that the use
of variable image sizes is not strictly superior and highly competitive results can be
achieved with images of fixed size. Nevertheless, resizing and using word images of
bigger sizes does not significantly improve accuracies for the DenseNet configuration
A. The combination of the dense connectivity pattern, a high number of pooling stages
and a final average global pooling layer, results in an architecture which seems clearly
inferior to the other networks.

5.4 experiments and results 59

Network Dataset Variable 30× 80 60× 160 120× 320
k = 12, c2 = [30, 60], θ = 0.5 IAM 72.06 46.36 42.52 39.21

TPP-PHOCNet IAM 78.41 75.42 75.09 69.09

DenseNet121 IAM 29.17 9.24 22.46 16.69

k = 12, c2 = [30, 60], θ = 0.5 Botany 70.26 47.72 62.59 50.47

TPP-PHOCNet Botany 91.44 88.89 93.30 92.04

DenseNet121 Botany 6.59 1.41 13.09 9.77

(a) Results for QbE experiments.

Network Dataset Variable 30× 80 60× 160 120× 320
k = 12, c2 = [30, 60], θ = 0.5 IAM 84.11 72.30 73.59 70.09

TPP-PHOCNet IAM 91.11 90.71 91.45 87.57

DenseNet121 IAM 2.21 0.39 29.55 6.59

k = 12, c2 = [30, 60], θ = 0.5 Botany 82.95 67.27 74.87 65.59

TPP-PHOCNet Botany 96.51 94.34 96.82 96.17

DenseNet121 Botany 7.39 0.44 13.43 10.03

(b) Results for QbS experiments.

Table 5.4.8: Results for QbE and QbS experiments in mAP [%] for different images sizes.
Training and testing is performed with respect to the fixed image sizes.

5.4.4 Hybrid Approach

The hybrid approach, presented in section 4.1.3, combines the basic architectural
structure of the TPP-PHOCNet and the dense connectivity pattern. Therefore, the
proposed architecture employs the same number and types of pooling layers as
the TPP-PHOCNet. Additionally, the first four convolutional layers as well as the
classification layers are chosen analogue to the TPP-PHOCNet. Based on the set of
low-level feature maps generated before the second pooling layer, a single densely
connected block is used. As shown by the success of the TPP-PHOCNet, first four
convolutional layers are able to learn a suitable set of low-level features. The densely
connected block serves the purpose of learning features of increasing complexity.

The following series of experiments investigates the proposed architecture and
different choices of hyperparameters. Motivated by the experiments in section 5.4.2, all
networks use a growth rate of k = 12. The uncompressed variant following DenseNet

60 experimental evaluation

configuration C employs a compression factor of θ = 1.0. All compressed networks,
respectively DenseNet configuration D, have a corresponding compression factor of
θ = 0.5.

The experiments consider different numbers of layers in the densely connected part
of the network. In terms of the number of feature maps considered by the TPP-layer,
the uncompressed network with k = 12,L = 32, θ = 1.0 is most similar to the TPP-
PHOCNet. Both architectures generate 512 feature maps, which are then given to the
TPP and classification layers. The other networks with an increased number of layers
L also generate a higher number of feature maps.

All networks are trained following the training setup presented in section 5.2.
Evaluation is performed according to section 5.3 for the IAM and Botany database.
Table 5.4.9 shows the results for the QbE and QbS experiments for four different
sets of hyperparameters. The networks show a similar behavior as observed for the
DenseNets following configuration B, see section 5.4.2. Consider the uncompressed
networks with θ = 1.0. While the mAP for the IAM database increases with the
increase of layers from 32 to 64, the accuracies drop for Botany. This shows that also
the hybrid approach probably suffers from the same architectural drawback like the
networks based entirely on the dense connectivity pattern. Increasing the number of
layers also increases the number of feature maps, which might lead to an oversized
MLP. This observation is further supported by the experiments on configuration D.

Introducing a compression layer with θ = 0.5 yields a more compact set of feature
maps, which results in higher accuracies for both datasets. Even though the resulting
model incorporates less parameters, a performance gain can be observed. In its
compressed variant the network also benefits from an even deeper network structure.
The deepest network trainable under the given memory restrictions incorporates 96
layers in the densely connected part of the network. For both datasets, the deepest
networks with a compression factor of θ = 0.5 gives the highest accuracies.

Network IAM Botany

k L θ QbE QbS QbE QbS

12 32 1.0 66.95 80.81 73.01 84.71

12 64 1.0 70.30 81.89 71.80 83.96

12 64 0.5 71.05 83.59 73.18 86.33

12 96 0.5 72.54 84.37 75.78 86.78

Table 5.4.9: Results for QbE and QbS experiments in mAP [%] for the IAM and Botany database.

5.4 experiments and results 61

As discussed previously in the context of the experiments on DenseNet configuration
B, densely connected networks contain significant redundancies. The use of a compres-
sion layer in DenseNet configuration D removes some redundancies explaining the
improved accuracies. As an additional measure, the following experiments investigate
the use of maxout units for DenseNet configuration D. Analogue to configuration
B, a maxout layer is introduced between TPP-layer and the fully-connected part of
the network. The following experiments consider the previously used networks of
configuration D with k = 12, θ = 0.5,L = 64 and L = 96. Both networks are evaluated
for values of K = 2, 4, 8, while K = 1 corresponds to the network without maxout layer.
See table 5.4.10 for the results for QbE and QbS experiments on the IAM and Botany
dataset.

The results show that combining two neurons by use of a maxout unit results
in a slight decrease in accuracy, which can be explained by the reduced number
of parameters. Increasing the number of neurons combined by each maxout unit
gives an increasingly severe performance loss. While the compressed DenseNets of
configuration D without maxout units benefit from an increased number of layers,
this observation does not hold true for the use of a maxout layer with K = 2 for the
Botany datasets. For QbE and QbS, the shallower network with maxout layer achieves

Network Dataset K = 1 K = 2 K = 4 K = 8

k = 12,L = 64, θ = 0.5 IAM 71.05 68.75 65.28 59.78

k = 12,L = 96, θ = 0.5 IAM 72.54 71.05 69.33 64.17

k = 12,L = 64, θ = 0.5 Botany 73.18 72.12 66.77 59.67

k = 12,L = 96, θ = 0.5 Botany 75.78 71.45 71.01 66.06

(a) Results for QbE experiments.

Network Dataset K = 1 K = 2 K = 4 K = 8

k = 12,L = 64, θ = 0.5 IAM 83.59 83.02 80.55 75.44

k = 12,L = 96, θ = 0.5 IAM 84.37 83.18 81.69 79.07

k = 12,L = 64, θ = 0.5 Botany 86.33 85.73 79.13 75.48

k = 12,L = 96, θ = 0.5 Botany 86.78 85.31 82.65 80.89

(b) Results for QbS experiments.

Table 5.4.10: Results for QbE and QbS experiments in mAP [%] for the IAM and Botany
database.

62 experimental evaluation

a higher mAP than its deeper counterpart. On the IAM dataset, the deeper network
with maxout layer achieves better results than the shallower one for QbE and QbS.

Overall, the hybrid approach shows a similar behavior as the entirely densely
connected networks. In general, the models benefit from a deeper structure, but
their absolute performance is limited by redundancies and overparameterization.
Including a maxout layer which combines 2 neurons can be used to significantly
reduce the number of parameters in the MLP with only a little influence on the
achieved accuracies.

5.4.5 Comparison

In order to compare the proposed methods with the state-of-the-art, the following
experiments are considered. The TPP-PHOCNet and two DenseNets with configura-
tion B2 and D are trained on the IAM, Botany and George Washington datasets. Both
densely connected networks use a learning rate of k = 12 and employ a compression
factor of θ = 0.5. Since the combination of a deep network with a small learning
rate gave the best results for previous experiments, the DenseNet of configuration B2

employs 90 densely connected layers with c2 = [30, 60]. For DenseNet configuration
D, the deepest trainable model with respect to memory limitations is used as well and
it incorporates a number of densely connected layers of L = 96.

As shown by [SF17], the TPP-PHOCNet improves its performance after surpassing
100000 training iterations, especially with respect to the IAM database. Therefore,
the previously used training setup, presented in section 5.2, is slightly modified. All
networks are trained for 250000 iterations. The initial learning rate of 10−4 is divided
by 10 after 100000 and 200000 iterations.

Figure 5.4.2 shows the evolution of the achieved mAP for QbE on all three datasets
with respect to the different network architectures.

Both DenseNet configurations achieve high accuracies for the George Washington
datasets already for a small number of training iterations. Compared to the TPP-
PHOCNet, both DenseNets achieve higher accuracy after 10000 iterations. Despite
the slightly faster convergence of the DenseNets, all considered network architectures
converge to a mAP of above 95% in case of the George Washington dataset. Only a
small improvement in performance can be observed beyond 50000 iterations.

The observation of DenseNets converging slightly faster can also be made for the
IAM and Botany datasets. While the TPP-PHOCNet shows only minor accuracy gains

5.4 experiments and results 63

0 50,000 100,000 150,000 200,000 250,000
0

20

40

60

80

100

Iteration

m
A

P[
%

]

(a) DenseNet configuration B2

0 50,000 100,000 150,000 200,000 250,000
0

20

40

60

80

100

Iteration

m
A

P[
%

]

(b) DenseNet configuration D

0 50,000 100,000 150,000 200,000 250,000
0

20

40

60

80

100

Iteration

m
A

P[
%

]

IAM
Botany

GW

(c) TPP-PHOCNet

Figure 5.4.2: Evolution of mAP [%] for QbE experiments over the course of training. Each
network architecture is evaluated for the three dataset of George Washington
(GW), Botany and IAM.

64 experimental evaluation

Method
GW IAM Botany

QbE QbS QbE QbS QbE QbS

DenseNet B2 95.80 96.66 73.81 85.28 66.49 82.27

DenseNet D 95.87 97.32 74.22 84.79 76.45 86.28

TPP-PHOCNet 97.75 97.39 81.03 92.42 93.75 97.35

Attribute SVM 1
93.04 92.64 55.73 73.72 75.77

2
65.69

2

Deep Feat. Embedding 3
94.41 92.84 84.24 91.58 − −

Triplet CNN 4
98.00 93.69 81.58 89.49 54.95

2
3.40

2

Table 5.4.11: Results for QbE and QbS experiments in mAP [%] for the IAM and Botany
database.

for less than 20000 iterations, both DenseNets start to converge from the beginning of
the training procedure. In terms of final accuracies, the TPP-PHOCNet outperforms
both DenseNets on all considered datasets. Independent of the number of training
iterations, the DenseNet B2 achieves higher accuracies on the IAM dataset compared
to the Botany datasets. Considering DenseNet D, accuracies for the IAM dataset
are slightly higher than for Botany for less than 40000 iterations, but converge to a
similar level for both datasets. The TPP-PHOCNet performs clearly best on the Botany
datasets. Accuracies for Botany surpass those for IAM already after a short training
period and converge to a high level above 90%. An increase in number of iterations
yields only minor improvements for all networks. Nonetheless, mAPs increase by
roughly 2% by training for more than 100000 iterations on IAM and Botany.

See table 5.4.11 for a summary of the results for QbE and QbS experiments. Both
DenseNets perform best on the George Washington datasets, which can be explained
by its relatively low complexity. While DenseNet B2 beats DenseNet D on the IAM
database, DenseNet D achieves slightly higher accuracies on the Botany datasets. On
all three datasets the TPP-PHOCNet performs best and achieves the highest accuracies.

To compare the proposed method with the state-of-the-art, table 5.4.11 also shows
the accuracies reached by three other popular methods. [AGFV14] proposed to use a
set of support vector machines to learn a PHOC representation from a fisher vector
based on the word image. This method is referred to as Attribute SVM, since it

1 results obtained from [AGFV14]
2 results obtained from [PZG+

16]
3 results obtained from [KDJ16]
4 results obtained from [WB16]

5.4 experiments and results 65

employs a set of SVMs to learn an attribute representation. The method of Deep
Feature Embedding, proposed in [KDJ16], follows a similar strategy. Instead of using
Fisher Vectors, a feature embedding is derived by using a CNN. The CNN is trained
on a given datasets and learns to map a word image on its designated class. The vector,
generated by the second fully-connected layer, is then taken as a feature vector. Instead
of performing 1 out of k classification, the feature vector is used to train a set of SVMs
analogue to [AGFV14]. Triplet CNN refers to the method proposed by [WB16], which
is based on using three identical residual networks. For a more detailed discussion on
this method see section 3.2.2.

Both DenseNet architectures achieve highly competitive results on the George
Washington dataset. Except for the results obtained by the Triplet CNN for QbE,
both DenseNets are only outperformed by the TPP-PHOCNet. Considering the IAM
dataset, the proposed method performs better than the Attribute SVM method, but it
is not able to accomplish accuracies competitive to the other CNN based methods. On
Botany, the DenseNets achieve better results for QbS compared to the Attribute SVM
method, which performs better for QbE. While no experiments for the Deep Feature
Embedding approach have been published with respect to the Botany datasets, the
Triplet CNN method only achieves extremely low accuracies that are clearly inferior
to the performance of the proposed method. Especially, in the case of Botany, the
TPP-PHOCNet clearly outperforms all other methods.

As shown by the results for the different methods, CNN based approaches seem
highly suitable for the task of word spotting. Furthermore, using a CNN to learn an
attribute representation is a highly competitive approach and achieves state-of-the-art
accuracies. Although the proposed method follows this general approach, which is also
pursued by the well-performing TPP-PHOCNet, the achieved accuracies are highly
determined by the architecture of the CNN. Especially for complex datasets as IAM or
Botany, the proposed densely connected networks are not able to compete with the
robust TPP-PHOCNet. This might not be a direct consequence of the dense connectivity
pattern, but is probably rather the result of combining the dense architecture with the
same classification strategy applied in the TPP-PHOCNet.

6
C O N C L U S I O N S

Convolutional neural networks have been proven to be a powerful tool for word
spotting in handwritten documents. State-of-the-art performances on most benchmark
datasets were set by the PHOCNet, which learns a mapping between word images
and an attribute embedding. This mapping from image to PHOC vector, where image
attributes correspond to character occurrences and location, allows for successful QbE
and QbS word spotting. Inspired by its success in the field of image classification,
this thesis investigated the special design pattern of densely connected networks in
the context of word spotting. The proposed method follows the same concept as the
PHOCNet in terms of learning an attribute representation.

In a first series of experiments, it was shown that in order to successfully use a
densely connected network for word spotting a suitable pooling strategy is required.
Only adapting the classification layers of the DenseNet-121, which achieves state-of-the-
art accuracies in image classification, does not give any satisfactory results. This insight
motivated the proposed dense architectures based on the the TPP-PHOCNet. Replacing
the convolutional parts of the TPP-PHOCNet by densely connected blocks and keeping
the original pooling strategy, resulted in significantly improved performances. The
pooling strategy provided by the TPP-PHOCNet limits the dense architecture to either
employ two or three densely connected blocks. Experiments have shown that the use
of two blocks generally performs better than a three block based approach. Principally,
the densely connected networks benefit from an increasingly deep architecture. Also,
the growth rate of the network strongly influences its properties. No growth rate was
found strictly superior in terms of achieved accuracies. The conducted experiments
have shown that a small growth rate of k = 12 is more parameter efficient compared
to higher growth rates and, given a suitable number of layers, achieves competitive
accuracies. Nonetheless, accuracies saturate for increasing numbers of parameters.
This might be explained by an unfavorable architectural drawback of the proposed
architecture. An increased number of layers or a higher growth rate is directly
linked to an increased number of feature maps at the end of the network. Therefore,
increasing the number of parameters and thereby also the representational power
of the convolutional part of the network, corresponds at the same time to a higher
number of parameters in the MLP, which is used to learn the attribute representations.
The resulting model, which combines a possibly oversized MLP with an only slightly

67

68 conclusions

more powerful convolutional part, is probably harder to optimize and it is prone to
overfitting which explains the observed saturating behavior.

In this thesis two methods to reduce the number of parameters in the fully-connected
part of the networks are evaluated. Experiments on different types of pooling layers
have shown that even though a TPP-layer might introduce redundancies to the network
it still gives the best results for word spotting with the PHOCNet and the proposed
dense architectures. The introduction of a maxout layer to the investigated architectures
proved to be a successful method for parameter reduction. As discussed in section 5.4.2,
the overall number of parameters in the TPP-PHOCNet may be reduced by 26%
without significantly affecting the achieved accuracy. With respect to the investigated
DenseNets, the parameter reduction is even more significant, but compared to the
PHOCNet the performance is less robust to the removed parameters.

Instead of using a specifically designed pooling strategy, another set of experiments
is concerned with changing the input images by resizing. This approach does not
improve accuracies for the adapted DenseNet-121. The architecture based on two
densely connected blocks shows high performance losses for fixed image sizes. Only
the TPP-PHOCNet is robust to resizing images to a fixed size. Using an image size
of 60× 160, it even achieves higher accuracies for QbE and QbS on Botany and QbS
on IAM. This leads to the conclusion that variable image sizes are not necessarily
superior to an approach based on resizing. The hybrid approach, which combines
TPP-PHOCNet with a single densely connected block, shows a similar behavior as the
entirely dense architectures. This shows that the actual performance of the proposed
architectures is highly determined by the MLP used as classification layers.

While the PHOCNet provides a robust architecture performing well on multiple
benchmark datasets, the proposed densely connected networks are unable to achieve
competitive accuracies. The dense connectivity pattern in combination with a classifica-
tion strategy based on a MLP with Sigmoid activation seems to result in a unfavorable
architecture for word spotting. Following the proposed approach, increasing the
number of layers in the network results in an increased number of feature maps.
Future work might focus on networks which incorporate identity paths without di-
rectly linking depth and the generated number of feature maps. Here, a suitable
choice could be residual networks, which also provided highly competitive results in
image classification. The use of maxout units in combination with densely connected
networks is probably also a suitable choice in other applications. While the dense
connectivity pattern inherently includes a high amount of redundancies, reducing the
number of parameters in a DenseNet can as well be of interest in other fields such as
image classification.

B I B L I O G R A P H Y

[AFV13] Almazan, Jon ; Fornes, Alicia ; Valveny, Ernest: Deformable HOG-
Based Shape Descriptor. In: International Conference on Document Analysis
and Recognition, 2013

[AGFV14] Almazan, Jon ; Gordo, Albert ; Fornes, Alicia ; Valveny, Ernest:
Word Spotting and Recognition with Embedded Attributes. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 36 (2014), Nr. 12,
S. 2552–2566

[ARTL13] Aldavert, David ; Rusinol, Marcal ; Toledo, Ricardo ; Llados, Josep:
Integrating Visual and Textual Cues for Query-by-String Word Spotting.
In: International Conference on Document Analysis and Recognition, 2013

[Bis11] Bishop, Christopher M.: Pattern Recognition and Machine Learning.
Springer-Verlag GmbH, 2011

[BJTM16] Balntas, Vassileios ; Johns, Edward ; Tang, Lilian ; Mikolajczyk,
Krystian: PN-Net: Conjoined Triple Deep Network for Learning Local
Image Descriptors. In: Computing Research Repository abs/1601.05030

(2016)

[Dan80] Danielsson, Per-Erik: Euclidean distance mapping. In: Computer
Graphics and Image Processing 14 (1980), Nr. 3, S. 227–248

[FEHF09] Farhadi, A. ; Endres, I. ; Hoiem, D. ; Forsyth, D.: Describing objects by
their attributes. In: Conference on Computer Vision and Pattern Recognition,
2009

[FFJK17] Fei-Fei, Li ; Johnson, Justin ; Karpathy, Andrej: CS231n: Convolutional
Neural Networks for Visual Recognition. http://cs231n.stanford.edu/.
Version: 2017

[FFMB12] Frinken, V. ; Fischer, A. ; Manmatha, R. ; Bunke, H.: A Novel
Word Spotting Method Based on Recurrent Neural Networks. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 34 (2012), Nr. 2, S.
211–224

69

http://cs231n.stanford.edu/

70 Bibliography

[FKFB10] Fischer, Andreas ; Keller, Andreas ; Frinken, Volkmar ; Bunke, Horst:
HMM-based Word Spotting in Handwritten Documents Using Subword
Models. In: International Conference on Pattern Recognition, IEEE, 2010

[FM82] Fukushima, Kunihiko ; Miyake, Sei: Neocognitron: A new algorithm
for pattern recognition tolerant of deformations and shifts in position.
In: Pattern Recognition 15 (1982), Nr. 6, S. 455–469

[GB10] Glorot, Xavier ; Bengio, Yoshua: Understanding the difficulty of
training deep feedforward neural networks. In: International Conference
on Artificial Intelligence and Statistics Bd. 9, 2010, S. 249–256

[GBB11] Glorot, Xavier ; Bordes, Antoine ; Bengio, Yoshua: Deep Sparse
Rectifier Neural Networks. In: Proceedings of the International Conference
on Artificial Intelligence and Statistics Bd. 15, 2011, S. 315–323

[GBC17] Goodfellow, Ian ; Bengio, Yoshua ; Courville, Aaron: Deep Learning.
The MIT Press, 2017

[GMAJ13] Goel, Vibhor ; Mishra, Anand ; Alahari, Karteek ; Jawahar, C.V.:
Whole is Greater than Sum of Parts: Recognizing Scene Text Words. In:
International Conference on Document Analysis and Recognition, 2013

[GSGN17] Giotis, Angelos P. ; Sfikas, Giorgos ; Gatos, Basilis ; Nikou,
Christophoros: A survey of document image word spotting techniques.
In: Pattern Recognition 68 (2017), S. 310–332

[GWFM+
13] Goodfellow, Ian J. ; Warde-Farley, David ; Mirza, Mehdi ; Courville,

Aaron ; Bengio, Yoshua: Maxout networks. In: arXiv preprint
arXiv:1302.4389 (2013)

[HLMW17] Huang, Gao ; Liu, Zhuang ; Maaten, Laurens van d. ; Weinberger,
Kilian Q.: Densely Connected Convolutional Networks. In: IEEE
Conference on Computer Vision and Pattern Recognition, 2017

[HZRS15] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Spatial Pyra-
mid Pooling in Deep Convolutional Networks for Visual Recognition. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 37 (2015),
Nr. 9, S. 1904–1916

Bibliography 71

[HZRS16a] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Deep Resid-
ual Learning for Image Recognition. In: IEEE Conference on Computer
Vision and Pattern Recognition, IEEE, 2016

[HZRS16b] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Iden-
tity Mappings in Deep Residual Networks. In: European Conference on
Computer Vision, 2016, S. 630–645

[IS15] Ioffe, Sergey ; Szegedy, Christian: Batch Normalization: Accelerat-
ing Deep Network Training by Reducing Internal Covariate Shift. In:
Computing Research Repository abs/1502.03167 (2015)

[JSD+
14] Jia, Yangqing ; Shelhamer, Evan ; Donahue, Jeff ; Karayev, Sergey

; Long, Jonathan ; Girshick, Ross ; Guadarrama, Sergio ; Darrell,
Trevor: Caffe. In: Proceedings of the ACM International Conference on
Multimedia - MM '14, ACM Press, 2014

[KDJ16] Krishnan, Praveen ; Dutta, Kartik ; Jawahar, C.V.: Deep Feature
Embedding for Accurate Recognition and Retrieval of Handwritten Text.
In: International Conference on Frontiers in Handwriting Recognition, 2016

[Kon05] Konar, Amit: Computational Intelligence. Springer-Verlag GmbH, 2005

[KSH12] Krizhevsky, Alex ; Sutskever, Ilya ; Hinton, Geoffrey E.: ImageNet
classification with deep convolutional neural networks. In: Advances in
Neural Information Processing Systems 60 (2012), Nr. 6, S. 84–90

[LBBH98] Lecun, Y. ; Bottou, L. ; Bengio, Y. ; Haffner, P.: Gradient-based
learning applied to document recognition. In: Proceedings of the IEEE 86

(1998), Nr. 11, S. 2278–2324

[MB02] Marti, U.-V. ; Bunke, H.: The IAM-database: an English sentence
database for offline handwriting recognition. In: International Journal on
Document Analysis and Recognition 5 (2002), Nr. 1, S. 39–46

[MHRC96] Manmatha, R. ; Han, Chengfeng ; Riseman, E. M. ; Croft, W. B.:
Indexing handwriting using word matching. In: Proceedings of the ACM
international conference on Digital libraries -, 1996

[MP43] McCulloch, Warren S. ; Pitts, Walter: A logical calculus of the ideas
immanent in nervous activity. In: The Bulletin of Mathematical Biophysics
5 (1943), Nr. 4, S. 115–133

72 Bibliography

[MP69] Minsky, Marvin ; Papert, Seymour: Perceptrons: An Introduction to
Computational Geometry. MIT Press, 1969

[MPCB14] Montúfar, Guido ; Pascanu, Razvan ; Cho, Kyunghyun ; Bengio,
Yoshua: On the Number of Linear Regions of Deep Neural Networks.
In: International Conference on Neural Information Processing Systems, 2014,
2924–2932

[Nie15] Nielsen, Michael: Neural Networks and Deep Learning. Determination
Press, 2015 http://neuralnetworksanddeeplearning.com/

[PMB12] Pascanu, Razvan ; Mikolov, Tomas ; Bengio, Yoshua: Understanding
the exploding gradient problem. In: Computing Research Repository
abs/1211.5063 (2012)

[PSM10] Perronnin, Florent ; Sánchez, Jorge ; Mensink, Thomas: Improving
the Fisher Kernel for Large-Scale Image Classification. In: European
Conference on Computer Vision, 2010, S. 143–156

[PZG+
16] Pratikakis, Ioannis ; Zagoris, Konstantinos ; Gatos, Basilis ;

Puigcerver, Joan ; Toselli, Alejandro H. ; Vidal, Enrique: ICFHR2016

Handwritten Keyword Spotting Competition (H-KWS 2016). In: Interna-
tional Conference on Frontiers in Handwriting Recognition, 2016

[RATL11] Rusinol, Marcal ; Aldavert, David ; Toledo, Ricardo ; Llados, Josep:
Browsing Heterogeneous Document Collections by a Segmentation-Free
Word Spotting Method. In: International Conference on Document Analysis
and Recognition, 2011, S. 63–67

[RATL15] Rusiñol, Marçal ; Aldavert, David ; Toledo, Ricardo ; Lladós, Josep:
Efficient segmentation-free keyword spotting in historical document
collections. In: Pattern Recognition 48 (2015), Nr. 2, S. 545–555

[RF15] Rothacker, Leonard ; Fink, Gernot A.: Segmentation-free query-by-
string word spotting with Bag-of-Features HMMs. In: International
Conference on Document Analysis and Recognition, 2015

[RGF17] Rueda, Fernando M. ; Grzeszick, Rene ; Fink, Gernot A.: Neuron
Pruning for Compressing Deep Networks Using Maxout Architectures.
In: Proceedings of the German Conference on Pattern Recognition (2017), S.
177–188

http://neuralnetworksanddeeplearning.com/

Bibliography 73

[RHW86] Rumelhart, David E. ; Hinton, Geoffrey E. ; Williams, Ronald J.:
Learning representations by back-propagating errors. In: Nature 323

(1986), Nr. 6088, S. 533–536

[RM07] Rath, Toni M. ; Manmatha, R.: Word spotting for historical documents.
In: International Journal of Document Analysis and Recognition 9 (2007), Nr.
2-4, S. 299–299

[Roj96] Rojas, Raul: Neural Networks. Springer Berlin Heidelberg, 1996

[Ros58] Rosenblatt, F.: The perceptron: A probabilistic model for information
storage and organization in the brain. In: Psychological Review 65 (1958),
Nr. 6, S. 386–408

[RSP09] Rodríguez-Serrano, José A. ; Perronnin, Florent: Handwritten word-
spotting using hidden Markov models and universal vocabularies. In:
Pattern Recognition 42 (2009), Nr. 9, S. 2106–2116

[SF15] Sudholt, Sebastian ; Fink, Gernot A.: A Modified Isomap Approach to
Manifold Learning in Word Spotting. In: German Conference on Pattern
Recognition (2015), S. 529–539

[SF16] Sudholt, Sebastian ; Fink, Gernot A.: PHOCNet : A Deep Convolutional
Neural Network for Word Spotting in Handwritten Documents. In:
International Conference on Frontiers in Handwriting Recognition, 2016

[SF17] Sudholt, Sebastian ; Fink, Gernot A.: Evaluating Word String Embed-
dings and Loss Functions for CNN-Based Word Spotting. In: International
Conference on Document Analysis and Recognition, 2017

[SGS15] Srivastava, Rupesh K. ; Greff, Klaus ; Schmidhuber, Jürgen: Training
Very Deep Networks. In: International Conference on Neural Information
Processing Systems, 2015, 2377–2385

[SHK+
14] Srivastava, Nitish ; Hinton, Geoffrey ; Krizhevsky, Alex ; Sutskever,

Ilya ; Salakhutdinov, Ruslan: Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. In: Journal of Machine Learning
Research 15 (2014), Nr. 1, S. 1929–1958

[SK99] Sankoff, David ; Kruskal, Joseph: Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison. Center for the
Study of Language and Inf, 1999

74 Bibliography

[SVI+16] Szegedy, Christian ; Vanhoucke, Vincent ; Ioffe, Sergey ; Shlens, Jon ;
Wojna, Zbigniew: Rethinking the Inception Architecture for Computer
Vision. In: Conference on Computer Vision and Pattern Recognition, 2016

[SZ14] Simonyan, Karen ; Zisserman, Andrew: Very deep convolutional net-
works for large-scale image recognition. In: Proceedings of the International
Conference on Learning Representations (2014)

[WB16] Wilkinson, Tomas ; Brun, Anders: Semantic and Verbatim Word
Spotting Using Deep Neural Networks. In: International Conference on
Frontiers in Handwriting Recognition, 2016, S. 307–312

	1 Introduction
	2 Fundamentals
	2.1 Word Spotting
	2.2 Artificial Neural Networks
	2.2.1 Perceptron
	2.2.2 Feedforward Networks
	2.2.3 Activation Functions
	2.2.4 Gradient Descent

	2.3 Convolutional Neural Networks
	2.3.1 Convolutional Layer
	2.3.2 Pooling Layer
	2.3.3 Fully Connected Layer
	2.3.4 Softmax Activation for Classification
	2.3.5 Maxout Layer

	3 Related Work
	3.1 Deep Network Architectures
	3.1.1 Residual Networks
	3.1.2 Densely Connected Networks

	3.2 Word Spotting with Convolutional Networks
	3.2.1 PHOCNet
	3.2.2 Triplet CNN

	4 Method
	4.1 Word Spotting with Dense Convolutional Networks
	4.1.1 DenseNet-121
	4.1.2 PHOC-DenseNet
	4.1.3 Hybrid Approach

	4.2 Regularization

	5 Experimental Evaluation
	5.1 Datasets
	5.2 Training Setup
	5.3 Evaluation Protocol
	5.4 Experiments and Results
	5.4.1 DenseNet-121
	5.4.2 PHOC-DenseNet
	5.4.3 Resized Images
	5.4.4 Hybrid Approach
	5.4.5 Comparison

	6 Conclusions

