
Binary Temporal Convolutional Networks for
the Logistic Activity Recognition Challenge

(LARa) dataset

Bachelor Thesis

Emmanuel Kembou Nguefack
August 22, 2022

Supervisors:

Prof. Dr.-Ing. Gernot A. Fink

Fernando Moya, M.Sc.

Fakultät für Informatik

Technische Universität Dortmund

http://www.cs.uni-dortmund.de

C O N T E N T S

1 Introduction 3

2 Fundamentals 5

2.1 HAR 5

2.2 Classification 7

2.3 Neural Networks 8

2.3.1 Perceptron 9

2.3.2 MLP 10

2.3.2.1 Activation function 12

2.3.2.2 Backpropagation and Optimization 14

2.3.3 Convolutional Neural Networks 18

2.3.3.1 Convolution-Layer 19

2.3.3.2 Pooling-Layer 21

2.3.3.3 Fully-Connected-Layers 22

2.3.3.4 Activation function 23

2.3.3.5 classification 24

2.3.3.6 Overfitting and Regularization 25

2.4 Binary Neural Networks 26

2.4.1 Preliminary (Backward, forward, ...) 28

2.4.2 Training 29

2.4.3 Optimization 30

3 Related Works 31

3.1 Achieving FP32 Accuracy for INT8 Inference Using Quantization Aware
Training. 31

3.2 BNNs: Training Neural Networks with Weights and Activations Con-
strained to +1 or −1 35

3.2.1 The BNN Architecture 36

3.2.2 Binarized Neural Networks 37

3.2.2.1 Deterministic and Stochastic Binarization 37

3.2.2.2 Gradient Computation 38

3.2.2.3 Gradient Propagation 38

3.2.2.4 Normalization and Result 39

3.2.2.5 Efficiency 39

3.3 Temporal Convolutional Neural Network 40

1

2 contents

4 Method 43

4.1 Temporal Convolutional Neural Network for HAR using LARa Dataset 43

4.1.1 Training of Temporal Convolutional Neural Network for HAR
using LARa 45

4.2 The classifiers 47

4.3 Binary Temporal Convolutional Neural Network for HAR 47

4.3.1 Architecture 47

4.3.2 Training Binary tCNN 48

5 Experimental evaluation 53

5.1 Dataset 53

5.1.1 LARa Dataset 53

5.2 Metrics 56

5.2.1 Precision, Recall, F1-Scores and loss 57

5.3 Experiment and Results 58

5.3.1 Baseline tCNN 59

5.3.2 BtCNN for HAR on LARa 61

6 Conclusion 73

1
I N T R O D U C T I O N

Understanding the lifestyle and behavior of human beings requires the observation of
their movements. This is one of the main goals of artificial intelligence research. These
last years have witnessed the growing number of techniques and approaches that rely
on the artificial intelligence model to understand human behavior [NRMR+

20]. One
of these state-of-the-art approaches is HAR. It is a part of deep learning which consists
in recognizing humans’ actions or movement through different sources, e.g. videos,
images, sensor data [BBS13]. The ability to recognize human behavior is important in
various areas of life. Therefore, HAR is deployed in several domains such as logistics,
health, technology, security, and communications.
One way to predict these human activities is to use data labeled from sensors as an
input of HAR machine learning model. Similarly to neuronal networks,HAR machine
learning networks are previously trained with specific training data to recognize
different activities. One of the neural networks that can improve the training process
is the convolutional neural network according to [NRMR+

20]. By its structure, this
network is well suited to effectively recognize human activities using sensor data.
However, deploying a method for HAR using deep learning is not an easy task as it
faces a great challenge. Running a CNN-based HAR method can only be executed on
larger devices with huge GPUs which require more capacity and financial investment
and not everybody can afford these state-of-the-art GPUs. Therefore, several works
have been launched to reduce the memory consumption of the HAR machine. The
main goal is to make HAR work on the smallest devices (including smartphones or
other end devices) to not only improve this area of machine learning, but to make the
benefits of the HAR accessible to all sectors of human activities.
Many works have been proposed for solving HAR problems. Therefore, [NZ21] pro-
posed achieving FP32 Accuracy for INT8 Inference Using Quantization Aware Training
but this could lead to the reduction in the precision of the parameters and data, which
easily hurt a model’s task accuracy. However, a state-of-the-art results model was
proposed by [CB16]. The idea is to drastically reduce the input data from 32 fp to 1 bit,
i.e. to reduce 32 times the memory consumption of the HAR model called Binarization.
The latter is a 1-bit quantization where data can only have two possible values, namely
−1 or +1. So, it consists in updating the weight of the layer from full-precision models
number to 1 or −1. This thesis therefore aims at using this state-of-the-art method for

3

4 introduction

solving HAR issues. The LARa dataset proposed by [NRMR+
20] is used in this work.

This work deals with the neural network described in [NRMR+
20], which is used

to detect human activities in a warehouse called TCNN. The main goal of this work
is to binarize the convolution layers of the tCNN, which has been previously trained
in the LARa dataset to solve the HAR, then analyze its performance compared to
normal tCNN. The Layers of the tCNN will be trained independently. However, before
presenting relatively good performance compared with the baseline or state of the art
of this experiment, this thesis will begin by giving a brief description of how the HAR
works, then the related work trying to solve the difficulties of HAR, and then use the
binarization method, to train tCNN on LARa dataset while giving a brief overview
of the LARa and tCNN architecture. It will be therefore a question of observing if
the drastic diminution of the number of bits will have an impact on the network’s
performance.

2
F U N D A M E N TA L S

2.1 har

Human activity recognition (HAR) assigns human action labels to signals of move-
ments. It could be defined as the pattern recognition of identifying the specific
movement or action of a person based on sensor data.
The application of Human Activity Recognition extends to various domains, including
medicine (monitoring disease progression and rehabilitation support through humans’
movement), sports (understanding and interpreting athletes’ behavior and actions,
or tracking performance with fitness trackers) or smart homes (increasing the house
security. HAR can also be used in the industry or logistics to understand workers’
actions and behavior. The resulting optimizations and improvements through analytics
help industries to improve their productivity or the working environment. However,
HAR is a very challenging task to master [BBS13].
Due to the high level of intra- and inter-class variability in human actions, HAR appears
to be a particularly challenging field. This is because the same activity may be per-
formed differently by different people, while some fundamentally different activities
may have very similar characteristic properties in sensor data. One of the expensive
and tedious issues is the Ground Truth annotation. For HAR, some annotations are
done in real time and the labeling manually. Moreover, motion data recorded from
one sensor is often more difficult to interpret than data from other sensors. It is also
difficult to classify a movement according to its characteristics because the activities are
performed differently in different environments, depending on different contexts and
reasons. This diversity of physical activities remains a specific issue for HAR. Another
difficulty is that, when creating a balanced data set, it must always be considered
that the movements are not always the same for all humans because some activities
occur more frequently for some than others.[BBS13] talks about class imbalance which
depends on the level of activity to be recognized by a particular HAR system and
requires recording additional training data. Another major issue is Data Collection
and Experiment Design. Properly designing and conducting a HAR experiment can
be underestimated at first sight and data collection may require more equipment
and logistics. Other challenges are Variability in Sensor Characteristics and Tradeoffs in

5

6 fundamentals

Human Activity Recognition System Design. Some sensors are particularly sensitive to
the environment. The possibility of errors or hardware failures, sensor drifts cannot
be excluded.
The first step of HAR Methods [RNMR+

19] is data representation. Different data repre-
sentations in Human Activity Recognition can be recorded using various sensors and
cameras. This includes sensors integrated in IMUs set on the human body, e.g. on the
hands, legs, head, and torso. Acceleration sensors are placed for example on the waist
to record the acceleration measurement, and Motion Capturing System like OMOCAP
are deployed for the local human joint poses. These movements are often typical
activities performed indoors, such as walking, standing, etc. There could also be
additional activities like those performed in logistics, e.g. picking and packing(items).
The subjects are taken to a laboratory where these devices are installed on parts of
their bodies Figure2.1.1. Then they perform different movements that will be classified
and assigned to activity classes. During the experiment, a series of sensor curves will
be drawn for each subject, describing the activities during the experiment. It is also
important to note that the number of records and times are annotated and included in
the dataset.
After the representation, it is time for the pre-processing [RNMR+

19]. Factors that may
influence the data are simply filtered and eliminated. These factors are related to the
different characteristics of sensors. Thus, different filters are applied for smoothing
the signal, reducing or eliminating random noise and separating the acceleration
components due to the gravity. [RNMR+

19] also talk about normalizing the extracted
Data -for example to the range- before the training stage.
Segmentation refers to extracting a sequence of the pre-processed data that are plausible
to represent a human activity. For HAR, they mostly use the "sliding-window" for cre-
ating segments, which are moved over the time-series data by a certain step to extract
a segment or being processed by a classifier [RNMR+

19]. In [RNMR+
19], there will

also be other approaches for segmenting sequences using additional measurements or
events for some additional parts of the body, e.g. eyes.
Divided into two main groups - statistical features and application-based -, the Feature
Extraction is the standard pattern recognition method, which allows representing data
in a compact manner for the later classification stages[RNMR+

19].
A feature reduction is deployed for reducing the dimensionality of the feature space,
keeping the discriminant properties of the features. Therefore facilitating classification
[RNMR+

19].
Another method of HAR is classification. There are several classification models
mentioned in [RNMR+

19].

2.2 classification 7

Figure 2.1.1: A Graphic of subjects with sensors on their bodies. Taken from [NRMR+
20].

2.2 classification

Classification is the process of predicting the class of given data points. There
are therefore one or more classifications of the activity including the associated
pseudo-probability as output. Examples of classifiers include Naïve Bayes, k-Nearest
Neighbor (KNN), Support Vector Machines (SVMs), Random Forests, Dynamic Time
Warping (DTW), and Hidden Markov Models (HMMs) [RNMR+

19]. According to
[BBS13], while the best results for all available data are achieved by SVM , the worst
performance is held by naive Bayes, k-NN hast lowest recall, the k-NN and HMM
classifiers, however, achieved the higher precision. One of the most used models is the
Hidden Markov Model (HMM), which is trained by [LC11] per axis of pre-processed
acceleration measurements merged with a weighted sum. The hidden state at time t
depends on the previous state at time t-1. The observed variable at time t depends
on the state at time t. The goal is to find the joint probability distribution[Sar14].
Therefore, the aim of the classification is to find a description that is as suitable as
possible for the movement. In addition to the simple loss classification , the precision,
the recall and the accuracy are metrics of such classification methods, which indicate
the correct classification . The average metric across all object classes is referred to as
mean precision and mean accuracy.
Deep Learning overcomes some issues regarding computation and adaptability of
handcrafted features. It is a state-of-the-art method for solving HAR, which combines
extraction and classification. The accuracy here is better because, their features are
directly learned from data.

8 fundamentals

2.3 neural networks

Just as many inventions in engineering were inspired by real life, e.g. planes and
birds, so was the machine learning. Machine learning engineers based themselves on
the human brain (Figure2.3.1) (responsible for learning) to create a network called
the neural network. The brain consists in several neurons which transfer information
in the form of electrical impulses. These neurons are composed of three main parts
(Figure2.3.1): dendrites, cell body and axon. Dendrites are the main conducting wires
through which information from the outside passes. They absorb the information
and pass it onto the cell body, which is made up of the control center, that processes
information received from the dendrites. The axon is the common wire that carries
the output signal from the cell body to other neurons. The first artificial neuron in
computer science was published in 1943 by Warren S. Mc Culloch and Walter Pitts
[MP43] and was represented by a simple electrical circuit. The McCulloch-Pitts neuron
can receive n binary signals as input and output a single binary signal.

Figure 2.3.1: Structure of a biological neuron taken from [NGLK18] and [Jon17] respectively.

2.3 neural networks 9

2.3.1 Perceptron

σ

Activation
function

∑
weighted
sum

w2x2

...
...

wnxn

w1x1

w01

inputs weights

Figure 2.3.2: Representation of a Basic Perceptron Neural Network.

In 1958, Frank Rosenblatt created the perceptron [Ros58] , a simple neural model that
could be used to classify data into two sets. Based on the McCulloch-Pitts neuron,
the perceptron is an ANN consisting of only a single neuron, which can solve linear
separable problems. Figure 2.3.1 shows a simple perceptron that includes n input
vector x ∈ Rn, the associated weights w ∈ Rn and a bias weight. The perceptron sums
the products of the inputs and their associated weights and bias, and then applies that
result through an activation function. Figure2.3.1 , the activation function is a function
with the binary output f(x) ∈ B. If this output is greater than or equal to 1, then the
output is 1, otherwise, the output is 0.

In the literature, there are different variants that are equivalent in terms of func-
tionality, but differ in their presentation (e.g. if the bias is used). The advantages of
incorporating the bias into the weight vector is necessary during the optimization
of NNs. This thesis consider a model of n binary input vectors 1, ...,Xn and exactly
the same number of weights W1, ...,Wn, that are multiply together and sum up. The
input vector and the weight vector look like x = [1x1x2...xm] and [w = w0w1w2...wm].
Thus, wTx = w0 +w1x1 +w2x2 + ... +wmxm. Considering a as activation,

a =

n∑
i=1

wixi + b = wTx+ b (2.3.1)

10 fundamentals

Mathematically , the bias b can actually be incorporated into the weight vector, i.e.
W1 = b and set x0 = +1 for all of our inputs. However, it will not influence the model,
but it will be helpful for the further process.

a =

n∑
i=0

wixi = wTx (2.3.2)

The activation function σ is applied to the activation in equation2.3.2 to obtain the
output activation z.

z = σ(a) = σ

(
n∑

i=0

wixi

)
= σ

(
wTx

)
. (2.3.3)

The calculation of the output values can be described with the following function:

σ(a) =

1, if a⩾ 0

0, if otherwise
(2.3.4)

Perceptron training follows this general rule. First, the weights of the network are
initialized to a random set of values. Then are iterated over a training set until no
further errors occur. Then apply a training vector to the network and execute the
network in order to get an output value. This output will be subtracted from the
desired output , thus the error value is obtained. This error, together with a learning
rate, is then used to adjust the weight multiplied by the input associated with the given
weight. This process will be repeated many times until the error becomes minimal or
zero.

2.3.2 MLP

Figure 2.3.3: Structure of a biological neuron connected together taken from [NGLK18].

2.3 neural networks 11

A multi-layer perceptron or MLP is an ANN consisting of several sequentially arranged
perceptrons, the neurons are arranged in several layers and the neurons within a layer
are not connected to each other. As modeled on the human brain (Figure2.3.3), every
neuron in a layer is linked to every neuron in the following layer and there are three
types of layers: the input layer, which gives the input vector x ∈ Rn , the hidden layers,
which adjust the data taken from the input layers and the output layer, which provides
the final result ŷ ∈ R of the computation. In Figure 2.3.4, there are 3 input layers and a
single output layer. But in reality, it depends on the model of the framework in which
the network is used because it can be many.There can be an infinite number of hidden
layers and from 2 layers, is already possible to talk of a deep network. Each layer can
also contain an infinity of neurons. Thus, the number of neurons or layers is mostly
arbitrary. So the MLP can contain at least 3 layers (1 input, 1 hidden and 1 output).
The activation of the neuron can be determined in a similar way to that of the simple
single neuron or perceptron. For example, the equation2.3.5 presents the activation of
a neuron j (of the layer k) receiving a weight coming from the neuron i of the previous
layer k− 1. Where k represents the layer, j the neuron and i the neuron of the previous
layer.

a
(k)
j =

n(k−1)∑
i=0

w
(k)
i,j z

(k−1)
i = w

(k)T
j z(k−1), (2.3.5)

Applying the activation function σ to the activation in equation2.3.2) will give the
output of the same neuron:

z
(k)
j = σ(k)

(
a
(k)
j

)
= σ(k)

(
n(k−1)∑
i=0

w
(k)
i,j z

(k−1)
i

)
= σ(k)

(
w

(k)T
j z(k−1)

)
, (2.3.6)

Thus, the application of the activation function σ on a layer k will give a vector
set, which is the combination of all the outputs of the previous neurons. However,
these previous neurons also receive the weights combined with the outputs of all the
preceding neurons except the first layer, which only receives inputs as demonstrated
in the following Figure.

12 fundamentals

Input #1

Input #2

Input #3

Hidden
layer 1

Hidden
layer 2

ŷ Output

Input
layer

Output
layer

Figure 2.3.4: An example of MLP. The edges transfer the weights or output data from a neuron
i to a neuron j of the next layer k. The nodes represent neurons.

Furthermore, there is a large number of activation functions.

2.3.2.1 Activation function

When the neurons calculate the weighted sum of the input values plus the bias
(Equation 2.3.1), they are passed to the activation function, which checks whether the
calculated value is above the required threshold. If the calculated value is greater than
the required threshold, the activation function is activated, and an output value is
calculated (σ(a)). This output value is transmitted to the next layers (depending on
the complexity of the network) and will help neural networks to update the weight of
the neurons. Thus, the activation function is a mathematical Equation that is activated
under certain conditions.
Many activation functions have been proposed, but 2 most popular will be described
in detail: sigmoid and tanh.

2.3 neural networks 13

sigmoid Historically, the sigmoid function is the oldest and most popular activation
function. It is defined as:

σ(x) =
1

1+ e−x
(2.3.7)

Considering the equation2.3.1, i.e. if the variable a are first set to the weighted sum of
the inputs,and then transmitted to the sigmoid function, the output z will be obtained
as follows:

z = σ(a) =
1

1+ e−a
(2.3.8)

The sigmoid function produces an S-shaped curve [Figure2.3.5]. Although non-linear
in nature, it does not take into account slight variations in the inputs, which leads to
similar results. The sigmoid function is continuously differentiable and the derivative
is a function of the primitive σ ′(a) = σ(a)(1− σ(a)) i.e. z ′ = z(1− z). However, the
sigmoid function poses a problem called vanishing gradient [Hoc98] [Dat20] [HBFS01]:
when training on deeper neural networks the gradient would become smaller and
smaller after multiple derivations,but only very small changes can be made based on
those gradient, which leads to stagnation of the optimization of a neural network. As
a result, the loss stops decreasing and the network does not get trained properly.

tanh function The hyperbolic tangent became preferred over the sigmoid func-
tion because it gives better performance for multi-layer neural networks. The tanh
function is defined as

z = tanh(x) =
ex − e−x

ex + e−x
(2.3.9)

The tanh function has all the properties of the sigmoid function because it can be
expressed as tanh(x) = 2 ∗ sigmoid(2x) − 1. It gives negative, positive and zero
as output(range of (−1, 1)), so it solves the "not a zero-centered activation function
"problem of the sigmoid function and produces zero centered output, thereby facil-
itating the back-propagation process.The gradient of tanh can be calculated using
tanh ′(x) = (1− tanh(x)2) otherwise z = 1− z2. This is still a non-linear activation
function (also belongs to the sigmoidal group of function), and that is why it still
presents vanishing gradient problems similar to the sigmoids, when training on a
large number of epochs. [Hoc98] [Dat20]. Two major problems arise from these mostly
used activation function: the vanishing gradient problem (by sigmoid and tanh) and
the dead neuron problem(ReLU) [Dat20].

14 fundamentals

−6 −4 −2 0 2 4 6

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

a

z

sigmoid function

σ(a)

σ ′(a)

−5 0 5

−0.5

0

0.5

1

x

z

tanh function

tanh(x)

tanh ′(x)

Figure 2.3.5: left: Graph of the tanh function, right: Graph of the gradient of tanh function.
The graphics are inspired from stackexchange

2.3.2.2 Backpropagation and Optimization

backpropagation Backpropagation is a process of the backward propagation
of errors within a network. It is used in supervised learning in neural networks to
calculate the mathematical derivatives of the error function with respect to the weights
of the network. An input vector is applied to the network and propagated forward
from the input layer to the hidden layer, which recognizes features in the input space
and then to the output layer for a solution. The error value is propagated backward
through the weights of the network beginning with the output neurons through the
hidden layer and to the input layer. However, Backpropagation can be very efficient and
has been used since the mid-1980s. Moreover, during backpropagation, the weight and
other parameters are updated according to the gradient, allowing for learning/training
of the data in a finite number of iterations. Thus, the Backpropagation method is used
to calculate the error gradient for each neuron, from the last layer to the first (Figure
2.3.6).
The error for every output node is calculated independently of each other and the sum
is dropped. The parameters are denoted as follows: x: input (feature vector), y: target
output, so for a training set, there will be a set of input-output pairs, (xi,yi). An MLP
f(x; W) whose parameters W are to be optimized, an error function C(ẑ, z) (or shortly

2.3 neural networks 15

C) that specifies the error for an input-output pair (x,y) ∈ X, the bias b
(k)
j understood

as a weight w(k)
0,j with constant input 1, W containing only the weights w(k)

i,j . Therefore
only the partial derivatives ∂C

∂wij
have to be formed. Figure2.3.6 presents a view over

Back and Forward propagation during training.

Figure 2.3.6: Backward- and forward-propagation during training of Neural Networks, in-
spired from [Aka20]

For each individual component gradient are given by:

∂C

∂wij
, (2.3.10)

can be calculated by the chain rule for the differentiation

∂C

∂wij
=

∂C

∂zj
·
∂zj

∂wij
, (2.3.11)

or more

∂C

∂wij
=

∂C

∂zj
·
∂zj

∂aj︸ ︷︷ ︸
=σj

·
∂aj

∂wij
, (2.3.12)

with
σj =

∂C

∂zj
·
∂zj

∂aj

so the components of ∂C
∂wij

are given by

∂C

∂wij
= σj ·

∂aj

∂wij
= σj · zi, (2.3.13)

16 fundamentals

Knowing that z(k)j = σ(k)
(
a
(k)
j

)
from Equation 2.3.6, the following equation can be

written

σj =
∂C

∂zj
·
∂zj

∂aj
= C ′(ẑj, zj)Φ ′(aj), (2.3.14)

However, performing the equation 2.3.13 for each weight separately is ineffi-
cient.Thus on the jth neuron of the kth layer Equation2.3.14 will be rewritten as

σ
(k)
j = C ′(ẑj, zj)Φ ′(k)(a

(k)
j), (2.3.15)

The first term on the right, C ′(ẑj, zj) , only measures how fast the cost is changing as
a function of the jth output activation. If, for example, C does not highly depend on
a particular output neuron, j, then σ

(k)
j will be small, which is what is needed. The

second term on the right, Φ ′(k)(a
(k)
j), measures how fast the activation function ϕ is

changing at a(k)
j .

Let’s consider two possible paths that σ(k)
j can influence, the error C (o

(k)
1 ando

(k)
2) and,

according to the generalized chain rule, let’s differentiate the two paths individually
then add them

∂C

∂z
(k−1)
i

= σ
(k)
1 ·w(k)

i,1 + σ
(k)
2 ·w(k)

i,2 , (2.3.16)

then the ∂C

∂z
(k)
j

components given by

∂C

∂z
(k)
j

=

Nk+1∑
j=1

σ
(k+1)
j w

(k+1)
ij (2.3.17)

Using 2.3.17 will give:

σ
(k)
j =

∂C

∂z
(k)
j

·
∂z

(k)
j

∂a
(k)
j

=

Nk+1∑
j=1

(
σ
(k+1)
j w

(k+1)
ij

)
Φ ′(k)(a

(k)
j) (2.3.18)

by using the following equations 2.3.15 and 2.3.18, the neuron error will be

σ
(k)
j ,k = 1, ...,M.

σ
(k)
j =

C ′(ẑj, zj)Φ ′(k)(a
(k)
j), if k=M∑Nk+1

j=1

(
σ
(k+1)
j w

(k+1)
ij

)
Φ ′(k)(a

(k)
j), otherwise

(2.3.19)

2.3 neural networks 17

optimization Optimization is a branch of mathematics used to solve problems
by determining the best element of a set according to certain predefined criteria. For
example, the Adam and the Root Mean Square Przationon (RMSProp) optimization
methods(presented below) were used in [RNMR+

19] for training the CNNs, tCNNs,
and RNNs. The network parameters can be optimized by minimizing the cross-
entropy loss function using mini-batch gradient descent with the RMSProp update
rule[MRGF+

18], which adjusts the learning rate for each weight depending on the
moving average of the squared gradients [Bus18]. The parameters of the networks
are updated by minimizing the categorical cross entropy using the stochastic gradient
descent with the RMSProp update rule. The RMSProp update rule is given by:

E[g2]new = γE[g2]old + (1− γ)(
∂C

∂w
)2 (2.3.20)

The aim of RMSProp is to keep a moving average of the squared gradient for each
weight. However, it adjusts the learning rate for each weight depending on the moving
average of the squared gradients [HSS12][Bus18][Rud16]

wnew = wold −
η√

E[g2]new

· ∂C
∂w

(2.3.21)

RMSProp could consistently offer the best results with the widest tolerance to the
learning rate setting after experiments with multiple per-parameter learning rate
updates [OR16][MRGF+

18]. E[g] is the moving average of squared gradients, ∂C
∂w the

gradient of the cost function with respect to the weight, η learning rate and γ moving
average parameter. [HSS12] suggests γ to be set to 0.9, while a good default value for
the learning rate η is 0.001.
Apart from storing an exponentially decaying average of past squared gradients vt,
like RMSprop, Adaptive Moment Estimation (Adam) also keeps an exponentially
decaying average of past gradients mt, similar to momentum[Rud16]:

mnew = γ1mold + (1− γ1))(
∂C

∂w
), vnew = γ2 · vold + (1− γ2))(

∂C

∂w
)2 (2.3.22)

However, defined as an Optimization Technique Algorithm for Gradient Descent,
Adam is used to speed up the gradient descent algorithm by considering the "expo-
nentially weighted average" of the gradients[Spa22].
The Adam update rule is given by [Rud16]:

wnew = wold −
η√
v̂old

m̂old. (2.3.23)

18 fundamentals

Where m̂t =
mt

1−γt
1

, v̂t = mt

1−γt
2

and γ1 has 0.9 as default value, 0.999 for γ2, which are
both the decay rates. [Rud16] gives more details and improvement on Adam.
The loss function or cost function is established to solve the optimization problem
during training. One of the most commonly used lSss funcEions (is)the Mean Squared
Error (MSE), which measures the average of tIe squares ofs the errors. In other words,
it is the average squared difference between the output values ŷ and the label value y.

MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2 (2.3.24)

The closer the y and ŷ values are, the smaller the MSE. Hence the idea of minimizing
the MSE through adjustments to y and ŷ. Therefore, it will suffice to bring the output
value ŷ closer to the expected value to minimize the function.
The cross entropy is the average number of bits needed to encode data coming from a
source with distribution p when the model q is used [KA21]. It is used for multi-class
and multi-label classifications. Given by

CE(y, ŷ) = −
1

n

C∑
i=1

yilog(ŷi) (2.3.25)

with and y ∈ Bc the target attribute representation and ŷ ∈ Bc the output of the
architecture. CE is used to minimize the loss during training by updating model
weight. A The authors in [NRMR+

20] trained their model using the binary-cross
entropy loss for binary classification given by

BCE(y, ŷ) = −
1

N

N∑
j=1

yjlog(ŷi) + (1− yj)log(1− ŷi) (2.3.26)

2.3.3 Convolutional Neural Networks

AS initially described in Section 2.3.2, MLP are made up of neurons that have learnable
weighs and biases. Each neuron receives some inputs, performs a dot product and
optionally follows it with a non-lineaity function. Each neuron has an activation
function and the network has a loss function on the last (fully connected) layer. In
1959, the authors of [HW59] developed the visual cortex of cats. In the process they
discovered two types of cells that contributed to recognition. In 1989, based on these
two insights, Yann LeCun developed the first convolutional neural network (CNN).
The ConvNet architecture is therefore analogous to the connectivity model of neurons

2.3 neural networks 19

in the human brain. Convnet is a Deep Learning algorithm which can take in an
input image, videos or sequences assign learnable weights and biases to various
aspects/objects in this input in order to differentiate one from the other. ConvNet
is a sequence of layers built in three main types: Convolutional Layer Pooling Layer,
and Fully-Connected Layer. A closer view of the convolutional layers is given in
Figure2.3.7.

Figure 2.3.7: Schematic diagram of a High-level ConvNet(CNN) architecture taken from [PG17]

The architecture presented by the Figure2.3.7 is composed of an input layer to
supply the network with input, followed by a convolutional layer, then follows a ReLU
activation function, and after that a pool layer. The last layer is the classification layer
or the fully connected layer.

2.3.3.1 Convolution-Layer

Convolutions are used to handle inputs. When considering an n-dimensional input,
the input can be encoded with matrices having values. These values will correspond
to a pixel and our input will be composed of those numbers. While sliding over
the data input represented in matrices, the values obtain are multiply by the kernel
values. Kernels or filters are learnable matrices with multidimensional weights, i.e.
the weights can also be learned during the training of the network. The kernel values
(or weights) are initialized and then updated by gradient backpropagation. The kernel
is moved step by step over the n-dimensional input by computing the dot product of

20 fundamentals

the kernel and the input elements covered at each step, and this is then turned into a
weighted sum whose weights are the kernel values. Figure2.3.8 illustrates this in more
details. In short, the result of a convolution is obtained by convolving the input values
with the values (weights) of the kernel. This result will be called the "Featuremap",
which gives information on the location of the features in the image: the higher the
value, the more the corresponding place t in the image is similar to the feature. The
convolutional layer can be set by adjusting the filter size F and the stride S. A stride
S is a parameter that indicates the number of steps the matrix moves through after
each operation or simply the size of the steps through which the matrix is shifted.
For example, for S = 1, the matrix moves by one step. A filter of size F× F applied
to an input containing N channels is a volume of size F× F×N that convolves an
input of size L× L×N and produces an output feature map of size 0× 01 given by
the formula 0× 0× K where K is the number of filters applied. Zero-padding is a
technique that adds P zeros to each side of the input boundaries. This margin helps
control the spatial dimension of the output volume. Thus it is a technique that allows
us to preserve the original input size. A correct formula for calculating the number
of neurons is given by (W − F+ 2P)/S+ 1 according to [GBC16] The convolution of
a feature for a 2-D input I with a two-dimensional kernel K of size m × n can be
expressed by the following formula [GBC16]

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j−n) (2.3.27)

2.3 neural networks 21

Figure 2.3.8: Graphic of a convolution operation applied to a 2-D tensor. The inputs are
represented by alphabetic letters from a to l, the Kernel from w to z. The output
is the feature map of input and Kernel. image taken from [GBC16]

A Convolution incorporates three important methods that -an help improve a
machine-learning system, namely sparse interactions,parameter sharing and equivari-
ant [GBC16].

2.3.3.2 Pooling-Layer

a convolutional layer is usually followed by a pooling layer. In a ConvNet architecture,
a pooling layer is regularly inserted between successive conv layers. Its function is
to control overfitting, by progressively reducing the spatial size of the representation
and by reducing the number of parameters and computation in the network [LKBS20].
Hence, pooling is usually referred to as a downsampling operation. Here, the kernel
itself does not contain any entries as in convolutional layers but is only needed to mark
the areas to be summarized. In particular, the most commonly used types of pooling
are max and average pooling, where the maximum and average values are taken,
respectively. The most commonly used is the Max pooling because Max pooling keeps
the detected features. To achieve this, the image is cut and then the maximum value
is saved within each cell. In general, small square cells is used. The most common
choices are adjacent cells of size 2× 2 pixels which do not overlap, the choice of the
size and stride of a pooling kernel can strongly impact the performance of the network

22 fundamentals

and reducing the feature map size by 75% [LKBS20], the stride is normally set to 2,
thus ensuring that each element appears at most once in a pooling operation. The
maximum values are located less accurately in the feature maps obtained after pooling
than in those received as input - which is actually a great benefit! In fact, to recognize
a motorcycle for example, its handbrake lever or the mirrors do not need to be located
as precisely as possible: knowing that they are located approximately next to the
throttle is enough!

Figure 2.3.9: Example of a Downsampling operation –Every Max operation would in this case
be taking a max over 4 numbers (with filter size 2, stride 2). Figure taken from
[LKBS20].

2.3.3.3 Fully-Connected-Layers

Fully connected layers are typically present at the end of CNN architectures and can
be used to classify input extracted from conv layers. FCs thus allow to determine the
link ben the position of the input and the class[NRMR+

20]. The FC layer receives a
vector as input and produces a new vector as output. It does this by applying a linear
combination and eventually an activation function to the values received as input. The
fact that each input value is connected with all output values explains the term fully
connected. The last fully connected layer is used to classify the input image of the
network: it returns a vector (x1x2...xN) , where N is the number of classes in our image
classification problem. Each element of the vector indicates the percentage of the input
image that belongs to a class. For example, if the problem is to discriminate bikes and
motorbikes, the output vector will be of size 2: the first element gives the probability
of belonging to the "bike" class and the second to the "motorbike" class. Thus, the
vector [0.20.8] means that the image has an 80% chances of being a motorbike. To
calculate full probabilities, the Fully-connected layer therefore multiplies each input
element by a weight, sums, and then applies an activation function. [NRMR+

20]
uses the softmax and sigmoid function for its experiment. The sigmoid function is
generally used if the class number is equal to 2 (binary) and softmax if it is greater

2.3 neural networks 23

(multi-classification) [Bas20]. More details about these functions can be found in
section2.3.2.1 and section2.3.3.5.

2.3.3.4 Activation function

After each convolution operation, a CNN performs a ReLU (Rectified Linear Unit)
transformation on the feature map, which brings a non-linearity into the model
[LKBS20]. Rectified Linear Units, or ReLUs, are a type of activation function that are
linear in the positive dimension, but zero in the negative dimension. It is defined as
RELU(x) = max(0, x), where x is the input of the activation function. It is currently,
the most successful and widely used activation function [Dat20] that enabled the
fully supervised training of state-of-the-art deep networks. Thanks to the RELU the
Deep networks are more easily optimized and it has become the default activation
function used across the deep learning community [RZL17]. Unlike sigmoid functions,
linearity in the positive dimension has the attractive property that it prevents non-
saturation of gradients. The ReLU function is not differentiable at x = 0 and basically
pushes the negative values to zero; it offers better performance in neural networks
than the sigmoid and tanh activation functions and could run six times faster than
sigmoid/tanh in terms of number of epochs required to train a network according
to [Dat20]. The author of [Dat20] further states that there is no vanishing gradient
problem in the ReLU because the derivative is exactly 0 or 1 every time. However, it
suffers from the dead neuron, which is already mentioned at section 2.3.2.1. [Dat20]
defines two new variants of the ReLU called the Leaky ReLU or LReLU and the
parametric ReLU or PReLU to solve the dead neuron problem.

24 fundamentals

−8 −6 −4 −2 2 4 6 8

0.5

1

1.5

2

x

z

ReLU function

ReLU(x)

ReLU ′(x)

Figure 2.3.10: left the schematic Graph of the ReLU function and right the activations of an
example CNN architecture. Image of architecture taken from [LKBS20]

2.3.3.5 classification

Fully-Connected-Layers usually use a Softmax or Sigmoid activation function to
classify the inputs in the best way [NRMR+

20].

softmax activation function Softmax activation function is similar to the
Sigmoid function. It is a Sigmoid activation function that takes vectors of real numbers
x ∈ Rn as inputs, and normalizes them into a probability distribution p ∈ Rn

proportional to the exponential of the input numbers. The difference between the
two functions is that not only one element should be considered, but all output
data should be included. That is why all values in the denominator are summed:
p = (p1,p2, ...,pn) where pi =

exi∑n
j=1 e

xj

The Softmax function is given by:

Softmax(xi) =
exi∑N
j=1 e

xj
for i = 1, ...,N (2.3.28)

After applying Softmax, each element will be in the range of 0 to 1. A Softmax
activation is used in the Fully-Connected-Layer to classify the data [NRMR+

20]. Idea
is to map the non-normalized output of data to the probability distribution for output
classes. With Softmax the sum of all the output probabilities is equal to one.

2.3 neural networks 25

Figure 2.3.11: Example of a softmax activation function diagram taken from [Rad20]

output and loss The loss function in a neural network is the difference between
the predicted output and the actual output. Idea is to minimize the Loss for gut
classification. Therefore the gradients(between the Loss and input) are derived to
update the weights. For the multiclass classification for example, Convolutional neural
networks are trained with either the log-loss or cross-entropy .
The cross-entropy is given by

LCE = −

N∑
c=1

yi,clog(ŷi,c) (2.3.29)

With N > 2 the number of classes, y the binary indicator (0or1) if class label c is the
correct classification for observation i. -therefore out of the whole sum only one term
with yc = 1 will actually be added - and ŷ model’s prediction of class c, i.e, the output
of the softmax for class c.

Figure 2.3.12: Cross-entropy function using the activation from [Gom18]

If the Softmax function with cross-Entropy Loss is used as the output layer, the
Softmax function is derived or if the sigmoid with Cross-Entropy Loss is used as
the output layer, the sigmoid function is derived. The derivation is to compute the
gradient (between the Loss and the input) Equation 2.3.10.

2.3.3.6 Overfitting and Regularization

Overfitting or high variance in machine learning models happens when the accuracy
of the dataset used to train the model (the training dataset), is higher than the accuracy

26 fundamentals

of the tests. With regard to loss, overfitting appears when your model has a higher
error in the test set and a low error in the training set. To treat Overfitting, a technique
called Regularization is used, which optimizes a model by disfavoring complex models,
thus minimizing losses and complexity. This makes the neural network simpler. One
way to achieve this goal is to minimize the following function:

min
U,V

=
∥∥(X−WYT

)∥∥2
F

(2.3.30)

This formulation allows optimization by matrix factorization, leading to a structured
factorization of X, where ∥.∥2F is the Frobenius norm, X ∈ Rn×m designates the input
data, W ∈ Rm×d the weight matrix and Y ∈ Rn×d the target labels. The Frobenius
norm establishes a similarity between X and WYT .
The regularization techniques are various as follows regularization based on Data
augmentation (l2), by bringing changes in the training data for CNNs producing
an update θ ← θ− η∇θJ

old
train(θ) − ηλθ. The term ηλθ in the update leads the

parameters θ slightly towards 0, adding some decay in the weights with each update,
Regularization L1 of CNNs θ ← θ− η∇θJ

old
train(θ) − ηλ · sign(θ) . Which puts

more probability feature close to 0 and the Dropout. [SP22] and [OZCR20] bring more
details on the regularization of CNNs.

2.4 binary neural networks

Binary networks are deep neural networks that use binary values as activation and
weights, instead of full-precision values. And inside the networks all the weight and
activation are binary, i.e. 32-bit floating-point input data are updated to logical −1 or
logical 1. Thus, the X-nor operation works similarly to the multiplication operation. So,
the multiplication will be replaced here by the X-nor (Figure2.4.1), which reduces the
execution time and this very suitable for the GPUs, otherwise this can be implemented
very efficiently on the Datase. The BBNs features are very compact and powerful. Thus
no need to use powerful GPUs and memory for training and storing the model which
cannot be supported by small devices or graphic card(because there is no more need
to deal with floats.) instead, simple GPU can now be used to run the computations.
Furthermore, the BBNs are cheaper to store and to compute the features(weight and
activation are now represented in a single bit but no more in 32-bit floating-point and
this is a big win fort the memory).
The architecture of a BBN is similar to the DDN architecture, except,the fact that
the features are binarized to either −1 or +1. But one problem to be encountered is
that,according to section2.3.2.2, normally for each inputs (in the learning process) NNs

2.4 binary neural networks 27

weights and activations are multiplied and then accumulated in order to have a single
value called gradient (the idea here is to determine the derivation between the output
and the real values and from this error determine the gradient in order to update the
weight: optimizing the parameter and for the gut result). In our case,however, weights
and activations are represented by either −1 or +1. And the problem is that to obtain
these gradients the sign function output has to be derived. But if the sign function
output is derived, the result will be Zero because the sign function is not continued
and differentiable. Thus,there will be no more Backpropagation and, therefore, no
learning in the networks. In 2016, [CHS+

16] used the straight-through estimator, to
solve this problem. This means during the training, the Networks are based on 32 bits
or simply data with large numbers, and when the network is used -during the forward
pass, weight and activation will be binarized using the sign function. This means the
output is based on binary numbers, but when the error is being computed and its
result has to be given through the networks, real numbers can be used (or simply the
32 bit numbers). Therefore, the straight-through estimator is used by [CHS+

16] and
[HWG+

19] for the Backpropagation, which makes the experiment faster.
This thesis considers the fact that because of the XNOR function, the logical 0

represents −1 and the logical 1 represents +1 which leads XNOR into a simple
multiplication and then float addition will also be replaced with bit counting[Lin17].
The multiplication is replaced in Figure2.4.1 above by the X-nor. Because X-nor in the
binary data works similarly to the multiplication operation in the 32-bit floating-point
input. Thus, this reduces memory consumption and the number of operations.

28 fundamentals

Figure 2.4.1: Convolution with bit-wise operation from [Bru20]

2.4.1 Preliminary (Backward, forward, ...)

forward pass [CB16] has proposed two kinds of binarization:the Deterministic
and the Stochastic Binarization.
The first binarization function is deterministic:

xb = Sign(x) =

+1, if x ⩾ M

−1, otherwise

(2.4.1)

where xb is the binarized variable (weight or activation), which can be determined
and x the real-valued variable. It is very simple to implement and works very well in
practice.
The second binarization function is stochastic:

xb =

+1, with probability p = σ(x)

−1, with probability 1− p

(2.4.2)

where σ is the hard sigmoid function:

σ(x) = clip(
x+ 1

2
, 0, 1) = max(0,min(1,

x+ 1

2
)). (2.4.3)

2.4 binary neural networks 29

The deterministic binarization function is the mostly used function because although
stochastic binarization is more attractive than the deterministic, it is more difficult to
implement. Stochastic binarization requires the hardware to randomize bits during
quantization.

backward pass The real-valued gradients of the weights are accumulated in
real-valued variables, although our BNN method uses binary weights and activation.
In the simplest case, the gradient ϕ is obtained by replacing the binarization during
the backward-pass with the "Straight-Through Estimator"(STE) [HWG+

19]:

Φ(L, x) =
∂L

∂xb
≈ ∂L

∂x
(2.4.4)

which is simply gr = gq1∥r∥⩽1, with gq estimator of the gradient ∂L
∂q and q = Sign(r)

[CB16]

2.4.2 Training

[CB16] uses the Htanh(x) = Clip(x,−1, 1) = max(−1,min(1, x)) for the activation
and the Shift Based Batch Normalization to accelerate the training and reduces the
impact of the weights. This work will train the Network using the binary-cross entropy
loss for binary classification reasons given by

BCE(y, ŷ) = −
1

N

N∑
j=1

yjlog(ŷi) + (1− yj)log(1− ŷi) (2.4.5)

30 fundamentals

Figure 2.4.2: Training of the BNNs using the Sign function in the Forward propagation and
the Straight-Throug Estimator in the Backpropagation. Taken from [Var21]

[CB16] provides 5 algorithms for the training of the networks. More details on
training and optimization have already been discussed in section 2.3.2.2.

2.4.3 Optimization

Despite the difficulties caused by the combination pseudo-gradient and latent weights,known
DNN methods can still apply to BNNs, including various optimizers (Momentum,
Adam, Adamax ...) and regularizers like regularization L2 and weight decay regular-
ization. [HWG+

19] [CB16]

3
R E L AT E D W O R K S

In the previous chapter, the Fundamentals, and the functionality of MLPs were dis-
cussed. But there is still a problem with memory consumption during implementation.
In this part, some solutions brought by some authors to overcome this problem will
be discussed. This part has 3 sections: section3.1 elaborates the idea of the authors of
[NZ21] who proposed Achieving FP32 Accuracy for INT8 Inference Using Quantiza-
tion Aware Training, then section3.2 focuses on training neural networks with weights
and activations constrained to +1 or −1 proposed by [CB16]. Finally, Section4.1 de-
scribes the tCNN architecture.

This chapter discusses related works in the field of deep learning, paying attention
to the following key aspects: Performing deep learning at the edge for real-time
inference is essential for many fields of application. However, devices have limited
memory, computing resources, and power. To bridge the gap between research and
the production value of machine learning,there has been a growing emphasis on
making models that are lighter and more efficient. The purpose of such research is to
make them runnable on edge devices and mobile devices. This thesis explores two
major research works, namely those by [NZ21] and [CB16]. In their research, [NZ21]
focused on reducing precision or 8-bit integer numbers instead of training the models
in floating-point 32-bit arithmetic, which reduces the memory size of the model by a
factor of 4 and increases the throughput by a factor of 2 to 4 faster. Recently, [CB16]
suggested a 1-bit quantization where data can only have two possible values generally
called Binarization. Before approaching the architecture of the tCCN in Section3.3,
these both works previously mentioned above respectively in section3.1 and section3.2
will first be investigated.

3.1 achieving fp32 accuracy for int8 inference using quantization

aware training .

Quantization is used to improve latency and resource requirements of Deep Neural
Networks during inference.

31

32 related works

Figure 3.1.1: Example of FP 32 accuracy achievement for INT8 inference Using Quantization.
Figure taken from [NZ21].

Because of the significantly large computational capacity, most models are trained in
32-bit floating point arithmetic. But these models can, however, require larger power
budgets and can take more time to predict results. Thus, resulting in a slow response
in real time and a negative impact on the user’s experience. To help lighten the
computing budget, without affecting the structure and number of model parameters,
[NZ21] proposed to run the inference with a lower precision by quantizing models
with a popular approach called 8-bit integer representation for weights and tensors
such as TensorRT 8.0.
Model 8-bit quantization is a deep learning method in which both weight and activa-
tions data are updated from 32 floating-point representation to 8-bit integers to reduce
both computing and memory requirements.
According to [NZ21], 32-bit floating-point is also known as Large dynamic range
represented in the interval [−3.4e38, 3.40e38], where parameters and data have most
of their distribution mass around zero. However, an 8-bit integer representation can
represent only 256 different values distributed uniformly or nonuniformly. [NZ21]
recommends using a uniform representation because it enables high-throughput par-
allel or vectorized integer math pipelines. The update of the representation of a
floating-point tensor (xfp) to an 8-bit representation (xq8

) is obtained by mapping the
floating-point tensor’s dynamic range to [−128, 127] using a scale-factor :

xq8
= Clip

(
Round

(xfp

scale

))
Where Round is a function that applies some rounding-policy from round rational
numbers to integers; Clip is a function that clips outliers that fall outside the [−128, 127]
interval. [NZ21] uses symmetric 1 quantization to represent or quantify both activation

1 dynamic-range ist given by [−amax,amax]. -amax and amax are given below.

3.1 achieving fp32 accuracy for int8 inference using quantization aware training . 33

data and model weights where amax is the element with the largest absolute value to
represent. The quantization scale is given by

scale =
2 · amax

256
where amax = max

(
abs(xfp)

)
.

Floating-point values that are outside the dynamic range are clipped to the min/max
value of the dynamic range.
A Parameter data from 32-bit floats to 8-bit integers has several benefits such as
a less storage space requirement by models, smaller parameter updates , higher
cache utilization, it results in 4× data reduction, which saves power and reduces the
produced heat. Memory-limited layers benefit from reduced bandwidth requirement.
However, [NZ21] notes that the larger the range used to represent 8-bit integers, the
higher the probability to deal with rounding errors of floating-point values and a lower
precision of the parameters. A model’s task accuracy can be easily impacted by data,
given that the process can be lossy, i.e. it may involve the loss of data or information.
Nevertheless, even though a smaller dynamic range reduces those rounding errors, it
introduces a clipping error.
To overcome the impact of the loss of precision on the task accuracy, [NZ21] proposed
two categories of quantization: post-training quantization (PTQ) or quantization-aware
training (QAT).

The PTQ is performed following the training of a high-precision model [NZ21]
[WJZ+

20]. With PTQ, quantizing the weights is easy but quantizing the activations
is more challenging. [WJZ+

20] evaluated these quantization parameters on a va-
riety of neural network tasks and models, which have multiple types of network
architectures: convolutional feed forward networks, recurrent networks, and attention-
based networks. The relative accuracy change from int32 to int8 is computed by
(accint8 −accfp32)/accfp32. An operation is quantized by quantizing all of its inputs
but most of the other layers, such as softmax and batch normalization, are not quan-
tized [Dat20];. However,the output of a quantized operation is not quantized to int8
because the following operation may require precision higher than 8 bit. According
to [Dat20], maximum calibration is sufficient to maintain accuracy when quantizing
weights to int8. [WJZ+

20]recommended QAT for acceptable task accuracy or to im-
prove the accuracy of quantized models by considering the quantization error in the
forward and backward passe during the training phase. Furthermore the author in
[WJZ+

20] runs QAT by inserting Fake Quantization nodes for the weights of the Layer.
During Fake Quantization data are quantized, but then immediately dequantized
so that the operation computed remains in float-point precision. The quantized and
dequantized operation are use to an approximate the input (x̂ ≈ x) where x ist the in-

34 related works

put and x̂ = dequantize(quantize(x,b, s),b, s), s = 255
α−β . The authors used the Fake

Quantization in the forward-pass and in the backward pass. However, the weights’
gradients is used to update the floating-point weights. They also use a straight-through
estimator (STE) to handle the quantization gradient. STE approximates the derivative
of the fake quantization function to be 1 for inputs in the representable range [β,α] :

∂x̂

∂x
=

0, y < β

1, β ⩽ y ⩽ α

0, y > α

(3.1.1)

TQ is simple and does not involve the training pipeline, which also makes it the faster
method. However, QAT almost always produces better accuracy, and is sometimes the
only acceptable method.

Moreover, [Dat20] recommend the following procedure(steps) and flow chart(Figure3.1.2)
to quantize a pre-trained neural network.

• Scale quantization(with per-column/per-channel granularity or a symmetric
integer range), scale quantization with tensor granularity, and maximum cali-
bration are required to quantize the 8-bit quantization, activations, and weight
respectively.

• PTQ: quantize all the computationally intensive layers (convolution, linear, ma-
trix multiplication, etc.) and run activation calibration including max, entropy(for
Clustering) and 99.99%, 99.999% percentile(to represent the distribution percent-
age). If none of the calibrations gives the desired accuracy continue to partial
quantization or QAT.

• Partial Quantization: perform sensitivity analysis to identify the most sensitive
layers and leave them in floating-point. If the effect on computational perfor-
mance is not acceptable or an acceptable accuracy cannot be reached, continue
to QAT.

• QAT: start from the best calibrated and quantized model. Use QAT to fine-tune
for around 10% of the original training schedule with an annealing learning rate
schedule starting at 1% of the initial training learning rate.

3.2 bnns : training neural networks with weights and activations constrained to +1 or −1 35

Figure 3.1.2: Flow chart of quantization workflow recommended and explained by the authors
in [Dat20]

In Summary, Performing deep learning, by using reduced precision or 8-bit integer
numbers at the edge for real-time inference is essential for many fields of application.
However, it may result in a lower accuracy model. What happens if the number of bits
is significantly reduced, i.e. from 32-bit floats to just 1-bit integers?

3.2 bnns : training neural networks with weights and activations

constrained to +1 or −1

Thanks to DNNs, artificial intelligence (AI) is able to perform more tasks than ever
before starting from real-time object detection, image recognition and natural language

36 related works

processing. But despite this, deep neural networks are characterized by their high
memory consumption and ability to ruin the battery life of devices during training.
These tasks require high-power intensive devices like GPU because of its thousands
of multiplications and additions of floating-point numbers. The deployment of these
models on limited resources like mobile or embedded devices is a challenging task.
Therefore, the Binarization of the Neural Networks is known to be one of the most
successful methods for solving the high memory problem of deep neural network
models.

3.2.1 The BNN Architecture

[CB16] introduces a method to train Binarized Neural Networks (BNNs). The authors
define the BNNs as DNN (explained above at section2.3.2) with Weights and Activa-
tions Constrained to +1 or −1 at run-time. The authors of [HCS+

16] first proposed
a method to train a BNN, then they implemented two experiments on Torch7 and
Theano Framework respectively to show that BNN(DNN with binary weight and acti-
vation) can achieve near-state-of-the-art result on MNIST; CIFAR-10 and SVHN while
challenging ImageNet dataset. Furthermore, they proved that during the forward pass,
BNNs drastically reduce memory consumption. However, the authors of replaced
most arithmetic operations with bitwise operations. This potentially increases in power
efficiency and could reduce the time complexity. The authors also programmed a
binary matrix multiplication GPU which makes it possible to run our MNIST BNN
seven times faster than with an unoptimized GPU kernel, without suffering any loss
in classification accuracy.

However, The architecture of a BNN is similar to the traditional DNN architecture,
except weights and activations are binarized to either +1or− 1. Figure 3.2.1

3.2 bnns : training neural networks with weights and activations constrained to +1 or −1 37

Figure 3.2.1: An example of Binarized Neural Network taken from [Nat18]

3.2.2 Binarized Neural Networks

[CB16] proposed two different methods for the Binarization,respectly the Deterministic
and Stochastic binarization.

3.2.2.1 Deterministic and Stochastic Binarization

The deterministic is as follows:

xb = Sign(x) =

+1, if x ⩾ M

−1, otherwise

(3.2.1)

where xb is the binarized variable (weight or activation), which is a determined value,
and x the real-valued variable.
Secondly the stochastic binarization function is:

xb =

+1, with probability p = σ(x)

−1, with probability 1− p

(3.2.2)

where σ is the hard sigmoid function[CB16]:

σ(x) = clip(
x+ 1

2
, 0, 1) = max(0,min(1,

x+ 1

2
)). (3.2.3)

Although the stochastic method is more efficient, the author of [HCS+
16] opts for

the use of the sign method instead. Because stochastic is difficult to be implemented.

38 related works

3.2.2.2 Gradient Computation

The [HCS+
16] training method can be considered as a variant of Dropout, in which

both the activation and the weights are set to +1 and −1 instead of setting some of
the activations to zero. The authors use binary weights and activations to calculate
the parameter gradients, but they then accumulate the real-valued gradients of the
weights into real-valued variables, which require the storage of more than one bit and
which the stochastic gradient descent (SGD) needs to work properly. SGD explores the
space of parameters in small and noisy steps 2, hence that noise is averaged out by the
stochastic gradient contributions accumulated in each weight. The author of [HCS+

16]
assert that high precision is absolutely needed to maintain sufficient resolution for
these accumulators.

Figure 3.2.2: Training of binary Neural Networks, inspired from [Aka20]. X, Y. Z are the output
of previous layers and input of the next layers. ∂L

∂W is the gradient

3.2.2.3 Gradient Propagation

To obtain the gradient,it is always common to derive the inputs. In this case, how-
ever,because of the sign function which is zero at the derivation there will be no
Backpropagation and therefore no training of the networks. SGD is now useless since
the precise gradient of the cost with respect to the quantities before the pre-activations
or binarization would be zero. This is also the case with the stochastic method (Fig-
ure3.2.2 presents a view on training and gradient computation).
To overcome this problem,the authors of [HCS+

16] therefore resorted to the straight-
through estimator that takes into account the saturation effect, They considered the
Sign function quantization

q = Sign(r)

2 Provide a form of regularization that can help to generalize better

3.2 bnns : training neural networks with weights and activations constrained to +1 or −1 39

and they assumed that an estimator gq of the gradient ∂c
∂q has been obtained through

the straight-through estimator . Then, the straight-through estimator of ∂c
∂r is:

gr = gq1|r|⩽1

Where r is the input. The concept of a direct estimator is to render the incoming and
outgoing gradients of a threshold function identical, independently of the threshold
function itself. The author specifies that this preserves the gradient information and
cancels the gradient when r is too large, which significantly degrades performance.
This prevents neurons with large activations (|r| > 1) from being updated. STE ist
used in Algorithm2.

parameter update While they used the Sign function to obtain binary activations
for hidden units ,The authors of [CB16] use two operations to update the weights:
They first force the real weight wr to be in a range [−1, 1] by clipping all the weights
wr outside [−1, 1] during training. This is to prevent the real-valued weights from
becoming very large without having any impact on the binary weights wb. Then,
secondly update real-valued weights to binary weights using wb = Sign(wr). With
|wr| > 1.

3.2.2.4 Normalization and Result

The linear function hard tanh is an the activation function used by [CB16]. the Htanh(x)
is given by

Htanh(x) = Clip(x,−1, 1) = max(−1,min(1, x)).

During the training, the authors of [CB16] used Batch Normalization (BN) and the
AdaMax. This accelerated the training, reduced the impact of the weight’s scale
and regularized the model. To avoid multiplications, they suggested to use shift-
based batch normalization(SBN) or shift-based AdaMax, which reduces the hardware
demand. However the authors did not register any loss of the accuracy using them.

3.2.2.5 Efficiency

The authors carried out two sets of experiments, each based on a different framework,
namely Torch7 and Theano. The BBN was successfully able to achieve nearly state-
of-art performance with the smaller Dataset like MNIST and CIFAR-10 and SVHN.
However, there was some degradation in the performance while training on larger
Dataset like ImageNet. After many attempts, the authors improved this by using

40 related works

a few more Bit in the Neural Network and using AlexNet, GoogleNet. It was also
noted that the MLP runs seven times faster on GPU at run-time with the XNOR kernel
while using SIMD (single instruction, multiple data) within a register (SWAR) and
there was not any loss registered in classification accuracy. The authors added that
exploiting Filter Repetitions when using a ConvNet architecture with binary weights
limited the number of unique filters by the filter size and reduced the number of
the XNOR-popcount operations by three. According to [HCS+

16], memory access is
more energy hungry than the arithmetic operation, thus higher memory size means
more energy consumption. The authors claimed that BNNs require 32 times smaller
memory size and 32 times less memory accesses than DNNs because all the 32− bits

floating point numbers are now updated into 1-bit binary numbers. The update
reduces the energy consumption efficiently, using binary numbers for multiplications
and additions. Moreover, most of the 32− bit floating point multiply-accumulations
are replaced by 1− bit XNOR-count operations. This could have an important impact
on dedicated deep learning hardware. In summary, during training and run time (pass
forward), BNNs considerably decrease memory size and accesses, and replace most
arithmetic operations with bitwise operations. Consequently, significantly improving
energy efficiency and dedicated hardware can reduce the time complexity by 60% as
claimed by the authors of [HCS+

16].

3.3 temporal convolutional neural network

It is complex to solve HAR problems. Moreover, people perform the same kind
of activity in different ways, and these activities can manifest at different points in
time. Several types of deep learning models, (e.g. Deep Belief Network (DBN)) have
been implemented to solve the challenges and complexity associated with HAR.DBN
neglects the available label information in feature extraction and does not use efficient
signal processing units [YNS+

15]. However, [RC15] proposed that it is important to
consider the temporal dependence of nearby readings of time-series sensors during
the classification. Due to their ability to recognize local dependencies between the
sensor values and their ability to enable more robust recognition, a CNN, which
uses temporal convolutions was proposed for solving HAR and is currently the very
competitive method for the HAR problems [GLR+

17, NRMR+
20, RC15]. A CNN

applied along the temporal dimension for each sensor was first proposed by [ZLL+
14]

for solving HAR and was later improved by [YNS+
15]. [ZLL+

14]‘s CNN is made
up of an input layer, whose values are fixed by the input data; (two) hidden layers
whose values are derived from previous; effective signal processing units (such as

3.3 temporal convolutional neural network 41

convolution, pooling and rectifier) output layer whose values are derived from the last
hidden layer and a Softmax classifier. like many other networks, the TCN learns using
a set of weights in input

Figure 3.3.1: Graphic of a TCNN architecture. The alphabets "c", "s", "u", "o" in the parentheses
of the layer tags refer to convolution, subsampling, unification and output opera-
tions respectively. The numbers before and after "@"refer to the number of feature
maps and the dimension of a feature map in this layer. Taken from [YNS+15]

.

Nevertheless, solving HAR is made of challenges due to multiple channels of time
series signal such as applying processing units in CNN along temporal dimension,
sharing or unifying the units in CNN among multiple sensors. To face these problems,
[YNS+

15] improved the CNN of [ZLL+
14] by introducing a TCN for the classification

of time-series Data in HAR. The architecture of this TCN is organized into five sections.
The first two sections consist in a convolution layer with kernels, a RELU activation
function that maps the output of the previous layer, followed by a max-pooling layer
with a normalization layer, a max-pooling layer applied over a range of local temporal
level and a normalization layer for the values of the computed feature maps from the
previous layer.
The third section of the network only consists in a convolution layer,a RELU layer and
a normalization layer. There is no more pooling layer, since the time dimension of the
feature map after the convolution layer is the size one, thus the maximum of only one
value would always be the value itself. If max-pooling is performed on the temporal
level, only one single value would be considered at a time, since only one value exists
on the temporal level.

The fourth section consists in a fully connected layer, that normalizes the values in
the previous layer. Thus, it is used to unify the computed feature maps from section 3

of all sensors. This is also followed by the RELU layer and a normalization layer. The
last section is a fully connected network layer, used to map the latent features into the

42 related works

output classes and followed by a softmax activation function used to classify the data.
Furthermore, the Entropy cost function is used for the training of the TCN. Neverthe-
less, two different datasets were used for different purposes. The first is called the "
Opportunity Activity Recognition"and is deployed for the whole body movement,
the second one is the "Hand Gesture"focused on the hand movement. They have both
the same architecture but different features, sizes, kernels, and datasets. The author of
[YNS+

15] compared TCN to four baseline: the SVN, the KNN, the MV, and the DBN
but, was better than all the four by 5%,with or without smoothing settings. There were
no improvements using the magnitudes of Fourier transform of the raw data as inputs.
The author believes that his proposed TCN for studying the multichannel time series
sensors, can serve as a competitive tool of feature learning and classification for the
HAR problem.
Nevertheless, the author of [NRMR+

20] proposed a new TCN to solve HAR but by
making here some minor changes. The new TCN is called a tCNN and will be explain
in section4.1.

Nevertheless, this section focused on the work related to solving a HAR problem
which is binarizing the neural network for HAR to limit memory consumption. Thus,
after their experiments, the authors of [CB16] assert to have had a state-of-the-art result
with binarization. Similarly, the authors of [YNS+

15] stated after experiments that the
CNN method, which is a Deep Learning algorithm capable of classifying images and
videos in a very accurate way, is more efficient than the other state-of-the-art methods.
In the last part of this section, a new version of the state-of-the-art CNN designed by
[NRMR+

20] and called the tCNN was presented. The next Section is about mixing
these two works, i.e., binarizing the tCNN during the training to have a state-of-the-art
result as in the baseline.

4
M E T H O D

In Chapter 3 , three works dealing with binary networks for solving HAR were dis-
cussed, including Achieving FP32 Accuracy for INT8 Inference Using Quantization
Aware Training of section3.1, This work suggested that to reduce the memory con-
sumption of the HAR,it is necessary to quantize the data (e.g., the weight) from 32

floating point to 8-bit. Although this method has achieved better results,it contains
some data loss. The second work, i.e. BNNs: Training Neural Networks with Weights
and Activations Constrained to +1 or −1 of section3.2, pointed out that to reduce
the memory consumption of the HAR, it is necessary to reduce the weight and ac-
tivation representation by 32×, i.e., from 32 floating point to 8-bit. Lastly, section3.3
introduced the temporal Convolutional Neural Network later explained in section4.1.
This wok will combine the ideas in tCNN and BNNs to develop its method. The
method proposed in this thesis aims at binarizing the tCNN for solving HAR problems.
Thus, the first part will consist in reconstituting the Temporal Convolutional Neural
Networks (tCNN) based on the related work, and ultimately focus on the training of
these updated networks. Then later in the experiment, the inputs will be classified
and interpreted according to two different classifiers Softmax and attributes (sigmoid)
for Mocap and Mbientlab respectively, without forgetting the performance.

4.1 temporal convolutional neural network for har using lara

dataset

Due to its multichannel time-series, a variation of CNN has been deployed for solving
HAR problems and many of them have brought better results such as the tCN proposed
by [YNS+

15]. Based on [YNS+
15], the author of [NRMR+

20] also proposed a TCN to
solve HAR using the LARa dataset but by making here some minor changes: Unlike the
[YNS+

15] model, the newly proposed tCNN is an end-to-end architecture composed
of feature extractors and a classifier(softmax or sigmoid) but has no downsampling
operation and no normalization layers then according to the author [NRMR+

20], they
could affect negatively the performance of the network. The new architecture has N
number of sequence channels with sequence length L.

43

44 method

convolutional layers the [NRMR+
20]’s tCNN contains four convolutional

layers. The convolutional layers are composed of 64 filters of size [5× 1], performing
convolutions along the time axis and extracting the temporal features from the data.

fully connected layers [NRMR+
20] uses three fully 1 -connected layers for

his tCNN. These FC-layers are made up of two fully connected layers (which contain
128 units) and a classifier (Sotfmax or Sigmoid). Two Dropout2 layers were applied to
the first and second fully connected layers respectively .

last fully connected-layers the last fully connected layers compile the data
extracted by previous layers to form the final output. Depending on the task3, two
different output layers from the end of the tCNN. The Softmax and the Sigmoid.

classification the tCNN will use a softmax layer or a sigmoid layer for the
classification [NRMR+

20].

• SoftMax Layer: The last fully connected layer with a softmax function is called
the Softmax layer and is intended for the class(activity) results [NRMR+

20]. The
Softmax layer has C = 8 units of activity classes. In this context, the number of
output units depends on the number of classes.

• Sigmoid layer: The last fully connected layer with a sigmoid function is called
the sigmoid layer and is intended for the attribute classification [NRMR+

20].
It contains 19 units of Attribute representations. Here, the number of output
units depends on the number of attributes.The author in [LMRA+

21] used a
sigmoid layer, to compute a attribute representation from an input sequence,
which, according to them, have proven to be advantageous to HAR, as they used
the tCNNattribute.

1 all neurons are connected to all inputs and all outputs
2 The dropout step involves removing some neurons randomly during the learning process. This avoids

the network from depending too much on single neurons and forces all neurons to learn to generalize
better.

3 The are two different classification functions according to two representations: the activity or class
representation classified by Softmax, and the attributes representation classified by the Sigmoid.

4.1 temporal convolutional neural network for har using lara dataset 45

Figure 4.1.1: A Graphic of the Temporal Convolutional Neural Network (tCNN) architecture
(The Dropout are missing),taken from [NRMR+

20]
.

4.1.1 Training of Temporal Convolutional Neural Network for HAR using LARa

First of all, it should be noted that, for each sensor channel, the authors of [NRMR+
20]

said to have normalized the input sequences in the range [0, 1] While also including
some Gaussian noise, which simulates sensor’s inaccuracy. The noise will have as
parameters µ = 0 and σ = 0.01.
The training procedures entail three parts: training, validation, and testing. The
training set contains recordings from the eight subjects while the validation and
testing sets contains the recordings from three subjects respectively. The Validation
set is used for the early stopping approach and will assist in finding correct training
hyperparameters. To prevent the network from overfitting and the training data
memorization, during training, the weights of the best testing set result are copied and
returned as output value at the end of the training.
The authors trained the tCNN using the batch gradient-descent with RMSProp update
rule with a batch size of 400, an RMS decay of 0.9,and a learning rate of 1 × 10−5.
As far as the cost function is concerned, the tCNN architecture is trained using the
binary-cross entropy loss for the sigmoid layer when predicting attributes and the
Cross-Entropy Loss for the Softmax when predicting activities. Regarding the metrics
(precision, overall accuracy, the weighted F1 score and recall), the author found that
solving HAR using the attribute representation offers better results than using a
softmax layer.

The following Figure4.1.2 gives more view on the training of tCCN, At the forward
pass, the classifier receives the input from the previous layers and computes the Loss
(error or difference between the predicted and the real output) then at the back pass

46 method

a gradient is computed according to the Loss (derivative of Loss over the input).
Then this gradient is used to adjust the weight. Thus, the weights are updated and
optimized. This will be done through epochs until the Loss is minimized.

Figure 4.1.2: Graphic of the Training of the tCNN proposed by [NRMR+
20]. the Networks

has 4 Conv layers each composed of 64 filters of size [5× 1], zwei Fc-layers of 128
filters and a classifier (sofmax or sifmoid depending on the task). Image inspired
from [Aka20]

Nevertheless,the tCCN that was previously trained on LARa dataset is going to
be trained again, then the weight will be binarized for Conv Layers. Following
[NRMR+

20], LARa OMoCap is divided into three sets: training, validation and testing.
The following Figure4.1.3 presents the BtCNN at training.

Figure 4.1.3: Graphic of BtCNN during training.Image inspired from [NRMR+
20].

4.2 the classifiers 47

4.2 the classifiers

Regarding the classification, this thesis will consider the Softmax classifier, the Sigmoid
or the k-nearest neighbor (NN). Each depending on the task. In the LARa method
for solving HAR, the input sequence is [T = 200,D = 126] and the slide S = 25

[NRMR+
20]. Therefore,the tCNN will use this input sequence to calculate the activity

class and the binary-attribute representation. This means that our data are arranged
in two representations: The activity classes with unit C = 8 which is classified by
the Softmax and the attributes which are classified by the Sigmoid and contains K
= 19 attributes. It should also be noted that the last fully connected layers have 128

units each. The predictions of the different classes and attributes will therefore be
gathered in a table called confusion matrix. The author of [NRMR+

20] also used the
NN for the representation of the attributes and based on the performance results,
the author asserts that the attribute representation was able to classify the inputs the
best compared to Softmax, especially for classes like handling and synchronization.
However, the early stopping technique is used during the validation.

4.3 binary temporal convolutional neural network for har

Instead of full-precision values, the networks of this thesis use binary values for
activations and weights. Binary values in BNNs can either mathematically be logical
value 0 and logical value 1 (Single beat). But this thesis will use −1 or 1 as it is more
usual.

4.3.1 Architecture

the architecture of the now binarized tCNN will be henceforth called BtCNN. It has
the same configuration as the original tCNN of [NRMR+

20]. No change has been
made regarding the architecture explained in section4.1. The only difference here
(which is the aim of this work) is that the layers have been binarized. It means that
the inputs have all been binarized, both weight and activation. The BtCNN will work
with binarized data according to the recommendations of section3.2. Therefore,a new
function called Sign function explained in section 3.2.2 will be added to the network
configuration. The architecture of the original tCNN has been explained in section 4.1.

48 method

4.3.2 Training Binary tCNN

However,the method consists in training 10 epochs on a training dataset. Still following
[NRMR+

20], the architecture is trained using the batch gradient-descent with RMSProp
update rule, three learning rates of 10−4, 10−5, and 10−6 and a batch of size 581 at
the validation.The work continues by implementing and experimenting binary conv
layers.
This thesis proposes a BtCNN to reduce memory consumption and to reduce the
number of operations. The reason why this work uses −1 and 1 instead of the
traditional 0 and 1 is that the XNOR will replace the multiplication for the operations.
By applying XNOR on −1 and 1, the results are the same as those of the multiplication
in binary representation. Therefore, it will be preferable to use the XNOR and
consequently −1 and 1, which considerably reduces the number of operations (or
multiplication). Furthermore, the BtCNN training of this work is similar to the tCNN
except that the features are binarized. So, this work will use binary values during
the training procedure (single Bit precision). Following the [CHS+

16], this thesis
uses the deterministic binary function for the training as the values are deterministic.
The deterministic binary (sign)function is presented in Equation2.4.1. The procedure
will be similar to the traditional training of tCNN but during the forward Pass, the
sign function is applied, then the Loss between the actual value and the prediction
is calculated using the Loss function Equation 2.3.26. However, the real values are
preserved and will be used during the backpropagation to compute the gradient.
Because the output of the sign function cannot be derived. Figure4.3.1 gives more
view of the training procedure of BtCNN, The BtCNN has C = 4 number of Conv
layers and the 4 layers are binarized during training independently. The network has
4 configurations and the 4 configurations are trained and independently. For all the
layers to be binarized, the weights and activations are binarized. More information on
the configurations is given in Experiment in section5.3
The training in the following Figure4.3.1 is similar to the training of Figure 4.1.2 in
section 4.1.1 with the difference that weights are binarized with a sign function a
the forward pass. But at the backward pass, real numbers are used to facilitate the
gradient computation.

4.3 binary temporal convolutional neural network for har 49

Figure 4.3.1: Training of the binary tCNN (BtCNN). At the Forward pass, the sign function is
used for binarization. At the Backward, the loss and the gradient are computed
using real value. The tCNN was proposed by [NRMR+

20]. The figure inspired
from [Aka20]

The gradient is the derivative of the Loss with respect to the weight (∂Loss∂X). The
Loss is the difference between the actual input and the prediction. So, the algo-
rithm will use the computed loss to calculate the gradient and in the Backward pass,
the weight will be updated by subtracting the gradient multiplied by the learning
rate(Algorithm1and 2). Figure4.3.1 shows more view. However,the derivation of the
Sign function is zero almost everywhere making it difficult for the backpropagation.
This,is due to the fact that the gradients of the cost are zero(even using the stochastic
function) leading to no training.
Thus, instead of using the gradient of the sign function, this work will use an estimator
Method called “Straight-through estimator”(STE) proposed by [CHS+

16] to preserves
the gradient’s information . However, this proxy derived at the backward pass is
nothing but a function used to evaluate an unknown parameter related to a probability
law such as its expected value or its variance. The STE is explained in section 3.2.2.3.
Nevertheless, the weight of the Network will be updated to produce a smallest score
for that class. This will be done over several epochs until the minimal loss [CHS+

16].

50 method

Figure 4.3.2: Example of Diagram of the Forwardpropagation and the Backwardpropaga-
tion,taken from [HWG+

19]. At the Forward pass, the inputs are binarized with
the sign function and at the Backward, the real is used to compute the error. STE
is used to approximate the gradient.

Moreover, in the Forward Pass,Algorithm1 is used to train the networks with a
Binary function called sign function. Where s are activations before BatchNorm, a are
activations after BatchNorm, C number of layers and the Binarize() method is the sign
function. Batchnorm() takes the output from the first layer, normalizes it, and passes it
as an input to the next layer.

Algorithm 1 Binary training: Forward propagation

for k = 1 to C do ▷ C: Number of Conv layers
Wb

k ← Binarize(Wk) ▷ signum function
sk ← ab

k−1W
b
k ▷ sk : activations before BatchNorm

ak ← BatchNorm(sk, θk) ▷ ak: activations after BatchNorm
if k < C then ▷ me

ab
k ← Binarize(ak) ▷ Binarized ak

end if
end for

In the Backward Pass. The weights are updated using the gradient and the Learning
rate. The gradients are therefore maintained non-binary. Algorithm2 gives more
details on the Backpropagation. Where E is the cost function, λ is the learning rate,

4.3 binary temporal convolutional neural network for har 51

and C is the number of layers. ◦ indicates element-wise multiplication used to copy
the gradient information through STE. and Clip() to prevent vanishing and exploding
gradients, BackBatchNorm() takes the output from the first layer, normalizes it, and
passes it as an input to the next layer. Update() specifies how to update the parameters
when their gradients are known, using shift-based AdaMax.

Algorithm 2 Binary training: Backward propagation

Please note that the gradients are not binary.

Compute gaC
= ∂E

∂aC
knowing aL and a∗ ▷ E: Cost function.

for k = C to 1 do ▷ C: Number of Conv layers
if k < C then

gak
← gab

k
◦ 1|AK|⩽1 ▷ STE

end if ▷ sk /ak : activations before/after BatchNorm.
(gsk ,gθk

)← BackBatchNorm(gak
, sk, θk)

gab
k−1
← gskW

b
k ▷ ab

k: Binarized ak

gWb
k
← g⊤ska

b
k−1

end for
(Accumulating the parameters gradients)
for k = 1 to C do

θt+1
k ← Update(θk,η,gθk

) ▷ η: Learning rate
Wt+1

k ← Clip(Update(Wk,γkη,gWb
k
),−1, 1)

ηt+1 ← λη ▷ λ: drope rate.
end for

At last, this section presented the method, the first part focused on the architecture
of the tCNN and the second part on the binarization of the BtCNN networks during
the training process. The question now is to know whether this experiment produces
state-of-the-art results.

5
E X P E R I M E N TA L E VA L UAT I O N

the previous section presented firstly the tCCN and its architecture then secondly the
BtCNN which is the binary tCNN. Therefore, the binarization method and the training
of BtCNN have been explained. Moreover, this section will evaluate the performance
of the BtCNN. To do this, a set of training and tests will be carried out on the LARa
dataset. The LARa dataset is presented in the first part of this section. Then will
follow the presentation of the set of metrics necessary to compare the performances.
They are three key metrics to measure the performance of the network. The Accuracy,
the F1-mean Score, and the F1-weighted Score. Then the different configurations are
explained as well as their different binarization. Furthermore, the performance of
these configurations will be listed and compared using metrics. Last but not least,
the results obtained will be compared to the baseline results to conclude if the results
produced by this experiment are the state of the art.

5.1 dataset

5.1.1 LARa Dataset

"Logistic Activity Recognition Challenge"(LARa) is a first freely accessible HAR dataset,
which contains annotations of human actions and their attributes in the intra-logistics
[NRMR+

20]. The data recording was collected by having 14 subjects performing three
real-world warehouse scenarios during a total of 758 minutes of recordings. LARA
uses Optical marker-based Motion Capture (OMoCap) to track 39 markers worn by
the subjects, six inertial measurement units (IMUs) from MbientLab dataset which
are fixed on arms, legs, chest, and waist, with a focus on both triaxial linear and
angular acceleration. An RGB camera dedicated to recording. The subjects undergo
the scenario-based picking and packaging activities during which all the movements
are recorded and their data labeled. This labeling is performed using of eight activity
classes and nineteen attribute representations.

activity classes the dataset includes both periodic and static activities for the
classification and are divided into eight C = c1, ..., c8 ∈N8 classes, such as Handling,

53

54 experimental evaluation

Standing, Walking, Cart, Synchronization and None. The following table, taken from
[NRMR+

20], indicates the meaning of these activities.

Activity Class Description

C1: Standing The subject is either on his/her feet or taking smaller steps,
and may or may not be holding an object in hands.

C2: Walking The subject performs steps while holding an item or hands-
free.

C3: Cart The subject is walking with the cart to a new position with
some exception such as placing boxes or collecting items.

C4:Handling upwards At least one hand reaches 80% of a body’s total height(
shoulder height) during the handling activity.

C5:Handling centred Handling items without bending, kneeling or raising the
arms at the shoulder joint

C6: Handling downwards During Handling, the subjects are kneeling with their hands
below the level of their knees.

C7: Synchronization Both hands are above the subject’s head when the recording
starts.

C8: None Will be ignored as it is reserved for Errors, Exceptions, Gaps
and all unclassifiable activities.

Table 5.1.1: Activity Classes and their definition

The class C5 then has the largest share of classes in the Dataset while the C7 class
has the smallest.

attribute representations there are K = 19 attributes A ∈ Bk. Attributes
are etymological descriptions of the class activities [NRMR+

20]. It is seen as a bit
map between sequential data and human activities. The following table, taken from
[NRMR+

20], clearly indicates the meaning of these attributes.

5.1 dataset 55

Group Attributes Description

Legs
A Gait Cycle

B Step (where the feet leave the ground without a foot swing)

C Standing Still

Upper Body
A Upwards

B Centered

C Downwards

D No Intentional Motion (steady position without doing anything)

E Torso Rotation (Rotation in the transverse plane)

Hands
A Right Hand

B Left Hand

C No Hand (no holding nor for handling)

Item
A Bulky Unit (Objects that cannot be held with the hands)

B Handy Unit(small Items that cannot be held with the hands)

C Utility (Use of the working tools)

D Cart (Handling & No Intentional Motion)

E Computer (e.g. mouse and keyboard)

F No Item

Data A None (None class)

Table 5.1.2: Attributes representation and their significations

[NRMR+
20] used nearest neighbor (NN) approach during attributes prediction

using the attributes representation and the output of the network to compute c ∈ C.

56 experimental evaluation

Figure 5.1.1: A Graphic of one Subject participating in a recording while performing activities
and wearing Sensors suit. Image Taken from [NRMR+

20]
.

training The tCNN, explained in session 4.1, was deployed for solving HAR
using the LARa dataset. However, the classification performance with tCNN is state-
of-the-art. The training of tCNN is explained in section 4.1.1.
According to [NRMR+

20] , the LARa-MoCap‘s training set contains recordings from
the eight subjects. However, the validation and testing sets own recordings from
three subjects respectively. The validation set helps to determine proper training
hyperparameters and is used for the early stopping approach. Thus, it will find the
best training step or epoch and then stop the result. The tCNN is pre-trained for
attributes prediction for all experiments. However, to determine the metrics, class as
attributes predictions using tCNN with the softmax layer or a nearest neighbor (NN)
approach are needed.

5.2 metrics

Four different and individual metrics are going to be observed in this work. These give
us more information on how the model behaves. These metrics(represented in Table
5.2.1) are True Positive(TP), which is the amount of time that model correctly classifies
a positive sample as positive, False Negative(FN), which is the amount of time that
model incorrectly classifies a positive sample as negative False Positive(FP),which
is the amount of time that model incorrectly classifies a negative sample as positive
and True Negative(TN), which is the amount of time that model correctly classifies a
negative sample as negative.

5.2 metrics 57

Table 5.2.1: A Graphic of positive-negative-true-false-matrix. Image Taken from [Dil19]

.

Actual

Positive Negative

Pr
ed Positive True Positive False positive

Negative False Positive True negative

Moreover, based on these parameters the scores or metric will be determined.

5.2.1 Precision, Recall, F1-Scores and loss

the precision:determines the correctness of a positive prediction. In other words, it
determines the precision of the network with respect to an activity class. It is calculated
using the following Equation:

P =
#True Positive

#Total predicted Positive
=

TP

TP+ FP
. (5.2.1)

The recall: determines how many true positives get predicted out of all the positives
in the Dataset.It is calculated using the following Equation:

R =
#True Positive

#matching elements
=

TP

TP+ FN
(5.2.2)

The Accuracy indicates the proximity of a computed feature to a standard or
known value. In other words, how many of the computed activity classes match the
predictions of the data. It is calculated using the following Equation:

Acc =
#correct predictions

#all predictions
=

TP+ TN

TP+ TN+ FP+ FN
(5.2.3)

The F1-score is the harmonic mean of the precision and recall. In other words, it
balances the precision and the recall. The higher the accuracy of the predictions per
class, the higher the F1-score. The formula is given by:

F1 − score = 2× Recall× Precision

Recall+ Precision
= 2× R× P

R+ P
(5.2.4)

The F1-mean score is the arithmetic average of all F1-score in the activity classes.
The formula is given by:

58 experimental evaluation

mF1 =
1

n

∑
n

F1n
, (5.2.5)

Where n stands for the number of classes.
Nevertheless, since all the activity classes have the same influence on the result, a
problem of balance may occur. This problem is solved using a new F1-score which
takes into account the size of classes’ weights called F1-weighted Score and is given
by:

F1 −weighted =
1

n

∑
n

(F1n
× Propotion_of_class)

or simply:

wF1 =

C∑
i

2× ni

N
× Pi × Ri

Pi + Ri
, (5.2.6)

Where ni is the number of window samples of class Ci ∈ C. The accuracy becomes
a less valuable metric when the data are unbalanced. Furthermore, a high recall
results in poorer precision and vice versa . The low recall means that there is a higher
number of FN than expected (labeled negative instead of positive). However, a high
recall means that there is a high number of FP and this leads to a poorer accuracy.
Nevertheless, a best result is achieved when F1, recall and precision are equal.
Loss functions are given by equations 2.3.25 and 2.3.26. Using the binary-cross
entropy loss for the sigmoid layer when predicting attributes and the Cross-Entropy
Loss for the Softmax when predicting activities.

5.3 experiment and results

the tCNN is a state-of-the-art network that has been deployed on the LARa dataset for
the HAR problems. In the [NRMR+

20] the authors are quite satisfied after finishing
the experiment. The table 5.3.1 shows the result of their work. First of all, in this work,
the tCCN that was previously trained on Lara dataset has been retrained to classify
LARa-mocap and LARa-mbientlab and the results are presented in table 5.3.2and table
5.3.3 . Then the tCNN will be binarized to give a new tCNN called here BtCNN, for
this purpose, the weights and biases of the new tCNN (BtCNN) will be binarized,
all with three learning rate 10−4, 10−5 and 10−6. However, as it can be seen on the

5.3 experiment and results 59

Figure5.3.1, the networks will be binarized part after part. First the conv1 layer then
the first two layers then the first three and finally all the four. Just like in [NRMR+

20],
this work will use the BtCNN to classify the LARa-Mbientlab and LARa-Mocap dataset
with the softmax and sigmoid functions. To study the performance of BtCNN, the
f1-score, f1_weighted and accuracy will be used as metrics. In addition, the memory
consumption of the different configurations will be studied as well as the execution
time.

5.3.1 Baseline tCNN

First of all, it should be noted that before the training, the input data are equipped
with Gaussian noise of parameters [µ = 0,σ = 0, 01] to simulate the inaccuracies of the
sensors following [NRMR+

20].

The authors of [NRMR+
20] assert to have gotten state-of-the-art results after training

the HAR using LARA dataset. In this subsection, the first step will be to train (under
the same conditions) the tCNN previously trained on the LARa-dataset for the HAR.
Table5.3.1 presents the results obtained by the authors. It is the overall accuracy and
weighted F1 of HAR on the LARa OMoCap. Table5.3.2 and table5.3.3 represent the
baseline. This means that they present the data of the training of HAR trained in this
experience following the authors of [NRMR+

20]. The first table is the performance of
HAR on LARa-Mbientlab. It (HAR on LARa-Mbientlab) has been first trained with
Softmax and later with Sigmoid or Vice versa. The second table is the performance of
HAR on LARa-Mocap. It was also first trained with Softmax and then with Sigmoid
or vice versa. mF1 ist the mean F1-scores, wF1 ist the weighted F1-score and Acc the
accuracy. The best results are colored. Many authors consider wF1 as the best metric.

Metric
performance

Softmax Attributes

Acc 0.690 0.751

wF1 0.644 0.736

Table 5.3.1: The overall accuracy and weighted F1 of HAR on the LARa OMoCap dataset from
[NRMR+

20]

It should be noted that the authors of [NRMR+
20] only provided the best results

of weighted F1-score and accuracy, unlike this work which also recorded the mean

60 experimental evaluation

F1-scores. They trained networks with just a single learning rate (10−4) unlike this
work that used three learning rate.

Table 5.3.2: Accuracies, F1-mean, and weighted F1 of HAR on the LARa mbientlab dataset.

Mbientlab

Ba
se

lin
e

N
on

-B
in

ar
y

Activation Learning rate mF1 wF1 Accuracy

Attributes
lr = 10−4 0.53± 0.004 0.666± 0.0035 0.68± 0.003

lr = 10−5 0.353± 0.035 0.554± 0.022 0.611± 0.012

lr = 10−6 0.125± 0.016 0.368± 0.019 0.493± 0.01

Softmax
lr = 10−4 0.666± 0.0028 0.707± 0.0008 0.719± 0.021

lr = 10−5 0.491± 0.025 0.629± 0.019 0.672± 0.01

lr = 10−6 0.298± 0.009 0.456± 0.005 0.566± 0.003

Table 5.3.3: accuracies, F1-mean, and weighted F1 of HAR on the LARa Mocap dataset.

Mocap

Ba
se

lin
e

N
on

-B
in

ar
y

Activation Learning rate mF1 wF1 Accuracy

Attributes
lr = 10−4 0.518± 0.008 0.633± 0.008 0.625± 0.006

lr = 10−5 0.213± 0.017 0.391± 0.02 0.471± 0.021

lr = 10−6 0.225± 0.015 0.355± 0.011 0.358± 0.013

Softmax
lr = 10−4 0.646± 0.004 0.678± 0.002 0.695± 0.0

lr = 10−5 0.19± 0.0 0.36± 0.0 0.49± 0.0

lr = 10−6 0.25± 0.01 0.409± 0.01 0.517± 0.005

Regarding the reconstruction of the baseline, the results obtained in this thesis
and those of [NRMR+

20] are not that different. In fact, the best result obtained
by [NRMR+

20] was 69% Accuracy with the Softmax and 75.1% Accuracy with the
attributes during the LARA mocap dataset training. However, the result of this thesis
observes a best result of 71.4% and 68.8% respectively according to table 5.3.3. This
is not too different from the results obtained by [NRMR+

20]. The binarization can
be pursued in order to know how the performance behaves when the network are
binarized during training, the time for the training and their memory consumption.

5.3 experiment and results 61

Moreover, Softmax has the best result in the two tables. E.g. LARa-mbientlab softmax
has registered 71.9% and LARa-mocap 69.5% of Accuracy.

5.3.2 BtCNN for HAR on LARa

After obtaining the results at the state-of-the-art in the baseline. The method of this
thesis is now going to be applied to measure the influence of binarization on the HAR
performance. A part-after-part binarization of the network will follow. In other words,
each time a certain part of the network will be binarized with a certain "Learning Rate"
and it will consist in finding out which learning rate has the best prediction, which
speed has the binarization and training due to the weight update, where the point of
false binarization is and how the accuracy behaves. The figure5.3.1 shows the steps
of the binarization process. The first convolution layer has been binarized, then the
first 2 layers, then the first 3 layers and then all the 4 layers. Moreover, it tries to find
out what happens when a certain part of the network is binarized and how far it goes.
Which speed has the binarization and training when the weight is updated. Where is
the point of false binarization. How does the accuracy behave. The Configurations are
considered as follows:

• Conv[1] : only the first Conv layer is binarized during the training,

• Conv[1-2]: the first and the second Layer are binarized during the training,

• Conv[1-3]: Conv1, Conv2, Conv3 are binarized during the training,

• Conv[1-4]: Conv1, Conv2, Conv3 and Conv4 are binarized during the training.

• lr represents the learning rate

• Two LARa dataset: mocap and mbientlab.

• Two classifier for attribute representation and class activity respectively i.e.,
Sigmoid for attribute representation and Softmax class activity

• the best results are represented in blue or in green.

The networks are therefore named as follows: Conv[1-j], where j ∈ {1, 2, 3, 4}, repre-
senting the number of binary convolutional layers at instant j itself (in general the
first j layers). lr is the learning rate. The results are presented in the tables and are
represented according to the type of LARa and classifier.

62 experimental evaluation

Figure 5.3.1: Training of tCNN proposed by [NRMR+
20] The layers in yellow are the layers

that are being trained/binarized while those in blue are still to be binarized. On
the first figure, no layer is yet binarized (this is the original tCNN), on the second
figure, the first layer is binarized (BtCNN), on the third figure, the first and second
layers, on the fourth, the first three and on the fifth, all four layers

.

5.3 experiment and results 63

Figure 5.3.1 shows the reconstruction of the tCNN. The figure contains 5 Config-
urations. The first one is the original tCNN of [NRMR+

20]. The second is the first
configuration of our method i.e. Conv[1] explained above, the third is Conv[1-2],
the fourth represents Con[1-3] and the fifth represents Conv[1-4]. Thus, the yellow
color represents the binarized layer during the training. The configurations will be
evaluated to obtain the layer or the configuration with state-of-the-art metrics. The
first configuration has already been evaluated at the baseline and will not be discussed
again.

accuracy and score First, it should be considered that, Table 5.3.4 presents the
performance of the BtCNN solving HAR on the LARa mbientlab with the Attributes
representation. Table 5.3.5 presents the performance of the BtCNN solving HAR on
the LARa mbientlab With Softmax. Table 5.3.6 presents the performance of the BtCNN
solving HAR on the LARa mocap With Softmax. Table 5.3.7 presents the performance
of the BtCNN solving HAR on the LARa mocap With the Attributes representation.

Table 5.3.4: Binary training results of BtCNN on the LARa mbientlab using Attribute represen-
tation

Mbientlab

Bi
na

ry
tr

ai
ni

ng

Si
gm

oi
d(

A
tt

ri
bu

te
s)

Learn. rate Metrics Conv1 Conv[1− 2] Conv[1− 3] Conv[1− 4]

lr = 10−4

mF1 0.527± 0.006 0.529± 0.002 0.069± 0.032 0.053± 0.35

wF1 0.666± 0.004 0.669± 0.003 0.21± 0.150 0.143± 0.154

Acc 0.688± 0.004 0.686± 0.003 0.347± 0.186 0.257± 0.198

lr = 10−5

mF1 0.272± 0.143 0.029± 0.020 0.057± 0.032 0.069± 0.032

wF1 0.478± 0.111 0.024± 0.031 0.149± 0.150 0, 210± 0.150

Acc 0.569± 0.071 0.076± 0.013 0.272± 0.185 0.348± 0.186

lr = 10−6

mF1 0.261± 0.080 0.065± 0.049 0.091± 0.033 0.069± 0.032

wF1 0.472± 0.060 0.116± 0.136 0.280± 0.120 0.210± 0.150

Acc 0.538± 0.041 0.155± 0.120 0.407± 0.147 0.348± 0.186

Table 5.3.4 presents the binary training performances of BtCNN on the LARa mbi-
entlab using attribute representation. With the learning rate lr = 10−4 in table 5.3.4,
the first configurations Conv[1] and Conv[1-2] behave similarly and show relatively
good results compared to the other configurations. However, the two other Conv[1-3]

64 experimental evaluation

and Conv[1-4] configurations drop and show rather low results. At learning rates
lr = 10−5 and lr = 10−6, quite low results for almost all the configurations are ob-
served this may be because the learning rate is high. The overall accuracy is 68.8% and
the overall weighted F1 is 66.9% for 5.3.4. Therefore both the accuracy and weighted
F1 thus show a gap of -7% compared to the result of the-state-of-the-art.

Table 5.3.5: Binary training results of BtCNN on the LARa mbientlab using Softmax

Mbientlab

Bi
na

ry
tr

ai
ni

ng

So
ft

m
ax

Learn. rate Metrics Conv1 Conv[1− 2] Conv[1− 3] Conv[1− 4]

lr = 10−4

mF1 0.661± 0.006 0.648± 0.004 0.009± 0.0 0.095± 0.0

wF1 0.703± 0.003 0.690± 0.004 0.333± 0.0 0.333± 0.0

Acc 0.714± 0.004 0.706± 0.005 0.499± 0.0 0.499± 0.0

lr = 10−5

mF1 0.475± 0.069 0.095± 0.0 0.095± 0.00 0.095± 0.0

wF1 0.614± 0.036 0.332± 0.0 0.333± 00 0, 333± 0.0

Acc 0.672± 0.211 0.499± 0.0 0.449± 0.0 0.499± 0.0

lr = 10−6

mF1 0.449± 0.017 0.214± 0.059 0.096± 0.00 0.096± 0.00

wF1 0.597± 0.014 0.406± 0.034 0.333± 0.00 0.333± 0.001

Acc 0.657± 0.01 0.533± 0.017 0.449± 0.00 0.499± 0.00

Table5.3.5 presents the performance of the BtCNN solving HAR on the LARa mbi-
entlab with softmax. This performance behaves the same way as the previous table
with the learning rate at lr = 10−4. In Table 5.3.5 the first configurations Conv[1]
and Conv[1-2] show relatively good results compared to the other configurations.
However, the two other Conv[1-3] and Conv[1-4] configurations drop and show low
results. Unlike Table 5.3.4, compared to the other configurations,this table shows good
scores for all the learning rates when binarizing the first layer. The overall accuracy
is 71.4% and the overall weighted F1 is 70.3% for 5.3.5. Therefore, it overcomes the
state-of-the-art performance with an accuracy of +2% and a weighted F1 of 5-6%
compared to the result of the state-of-the-art.

Table 5.3.6 presents the Binary training performance of BtCNN on the LARa Mocap
using Softmax. It behaves the same way as the previous table With the learning rate
lr = 10−4. In Table ref tab:mocapSoft . Like the tables above, the performance is high
during the training of convolution layers 1 and 2. But the other configurations show

5.3 experiment and results 65

low results. The overall accuracy is 64.6% and the overall weighted F1 is 65% for 5.3.6.
Therefore, Table 5.3.6 shows a gap of −5% accuracy and -1% compared to the result of
the state of the art.

Table 5.3.6: Binary training results of BtCNN on the LARa Mocap using Softmax

Mocap

Bi
na

ry
tr

ai
ni

ng

So
ft

m
ax

Learn. rate Metrics Conv1 Conv[1− 2] Conv[1− 3] Conv[1− 4]

lr = 10−4

mF1 0.503± 0.008 0.55± 0.051 0.089± 0.0 0.089± 0.0

wF1 0.632± 0.005 0.636± 0.009 0.281± 0.0 0.281± 0.0

Acc 0.646± 0.006 0.650± 0.006 0.452± 0.0 0.452± 0.0

lr = 10−5

mF1 0.109± 0.02 0.127± 0.038 0.089± 0.0 0.089± 0.0

wF1 0.297± 0.015 0.310± 0.03 0.281± 0.0 0.281± 0.0

Acc 0.46± 0.008 0.468± 0.016 0.452± 0.0 0.452± 0.0

lr = 10−6

mF1 0.264± 0.007 0.103± 0.013 0.105± 0.016 0.089± 0.0

wF1 0.421± 0.007 0.290± 0.008 0.284± 0.003 0.282± 0.0

Acc 0.526± 0.001 0.447± 0.005 0.453± 0.0 0.452± 0.0

Table 5.3.7: Binary training results of BtCNN on the LARa Mocap using Attribute representa-
tion

Mocap

Bi
na

ry
tr

ai
ni

ng

Si
gm

oi
d(

A
tt

ri
bu

te
s)

Learn. rate Metrics Conv1 Conv[1− 2] Conv[1− 3] Conv[1− 4]

lr = 10−4

mF1 0.518± 0.0 0.241± 0.22 0.021± 0.00 0.057± 0.032

wF1 0.63± 0.0 0.295± 0.283 0.012± 0.00 0.149± 0.132

Acc 0.620± 0.0 0.329± 0.248 0.081± 0.00 0.274± 0.178

lr = 10−5

mF1 0.025± 0.0 0.044± 0.0 0.021± 0.00 0.055± 0.034

wF1 0.017± 0.0 0.028± 0.0 0.012± 0.00 0.147± 0.135

Acc 0.097± 0.0 0.092± 0.0 0.081± 0.00 0.266± 0.185

lr = 10−6

mF1 0.206± 0.066 0.026± 0.0 0.055± 0.034 0.021± 0.00

wF1 0.346± 0.046 0.017± 0.0 0.147± 0.135 0.012± 0.00

Acc 0.394± 0.026 0.098± 0.001 0.267± 0.185 0.081± 0.00

66 experimental evaluation

Table 5.3.7 presents Binary training results of BtCNN on the LARa Mocap using
Attribute representation. Unlike the other tables above, table 5.3.7 presents a relatively
low performance. This means that almost all the results are below 50%. Only the
binarization training of the first layer Con1 showed relatively good results at the learn-
ing rate of 104. The overall accuracy is 62% and the overall weighted F1 is 63% for 5.3.7.

In summary, With the learning rate lr = 10−4 in Table 5.3.4, the first layers Conv[1]
and Conv[1-2] behave similarly and show relatively good results. However, the two
other Conv[1-3] and Conv[1-3] configurations deteriorate and show rather low results.
Also, at learning rates lr = 10−5. and lr = 10−6., a quite low result of almost all the
configurations is observed. The architecture shown in table 5.3.5 also behaves in the
same way as the previous table with one difference: the first configuration Conv[1]
shows better results with all learning rates. It is the table that shows the best result
with a score of 71.14% for the accuracy. However, Table 5.3.6 behaves almost the
same way as the Table 5.3.4. Nevertheless, Table 5.3.7 showed relatively poor results.
Only the Conv[1] have a result above the average. It may be appropriate to stop the
binarization at the level of Conv[1-2] because this is where the best results of the
binarization occur.

Furthermore, the wF1 for the testing dataset (wF1 testing) of the best performance
in the four tables above according to the learning rate are presented in tables 5.3.8 and
5.3.9

Table 5.3.8: Learning rate and wF1-testing results of best performance using BtCNN for LARa-
mbientlab (results of best performance are highlighted in Table 5.3.5 and 5.3.4).

Learning rate and wF1 testing result [lr(wF1)]

Mbientlab

Classifier Conv[1] Conv[1-2] Conv[1-3] Conv[1-4]

Sigmoid 10−4(0.723) 10−4(0.716) 10−6(0.412) 10−6(0.412)

Softmax 10−4(0.755) 10−4(0.738) 10−4(0, 41) 10−4(0.412)

Table 5.3.8 presents wF1 for the testing dataset (wF1 testing) and the learning rate
at which a configuration could reach its best performance using LARa-Mbientlab.
These best performances are highlighted in blue in the four tables above. For instance,
the binarization of the first layer during training (Conv[1]) had the best performance

5.3 experiment and results 67

(Acc=71.4% and wF1= 70.3%) at the learning rate 104 for both the sigmoid function
and the softmax function.
Moreover, Conv[1] presents the best wF1-testing result with 72.3% using sigmoid and
75.5% using softmax.

Table 5.3.9: Learning rate best results of BtCNN on the LARa-mocap (results are in Table 5.3.6
and 5.3.7).

Learning rate and wF1 testing result [lr(wF1)]

Mocap

classifier Conv[1] Conv[1-2] Conv[1-3] Conv[1-4]

Sigmoid 10−4(0.691) 10−4(0.711) 10−6(0.343) 10−4(0, 344)

Softmax 10−4(0.694) 10−4(0.72) 10−6(0.36) 10−6(0.35)

Table 5.3.9 presents wF1 for the testing dataset (wF1 testing) and the learning rate
at which a configuration could reach its best performance using LARa-mocap. These
best performances are also presented in blue in the four tables above. For instance,
the binarization of the first layer during training (Conv[1]) had the best performance
(Acc=64.6%and wF1= 63.2%) at the learning rate 104 for both the sigmoid function
and the softmax function.
Moreover, Conv[1-2] presents the best wF1-testing result with 71.1% using sigmoid
and 72% using softmax.

In summary, The BtCNN using Softmax on the LARa mbientlab shows the high-
est score with 71.14% (Softmax) and 68.8% (Sigmoid) on the Conv[1] network and
with a learning rate of lr=10−4. However, the binarization of weights and activations
during the training does not influence negatively impact the performance of the
configurations 1 and 2 (i.e. Conv[1] and Conv[1-2]), which rather present a state-
of-the- art results while the others configurations deteriate or drop in most of the cases.

periods Furthermore, the time (in sec.) taken to test the BtCNN after training
for each configuration was recorded and then placed in the following tables 5.3.11 to
5.3.13.

68 experimental evaluation

Table 5.3.10: Testing time of the BtCNN training for HAR on the LARa mbienlab in second.

.

mbientlab

BN
N

So
ft

m
ax

Learning rate Conv[1] Conv[1-2] Conv[1-3] Conv[1-4]

10−4 10.97 11.124 10.99 10.90

10−5 10.90 11.023 11.006 11.078

10−6 10.96 11.07 11.048 10.973

Table 5.3.10 shows the testing time of each configuration using LARa- mbientlab
and softmax. It is the time needed for a configuration to be tested. The configuration
Conv[1-2] takes more time for testing while the first configuration Con[1] takes less
time with 10.90 sec.

Table 5.3.11: Testing time of the BtCNN training for HAR on the LARa mbienlab in sec.

.

mbientlab

BN
N

Si
gm

oi
d

Learning rate Conv[1] Conv[1-2] Conv[1-3] Conv[1-4]

10−4 25.43 25.44 25.30 25.34

10−5 25.43 25.47 25.34 25.34

10−6 25.42 25.48 25.41 25.36

Table 5.3.11 shows the testing time of each configuration using LARa- mbientlab
and sigmoid. It is the time taken for a configuration to be tested. The configuration
Conv[1-2] takes more time for testing with 25.48 sec. while the first configuration
takes less time with 25.30 sec.

Table 5.3.12: Testing time of the BtCNN training of HAR on the LARa Mocap in sec.

.

Mocap

BN
N

Si
gm

oi
d

Learning rate Conv[1] Conv[1-2] Conv[1-3] Conv[1-4]

10−4 148.38 149.28 148.97 148.82

10−5 153.61 155.62 153.73 151.34

10−6 147.94 149.52 148.79 149.20

Table 5.3.12 shows the testing value of each configuration using LARa-mocap and
sigmoid. It is the time needed for a configuration to be tested. The configuration

5.3 experiment and results 69

Conv[1-3] takes more time for testing 153.73 sec while the configuration Conv[1] takes
less time 147.94 sec.

Table 5.3.13: Testing time of the BtCNN training of HAR on the LARa Mocap in sec.

.

Mocap

BN
N

So
ft

m
ax

Learning rate Conv[1] Conv[1-2] Conv[1-3] Conv[1-4]

10−4 114.78 112.92 114.69 112.71

10−5 116.18 112.97 112.80 112.36

10−6 112.25 118.21 112.69 112.32

Table 5.3.13 shows the testing value of each configuration using LARa-mocap and
softmax. It is the time needed for a configuration to be tested. The configuration
Conv[1-2] takes more time for testing 118.21 sec. while the configuration Conv[1]
takes less time 112.25 sec.

In summary, The training with Sigmoid takes a little longer. However, it is clear
that all the configurations show a slight difference in terms of duration. Nevertheless
Conv[1] shows a slight difference with a shorter duration of 112.25 sec. and 10.90 sec
for LARa-mbientlab using softmax, then 147.94 sec. for LARa-mocap using Sigmoid.
But will be overtaken by Conv[1-3] with a score of 26.30 sec. in the sigmoid classifica-
tion using the mbientlab.

Tables 5.3.8 and 5.3.9 show the configurations of BtCNN with good performance,
which performed better at testing. The time of these best performing configurations
are shown in tables 5.3.14 and 5.3.15 in second. The performances of short duration
are highlighted in color.

70 experimental evaluation

Table 5.3.14: Testing time of BtCNN with the best performance during training on the LARa
mbientlab in sec

.
Mbientlab

B
N

N

Classifier Type Conv[1] Conv[1-2] Conv[1-3] Conv[1-4]

Sigmoid
best lr 10−4 10−4 10−6 10−6

training 1834.86 1855.00 1820.31 1807.93

testing 25.49 25.80 25.49 25.40

Softmax
best lr 10−4 10−4 10−4 10−4

training 1198.69 1197.17 1174.53 1179.58

testing 10.94 10.88 10.97 10.97

table 5.3.14 gives the duration of the BtCNN best performances on the LARa
mbientlab using Sigmoid or Softmax. Unlike the four figures above, only the test and
validation values of the configurations with the best performance will be shown in the
table 5.3.14. In this table the most binarized layers are the fastest during both training
and testing, i.e. Con[1-4] is the fastest in this table with a duration of 1807.93 sec at
validation and 25.40 sec for the test.

Table 5.3.15: Testing time of BtCNN with the best performance during training on the LARa
Mocap in sec

.
Mocap

B
N

N

Classifier Type Conv[1] Conv[1-2] Conv[1-3] Conv[1-4]

Sigmoid
best lr 10−4 10−4 10−6 10−4

training 31949.14 32035.97 31184.88 31594.1

testing 153.99 147.77 148.974 154.72

Softmax
best lr 10−4 10−4 10−6 10−4

training 26540.42 26383.63 25482.93 25421.8

testing 113.15 118.33 114.12 114.24

5.3.15 gives the duration of the BtCNN best performances on the LARa mocap using
Sigmoid or Softmax. Unlike the four figures above, only the test and validation values
of the configurations with the best performance will be shown in table 5.3.15. In the

5.3 experiment and results 71

table, it can be seen that the most binarized layers are the fastest during both training
and testing i.e., Con[1-4] is the fastest in this table with a duration of 25421.8 sec at
validation and Conv[1-3] is the fastest at the test with 114.12 sec otherwise.

Observing these two tables, it can be deduced that it is not always the best performers
who are faster. In other words, observing the table 5.3.14, Conv[1-3] and Conv[1-
4] are rather faster during the validation and the test compared to the first two
Configurations. Likewise in the table 5.3.15 the configuration Con[1-4] is faster than
the others. Therefore, the speed Conv[1-3] and Con[1-4] could be a consequence of the
binarization because in these two parts, all or almost all the layers are binarized Thus,
reduction of memory is reduction of time. This confirms the assertion of [QGL+

20]
when the authors say that their work has largely reduced inference time.

The authors of [NRMR+
20] did their experiments exclusively on the Mocap unlike

this thesis which also performed on the mbientlab. Finally, the performance of the
BtCNN on the Mocap Dataset of validation in terms of accuracy and F1-score is lower
than that of the tCNN of [NRMR+

20]. Precisely, of about −4% using softmax, −13%
using the attribute in terms of accuracy, then in terms of F1 score, by about −1% using
softmax and about −10% using attributes.

6
C O N C L U S I O N

The aim of this thesis was to binarize neural networks in order to drastically decrease
the high demand in memory of HAR. This means that neural networks use binary
weights and activations at train-time in the Forward propagation, while real values
are used in the backward pass when computing the parameters gradients.
For this purpose, experiments were conducted to compare the results obtained with
those proposed by the authors of [NRMR+

20]. To do this, a Sign function was im-
plemented to binarize the weights and activations of the different layers during the
training. At the backpropagation, the gradient had to be computed while keeping the
full-precision numbers. And the training had to be done through several epochs.
The tCNN intended for the LARa dataset was utilized for this purpose. The tCNN
layers have been binarized and trained for this objective. Thus, different layers were
binarized independently during training. Experiments showed that the reconstructed
tCNN or BtCNN in section 4.3, achieves nearly state-of-the-art results. Therefore, this
experience presented a relatively HAR performance compared with the baseline or
state-of-the-art despite a little margin of difference. In the experiments, the weighted
F1-score recorded a slight difference of only 1% with the state-of-the-art results from
[NRMR+

20]. Thus, despite the loss of information, a good performance was achieved.

Moreover, during this experiment four binary configurations were created and
explained in the section 5.3.2. In the experiments, different proportions of the layers
were binarized. The first layers learned binary features that are activated under
different activities. However, the deeper the layers, the more complex the features
become, and binarization ends up deleting vital information of these features. This
subsequently influences the performance for the deeps layers. However, the more
the layers were binarized the faster the training was. In summary, even though the
number of bits has been drastically reduced, binarization was achieved for the first
and second layers without affecting the performance.
Finally, future work could improve the work while considering data storage. Because
the program saves only the memory occupied by all layers. That is, the convolutional
part and the MLP part (FC and Classifier) combined. So, the memory is stored in float
and not in binary because of the MLPs. A solution will be to separate the networks
into two parts. Precisely, one part for the convolution layers (Binary), and another part

73

74 conclusion

for the MLPs. Thus, the data will be stored in binary in the convolutional part and
then in float in the MLP part (if the FC layers are not yet binarized). Then the memory
occupied during training at each configuration for BtCNN will be obtained. It will
be useful in the future to have two storages: one for convolutional networks and the
other for MLPs. Another idea would be to binarize the entire network, i.e.,including
the FC layers.

L I S T O F F I G U R E S

Figure 2.1.1 A Graphic of subjects with sensors on their bodies. Taken from
[NRMR+

20]. 7

Figure 2.3.1 Structure of a biological neuron taken from [NGLK18] and
[Jon17] respectively. 8

Figure 2.3.2 Representation of a Basic Perceptron Neural Network. 9

Figure 2.3.3 Structure of a biological neuron connected together taken from
[NGLK18]. 10

Figure 2.3.4 An example of MLP. The edges transfer the weights or output
data from a neuron i to a neuron j of the next layer k. The nodes
represent neurons. 12

Figure 2.3.5 left: Graph of the tanh function, right: Graph of the gradi-
ent of tanh function. The graphics are inspired from stackex-
change 14

Figure 2.3.6 Backward- and forward-propagation during training of Neural
Networks, inspired from [Aka20] 15

Figure 2.3.7 Schematic diagram of a High-level ConvNet(CNN) architecture
taken from [PG17] 19

Figure 2.3.8 Graphic of a convolution operation applied to a 2-D tensor.
The inputs are represented by alphabetic letters from a to l, the
Kernel from w to z. The output is the feature map of input and
Kernel. image taken from [GBC16] 21

Figure 2.3.9 Example of a Downsampling operation –Every Max operation
would in this case be taking a max over 4 numbers (with filter
size 2, stride 2). Figure taken from [LKBS20]. 22

Figure 2.3.10 left the schematic Graph of the ReLU function and right the ac-
tivations of an example CNN architecture. Image of architecture
taken from [LKBS20] 24

Figure 2.3.11 Example of a softmax activation function diagram taken from
[Rad20] 25

Figure 2.3.12 Cross-entropy function using the activation from [Gom18] 25

Figure 2.4.1 Convolution with bit-wise operation from [Bru20] 28

75

76 list of figures

Figure 2.4.2 Training of the BNNs using the Sign function in the Forward
propagation and the Straight-Throug Estimator in the Back-
propagation. Taken from [Var21] 30

Figure 3.1.1 Example of FP 32 accuracy achievement for INT8 inference
Using Quantization. Figure taken from [NZ21]. 32

Figure 3.1.2 Flow chart of quantization workflow recommended and ex-
plained by the authors in [Dat20] 35

Figure 3.2.1 An example of Binarized Neural Network taken from [Nat18] 37

Figure 3.2.2 Training of binary Neural Networks, inspired from [Aka20].
X, Y. Z are the output of previous layers and input of the next
layers. ∂L

∂W is the gradient 38

Figure 3.3.1 Graphic of a TCNN architecture. The alphabets "c", "s", "u", "o"
in the parentheses of the layer tags refer to convolution, sub-
sampling, unification and output operations respectively. The
numbers before and after "@"refer to the number of feature
maps and the dimension of a feature map in this layer. Taken
from [YNS+

15] 41

Figure 4.1.1 A Graphic of the Temporal Convolutional Neural Network
(tCNN) architecture (The Dropout are missing),taken from
[NRMR+

20] 45

Figure 4.1.2 Graphic of the Training of the tCNN proposed by [NRMR+
20].

the Networks has 4 Conv layers each composed of 64 filters
of size [5× 1], zwei Fc-layers of 128 filters and a classifier (sof-
max or sifmoid depending on the task). Image inspired from
[Aka20] 46

Figure 4.1.3 Graphic of BtCNN during training.Image inspired from [NRMR+
20]. 46

Figure 4.3.1 Training of the binary tCNN (BtCNN). At the Forward pass,
the sign function is used for binarization. At the Backward,
the loss and the gradient are computed using real value. The
tCNN was proposed by [NRMR+

20]. The figure inspired from
[Aka20] 49

Figure 4.3.2 Example of Diagram of the Forwardpropagation and the Back-
wardpropagation,taken from [HWG+

19]. At the Forward pass,
the inputs are binarized with the sign function and at the Back-
ward, the real is used to compute the error. STE is used to
approximate the gradient. 50

list of figures 77

Figure 5.1.1 A Graphic of one Subject participating in a recording while
performing activities and wearing Sensors suit. Image Taken
from [NRMR+

20] 56

Figure 5.3.1 Training of tCNN proposed by [NRMR+
20] The layers in yellow

are the layers that are being trained/binarized while those in
blue are still to be binarized. On the first figure, no layer is yet
binarized (this is the original tCNN), on the second figure, the
first layer is binarized (BtCNN), on the third figure, the first
and second layers, on the fourth, the first three and on the fifth,
all four layers 62

B I B L I O G R A P H Y

[Aka20] Akagündüz, Erdem: Binary Neural Networks. https://ee545.cankaya.
edu.tr/uploads/files/EE545-W10.zip, 2020. – Accessed: 2022-07-13

[Bas20] Basta, Nikola: The Differences between Sigmoid and Soft-
max Activation Functions. https://medium.com/arteos-ai/

the-differences-between-sigmoid-and-softmax-activation-function-12adee8cf322,
2020. – Accessed: 2022-07-25

[BBS13] Bulling, Andreas ; Blanke, Ulf ; Schiele, Bernt: A Tutorial on Hu-
man Activity Recognition Using Body-Worn Inertial Sensors. In: ACM
Computing Surveys 46 (2013), 01. http://dx.doi.org/10.1145/2499621.
– DOI 10.1145/2499621

[Bru20] Bruin, Barry de: Deep Neural Network optimization: Binary Neural Networks.
https://slideplayer.com/slide/17585887/, 2020. – Accessed: 2022-06-
25

[Bus18] Bushaev, Vitaly: Understanding RMSprop — faster neural network learning.
https://t.co/lovpLkfVYE, 2018. – Accessed: 2022-05-30

[CB16] Courbariaux, Matthieu ; Bengio, Yoshua: BinaryNet: Training Deep
Neural Networks with Weights and Activations Constrained to +1 or -1.
In: CoRR abs/1602.02830 (2016). http://arxiv.org/abs/1602.02830

[CHS+
16] Courbariaux, Matthieu ; Hubara, Itay ; Soudry, Daniel ; El-Yaniv,

Ran ; Bengio, Yoshua: Binarized Neural Networks: Training Deep Neural
Networks with Weights and Activations Constrained to +1 or -1. http://dx.
doi.org/10.48550/ARXIV.1602.02830. Version: 2016

[Dat20] Datta, Leonid: A Survey on Activation Functions and their relation with
Xavier and He Normal Initialization. In: CoRR abs/2004.06632 (2020).
https://arxiv.org/abs/2004.06632

[Dil19] Dilmegani, Cem: Machine Learning Accuracy: True vs. False Positive/Nega-
tive. https://cs231n.github.io/convolutional-networks/, 2019. – Ac-
cessed: 2022-07-08

79

https://ee545.cankaya.edu.tr/uploads/files/EE545-W10.zip
https://ee545.cankaya.edu.tr/uploads/files/EE545-W10.zip
https://medium.com/arteos-ai/the-differences-between-sigmoid-and-softmax-activation-function-12adee8cf322
https://medium.com/arteos-ai/the-differences-between-sigmoid-and-softmax-activation-function-12adee8cf322
http://dx.doi.org/10.1145/2499621
https://slideplayer.com/slide/17585887/
https://t.co/lovpLkfVYE
http://arxiv.org/abs/1602.02830
http://dx.doi.org/10.48550/ARXIV.1602.02830
http://dx.doi.org/10.48550/ARXIV.1602.02830
https://arxiv.org/abs/2004.06632
https://cs231n.github.io/convolutional-networks/

80 bibliography

[GBC16] Goodfellow, Ian ; Bengio, Yoshua ; Courville, Aaron: Deep Learning.
MIT Press, 2016. – http://www.deeplearningbook.org

[GLR+
17] Grzeszick, René ; Lenk, Jan M. ; Rueda, Fernando M. ; Fink, Gernot A. ;

Feldhorst, Sascha ; Hompel, Michael ten: Deep Neural Network based
Human Activity Recognition for the Order Picking Process. In: Proceed-
ings of the 4th international Workshop on Sensor-based Activity Recognition
and Interaction (2017)

[Gom18] Gomez, Raul: Understanding Categorical Cross-Entropy Loss, Binary Cross-
Entropy Loss, Softmax Loss, Logistic Loss, Focal Loss and all those confusing
names. https://gombru.github.io/2018/05/23/cross_entropy_loss/,
2018. – Accessed: 2022-07-20

[HBFS01] Hochreiter, S. ; Bengio, Y. ; Frasconi, P. ; Schmidhuber, J.: Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies.
In: Kremer, S. C. (Hrsg.) ; Kolen, J. F. (Hrsg.): A Field Guide to Dynamical
Recurrent Neural Networks. IEEE Press, 2001

[HCS+
16] Hubara, Itay ; Courbariaux, Matthieu ; Soudry, Daniel ; El-Yaniv,

Ran ; Bengio, Yoshua: Binarized Neural Networks. In: Lee, D. (Hrsg.)
; Sugiyama, M. (Hrsg.) ; Luxburg, U. (Hrsg.) ; Guyon, I. (Hrsg.) ;
Garnett, R. (Hrsg.): Advances in Neural Information Processing Systems
Bd. 29, Curran Associates, Inc., 2016

[Hoc98] Hochreiter, Sepp: The Vanishing Gradient Problem During Learn-
ing Recurrent Neural Nets and Problem Solutions. In: International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6 (1998),
04, S. 107–116. http://dx.doi.org/10.1142/S0218488598000094. – DOI
10.1142/S0218488598000094

[HSS12] Hinton, Geoffrey ; Srivastava, Nitish ; Swersky, Kevin: Overview of
mini-batch gradient descent. In: Neural Networks for Machine Learning 575

(2012), Nr. 8

[HW59] Hubel, D. H. ; Wiesel, T. N.: Receptive fields of single neurones in
the cat’s striate cortex. In: The Journal of Physiology 148 (1959), Nr.
3, 574-591. http://dx.doi.org/https://doi.org/10.1113/jphysiol.

1959.sp006308. – DOI https://doi.org/10.1113/jphysiol.1959.sp006308

http://www.deeplearningbook.org
https://gombru.github.io/2018/05/23/cross_entropy_loss/
http://dx.doi.org/10.1142/S0218488598000094
http://dx.doi.org/https://doi.org/10.1113/jphysiol.1959.sp006308
http://dx.doi.org/https://doi.org/10.1113/jphysiol.1959.sp006308

bibliography 81

[HWG+
19] Helwegen, Koen ; Widdicombe, James ; Geiger, Lukas ; Liu, Zechun ;

Cheng, Kwang-Ting ; Nusselder, Roeland: Latent Weights Do Not Exist:
Rethinking Binarized Neural Network Optimization. http://dx.doi.org/10.
48550/ARXIV.1906.02107. Version: 2019

[Jon17] Jones, M. T.: A neural networks deep dive. https://developer.ibm.com/
articles/cc-cognitive-neural-networks-deep-dive/, 2017. – Ac-
cessed: 2022-05-30

[KA21] Koppert-Anisimova, Inara: Understanding RMSprop —
faster neural network learning. https://medium.com/unpackai/

cross-entropy-loss-in-ml-d9f22fc11fe0, 2021. – Accessed: 2022-06-
30

[LC11] Lee, Young Seol ; Cho, Sung Bae: Activity recognition using hierarchical
hidden markov models on a smartphone with 3D accelerometer. In:
Hybrid Artificial Intelligent Systems - 6th International Conference, HAIS
2011, Proceedings. Germany : Springer Verlag, 2011 (Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) PART 1). – ISBN
9783642212185, S. 460–467. – Funding Information: Acknowledgments.
This research was supported by Basic Science Research Program through
the National Research Foundation of Korea(NRF) funded by the Ministry
of Education, Science and Technology (No. 2009-0083838).

[Lin17] Lin, Fang: XNOR Neural Networks on FPGA. http://cs231n.stanford.
edu/reports/2017/pdfs/118.pdf, 2017. – Accessed: 2022-06-25

[LKBS20] Li, Fei-Fei ; Kiml, Moo J. ; Bansal, Dhruva ; Shen, William: Convolu-
tional Neural Networks (CNNs / ConvNets). https://cs231n.github.io/
convolutional-networks/, 2020. – Accessed: 2022-07-25

[LMRA+
21] Lüdtke, Stefan ; Moya Rueda, Fernando ; Ahmed, Waqas ; Fink, Gernot

; Kirste, Thomas: Human Activity Recognition using Attribute-Based
Neural Networks and Context Information, 2021

[MP43] Mcculloch, Warren ; Pitts, Walter: A Logical Calculus of Ideas Imma-
nent in Nervous Activity. In: Bulletin of Mathematical Biophysics 5 (1943),
S. 127–147

http://dx.doi.org/10.48550/ARXIV.1906.02107
http://dx.doi.org/10.48550/ARXIV.1906.02107
https://developer.ibm.com/articles/cc-cognitive-neural-networks-deep-dive/
https://developer.ibm.com/articles/cc-cognitive-neural-networks-deep-dive/
https://medium.com/unpackai/cross-entropy-loss-in-ml-d9f22fc11fe0
https://medium.com/unpackai/cross-entropy-loss-in-ml-d9f22fc11fe0
http://cs231n.stanford.edu/reports/2017/pdfs/118.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/118.pdf
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/

82 bibliography

[MRGF+
18] Moya Rueda, Fernando ; Grzeszick, René ; Fink, Gernot A. ; Feldhorst,

Sascha ; Ten Hompel, Michael: Convolutional Neural Networks for
Human Activity Recognition Using Body-Worn Sensors. In: Informatics 5

(2018), Nr. 2. http://dx.doi.org/10.3390/informatics5020026. – DOI
10.3390/informatics5020026. – ISSN 2227–9709

[Nat18] Natsu: Paper Explanation: Binarized Neural Networks: Training Neural
Networks with Weights and Activations Constrained to +1 or -1. https:

//mohitjain.me/2018/07/14/bnn/, 2018. – Accessed: 2022-07-03

[NGLK18] Neves, Ana C. ; Gonzalez, Ignacio ; Leander, John ; Karoumi, Raid: A
New Approach to Damage Detection in Bridges Using Machine Learning,
2018. – ISBN 978–3–319–67442–1, S. 73–84

[NRMR+
20] Niemann, Friedrich ; Reining, Christopher ; Moya Rueda, Fernando

; Nair, Nilah R. ; Steffens, Janine A. ; Fink, Gernot A. ; Hompel,
Michael ten: LARa: Creating a Dataset for Human Activity Recognition
in Logistics Using Semantic Attributes. In: Sensors 20 (2020), Nr. 15. http:
//dx.doi.org/10.3390/s20154083. – DOI 10.3390/s20154083. – ISSN
1424–8220

[NZ21] Neta Zmora, Jay R. Hao Wu W. Hao Wu: Achieving FP32
Accuracy for INT8 Inference Using Quantization Aware Training
with NVIDIA TensorRT. https://developer.nvidia.com/blog/

achieving-fp32-accuracy-for-int8-inference-using-quantization-aware-training-with-tensorrt/,
2021. – Accessed: 2022-07-03

[OR16] Ordóñez, Francisco J. ; Roggen, Daniel: Deep Convolutional and
LSTM Recurrent Neural Networks for Multimodal Wearable Activity
Recognition. In: Sensors 16 (2016), Nr. 1. http://dx.doi.org/10.3390/
s16010115. – DOI 10.3390/s16010115. – ISSN 1424–8220

[OZCR20] Otness, Alfredo Canzianiand K. ; Zhang, Xiaoyi ; Chandrakaladha-
ran, Shreyas ; Raach, Chady: Overtraining and regulation. https://

atcold.github.io/pytorch-Deep-Learning/en/week14/14-3/, 2020. –
Accessed: 2022-05-20

[PG17] Patterson, J. ; Gibson, A.: Deep Learning: A Practitioner’s Ap-
proach. O’Reilly Media, 2017 https://books.google.de/books?id=

qrcuDwAAQBAJ. – ISBN 9781491914236

http://dx.doi.org/10.3390/informatics5020026
https://mohitjain.me/2018/07/14/bnn/
https://mohitjain.me/2018/07/14/bnn/
http://dx.doi.org/10.3390/s20154083
http://dx.doi.org/10.3390/s20154083
https://developer.nvidia.com/blog/achieving-fp32-accuracy-for-int8-inference-using-quantization-aware-training-with-tensorrt/
https://developer.nvidia.com/blog/achieving-fp32-accuracy-for-int8-inference-using-quantization-aware-training-with-tensorrt/
http://dx.doi.org/10.3390/s16010115
http://dx.doi.org/10.3390/s16010115
https://atcold.github.io/pytorch-Deep-Learning/en/week14/14-3/
https://atcold.github.io/pytorch-Deep-Learning/en/week14/14-3/
https://books.google.de/books?id=qrcuDwAAQBAJ
https://books.google.de/books?id=qrcuDwAAQBAJ

bibliography 83

[QGL+
20] Qin, Haotong ; Gong, Ruihao ; Liu, Xianglong ; Bai, Xiao ; Song,

Jingkuan ; Sebe, Nicu: Binary Neural Networks: A Survey. In: Pattern
Recognition 105 (2020), 02, S. 107281. http://dx.doi.org/10.1016/j.

patcog.2020.107281. – DOI 10.1016/j.patcog.2020.107281

[Rad20] Radečić, Dario: Softmax Activation Func-
tion Explained. https://towardsdatascience.com/

softmax-activation-function-explained-a7e1bc3ad60, 2020. –
Accessed: 2022-07-21

[RC15] Ronao, Charissa Ann ; Cho, Sung Bae: Deep convolutional neural
networks for human activity recognition with smartphone sensors. In:
Arik, Sabri (Hrsg.) ; Huang, Tingwen (Hrsg.) ; Lai, Weng Kin (Hrsg.) ;
Liu, Qingshan (Hrsg.): Neural Information Processing - 22nd International
Conference, ICONIP 2015, Proceedings. Germany : Springer Verlag, 2015

(Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics)). – ISBN
9783319265605, S. 46–53. – Funding Information: This research was
supported by the MSIP (Ministry of Science, ICT and Future Planning),
Korea, under the ITRC (Information Technology Research Center) sup-
port program (IITP-2015-R0992-15-1011) supervised by the IITP (Institute
for Information & communications Technology Promotion). Publisher
Copyright: © Springer International Publishing Switzerland 2015.; 22nd
International Conference on Neural Information Processing, ICONIP
2015 ; Conference date: 09-11-2015 Through 12-11-2015

[RNMR+
19] Reining, Christopher ; Niemann, Friedrich ; Moya Rueda, Fernando ;

Fink, Gernot A. ; Hompel, Michael ten: Human Activity Recognition for
Production and Logistics—A Systematic Literature Review. In: Informa-
tion 10 (2019), Nr. 8. http://dx.doi.org/10.3390/info10080245. – DOI
10.3390/info10080245. – ISSN 2078–2489

[Ros58] Rosenblatt, Frank: The perceptron: a probabilistic model for informa-
tion storage and organization in the brain. In: Psychological review 65 6

(1958), S. 386–408

[Rud16] Ruder, Sebastian: An overview of gradient descent optimization algo-
rithms. In: CoRR abs/1609.04747 (2016). http://arxiv.org/abs/1609.

04747

http://dx.doi.org/10.1016/j.patcog.2020.107281
http://dx.doi.org/10.1016/j.patcog.2020.107281
https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60
https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60
http://dx.doi.org/10.3390/info10080245
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747

84 bibliography

[RZL17] Ramachandran, Prajit ; Zoph, Barret ; Le, Quoc V.: Searching for
Activation Functions. In: CoRR abs/1710.05941 (2017). http://arxiv.

org/abs/1710.05941

[Sar14] Sarkar, A. M. J.: Hidden Markov Mined Activity Model for Human Ac-
tivity Recognition. In: International Journal of Distributed Sensor Networks
10 (2014), Nr. 3, 949175. http://dx.doi.org/10.1155/2014/949175. –
DOI 10.1155/2014/949175

[SP22] Santos, Claudio Filipi G. ; Papa, Jo

[Spa22] Sparrow, Jack: Intuition d’Adam Optimizer. https://fr.acervolima.

com/intuition-d-adam-optimizer/, 2022. – Accessed: 2022-08-19

[Var21] Varman, Rahul: Binary Neural Networks — Future of low-cost neural net-
works? https://slideplayer.com/slide/17585887/, 2021. – Accessed:
2022-07-03

[WJZ+
20] Wu, Hao ; Judd, Patrick ; Zhang, Xiaojie ; Isaev, Mikhail ; Micikevicius,

Paulius: Integer Quantization for Deep Learning Inference: Principles
and Empirical Evaluation. In: CoRR abs/2004.09602 (2020). https:

//arxiv.org/abs/2004.09602

[YNS+
15] Yang, Jianbo ; Nguyen, Minh N. ; San, Phyo P. ; Li, Xiaoli ; Krish-

naswamy, Shonali: Deep Convolutional Neural Networks on Multichan-
nel Time Series for Human Activity Recognition. In: IJCAI, 2015

[ZLL+
14] Zeng, Daojian ; Liu, Kang ; Lai, Siwei ; Zhou, Guangyou ; Zhao, Jun:

Relation classification via convolutional deep neural network. In: Pro-
ceedings of COLING 2014, the 25th international conference on computational
linguistics: technical papers, 2014, S. 2335–2344

http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1710.05941
http://dx.doi.org/10.1155/2014/949175
https://fr.acervolima.com/intuition-d-adam-optimizer/
https://fr.acervolima.com/intuition-d-adam-optimizer/
https://slideplayer.com/slide/17585887/
https://arxiv.org/abs/2004.09602
https://arxiv.org/abs/2004.09602

	1 Introduction
	2 Fundamentals
	2.1 HAR
	2.2 Classification
	2.3 Neural Networks
	2.3.1 Perceptron
	2.3.2 MLP
	2.3.2.1 Activation function
	2.3.2.2 Backpropagation and Optimization

	2.3.3 Convolutional Neural Networks
	2.3.3.1 Convolution-Layer
	2.3.3.2 Pooling-Layer
	2.3.3.3 Fully-Connected-Layers
	2.3.3.4 Activation function
	2.3.3.5 classification
	2.3.3.6 Overfitting and Regularization

	2.4 Binary Neural Networks
	2.4.1 Preliminary (Backward, forward, ...)
	2.4.2 Training
	2.4.3 Optimization

	3 Related Works
	3.1 Achieving FP32 Accuracy for INT8 Inference Using Quantization Aware Training.
	3.2 BNNs: Training Neural Networks with Weights and Activations Constrained to +1 or -1
	3.2.1 The BNN Architecture
	3.2.2 Binarized Neural Networks
	3.2.2.1 Deterministic and Stochastic Binarization
	3.2.2.2 Gradient Computation
	3.2.2.3 Gradient Propagation
	3.2.2.4 Normalization and Result
	3.2.2.5 Efficiency

	3.3 Temporal Convolutional Neural Network

	4 Method
	4.1 Temporal Convolutional Neural Network for HAR using LARa Dataset
	4.1.1 Training of Temporal Convolutional Neural Network for HAR using LARa

	4.2 The classifiers
	4.3 Binary Temporal Convolutional Neural Network for HAR
	4.3.1 Architecture
	4.3.2 Training Binary tCNN

	5 Experimental evaluation
	5.1 Dataset
	5.1.1 LARa Dataset

	5.2 Metrics
	5.2.1 Precision, Recall, F1-Scores and loss

	5.3 Experiment and Results
	5.3.1 Baseline tCNN
	5.3.2 BtCNN for HAR on LARa

	6 Conclusion

