
The Generation of Synthetic Data for
CNN-Based Word Spotting

Bachelor Thesis

Jin Ke
September 18, 2020

Supervisors:

Fabian Wolf, M.Sc.

Prof. Dr.-Ing. Gernot A. Fink

Fakultät für Informatik

Technische Universität Dortmund

http://www.cs.uni-dortmund.de

C O N T E N T S

1 motivation 3

2 fundamentals 5

2.1 Word Spotting 5

2.2 Neural Networks 6

2.2.1 Feedforward Neural Networks 7

2.2.2 Training 11

2.2.3 Convolutional Neural Network 14

3 related work 19

3.1 Generation of Synthetic Word Image 19

3.1.1 Glyphcentric approach 20

3.1.2 Generational method 20

3.1.3 Font-based method 21

3.2 PHOCNet 22

3.2.1 PHOC Representation 23

3.2.2 PHOCNet Architecture 24

4 methods 27

4.1 Synthetic Word Image Generation 28

4.1.1 The Vocabulary of Words 28

4.1.2 Font Rendering 29

4.2 Applying Deformations 31

4.2.1 Affine Transformation 31

4.2.2 Elastic Distortion 33

4.2.3 Naturalization of Pixel Distribution 34

4.2.4 Gaussian Smoothing 37

5 experiments 39

5.1 Datasets 40

5.1.1 George Washington 40

5.1.2 IAM 41

5.2 Evaluation Protocol 42

5.3 Training Details 43

5.4 Results and Discussion 43

1

2 contents

5.4.1 The Size of Vocabulary 43

5.4.2 The Number of Fonts 45

5.4.3 Pixel Distribution of Fore- and Background Pixels 46

5.4.4 Synthetic Data Sets with Deformations 47

5.5 Comparison to Results from the Literature 51

6 conclusion 53

1
M O T I VAT I O N

Historical handwritten documents contain valuable information that can be used
in some modern research and projects. Document Image Analysis and Recognition
is dedicated to preserving these documents and extracting valuable information
from them. Optical Character Recognition (OCR) uses technology to convert
characters or words in handwritten or printed text images into electronic repre-
sentations that can be used for data processing. OCR has been widely used in
pattern recognition, artificial intelligence, and computer vision to input data from
the text images. These data can then be electronically edited, searched, stored, or
employed in machine processes such as cognitive computing.

Currently, many document OCR systems can work almost error-free in printed
and high-quality scanned documents. However, they have faced a bottleneck in
handwriting, especially in historical handwritten documents and manuscripts,
because the word appearing in the handwritten text images will be affected
by many factors such as font, direction, and image distortion. The scribbled
handwriting, the overlap of letters, and the tight connections between words in
the handwritten text significantly increase the experiment’s difficulty. Therefore,
handwritten text recognition is still a challenging but wildly useful task.

As an alternative solution to OCR, word spotting is receiving more and more
attention from researchers. It does not require a full transcription of the text and
is a retrieval-based approach to locate a specific word a given document collection.
This method compares each part of the document images with the required query
and determines whether they are similar to the query. The query can be a text
string (Query-By-String) or a word image (Query-By-Example). The result is a list
of document image parts and is usually sorted in descending order according to
the determined similarity. People are increasingly inclined to use this approach to
solve document indexing problems, which has led to a surge in word spotting
methods today [GSGN17] [NAK+

17].
In recent years, deep learning-based word spotting has managed to get re-

markable achievements [SZ15] [JSVZ14], but it also exposed their desire for a
wide range of training data sets. In pattern recognition problems, the model’s

3

4 motivation

performance for word spotting depends not only on the features and classification
algorithms but also on the quality and scale of the training data. With word spot-
ting becoming a significant field of study in the handwritten domain, researchers
could no longer ignore the severe problem in document image analysis: the
deep CNN-based word spotting methods rely heavily on numerous high-quality
labeled samples.

The experiments in [JSVZ14] and [PW16] show that the larger the training
dataset, the better the performance of the CNNs. However, it takes much effort to
create a training dataset, since data collection to annotation and verification require
many manual works. A solution to this is to create synthetic data automatically.
Synthetic handwritten word images with multiple sizes and distortions meet our
requirements for training data combining more variability and realism, and also
provide endless possibilities for word spotting [GSF18] [WBF20].

The generation of synthetic word images is the problem of interest in this
thesis. In particular, we will use open-source fonts to generate synthetic data
that is highly realistic and sufficient to replace actual data for CNN-based word
spotting systems. Following suggestions of Krishnan et al. [KJ16b], we complete
word image generation through font rendering and apply some distortions to
the generated images. Based on the method of Krishnan et al., we also use elastic
deformation to reduce the gap between synthetic samples and the real samples.
This method’s advantage is that it does not need any real data and can provide a
large amount of training data to reduce manually annotated data significantly.

For evaluation purposes, we consider an existing CNN-based word spotting
model, the PHOCNet. This deep neural network model is trained solely on data
produced by our synthetic text generation engine. Finally, all trained models are
evaluated in the segmentation-based case. By comparing these performance re-
sults, we want to know the contribution of each stage of synthetic data generation
to word spotting accuracy. Besides, we are interested in how the vocabulary size
and the number of fonts used will affect the results.

We first give an overview of word spotting methods and the deep neural
network in Chap. 2. An overview of the synthetic handwritten word follows and
a popular model for word spotting, the PHOCNet, in terms of the technology
described in Chap. 3. Our synthetic data generation system is then presented in
Chap. 4, and evaluated in Chap. 5, finally conclusions are drawn in Chap. 6.

2
F U N D A M E N TA L S

The application of neural networks and deep learning has given a significant
performance improvement in word spotting. Many word spotting methods, such
as [WB16] [KDJ16], use neural networks to learn various feature embeddings.
Convolutional neural networks (CNNs) are used in word spotting and their
success is well documented [SF16].

This chapter presents the fundamentals of interest in this thesis. Sec. 2.1 intro-
duces the concept of word spotting. And then, Sec. 2.2 gives a detailed overview of
the neural network. Sec. 2.2.1 outlines then the basics of the neural networks used
in this thesis. Afterward, Sec. 2.2.2 elaborates on how to train neural networks.
Finally, Sec. 2.2.3 introduces CNNs that are the cornerstone of the model we used
in this work.

2.1 word spotting

With the drastic growth of demand for processing and accessing handwritten doc-
uments in digital form, word spotting has aroused many interests of researchers
from the document image research field. Especially in historical document images,
word spotting techniques are widely regarded as the best alternative to the OCR-
based techniques, because these documents usually have low visualization quality,
diverse writing styles, deformed fonts, and uneven text spacing [GSGN17].

The purpose of word spotting is to retrieve related word images from a given
document collection under a given query. In [GSGN17], many different ap-
proaches for word spotting are introduced. For these methods, the query term may
be a text string (Query-by-String), it may also be an image (Query-by-Example)
or rely on other query methods [RATL15] [WRF16]. Query-by-String (QbS) and
Query-by-Example (QbE) are the query methods used in this thesis.

Besides, the word spotting method’s operation also depends on whether the
word images need to be segmented from the page. The approaches depending

5

6 fundamentals

on segmentation are called the segmentation-based [SF18] [KJ19], and all other
methods can be collectively referred to as segmentation-free [DM20] [TP19].

According to the requirement of training data, the word spotting methods can
also be distinguished into annotation-free [WF20] and annotation-based [SF18]
[KJ19]. If a word spotting method does not rely on any manually labeled samples,
it is annotation-free and annotation-based otherwise.

As the word spotting research has received more and more attention, many
different models have been employed to the word spotting problem. Nowadays,
neural network-based models for word spotting become popular, and they have
shown excellent performance on most traditional data sets [SF16] [WB16] [KDJ16].
However, these methods rely heavily on annotated training data. By using a
synthetic data set to pre-train a neural network, the experiment in [GSF18] signifi-
cantly reduces the requirement for manually created annotations while ensuring
performance. The word spotting method in [WF20] does not require any manually
annotated data.

The word spotting process can be roughly divided into preprocessing, feature
extraction, and matching [GSGN17]. The preprocessing stage’s main task is to
remove the noise from input images to enhance image quality. In the feature
extraction stage, a set of meaningful features are extracted for each word image,
and they will be used to calculate the similarity between words in the subsequent
matching process. The general feature extraction method is to embed a word
image’s visual appearance in a feature vector. And then, a distance measure can
be used to compare this representation with other document areas. The word
spotting’s heart process matches the word query image and the set of word images
stored in the database using the extracted features. Most word spotting-based
techniques build indexes with features extracted from all word images and extract
the same features from the given query image. They then measure and record
how similar the query image is to each word image in the database. Finally, the
word images will be sorted according to their similarity to the query and returned
as a list [GSGN17].

2.2 neural networks

After explaining the concept of word spotting in the previous section, this section
introduces neural networks in detail. These machine learning models play a vital

2.2 neural networks 7

role in this work. First, concepts for feedforward neural networks are displayed
in Sec. 2.2.1 as they represent the fundamentals of neural networks used in this
work. Then, Sec. 2.2.2 introduces how to train feedforward architectures. Finally,
Sec. 2.2.3 details the Convolutional Neural Networks (CNNs).

2.2.1 Feedforward Neural Networks

Feedforward neural networks are artificial neural networks made up of connected
nodes that form a directed and acyclic graph. Many concepts developed in
early neural network models are still used in today’s deep learning architectures.
The two representatives of them are Perceptrons and Multi-Layer Perceptrons
(MLP). This section first discusses perceptrons and then introduces multilayer
perceptrons.

Perceptron

The perceptron proposed by Frank Rosenblatt [Ros58] is regarded as the simplest
form of a feedforward neural network. In artificial neural networks research,
the perceptron is also referred to as a single-layer artificial neural network to
distinguish it from the more complex multilayer perceptron. Despite its simple
structure, the (single-layer) perceptron can learn and solve a variety of problems.

The graphical visualization of the perceptron is in Fig. 2.2.1. The perceptron
maps its n-dimensional input vectors x ∈ Rn to the output f(x) ∈ {0, 1} [Ros58]
[Nie19]. The classification rule for the perceptron can be defined as

f(x) =

1 , if wTx + b > 0

0 , otherwise
(2.2.1)

where w is the vector of real-valued weights, wTx is the dot product
∑n
i=1wixi,

where n is the number of inputs to the perceptron, and b is the bias which shifts
the decision boundary away from the origin and does not depend on any input
value. Bias can be regarded as a measure of how difficult the perceptrons output
a "1". For perceptrons with large bias, it is easy for the perceptron to output a "1"
and vice versa [Nie19]. The step function f can divide the input space into two
parts, which is the case of binary classification.

8 fundamentals

Figure 2.2.1: Visualization of Perceptron: In this process, the inputs are first multi-
plied by their associated weights representing their importance to the
output. These calculated values are then added to create a weighted
sum, which will be sent to a step function to produce the output (0
or a 1) of the perceptron (image taken from [PG17]).

If the training samples are linearly separable, a single-layer perceptron can
work as a linear classifier. However, the perceptron’s main flaw is that it cannot
deal with the linear inseparability problem [MP87]. Multi-layer perceptrons have
more powerful processing capabilities than the perceptrons with one layer, and
they are sufficient to solve many problems that the perceptrons cannot handle.

Multi-Layer Perceptron

A multi-layer perceptron (MLP) is formed by stacking many perceptrons in
sequence and can model complex non-linear relationships. As shown in Fig. 2.2.2,
MLP can be regarded as a directed graph composed of multiple node layers, each
of which is fully connected to the next layer. The basic structure of multi-layer
perception consists of three parts: the first input layer, the middle hidden layers,

2.2 neural networks 9

Figure 2.2.2: Visualization of an Multi-Layer Perceptron: The first layer is the
input layer, all inner layers of MLP are called hidden layers, and the
last layer is named the output layer (image taken from [PG17]).

and the final output layer. The input layer delivers inputs to the network. All
layers, besides the input and output layer, are called hidden layers and compute
intermediate representations. The computing process in which the product of the
input values and the weights is fed to the summing node with neuron bias is the
same as described in Sec. 2.2.1. Finally, the output layer provides the output of
the MLP.

Inspired by the principles of the human nervous system, multilayer perceptrons
can learn and make data predictions. In the training process, they can use learning
algorithms to adjust the weights and reduce the bias, which is the error between
the actual value and the predicted value [Nie19]. The main advantage of MLPs
lies in its ability to solve complex problems quickly. They are the promotion of
perceptrons and overcome perceptrons’ weakness that cannot recognize linearly
inseparable data. If each neuron’s activation function is linear, then the MLP of
any number of layers can be reduced to an equivalent single-layer perceptron.

10 fundamentals

Activations

In theory, MLPs can use any form of the activation function. However, in order
to use the backpropagation algorithm for effective learning (see Sec. 2.2.2), the
activation function used in MLPs is limited to the nonlinear function. In MLPs,
the sigmoid function is adopted traditionally as the activation function due to its
good differentiability and is defined by

sigm(x) =
1

1+ e−x
. (2.2.2)

For a neuron with inputs x1, x2, ..., xn, weights w1,w2, ...,wn and bias b, its output
is 1
1+e−z where z is the weighted sum of input connections wTx + b. The sigmoid

function can be explained as a smoothed version of the step function, with the
characteristic that it can be differentiated anywhere. The big difference between
the step function and the sigmoid function is that the latter not only outputs 0 or
1, it can also output any real number between 0 and 1. [Nie19].

However, for deeper neural networks, the sigmoid function has the problem
of vanishing gradient. Therefore, in the latest deep learning development, the
Rectifier Linear Unit (ReLU) is more frequently used to overcome numerical prob-
lems related to the s-shaped functions. It was originally proposed by Hahnloser
et al. for hardware circuits that represent neural networks [HSM+

00]. In [NH10]
and [SF16], the ReLU is used in the deep feedforward architecture. The ReLU is
defined by:

fReLU(x) = max (0, x) (2.2.3)

where x is the input of neuron. In the neural network, the ReLU is used as the
activation function of the neuron to define the nonlinear output result of the
neuron after the linear transformation wTx + b. In other words, for the input
vector x from the upper layer of the neural network, the neuron using the ReLU
activation function will output the greater value of 0 and wTx + b to the neurons
at the next layer or as the output of the entire neural network, depending on
where the current neuron is located in the network structure. Fig. 2.2.3 visualizes
the sigmoid and ReLU activation functions.

2.2 neural networks 11

Figure 2.2.3: Plots of the sigmoid (left) and the ReLU (right) function. The sigmoid
logistic function ranges from 0 to 1, while the ReLU function ranges
from 0 to ∞.

2.2.2 Training

Training a neural network involves using the training data set to update the
model weights to create an approximately errorless mapping from input to output
[Nie19]. A non-linear optimization method called gradient descent is generally
used to adjust the weights appropriately in the training process. To significantly
accelerate the speed of gradient calculation and training, the Stochastic Gradient
Descent (SGD) approach has become popular. For multi-layer networks, the most
widely used learning technique is back-propagation. This section gives a detailed
description of the standard training process of neural networks.

The training purpose is to minimize the difference between the output obtained
for specific input and the desired output. This difference needs to be represented
by a loss function. This function calculates the deviation of the output value ŷ
predicted by the network from the desired output value y. A possible loss function
is defined as follows:

E(ŷ, y) =
1

2

n∑
i=1

(ŷi − yi)
2. (2.2.4)

The training process is iterative, each iteration will make small updates to the
model weights, and these updates also affect the model’s performance. After
repeating this training process enough times, the network will usually converge
to a state where the calculation error is minimum.

12 fundamentals

Gradient Descent

A commonly used optimization method is called gradient descent, which adjusts
the weights based on the error caused by the output values and the correct answers.
The gradient we care about describes the relationship between the network error
and a single weight and denotes how the error changes as the weight is adjusted.
In order to use gradient descent to find the local minimum of the loss function
E, the training process resorts to steps proportional to the negative value of the
gradient of the function at the current point:

wlij ← wlij − µ
∂E

∂wlij
= wlij +∆w

l
ij (2.2.5)

where wlij represents the weight between the i-th neuron in layer l− 1 and the j-th
neuron in layer l, and µ is known as the learning rate [Nie19]. The learning rate
is vital for the optimization process. If µ is too small, the weights will be adjusted
too slowly, and it will take a long time for us to converge to a local minimum.
If it is set too high, we may overshoot and not converge in a local optimum
[Nie19]. Therefore, such learning programs can be prolonged. It has been found
that adding the momentum term into the optimization can significantly increase
the rate of convergence and stabilize the training process [RHW86]. With this
method, at iteration t the weight update ∆wlij takes the form:

∆wlij(t) = −µ
∂E

∂wlij(t)
+ p ·∆wlij(t− 1) (2.2.6)

where p is the momentum parameter. The equation 2.2.6 means that the modi-
fication of the current weight vector depends on the current gradient as well as
the weight change of the previous step. Gradient descent with momentum takes
into account the past gradient to smoothly update. So it works faster than the
standard gradient descent algorithm [Nie19].

Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a current optimization method in machine
learning. SGD is much faster than methods such as batch gradient descent when
training large amounts of data and does not lose model accuracy (cf. [PG17], p.

2.2 neural networks 13

189). In gradient descent, the overall loss of all training examples is calculated.
However, in SGD, the gradient is calculated from a small, randomly drawn subset
of training samples. When training a neural network with many data samples,
this method can reduce the amount of calculation and achieve faster training.

The SGD convergence is limited by random noise caused by the random
selection of an example in each iteration. Therefore, momentum is necessary
during training when performing SGD. It has been proved in [BB07] that when
the training set is large, even without access to all training examples, SGD could
find a desired local minimum.

Backpropagation

Backpropagation is the abbreviation of error backpropagation and is a common
method used in combination with optimization methods to train artificial neural
networks. This algorithm is proposed in [Wer74]. Then, Rumelhart et al. make
it popular [RHW86]. This algorithm computes the gradient of the loss function
respect to all weights in the network. The gradient is then fed back to the opti-
mization method to update weights to minimize the loss efficiently. Today, the
backpropagation algorithm has become the most widely used training algorithm
in machine learning [Nie19].

Output ŷ of the MLP is calculated through a forward pass of the input data in
the network:

ŷ = fL(fL−1(· · · f2(f1(x)))) (2.2.7)

where f is an activation function and L is the number of layers in the MLP.
Therefore, a technique called chain rule can be used in backpropagation algorithm
to compute the gradient of the loss function for the weight wlij in the layer l:

∂E

∂wlij
=
∂E

∂alj
·
∂alj

∂wlij
=
∂E

∂alj
·
∂alj

∂zlj
·
∂zlj

∂wlij
(2.2.8)

zlj =

n∑
k=1

wlkj · al−1k + blj (2.2.9)

ali = f(z
l
i) (2.2.10)

14 fundamentals

where n is the number of neurons in l− 1 layer, zlj represents neuron value at
the hidden layer l, and the activation function f is non-linear and differentiable
[Nie19]. The equation 2.2.8 means that in order to calculate the gradient of any
weight wlij, the gradient for the previous layer needs to be known first. In the last
factor of the right-hand side of the equation 2.2.8, only one term in the zlj depends
on wlij, so that

∂E

∂wlij
=
∂E

∂alj
·
∂alj

∂zlj
·
∂zlj

∂wlij
=
∂E

∂alj
·
∂alj

∂zlj
· al−1i = al−1i δlj (2.2.11)

δlj =
∂E

∂zlj
=

n∑
k=1

∂E

∂zl+1k
·
∂zl+1k
∂zlj

=

n∑
k=1

δl+1k
∂zl+1k
∂zlj

=

n∑
k=1

δl+1k wl+1kj · f
′(zlj) (2.2.12)

where δlj is the error of the neuron j in the hidden layer l and f ′(zlj) measures how
fast the activation function f is changing at zlj. The error in the hidden layer l is
represented as

δl = ((wl+1)Tδl+1)� f ′(zlj). (2.2.13)

Therefore, backpropagation requires a known and desired output for each input
value to calculate the loss function’s gradient. This algorithm calculates the error
vector backward from the last layer.

2.2.3 Convolutional Neural Network

A Multilayer perceptron is usually represented as a fully connected network (cf.
Sec. 2.2.1). This complete connection of the network causes probably the network
to encounter the problem of over-fitting during training because the network
requires a large number of parameters. Overfitting is an appearance that the
learning algorithm cannot adapt to the training set well. Techniques learned too
well on the training set may not achieve good performance results on the test
set [Mur05]. Compared with MLPs, CNNs do not show a full connection of each
layer with the previous layer but slides different convolution kernels or small
filters over the input image. This model can be trained using backpropagation
algorithms (cf. Sec. 2.2.2). Moreover, compared to other deep, feed-forward neural

2.2 neural networks 15

Figure 2.2.4: Schematic diagram of a convolutional neural network (CNN) archi-
tecture (image taken from [PG17]).

networks, convolutional neural networks need to consider fewer parameters and
give better results in image recognition, which makes it an attractive deep learning
model. Deep convolutional networks have been successfully used in the field of
pattern recognition and word spotting methods [SF16].

As demonstrated in Fig. 2.2.4, the convolutional neural network consists of
three major parts: the input layer, the classification layers, and the feature-learning
layers that include one or more convolutional as well as pooling layers. The input
layer usually accepts a three-dimensional input consisting of the image’s length
and width and a depth representing the color channels. The feature-extraction
layers can extract many features in the inputs and gradually construct higher-
order features. Finally, there are fully connected layers in the classification layer
that receive high-order features and generate class probabilities or scores [PG17].

The convolutional layers are considered the core building block of a CNN. Each
convolutional layer consists of a collection of learnable filters (kernels) passed
over the entire input and viewing some pixels at a time, for example, 3× 3 or
5× 5 pixels. As shown in Fig. 2.2.5, each filter is convolved with the input volume
to compute an activation map composed of neurons. The convolutional layer’s

16 fundamentals

(a)

(b)

Figure 2.2.5: (a) is a convolution layer with input and output volume. (b) shows
an example for the convolution operation (image retrieved from
[PG17]).

output volume is obtained by stacking the activation maps of all filters in the
depth direction. Each entry in the output can also be interpreted as the neuron’s
output that observes a small area in the input and shares parameters with neurons
in the same activation map. This parameter sharing scheme reduces the number
of parameters and shortens training time [PG17]. The convolution operation is
also denoted as the feature detector of a CNN. Fig. 2.2.5 visualizes this concept
with filter kernels of size 3× 3 and an input data of 5× 5 pixels. A convolution can
use raw data or a feature map output from another convolution as input. Then,

2.2 neural networks 17

Figure 2.2.6: An example for the max pooling (right). The downsampling in a
pooling layer (left): Input volume of size [224× 224× 64] is pooled
with filter size 2× 2 and a stride 2 into output volume of size [112×
112× 64] (the source of images : [AR20]).

the results are summarized into a number representing all the pixels observed by
the filter.

Pooling is another crucial concept of CNNs and is a nonlinear form of downsam-
pling. Pooling layers are generally inserted between two successive convolutional
layers to gradually reduce the spatial size (width and height) of data represen-
tation and help control over-fitting. The pooling layer downsamples the volume
spatially, independently in each depth slice of the input volume [PG17]. Fig. 2.2.6
visualizes this concept for a pooling layer which uses filters of size 2× 2 and a
stride of 2 to downsample at every depth slice in the input along both width
and height. During this process, the depth dimension remains unchanged. The
pooling layer can continuously reduce the spatial size of data, so the number of
parameters and the amount of calculation will also decrease, which also avoids
overfitting to a certain extent. The pooling operation provides another form of
translation invariance. Because the convolution kernel is a feature detector, differ-
ent edges in the input data can be easily found in the convolution layer. However,
the features found by the convolutional layer are often too accurate. The pooling
layer can reduce the sensitivity of the convolutional layer to edges [PG17].

The max-pooling is the most common form of nonlinear pooling function
[KSH17]. An excellent example of max-pooling is given in Fig. 2.2.6. The max-
pooling divides the input image into several rectangular areas and outputs the
maximum value for each sub-area.

18 fundamentals

The classification layers are used to calculate the class scores used as the output
of the network. In classification layers, as shown in Fig. 2.2.4, multiple fully
connected layers are stacked together to form a standard MLP as a classifier.

3
R E L AT E D W O R K

This chapter gives an overview of handwritten word synthesis and the PHOCNet.
Generally, data creation is a time-consuming and expensive process because
it requires much manual work from the data collection stage to annotation
and verification. Using a synthetic handwritten text generator to replace the
traditional data generation process has become very popular. This ideal allows us
to have a large number of training samples without any manual effort, which is
undoubtedly good for CNN-based word spotting methods that require a large
amount of labeled training data. Much research has been done in synthetic text
generation, but only a part of them is dedicated to handwritten text. Sec. 3.1
details the current researches creating synthetic handwritten data.

The present thesis also studies a word spotting method based on segmentation,
which can perform query-by-example and query-by-string. In order to realize
these two application scenarios, with the help of embedded PHOC attributes,
images of text and visual words are converted into attribute representations in
attribute space. The PHOC representation will be explained in detail in Sec. 3.2.
In order to use PHOC vectors to map word images in the n-dimensional vector
space, a deep PHOCNet is used, and its architecture and functions are described
in Sec. 3.2.2.

3.1 generation of synthetic word image

Many efforts have been implemented in the field of synthetic data generation.
The idea of generating synthetic data is constructive for overcoming the inherent
difficulty of obtaining data. Data sets of various sizes can be synthesized accord-
ing to experimental requirements in this way, which can alleviate the desire for
massive data in many machine learning architectures. This section introduces the
most mainstream data synthesis methods. The methods specifically for handwrit-
ten data generation can be roughly divided into the following three categories:
glyphcentric approach, generational method, and font-based method.

19

20 related work

3.1.1 Glyphcentric approach

In [HAB16], Haines et al. propose a glyph-based algorithm to render the de-
sired string with a writer’s handwriting. This method is called the glyphcentric
approach because its rendering process does not use existing fonts but the spe-
cific natural handwriting style learned from a given sample of an individual’s
handwriting. With learned parameters for spacing, line thickness, and pressure,
novel images of handwriting can be produced that imitate a specific author’s
handwriting style.

Fig. 3.1.1 shows how this glyphcentric method works. The first step is to collect
annotated samples of the author’s handwriting. Then, the glyph structure from
the samples is analyzed. After collecting and analyzing samples, the rendering
system selects a glyph to represent each character. The glyphs are then placed on
the page, and ligatures are added if the author uses joined-up writing. Finally, the
texture is transferred from the original input to the vector output, and, if being
printed, color correction is applied. This generative model is built around glyphs.
The synthetic data generated by this model looks like the handwriting written by
a specific author.

3.1.2 Generational method

In [Gra13] [BPC+
17] and [JBMN09], the ideas of synthesis aim to generate the

handwriting strokes of word synthetically, usually employing RNNs or GANs.
This method is a great advantage in working with online data since the sequen-
tial structure is inherent to online data. Similarly to the Glyphcentric approach
described in Sec. 3.1.1, this method also needs real, already labeled samples, and
considers the personal handwriting style.

In [Gra13], Graves considers handwriting as a trajectory and generate synthetic
text image for a given the word by producing a sequence of pen positions, as
shown in Fig. 3.1.2. In [Gra13], a Long Short-Term Memory (LSTM) network is
used to predict such a sequence, and the network trains its prediction on the
target string to synthesize handwriting. However, Graves’ method does not allow
the handle of some standard features in offline data, such as background texture
or stroke thickness variations.

3.1 generation of synthetic word image 21

Figure 3.1.1: System diagram showing the processing pipeline of glyphcentric
approach, with representative images for each stage (image taken
from [HAB16]).

Figure 3.1.2: This figure demonstrates a scheme of synthesis using online hand-
written samples with strokes. A LSTM network predicts the next
pen position based on the previous stroke, according to the sequence
and handwriting style. The small blobs are the predictions when the
strokes are being written. And the three large blobs are the predic-
tions at the ends of the strokes for the first point in the next stroke
(image taken from [Gra13]).

3.1.3 Font-based method

This method is very similar to the Glyphcentric approach, but it does not need
any real samples. In these representative experiments [AF15][RMC18][KJ16a],
the available font classes are used to render word images and applying some
distortions to increase realism and variability. This concept was successfully
implemented in [AF15], where a training data set was created using various
available Arabic fonts and many different deformations; finally, this data set is
used to train an HMM (Hidden Markov Model). Then, [RMC18] and [KJ16a]
extend this idea. Especially in [KJ16a], the famous synthetic handwriting data set,

22 related work

IIIT-HWS, is released, which contains a large number of synthetic word images
rendered out of 750 publicly available handwritten fonts.

As more and more handwritten font families are available recently, we con-
tinued the framework of Krishnan et al. [KJ16a] to render large-scale synthetic
handwritten data to train deep neural networks. The specific synthesis process
will be elaborated in Chap. 4. Based on the framework of Krishnan et al., we also
use elastic distortion to mimics variations of the writing style of single characters
in a word.

3.2 phocnet

This section provides a detailed introduction to the PHOCNet used in this work.
In [SF16], Sudholt and Fink propose a very successful deep CNN architecture,
the PHOCNet. It is inspired by the VGGNet [SZ15] and designed for word
spotting. The task of the PHOCNet is to predict the Pyramidal Histogram of
Characters (PHOC) representation for a given word image, and then use this
attribute representation to perform word spotting. The PHOC is the attributes
based representation of a word image, where words are represented as binary
PHOC vectors in a d-dimensional space. It is used as the source of character
attributes to encode whether certain characters exist in certain spatial regions of
the string. This important concept is introduced in Sec. 3.2.1.

One of the advantages of the PHOCNet is that it can perform word spotting
through both Query-by-String (QbS) and Query-by-Example (QbE). Another
significant advantage is that it can accept input images of arbitrary size due to
the use of the Spatial Pyramid Pooling (SPP) layer [HZRS14] which enables the
networks to receive a variable-size input while still producing a constant size
representation and pass this resulting representation to the directly following
fully connected layer. Because training a CNN with PHOCs as labels can be seen
as a multi-label classification task, the PHOCNet places sigmoid activation in
its last layer and use Binary Cross-Entropy Loss as the cost function to train the
network. The specific architecture of the PHOCNet is explained in Sec. 3.2.2.

3.2 phocnet 23

3.2.1 PHOC Representation

The Pyramidal Histogram of Characters (PHOC) is proposed by Almazán et al.
in [AGFV14]. In the embedded PHOCNet framework, the PHOC representation
plays a vital role in representing strings and word images. The PHOC encodes
visual attributes of the corresponding word image, where intuitive attributes of
a word image are its characters. Fig. 3.2.1 shows the process of constructing a
PHOC vector for a given text string. The first level of the PHOC for a given text
string "place" shows which letters appear in the entire string, and at the 2nd level,
the PHOC encodes whether the word contains a particular character in the first
or second half of the word. On 3nd level, the word is divided into 3 regions.

A binary vector is determined for each word region, which shows whether
a specific character appears in this word region. When using ten digits plus 26
Latin alphabet, this results in a 36-dimensional histogram, where each dimension
represents whether the text string contains a specific character. This model requires
multiple levels because the resulting vector for the first level in PHOC cannot
distinguish the difference between two similar words. For example, "team" and
"meat" have the same representation at the first level. The PHOC focuses on
finding characters in different areas of a word string, not just on the whole word.

In [AGFV14], Almazán et al. use levels 2, 3, 4, and 5 to represent word images,
leading to a histogram of (2+ 3+ 4+ 5)× 36 = 504 dimensions. They also add
the 50 most common bigrams in English at Level 2, which means that there are
50× 2 = 100 extra dimensions. So the total size of PHOC is 504+ 100 = 604.
Besides, Fig. 3.2.1 also shows a special situation that the word split falls on a
certain letter, which causes this letter to overlap with both regions, for example,
the character "a" on the second level and the letters "l" and "c" on the third level
(see Fig. 3.2.1). Almazán et al. defines that if a letter overlaps with a specific area
by at least 50% in this case, it is marked as present in this area.

In [AGFV14], Almazán et al. use the advanced Fisher vector coding method
[PSM10] to encode word images into feature vectors, and then used these feature
vectors with PHOC labels together to learn SVM-based attribute models. Another
successful application of PHOC is in [SF16], where Sudholt and Fink use PHOC
representation to train a new CNN-based architecture, the PHOCNet. Their
experiments prove that the PHOCNet can show excellent performance over other
word spotting models with a short training and test time.

24 related work

Figure 3.2.1: The figure visualizes the extraction of a PHOC from string "place" at
levels 1, 2 and 3 (image from [SF16]).

3.2.2 PHOCNet Architecture

The PHOCNet model is a CNN-based deep neural network specially designed for
word spotting. Fig. 3.2.2 visualizes the PHOCNet architecture. This architecture of
is similar to VGGNet [SZ15]. Lower convolutional layers use fewer filters, while
the amount of filters in higher layers is doubled. However, the PHOCNet expands
more possibilities based on VGGNet. The main difference from VGGNet is the
use of a Spatial Pyramid Pooling (SPP) layer after the convolution part.

In the case of segment-based word spotting, each text image is preprocessed
into many segmented word images, and then, the CNN predicts a representation
for the segmented word images. These segmented word images show great
variability in size, which is related to the composition of the word; for example,
the number of letters that make up the word "internationalization" and the word
"a" differs greatly. Generally, the classifier deployed at the end of a CNN allows
only a fixed-sized input. For this, word images can be cropped (e.g. in [HZRS16])
or anisotropically rescaled (e.g. in [KSH17]) to a fixed size. Nevertheless, these
methods might cause drastic changes to images: Cropping may damage some
valuable information from images, and if the anisotropic rescaling changes the
images’ original aspect ratio, the images will be distorted.

The Spatial Pyramid Pooling (SPP) Layer proposed by He et al. can alleviate this
problem. The convolutional and the pooling layers can handle various input sizes,
but the fully connected layers cannot cope with different input sizes. Therefore,
the SPP layer is placed between the convolution part and the fully connected part
as the last pooling layer before the classifier. In this way, the PHOCNet can process
the input of different sizes while producing constant size output. The PHOCNet

3.2 phocnet 25

Figure 3.2.2: The figure visualizes the PHOCNet architecture: The green layers
represent the convolutional layers, and the numbers marked below
represent the number of filters in the corresponding layer. 3 × 3
convolutions and a ReLU activation function are used in all convo-
lutional layers. All 2× 2 max-pooling layers are depicted by orange,
where stride is set as 2. The red layer represents a 3-level SPP layer.
Moreover, the fully connected layers are shown by a black box, where
"4096" represents the number of neurons in each block of fully con-
nected layers, the dropout is 50%, and ReLU is used as the activation
function. The size of the last layer (blue) for output depends on the
size of the PHOC (image taken from [SF18]).

uses a three-level SPP that follows the layout rules of the original spatial pyramid
[LSP06], where the number of regions in each level along each dimension is twice
that of the previous level. For a 3-level SPP, each feature map is globally pooled
at the first level, and the feature map at the second level is proportionally divided
into four regions, and the third level splits the feature map into 16 regions totally.

Like VGGNet, the number of neurons in the two fully connected layers in the
PHOCNet is also set to 4096, which means that there are many free parameters in
the fully connected part. During training, a dropout probability of 50% is applied
to neurons in the fully connected layer to avoid overfitting.

26 related work

Figure 3.2.3: The figure shows a 3-level TPP layer. This layer can extract a fixed-
size representation from feature maps of arbitrary size while only
considering the splits along the horizontal axis. And then, this repre-
sentation is fed to the MLP part of the network (image taken from
[SF18]).

In [SF18], Sudholt and Fink propose a modified version of the PHOCNet and
called it the TPP-PHOCNet. In the advanced TPP-PHOCNet, the SPP layer is
replaced by the Temporal Pyramid Pooling (TPP) layer. As mentioned above, SPP
layer follows the design of the spatial pyramid proposed by Lazebnik et al. [LSP06].
However, the application of this layout on Bag of Features (BoF) representations
leads to undesirable results [ARTL13]. However, the results can be improved,
when employing spatial pyramids with a fine-grained split for the horizontal axis
and a coarse split for the vertical axis of a word image. To improve the retrieval
results, Sudholt and Fink use this concept to optimize the SPP layer and propose
the Temporal Pyramid Pooling (TPP) layer, as visualized in Fig. 3.2.3. At each level
in this layer, the feature maps used as input are divided only along the horizontal
axis. Each horizontal region covers the entire vertical axis of the feature map. The
values obtained after pooling hence reflect sequential features of the word image
along the writing axis. A pyramidal representation encoding writing progression
can be obtained by stacking numerous pooling layers with different amounts of
splits along the writing axis.

4
M E T H O D S

In the past few years, research on handwritten documents has been very active.
Despite the significant progress made in these studies, handwritten document
word spotting still relies heavily on available data. However, in application scenar-
ios, the early exploration of historical documents usually does not have enough
data with different writing styles and qualities. With the emergence of many
handwritten data with different styles and deformations, this problem can be
largely alleviated.

The previous chapters have established the necessary fundamentals. This chap-
ter will present the methodology used in this work. This thesis intends to generate
highly realistic synthetic data for CNN-based word spotting methods. This work
follows some successful experiences in generating synthetic datasets [BW17]
[JSVZ14] [KJ16a] [RMC18] and create a font-based synthetic data generator. The
generator can take a string as input and generate the corresponding human-like
handwritten word images as output, as shown in Fig. 4.0.1. The main contribution
of this generator designed to generate synthetic data is that it can easily create
a large number of handwritten word images, which mimics the natural writing
features, and then these images can be directly used for training on the previously
described PHOCNet (see Sec. 3.2.2).

Two crucial sub-tasks need to be considered to complete this task: The first
is to render the word images (cf. Sec. 4.1). The second is to apply distortions
on the rendered images (cf. Sec. 4.2). This framework is inspired by the method
described in [KJ16a]. Based on the method of Krishnan et al., we additionally use
the elastic distortion during processing images. In [SSP03], Patrice et al. have used
this deformation to expand the MNIST data set of handwritten digital images
and have proven its effectiveness. In this work, we use it in synthetic handwritten
word images to imitate the variations produced by the muscles’ natural vibration
and the inertia imposed on the writing medium.

This chapter’s focus is to introduce the methods used to generate synthetic
data, and the word spotting performance of the trained model will be evaluated
in Chap. 5.

27

28 methods

Figure 4.0.1: Synthetic word generation approach

4.1 synthetic word image generation

The successful framework in [KJ16a] inspires our generator of synthetic word
images used in this thesis. Like the method of Krishnan et al., first, the vocabulary
of words is selected from a dictionary, and then the generator for each word
samples randomly one font and renders its corresponding image with this font.
In this process, the generator will randomly choose various parameters within
the given intervals. To make the synthesized word images as realistic as possible,
we only focus on fonts with evident handwriting characteristics.

Section 4.1.1 explains 6 different vocabularies that will be used in our exper-
iments, while section 4.1.2 describes in detail the process of rendering word
images.

4.1.1 The Vocabulary of Words

For a synthetic data set used to train the word spotting models, the choice of
the vocabulary of words is crucial. As the synthetic data set representatives,
HW-SYNTH [KJ16b] and IIIT-HWS dataset [GSF18] selected 10, 000 and 90, 000
English words from the Hunspell1 dictionary, respectively. The experiments in
[WBF20] have proved that the vocabulary of HW-SYNTH is quite different from
the vocabulary of the traditional real data sets, which means that the vocabulary
of HW-SYNTH data set does not have universally adaptability. Although the
vocabulary of IIIT-HWS is large and has a high degree of overlap with the

1 Hunspell is a spell checker and morphological analyser, https://github.com/hunspell/hunspe

ll

https://github.com/hunspell/hunspell
https://github.com/hunspell/hunspell

4.1 synthetic word image generation 29

vocabulary of the real data sets, a large part of it is non-representative words.
These irrelevant words not only failed to improve the performance results but
may also interfere with the model to learn useful information. Compared with
them, focusing on the most common words in [WBF20] is more reasonable.

In the work of synthesizing word images, the choice of vocabulary is the first
step. Like the method in [WBF20], we select the most frequently used words
into the vocabulary list because they have an exceptionally high probability of
appearing in new documents that need to be retrieved. To obtain a representative
vocabulary, we use a Python library, Wordfreq [SCL+

18], where all data comes
from the Exquisite Corpus [SCL+

18] generated from a variety of modern English
text sources.

To explore the impact of vocabulary size on the model’s performance at the
experimental part, we created six vocabularies with sizes of 5k, 10k, 15k, 20k, 25k,
and 30k. They all only consider the most frequently occurring words and will be
used to generate different synthetic data sets. Moreover, these 6 vocabularies are
composed of numbers, words, and phrases without special symbols.

4.1.2 Font Rendering

In recent years, the availability of more and more public handwritten fonts has
encouraged the development of font-based synthetic data generation methods.
The main challenge in the synthesis of realistic handwritten word images comes
from differences in writing styles: different authors for the same word may
have completely different writing styles. To generate high-quality synthetic data
imitating real word-images, we picked 410 handwritten fonts with different
writing styles from Google Fonts2 and 1001Fonts3.

To obtain a composite image of the target word, we use ImageMagick4 as
an image rendering tool to convert images for each word in the vocabulary.
ImageMagick is a powerful free software for creating, editing, compositing as
well as converting bitmap images. We randomly sample a font from the fonts set
for each given string, then access the “convert” command of ImageMagick and
change the following necessary parameters:

2 Google Fonts is a open-source library of 999 font families, https://fonts.google.com
3 1001Fonts is a library of 12, 220 free licensed font families, https://www.1001fonts.com
4 ImageMagick toolbox, http://www.imagemagick.org

https://fonts.google.com
https://www.1001fonts.com
http://www.imagemagick.org

30 methods

• "label: string " :

receives the target word. Creating a font image using a "label:" image is a
typical way of drawing a font quickly in ImageMagick.

• -font name :

sets the font to use for creating images with the given label. The font is
randomly selected from the font list.

• -pointsize value :

sets the height of the drawing area of the selected font. The value is selected
randomly from the interval (69, 81].

• -strokewidth value :

sets the stroke width. It must cooperate with "-stroke color". Otherwise,
it will not make any changes to the generated image. Here, the value is
selected randomly between 0 and 1.5. Furthermore, the color is set as black.

• -kerning value :

sets the space between two letters. The value is randomly selected from an
interval (−2.1, 2.1].

• -gravity center :

specifies that the target word will be placed in the center of the created
image.

• -trim :

is used to remove the vast amount of extra white space in the created image
to simulate the word segmentation.

Because very bad parameters can lead to distortions that are usually not found
in real handwriting. Therefore, to ensure the non-aggressiveness of all parameters,
all the above parameter intervals are chosen after the informal experiments prove
their workability.

By using this step, we can generate the synthetic datasets of handwriting word
images without any distortion. Fig. 4.1.1 shows some samples of the rendered
undistorted word image. To address the in [KJ16a] mentioned problem that the

4.2 applying deformations 31

Figure 4.1.1: Sample synthetic handwritten word images without any distortion
rendered in this work.

number of samples of certain words in real data sets is too small, we generate an
equal number of images for each word in the vocabulary for each of our synthetic
datasets.

4.2 applying deformations

The goal of this work is to generate synthetic data very similar to real samples. To
this end, the process of generating a synthetic image should simulate as much as
possible every aspect of the natural handwriting process. As well known, many
factors affect the natural handwriting process, and the writers’ handwriting style
is only one aspect. In Sec. 4.1.2, the existing handwritten fonts that mimic the
different handwritings from different writers have helped mainly us alleviate the
problem of diversity in writing styles to a certain extent.

To enhance the quality of the synthetic images generated in the previous
chapter, we use some deformation operations to increase the image’s realism. The
following sections will detail each deformation method’s principles and the goals
to be achieved by using them.

4.2.1 Affine Transformation

In Euclidean geometry, the affine transformation is a geometric transformation
that preserves straight lines and parallelism. After using affine transformation, in
the image, the angle between straight lines and the distance between points may
be changed, but the ratios of the distances between points on the same straight
line will be maintained. The affine transformation can scale, rotate, translate,
reflect, and shear the images, as shown in Fig. 4.2.1.

32 methods

Figure 4.2.1: 2D Affine Transformation Matrix (image source : [Com20]).

In this work, we only choose the rotation and the shear mapping to imitate
the writing habits of different writers to a certain extent, such as placing the
writing medium at different angles, writing with different hands, or scribble
on the unlined paper. This deformation will be applied to the rendered word
images when generating the data set. We also use the “convert” command of
ImageMagick, which can complete rotation and shearing for the generated word

4.2 applying deformations 33

images at the same time. However, in addition to the parameter "-trim," the
affine transformation also employs some new parameters to restrict the rotation
and shearing at specific angles to mimic the skew and scribbling in natural
handwriting:

• -virtual-pixel color :

defines what color source should be used when a color lookup completely
misses the source image. Since all the generated word images’ background
color is white, the color used to fill the area surrounding the image is set as
white.

• +distort AffineProjection ’sx, rx, ry, sy, tx, ty ’ (see array 4.2.1) :

distorts an image linearly, using the given affine Matrix of 6 coefficients
forming a set of affine equations to map the source image to the destination
image. The conversion matrix has 3× 3 elements, as shown in array 4.2.1,
but since three of them are constant, these three are omitted from the input.
This method is used to apply the shearing along the horizontal direction on
images, so the input is set as "1, 0, x, 1, 0, 0", where we employ a random
amount of shear "x" (+/− 0.5 degrees).

sx ry tx

rx sy ty

0 0 1

 (4.2.1)

• +distort SRT Rotate-Angle :

rotates the image according to the given angle. We apply a random amount
of rotation (+/− 3 degrees).

4.2.2 Elastic Distortion

The elastic transformation algorithm (Elastic Distortion) was first proposed by
Patrice et al. in [SSP03], and it was initially used in the MNIST data set of handwrit-
ten digit images. It has been found that the recognition effect of handwritten digits
has been significantly improved after expanding the MNIST data set through

34 methods

Figure 4.2.2: An example of a randomized elastic distortion (image taken from
[BSH17]).

elastic distortions. Since then, it has become a prevalent technique for expanding
image data sets to combat overfitting in deep CNNs and has been widely used
to improve the performance as well as generalization of models, for example, in
[BSH17], [WBF20], and [BIK+

20].
In the natural writing process, we can hardly find two identical letters or words,

even if the same author writes them. So this operation is intended to mimic this
variability. Inspired by the method in [BSH17], image elastic deformations in this
work is completed by first generating random displacement fields. We specify a
random number between 6 and 21 as the grid size, which affects the deformations’
granularity and the strength of displacement within the grid. To perturb control
points, we sample a value randomly from a normal distribution with zero mean.
We set a random standard deviation for this normal distribution from the interval
(0.3, 2.1]. Fig. 4.2.2 visualizes this process, where the length of arrows shows the
strength of the displacement within the grids.

4.2.3 Naturalization of Pixel Distribution

To model the distribution of fore- and background pixels, we use the Gaussian
distribution in this work. The Gaussian (or normal) distribution is regarded as
one of the most influential distributions in statistics. It is a continuous probability
distribution that roughly describes some objects concentrated on their mean

4.2 applying deformations 35

Figure 4.2.3: The one-dimensional Gaussian distributions: the probability density
function is bell-shaped, peaking at the mean (image from [Com18]).

[SW10]. The density function of Gaussian distribution with mean µ and standard
deviation σ is as follow:

g(x) =
1√
2πσ2

· e−
(x−µ)2

2σ2 , for −∞ < x <∞ (4.2.2)

where the Gaussian spread parameter σ determines the width of the Gaussian
[JKS95]. As shown in Fig. 4.2.3, since its probability density function is bell-shaped,
it is also regarded as a bell-shaped curve [DW14]. If a distribution is normal, the
mean, median, and mode of it have then the same value, where "mean" means
the average of all values, "median" signifies the value at the center point of the
distribution, and "mode" denotes the value that appears most frequently during
the measurement [DW14].

Due to the central limit theorem (CLT), Gaussian distribution is advantageous
for representing real-valued random variables whose distribution is unknown. The
average of random variables converges to a normal distribution and is normally
distributed when the number of random variables is large. Therefore, the Gaussian
distribution is particularly suitable as a simple model for many theoretical and
practical problems in statistics and natural sciences [AFM17] [SW10].

36 methods

Figure 4.2.4: Pixel distributions of foreground and background regions estimated
from IAM (left) and GW (right): The blue parts mean the distribution
of foreground pixels, and the green parts are for the background pix-
els. This figure shows also the fitted normal curves to the distribution
histograms.

Up to this stage, in this work, the synthetic images we have generated have
only imitated a very idealized writing process with black ink on pure white
paper. However, it is not easy to see a pure white background and text with the
even black ink (as the foreground) in a real handwritten text image. In order to
make the pixel distribution of foreground pixels and background pixels more
natural, we use a method similar to that in [KJ16a]: evaluating a pixel distribution
corresponding for the foreground and background regions of a real data set
and then sampling the corresponding pixels for both regions of our synthetic
images from these pixel distributions. This method will be referred to as the
naturalization of pixel distribution of fore- and background pixels in this thesis.

The difference from the method in [KJ16a] is that we learn the parameters not
only from the IAM data set but also from the George Washington (GW) data
set. Fig. 4.2.4 shows Gaussian distributions of pixels from the foreground and
background in the real data sets IAM and GW, while Fig. 4.2.5 gives some images
processed by this method.

4.2 applying deformations 37

4.2.4 Gaussian Smoothing

As shown in Fig. 4.2.5, after naturalizing the foreground and background pixels
of synthetic images, the junction between the foreground and background regions
in the image becomes too apparent. Moreover, these tooth-like edges look very
unnatural because the edges of ink usually look smooth in the natural handwritten
text. To make the synthetic image look more real, we choose to use a Gaussian filter
to smooth the generated word images. Another purpose of using the Gaussian
filters is to simulate the blur probably caused when scanning or photographing
handwritten documents.

Gaussian filter is a type of linear smoothing filter with the weights chosen
according to the shape of a Gaussian function. Furthermore, the Gaussian smooth-
ing filter is an excellent general-purpose filter, and it is the current standard
method used to blur the image softly and remove noise and details [JKS95].

The specific operation of Gaussian filtering is first defining a mask with the size
of the considered neighborhood, and the scanning each pixel in the image with
this mask, finally using the weighted average gray value based on the pixels in
the neighbor area covered by the mask to replace the value of the pixel located the
center of the mask [GW19]. For image processing, the two-dimensional Gaussian
function:

g(x,y) =
1

2πσ2
· e−

x2+y2

2σ2 (4.2.3)

is used as a smoothing filter [SS01] [NA08]. In two dimensions, the Gaussian
function is rotationally symmetric, which means that the amount of smoothing
performed by the filter is the same in all directions. Generally, the edges in an
image will not orient in a specific direction known in advance. Therefore, the
Gaussian smoothing filter is very friendly to the edges of the image. The nature
of rotational symmetry means that the Gaussian smoothing filter will not bias the
subsequent edge detection in any specific direction [JKS95].

Besides, the two-dimensional Gaussian function has only one lobe, which means
that the Gaussian filter performs smoothing processing by replacing each pixel in
the image with the weighted average of adjacent pixels so that the weight is given
to adjacent pixels monotonously decreases with the distance from the center pixel.
This attribute is vital for image edge processing because the edge is a local feature

38 methods

Figure 4.2.5: Left: Examples of simple synthetic word images without any distor-
tion. Middle: The pixel distributions of the simple image are adjusted
to the natural pixel distributions learned from the IAM dataset. Right:
Gaussian smoothing is used on the images in the middle, and the
smoothing σ is randomly selected from the interval (0.3, 1.2] (top) or
(0.6, 1.5] (bottom).

in the image. It will deform this feature when a smoothing operation gives more
importance to the farther pixel [JKS95].

The width of a Gaussian filter and the degree of smoothing is parameterized by
σ. The relationship between σ and the degree of smoothing is straightforward: a
larger σ implies a wider Gaussian filter and greater smoothing [JKS95]. In order to
discuss the influence of Gaussian smoothing with different degree of smoothing
on the experimental results later in Sec. 5.4.3, we selecte two value-intervals
for "sigma", namely (0.3, 1.2] and (0.6, 1.5]. Moreover, the examples of Gaussian
smoothing are shown in Fig. 4.2.5.

5
E X P E R I M E N T S

In word spotting, the goal is to retrieve all relevant instances concerning a given
query. All retrieved elements are sorted based on their similarity to a given query.
We generate synthetic databases to train our models. During generating synthetic
data, we have the following questions:

• Does the size of the vocabulary affect the performance of the model?

As explained in Sec. 4.1.1, we have defined six vocabularies with different
sizes, which focus on the most commonly used n-words: the vocabulary
of size 10k also contains all the words in the vocabulary of 5k words. The
question is, does a more extensive vocabulary contribute more to improving
model performance? Sec. 5.4.1 chooses to find the answer by conducting
different experiments and then comparing the results.

• Will the number of fonts used to render word images affect the performance
of the model?

We use the font-based method to generate word images. A large number of
free handwritten fonts make the synthesized word images have a variety of
handwriting styles. Therefore, the relationship between the number of fonts
used and the model’s performance is our concern. In order to explore this
issue, we generated multiple synthetic databases different numbers of fonts.
Sec. 5.4.2 will give the experimental results for this problem.

• Which deformations applied to synthetic data will result in significant
performance improvement?

Experiment [JSVZ14] shows that as more sophisticated synthetic training
data of natural scene text is used, the models’ recognition accuracy increases.
Inspired by [JSVZ14], in Sec. 5.4.3 and Sec. 5.4.4, we will analyze the im-
pact of several deformation methods we used on the performance of the
PHOCNet for word spotting.

39

40 experiments

Sec. 5.1 introduces first the two real data sets used in the experiment. For
experimentation, we evaluate the trained model according to the protocol detailed
in Sec. 5.2. The details of the training are described in Sec. 5.3. Finally, the obtained
results are presented and discussed in Sec. 5.4 and compared with the literature
results in Sec. 5.5.

5.1 datasets

Besides our synthetic datasets, two standard databases are also used for the
evaluation of our systems, namely George Washington and IAM database. While
the IAM is a contemporary data set, the George Washington is a historic one. In
the following, the two datasets will be explained in detail, and examples in them
will be shown in Fig. 5.1.1.

5.1.1 George Washington

The George Washington database (GW) was created from the George Washington
Papers at the Library of Congress1 and has become the standard benchmark
for word spotting [GSGN17]. It contains a total of 4, 894 English words from 20

pages of letters between George Washington and his colleagues in 1, 755. The text
images in this data set show little variability in writing style.

In GW, there is not an official training and testing partition. Like [GSF18],
we implemented the four-fold cross-validation proposed in [AGFV14]. In 4-fold
cross-validation, the original dataset is randomly divided into four equal-sized
partitions. Among the four partitions, one partition is employed as the test set,
and the remaining three partitions are used as training sets. Then, repeat this
process four times. To compare our results with those in [GSF18] and [AGFV14],
we use the same cross-validation partitions2. In this work, all GW-related results
shown are the average of the results from the four folds.

1 https://www.loc.gov/collections/george-washington-papers/about-this-collection/
2 Cross-validation splits are available at https://github.com/almazan/watts/tree/master/data

https://www.loc.gov/collections/george-washington-papers/about-this-collection/
https://github.com/almazan/watts/tree/master/data

5.1 datasets 41

Figure 5.1.1: Samples handwritten text images from GW (left) and IAM (right).

5.1.2 IAM

The IAM Off-line Handwriting Database [MB02] is one of the most widely used
public handwritten text datasets in the document analysis. It contains 1, 539
pages of scanned text and more than 100K labeled words written by 657 different
authors3.

IAM has officially defined training and test sets. The text lines of these two sets
are different from each other, which means that each writer only contributed to
one set. In [GSF18], Gurjar et al. have also adopted this official training and test
partitioning. In order to straight compare our results with results in [GSF18], this
official partition is used in this thesis as well.

3 IAM Handwriting Database is available at http://www.fki.inf.unibe.ch/databases/iam-han

dwriting-database

http://www.fki.inf.unibe.ch/databases/iam-handwriting-database
http://www.fki.inf.unibe.ch/databases/iam-handwriting-database

42 experiments

5.2 evaluation protocol

According to the protocol in [GSF18] and [AGFV14], the PHOCNet is evaluated
under segmentation-based QbE and QbS word spotting scenarios. We are training
only with no manually annotated synthetic training data. The PHOCNet is trained
for 80, 000 iterations on each of our synthetic datasets, similar in [GSF18].

For QbE, each word image in the corresponding test partition of the handwritten
data sets is used once as the query, while all remaining images in test partition
are regarded as the retrieval set. The PHOCNet predicts the PHOC representation
for the given query as well as word images in the retrieval set, and then the
images from the retrieval set are sorted according to the cosine distance between
its predicted PHOC representation and the predicted representation of the query.
The queries that have no related words in the retrieval set will be discarded;
however, they will remain for other queries.

When performing QbS, each string that appears in the test set is used as a
query only once, even if it appears multiple times, while the entire test partition is
used as the retrieval set. Like QbE, the PHOC representation of the query string
is used as the basis for ranking the representations in the retrieval set.

As in [GSF18] and [AGFV14], the entire retrieval set is returned in the search
ranking list in both QbE and QbS, so the recall rate for each query is always 100%.
We use mean Average Precision (mAP) as the accuracy measure for both QbE and
QbS, which is a standard measure for retrieval task performance (cf. [ZZ09], p.
1691). The mAP of a set of queries refers to the mean of the average precision
scores

AP =

∑n
i=1 P(i) · r(i)

number of relevant elements
(5.2.1)

of each query, where i is the index in the ranked retrieval list, n is the number of
retrieved elements, P(i) is the precision

P =
|{relevant elements}∩ {retrieved elements}|

|{retrieved elements}|
(5.2.2)

of the top-i retrieved elements, and r(i) is an indicator function equaling 1 if the
item at index i is a relevant element as well as 0 otherwise (cf. [ZZ09], p. 98).

5.3 training details 43

5.3 training details

To compare our results to others reported in literatures (e.g., [GSF18] , [WBF20]
and [WF20].), we use the same parameters for training. The stochastic gradient
descent method (see Sec. 2.2.2) is used to train the PHOCNet, and each batch
contains ten training samples. The momentum is equal to 0.9, and the weight
decay is 5 · 10−5. The learning rate for the first 70, 000 iterations is 10−4, and for
the last 10, 000 iterations is 10−5. Furthermore, the initial weights of the PHOCNet
are randomly sampled from a uniform distribution with mean 0 and standard
deviation 2

n , where n is the number of parameters in a given layer. Moreover,
layer biases are initialized to 0.

5.4 results and discussion

To elucidate the questions raised at the beginning of this chapter, this section
will give corresponding experimental results for different questions, and then
discuss these based on the obtained results. In the experiment, the training for
the PHOCNet uses only the methods in Chap. 4 to create synthetic data sets, and
then the test data from each real data set are used to evaluate the trained models.

5.4.1 The Size of Vocabulary

The experiment’s purpose is to investigate the effect of vocabulary size on model
performance. To this end, we use six vocabularies of varying sizes to create six
corresponding synthetic data sets. As reported in Sec. 4.1.1, these six vocabularies
we generated contain 5k, 10k, 20k, 25k, and 30k, respectively. For the six synthetic
data sets, except for the different vocabulary used, the rest of the generation
process is the same (see Sec. 4.1.2). We sample a font from 410 fonts and render
the corresponding undistorted image for each word from the vocabulary. In this
way, we generate 100 images for each word class. To make the six synthetic data
sets comparable, we only generate images for word classes that do not yet have
images. For example, when generating the synthetic dataset with the vocabulary
with a size of 10k, we only render images for 5k new words, and the other half of
this dataset inherits all word images in the dataset generated using 5k words.

44 experiments

Table 5.4.1: Results for experiments with different vocabularies in mAP [%]

Size of Vocabulary
IAM GW

QbE QbS QbE QbS

5, 000 27.82 37.97 29.64 45.59
10, 000 28.67 40.66 30.97 45.18
15, 000 27.69 40.99 29.78 46.08
20, 000 27.39 36.66 28.91 45.18
25, 000 27.49 40.60 28.77 44.93
30, 000 27.56 39.73 29.18 44.65

Tab. 5.4.1 compares the results obtained training the PHOCNet on synthetic
data sets generated with vocabularies of different sizes. In the table, we do not
see the performance improvement of models as the vocabulary size increases.
Our observation is that there is no one clear winner in these six synthetic data
sets. The performance of the PHOCNet trained on these six synthetic databases is
almost the same.

One fact that can be discerned is that vocabulary with more words does not pro-
vide any advantage to the synthetic data set. As described in Sec. 4.1.1, although
the six vocabularies we made are of different sizes, they all only concentrate on
the most frequently occurring words. It means that the 5, 000 words with the
highest frequency appear in all six vocabularies.

As can be seen in Tab. 5.4.1, compared with the results of the synthetic data set
containing 5, 000 words, the synthetic data set containing 30, 000 words does not
get outstanding results in the experiment both on IAM and GW, even though the
size of vocabulary has been drastically increased to 30k words. So we have reason
to believe that even in such an extensive vocabulary containing 30k words, only
the 5k words with the highest frequency contribute to the experimental results.

5.4 results and discussion 45

Table 5.4.2: Results for experiments with different number of Fonts in mAP [%]

Number of Fonts
IAM GW

QbE QbS QbE QbS

100 22.16 30.38 22.82 33.34
200 24.77 34.78 26.91 39.87
300 26.54 37.71 29.76 44.11
400 28.55 40.03 30.19 44.81

5.4.2 The Number of Fonts

This experiment intends to explore whether the number of handwritten fonts
used to render word images impacts the performance of the model. Based on
the rendering method detailed in Sec. 4.1.2, we randomly sample four subsets of
fonts with a size of 100, 200, 300, and 400 from 410 different handwritten fonts to
render images. In this experiment, for each synthetic dataset, we use one font set
of them to generate ten undistorted images for each word class in the vocabulary
of 10k words. The percentages of mAP scores for experiments conducted on these
synthetic databases are listed in Tab. 5.4.2. The best results are shown in bold.

We can draw several conclusions from our experiment. Firstly, according to
the results in Tab. 5.4.2, we observe that using synthetic data sets generated with
more different fonts to train the PHOCNet can make the CNN have relatively
better performance results on the historical data sets. Secondly, as can be seen in
Fig. 5.4.1, the performances on the IAM dataset increase steadily with the increase
in the number of fonts: every additional 100 fonts used when generating synthetic
data can increase the performance by 2% on QbE, and by almost 3% on QbS,
while on GW, a significant performance growth tends to be flat, after the number
of fonts increases to 300. This difference may be due to not the same generation
process of the two traditional data sets. As introduced in Sec. 5.1, more than 600
writers jointly complete IAM, while GW is regarded as a data set generated by a
single author, so the diversity of writing styles in IAM is a big challenge, but its
influence in GW is limited.

46 experiments

Figure 5.4.1: The mAPs of the PHOCNets trained on synthetic data sets with
different number of fonts on the IAM and GW.

5.4.3 Pixel Distribution of Fore- and Background Pixels

As described in Sec. 4.2.3, in order to make the pixel distribution of both fore-
ground and background pixels of the synthesized word images more real, we
learn the parameters related to the pixel distribution from two real data sets,
IAM and GW, and use them to adjust the pixel distribution of an undistorted
synthetic data set that uses 410 fonts and contains 100 images for each word from
the vocabulary of size 10k.

Tab. 5.4.3 shows the results of the PHOCNet using two synthetic data sets with
different pixel distribution as the training set. Besides, the table also lists the
results corresponding to the synthesized data set without distortion to compare
them with the results of the data sets applied Gaussian distribution of fore- and
background pixels. Comparing the results obtained from the PHOCNet trained
on two synthetic data sets with different pixel distribution allows for assessing
the suitability of the pixel distribution of both foreground and background pixels
learned from IAM compared to the learned from GW as both synthetic data sets
differ only in this respect.

5.4 results and discussion 47

Table 5.4.3: Results for experiments with different Gaussian distribution of fore-
and background pixels in mAP [%].

Pixel Distribution
learned from

IAM GW

QbE QbS QbE QbS

None 28.67 40.66 30.97 45.18

IAM 38.88 58.09 52.41 60.74
GW 37.15 55.10 47.26 59.40

As shown in Tab.5.4.3, after naturalizing the foreground and background pixels
of the word images in the synthetic data set, the distorted synthetic data obtained
better results than the original synthetic data. It shows that this method can
effectively narrow the gap between the synthesized word images and the real
samples.

Another exciting aspect is that the data set only with IAM pixel distribution
performs better than the with GW pixel distribution, both in the experiment on
IAM and the GW. This is probably due to the few real samples available for
learning pixel distribution in GW. As we have already introduced in Sec. 5.1, the
IAM dataset contains more than 100k word images, while there are less than
5, 000 word images in GW. There is a too small number of samples available to not
learn a universal pixel distribution from GW. Therefore, our point of view is that
the parameters summarized from IAM are more valuable than those summarized
from GW when performing Gaussian distribution processing for the pixels of the
synthetic word images.

5.4.4 Synthetic Data Sets with Deformations

This experiment studies the contribution of the various stages of the synthetic
data generator to the word spotting model’s performance. All generation stages
have been detailed in Chap. 4. In this experiment, we used synthetic data with
different sophistication levels, where each sophistication level corresponds to one

48 experiments

(a) (b)

Figure 5.4.2: Comparison of generated synthetic images with different levels of
sophistication. (a) and (b) represent the same word in three different
handwritten fonts. From top to bottom, each row corresponds to
level 1-5 of sophistication of the synthetic data, respectively.

or several generation stages. Level 1: Word with black ink rendered on a white
background with a handwritten font. Level 2: Adding affine transformation. Level
3: Adding elastic distortion. Level 4: Applying the normal distribution of fore-
and background pixels learned from the IAM data set. Level 5: Adding smoothing
by Gaussian filtering (a low-smoothing with σ ∈ (0.3, 1.2] or a normal smoothing
with σ ∈ (0.6, 1.5]). In this experiment, we choose the undistorted synthetic data
generated in Sec. 5.4.3 as the 1-level data. Fig. 5.4.2 shows some sample rendered
word images with different levels of sophistication.

Tab. 5.4.4 displays the mAP results obtained by using purely synthetic data
with different distortion levels to train the PHOCNet. Besides, Fig. 5.4.3 shows
the changing trend of the PHOCNet performance when trained with increasing
levels of sophistication of synthetic training data.

It can be seen from Tab. 5.4.4 and Fig. 5.4.3 that the affine transformation causes
a notable performance drop on IAM in both QbE and QbS scenarios, but it also
gives a nearly 4% additional performance on the GW. The most likely reason
for this is that GW, as a historical data set generated by a single writer, has a
distinct and uniform writing style. As shown in Fig. 5.1.1, the words in GW have
a pronounced rightward tilt caused by the writer’s inherent writing style. Our

5.4 results and discussion 49

Table 5.4.4: Comparison of results obtained by using purely synthetic data with
different distortion levels to train the PHOCNet in mAP [%]. Both
two sets of fifth-level synthetic data perform Gaussian smoothing on
the synthetic data of level 4. The only difference between them is
that they use different smoothing intensity intervals (σ ∈ (0.3, 1.2] for
low-smoothing, and σ ∈ (0.6, 1.5] for normal smoothing).

Levels of sophistication
of synthetic data

IAM GW

QbE QbS QbE QbS

1 28.67 40.66 30.97 45.18
2 22.24 30.38 34.53 49.58
3 34.77 48.05 40.16 54.33
4 44.70 65.19 60.40 69.02
5 (low-smoothing) 34.75 57.66 58.06 67.79
5 (normal smoothing) 32.49 57.79 58.31 66.00

synthetic data generator uses the shearing to simulate this handwriting tilt caused
by a cursive script. Moreover, all pages in GW are scanned from a book. The
scanning process made a noticeable warping of the entire page. The rotation
operation can good simulate this kind of paper warping. Therefore, the affine
transformation can improve the performance on the GW dataset. However, IAM is
composed of document images showing contemporary style English handwritten
text. Although the words in IAM present various writing styles, most of them
are not scribbled, so they do not show apparent tilt. Therefore, shearing may be
an interference operation for synthetic data in the experiment on a modern data
set. When making the IAM data set, the writers write on the separate piece of
paper, and then each piece of written paper is flattened and scanned. So the pages
remain very flat during the process of collecting text images; this may make the
rotation operation irrelevant.

One aspect worthy of attention is that both elastic deformation and natural-
ization of pixel distribution cause a significant increase in performance. As the

50 experiments

Figure 5.4.3: The performance of the PHOCNet models evaluated on IAM (left)
and GW (right) respectfully. The models are trained on purely syn-
thetic data with level 1 to 5 of sophistication of the synthetic data.
The fifth level of synthetic data shown in this figure uses slight
smoothing (σ ∈ (0.3, 1.2]).

training data with the 4th level of sophistication of synthetic data, the performance
reaches the peak. In the past, elastic deformation in [SSP03] has been successfully
used for recognizing handwritten digits. This experiment proves that it can also
play a positive role in word spotting tasks.

Last but not least, after adding Gaussian smoothing, there is a sharp perfor-
mance degradation on IAM, but only a very slight decline on GW. To study the
adverse effect of Gaussian smoothing on performance, we compared the results
of two sets of five-level synthetic data using different smoothness. When the
smoothing reduces lightly, there is almost no change in performance on GW,
while the result for QbE on IAM has slightly improved. Even with such a slight
improvement, the performance result of 5-level synthetic data with low-smoothing
is still 10% behind the highest point of performance. This situation may be because
the quality of text images in IAM and GW is significantly different. Fig. 5.1.1
illustrates this difference well: GW exhibits apparent aging phenomena that do
not appear in IAM, such as fading ink and bleeding. Hence, the blurring effect

5.5 comparison to results from the literature 51

produced by Gaussian smoothing will have a more clear adverse effect on the
performance on IAM than the on GW.

5.5 comparison to results from the literature

In this section, to compare with the state-of-the-art, we only focus on the 4-level
synthetic data obtained the best results in previous experiments, generated with
all distortion methods except Gaussian smoothing. Tab. 5.5.1 displays the mAP
results obtained by using different purely synthetic data to train models. One of
the results used for comparison is from the method in [GSF18] using the synthetic
data set HW-SYNTH [KJ16b], and the other is from the in [WF20] using IIIT-HWS
dataset [GSF18]. Besides, the best results so far are reported in [WBF20], where the
authors combined the synthesis approach with further augmentation techniques.

Compared with [GSF18] and [WF20], our method obtains more competitive
results both on the GW and IAM dataset. The difference in vocabulary is that
HW-SYNTH and IIIT-HWS respectively selected 10k and 90k unique words both
from the Hunspell dictionary, and our vocabulary only contains the 10, 000 most
frequently occurring English words based on the Exquisite Corpus [SCL+

18]. In
the process of generating synthetic images, we additionally use elastic distortion
compared with HW-SYNTH and IIIT-HWS. These may be the reasons for the big
difference in results.

Although the synthetic data generated by Wolf et al. in the literature [WBF20]
obtained ideal results on GW, we can still achieve better performance on IAM.
The source of the vocabulary we use is the same as that in [WBF20], and we also
use the most common 10, 000 English words. The method we use to generate
synthetic word images is also similar to the method described in [WBF20], but
there are still some differences. We use 410 different handwritten fonts to render
word images, but only 134 fonts are used in the method of Wolf et al.. As we have
discussed in Sec. 5.4.2, the experimental results are proportional to the number of
handwritten fonts limited to 410 used. The demand for diversification of fonts is
particularly evident on the IAM. Besides, for the pixel distribution of synthetic
images, the method in [WBF20] is to select the values of the back- and foreground
pixels randomly from the uniform distributions limited with [180, 255] and [0, 100],
that are significantly different from the pixel distributions learned from the IAM

52 experiments

Table 5.5.1: Comparison with the literature. Results reported as mAP [%]. Best
results are marked in bold.

Method
IAM GW

QbE QbS QbE QbS

Ours 44.70 65.19 60.40 69.02

Gurjar et al. [GSF18] 26.21 36.57 39.89 48.92
Wolf et al. [WF20] 16.00 39.50 46.60 57.90
Wolf et al. [WBF20] 39.00 64.10 69.20 72.30

data set shown in Fig. 4.2.4. These factors probably cause the advantages of our
method on the IAM.

We also noticed that the method in [WBF20] randomly selects a slant angle
of [−40,−20, 0, 20, 40] for each synthetic word image. However, our method is to
adopt a random amount of shear (+/− 0.5 degrees along horizontal direction),
equivalent to a random slant angle almost between −26 and 26 degrees. From
Fig. 5.1.1, we can see that the text in GW has a vast slant angle. Accordingly, the
slant angles set in the literature are more suitable for GW than us. However, the
excessively large slant angles may adversely affect the performance of synthetic
data on the IAM.

6
C O N C L U S I O N

This thesis proposes a framework for generating large-scale synthetic data by
rendering handwritten word images. Inspired by [KJ16a], this work extends the
font-based method of rendering words, and we add some natural variations in
the handwriting domain to the rendered images. To generate highly realistic syn-
thetic data sufficient to replace actual data, we introduce four artificial distortion
schemes: Affine Transformation, Elastic Distortion, Gaussian Distribution, and
Gaussian Smoothing. A large amount of synthetic data eases manual annotation
efforts for CNN-based word spotting tasks.

This thesis’s core is to generate multiple synthetic datasets with different
sophistication levels of synthetic training data and use them to evaluate the
contribution of each stage of the synthesis process to the model performance.
Experimental evaluation shows that using more different handwritten fonts to
render words can make the synthetic data set obtain better results, especially on
IAM. We used up to 410 handwritten fonts in this work. In future work, we plan
to employ more handwritten fonts, such as 657, which is the same as the number
of writers generating the IAM dataset.

As shown in the experimental evaluation, the pixel distribution learned from
IAM has better general adaptability than that learned from GW. In future experi-
ments, we plan to continue using the parameters learned from IAM to naturalize
the pixels of the synthesized images. We have also proved that the size of the vo-
cabulary only focusing on the most frequently occurring words has no significant
effect on performance results.

The experimental evaluation also shows that elastic distortion and Gaussian dis-
tribution of fore- and background pixels achieve significant performance growth
in the experiments both on IAM and GW. Although affine transformation leads
to a model performance decline in the experiment on IAM, it still plays a posi-
tive role in the experiment on GW. On the contrary, Gaussian smoothing causes
performance degradation in all experiments, and this degradation is particularly
prominent on the IAM database.

53

54 conclusion

We have proved through experiments that our 4-level synthetic data is very
suitable as pretraining data for word spotting models. In the literature [GSF18], a
PHOCNet only uses 1, 000 labeled samples and mainly relies on synthetic data
HW-SYNTH for pretraining, which can achieve excellent performance. Therefore,
we can make a reasonable conjecture: if using our synthetic data set to pre-train
the PHOCNet, the demand for real data can be further reduced. We plan to prove
this conjecture in future work.

B I B L I O G R A P H Y

[AF15] Ahmad, Irfan ; Fink, Gernot A.: Training an Arabic handwriting
recognizer without a handwritten training data set. In: International
Conference on Document Analysis and Recognition, ICDAR, 2015, S. 476–
480

[AFM17] Athanasiou, Lambros S. ; Fotiadis, Dimitrios I. ; Michalis, Lam-
pros K.: Propagation of Segmentation and Imaging System Errors. 2017. –
151 – 166 S.

[AGFV14] Almazán, Jon ; Gordo, Albert ; Fornés, Alicia ; Valveny, Ernest:
Word Spotting and Recognition with Embedded Attributes. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 36 (2014), Nr.
12, S. 2552–2566

[AR20] Akhtar, Nadeem ; Ragavendran, U.: Interpretation of intelligence
in CNN-pooling processes: a methodological survey. In: Neural Com-
puting and Applications 32 (2020), Nr. 3, S. 879–898

[ARTL13] Aldavert, David ; Rusiñol, Marçal ; Toledo, Ricardo ; Lladós, Josep:
Integrating Visual and Textual Cues for Query-by-String Word Spot-
ting. In: International Conference on Document Analysis and Recognition,
ICDAR, 2013, S. 511–515

[BB07] Bottou, Léon ; Bousquet, Olivier: The Tradeoffs of Large Scale
Learning. In: Advances in Neural Information Processing Systems 20,
NIPS, 2007, S. 161–168

[BIK+
20] Buslaev, Alexander ; Iglovikov, Vladimir I. ; Khvedchenya, Eugene

; Parinov, Alex ; Druzhinin, Mikhail ; Kalinin, Alexandr A.: Albu-
mentations: Fast and Flexible Image Augmentations. In: Information
11 (2020), Nr. 2, S. 125

[BPC+
17] Bhattacharya, Ujjwal ; Plamondon, Réjean ; Chowdhury, Souvik D.

; Goyal, Pankaj ; Parui, Swapan K.: A sigma-lognormal model-based

55

56 bibliography

approach to generating large synthetic online handwriting sample
databases. In: International Journal on Document Analysis and Recognition,
IJDAR 20 (2017), Nr. 3, S. 155–171

[BSH17] Bloice, Marcus D. ; Stocker, Christof ; Holzinger, Andreas: Aug-
mentor: An Image Augmentation Library for Machine Learning. In:
Journal of Open Source Software 2 (2017), Nr. 19, S. 432

[BW17] Balreira, Dennis G. ; Walter, Marcelo: Handwriting Synthesis from
Public Fonts. In: SIBGRAPI Conference on Graphics, Patterns and Images,
2017, S. 246–253

[Com18] Commons, Wikimedia: File:Normal Distribution PDF.svg — Wikimedia
Commons, the free media repository. https://commons.wikimedi

a.org/w/index.php?title=File:Normal_Distribution_PDF.svg.
Version: 2018

[Com20] Commons, Wikimedia: File:2D affine transformation ma-
trix.svg — Wikimedia Commons, the free media repository.
https://commons.wikimedia.org/w/index.php?title=File:

2D_affine_transformation_matrix.svg. Version: 2020

[DM20] Das, Sugata ; Mandal, Sekhar: Segmentation-free word spotting in
historical Bangla handwritten document using Wave Kernel Signature.
In: Pattern Analysis and Applications 23 (2020), Nr. 2, S. 593–610

[DW14] Dasgupta, Amitava ; Wahed, Amer: Chapter 4 - Laboratory Statistics
and Quality Control. In: Clinical Chemistry, Immunology and Laboratory
Quality Control. 2014, S. 47 – 66

[Gra13] Graves, Alex: Generating Sequences With Recurrent Neural Networks.
In: CoRR abs/1308.0850 (2013)

[GSF18] Gurjar, Neha ; Sudholt, Sebastian ; Fink, Gernot A.: Learning Deep
Representations for Word Spotting under Weak Supervision. In: IAPR
International Workshop on Document Analysis Systems, DAS, 2018, S. 7–12

[GSGN17] Giotis, Angelos P. ; Sfikas, Giorgos ; Gatos, Basilis ; Nikou,
Christophoros: A survey of document image word spotting tech-
niques. In: Pattern Recognition 68 (2017), S. 310–332

https://commons.wikimedia.org/w/index.php?title=File:Normal_Distribution_PDF.svg
https://commons.wikimedia.org/w/index.php?title=File:Normal_Distribution_PDF.svg
https://commons.wikimedia.org/w/index.php?title=File:2D_affine_transformation_matrix.svg
https://commons.wikimedia.org/w/index.php?title=File:2D_affine_transformation_matrix.svg
https://commons.wikimedia.org/w/index.php?title=File:2D_affine_transformation_matrix.svg

bibliography 57

[GW19] Goodman, Dou ; Wei, Tao: Cloud-based Image Classification Service
Is Not Robust To Simple Transformations: A Forgotten Battlefield. In:
CoRR abs/1906.07997 (2019)

[HAB16] Haines, Tom S. F. ; Aodha, Oisin M. ; Brostow, Gabriel J.: My Text
in Your Handwriting. In: ACM Transactions on Graphics 35 (2016), Nr.
3, S. 26:1–26:18

[HSM+
00] Hahnioser, Richard H.R. ; Sarpeshkar, Rahul ; Mahowald, Misha A.

; Douglas, Rodney J. ; Seung, Hyunjune Sebastian: Digital selection
and analogue amplification coexist in a cortex- inspired silicon circuit.
In: Nature 405 (2000), Nr. 6789, S. 947–951

[HZRS14] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Spatial
Pyramid Pooling in Deep Convolutional Networks for Visual Recogni-
tion. In: European Conference on Computer Vision, ECCV Bd. 8691, 2014,
S. 346–361

[HZRS16] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Deep
Residual Learning for Image Recognition. In: IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, 2016, S. 770–778

[JBMN09] Jawahar, C. V. ; Balasubramanian, A. ; Meshesha, Million ; Nam-
boodiri, Anoop M.: Retrieval of online handwriting by synthesis and
matching. In: Pattern Recognition 42 (2009), Nr. 7, S. 1445–1457

[JKS95] Jain, R. ; Kasturi, R. ; Schunck, B.G.: Machine Vision. 1995. – 112–139

S.

[JSVZ14] Jaderberg, Max ; Simonyan, Karen ; Vedaldi, Andrea ; Zisserman,
Andrew: Synthetic Data and Artificial Neural Networks for Natural
Scene Text Recognition. (2014)

[KDJ16] Krishnan, Praveen ; Dutta, Kartik ; Jawahar, C. V.: Deep Feature
Embedding for Accurate Recognition and Retrieval of Handwritten
Text. In: International Conference on Frontiers in Handwriting Recognition,
ICFHR, 2016, S. 289–294

58 bibliography

[KJ16a] Krishnan, Praveen ; Jawahar, C. V.: Generating Synthetic Data for
Text Recognition. In: CoRR abs/1608.04224 (2016)

[KJ16b] Krishnan, Praveen ; Jawahar, C. V.: Matching Handwritten Docu-
ment Images. In: European Conference on Computer Vision, ECCV, 2016,
S. 766–782

[KJ19] Krishnan, Praveen ; Jawahar, C. V.: HWNet v2: an efficient word
image representation for handwritten documents. In: International
Journal on Document Analysis and Recognition, IJDAR 22 (2019), Nr. 4, S.
387–405

[KSH17] Krizhevsky, Alex ; Sutskever, Ilya ; Hinton, Geoffrey E.: ImageNet
classification with deep convolutional neural networks. In: Communi-
cations of the ACM 60 (2017), Nr. 6, S. 84–90

[LSP06] Lazebnik, Svetlana ; Schmid, Cordelia ; Ponce, Jean: Beyond Bags of
Features: Spatial Pyramid Matching for Recognizing Natural Scene
Categories. In: IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, CVPR, 2006, S. 2169–2178

[MB02] Marti, Urs-Viktor ; Bunke, Horst: The IAM-database: an English
sentence database for offline handwriting recognition. In: International
Journal on Document Analysis and Recognition 5 (2002), Nr. 1, S. 39–46

[MP87] Minsky, Marvin ; Papert, Seymour: Perceptrons - an introduction to
computational geometry. MIT Press, 1987

[Mur05] Murakoshi, Kazushi: Avoiding overfitting in multilayer perceptrons
with feeling-of-knowing using self-organizing maps. In: Biosystems 80

(2005), Nr. 1, S. 37 – 40

[NA08] Nixon, Mark ; Aguado, Alberto S.: Feature Extraction Image Processing.
2008. – 113 S.

[NAK+
17] Niaz, Hafiz A. ; Akram, M. U. ; Khan, Muazzam A. ; Usman, Anam ;

Rafique, Awais: A Study on Word Spotting Techniques for Document
Image Analysis. In: International Conference on Multimedia Systems and
Signal Processing, ICMSSP, 2017, S. 17–21

bibliography 59

[NH10] Nair, Vinod ; Hinton, Geoffrey E.: Rectified Linear Units Improve
Restricted Boltzmann Machines. In: International Conference on Machine
Learning ,ICML, 2010, S. 807–814

[Nie19] Nielsen, Michael A.: Neural Networks and Deep Learning. 2019

[PG17] Patterson, J. ; Gibson, A.: Deep Learning: A Practitioner’s Approach.
2017. – 250–255 S.

[PSM10] Perronnin, Florent ; Sánchez, Jorge ; Mensink, Thomas: Improving
the Fisher Kernel for Large-Scale Image Classification. In: European
Conference on Computer Vision, ECCV Bd. 6314, 2010, S. 143–156

[PW16] Poznanski, Arik ; Wolf, Lior: CNN-N-Gram for Handwriting Word
Recognition. In: IEEE Conference on Computer Vision and Pattern Recog-
nition,CVPR, 2016, S. 2305–2314

[RATL15] Rusiñol, Marçal ; Aldavert, David ; Toledo, Ricardo ; Lladós,
Josep: Towards query-by-speech handwritten keyword spotting. In:
International Conference on Document Analysis and Recognition, ICDAR,
2015, S. 501–505

[RHW86] Rumelhart, David E. ; Hinton, Geoffrey E. ; Williams, Ronald J.:
Learning Internal Representations by Error Propagation. 1986, S.
318–362

[RMC18] Roy, Partha P. ; Mohta, Akash ; Chaudhuri, Bidyut B.: Synthetic
data generation for Indic handwritten text recognition. In: CoRR
abs/1804.06254 (2018)

[Ros58] Rosenblatt, F.: The perceptron: A probabilistic model for information
storage and organization in the brain. In: Psychological Review 65 (1958),
Nr. 6, S. 386–408

[SCL+
18] Speer, Robyn ; Chin, Joshua ; Lin, Andrew ; Jewett, Sara ; Nathan,

Lance: LuminosoInsight/wordfreq: v2.2. oct 2018

60 bibliography

[SF16] Sudholt, Sebastian ; Fink, Gernot A.: PHOCNet: A Deep Convo-
lutional Neural Network for Word Spotting in Handwritten Docu-
ments. In: International Conference on Frontiers in Handwriting Recogni-
tion, ICFHR, 2016, S. 277–282

[SF18] Sudholt, Sebastian ; Fink, Gernot A.: Attribute CNNs for word spot-
ting in handwritten documents. In: International Journal on Document
Analysis and Recognition, IJDAR 21 (2018), Nr. 3, S. 199–218

[SS01] Shapiro, L.G. ; Stockman, G.C.: Computer Vision. 2001. – 153–154 S.

[SSP03] Simard, Patrice Y. ; Steinkraus, David ; Platt, John C.: Best Practices
for Convolutional Neural Networks Applied to Visual Document Anal-
ysis. In: International Conference on Document Analysis and Recognition,
ICDAR, 2003, S. 958–962

[SW10] Sammut, Claude ; Webb, Geoffrey I.: Normal Distribution. In: Encyclo-
pedia of Machine Learning. 2010, S. 731–731

[SZ15] Simonyan, Karen ; Zisserman, Andrew: Very Deep Convolutional
Networks for Large-Scale Image Recognition. In: International Confer-
ence on Learning Representations, ICLR, 2015

[TP19] Thontadari, C. ; Prabhakar, C. J.: Segmentation Free Word Spotting
for Handwritten Documents Using Bag of Visual Words Based on
Co-HOG Descriptor. In: International Journal of Information Retrieval
Research, IJIRR 9 (2019), Nr. 2, S. 49–65

[WB16] Wilkinson, Tomas ; Brun, Anders: Semantic and Verbatim Word
Spotting Using Deep Neural Networks. In: International Conference on
Frontiers in Handwriting Recognition, ICFHR, 2016, S. 307–312

[WBF20] Wolf, Fabian ; Brandenbusch, Kai ; Fink, Gernot A.: Improving
Handwritten Word Synthesis for Annotation-free Word Spotting. In:
International Conference on Frontiers of Handwriting Recognition, ICFHR,
2020

[Wer74] Werbos, P. J.: Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Sciences, Harvard University, Diss., 1974

bibliography 61

[WF20] Wolf, Fabian ; Fink, Gernot A.: Annotation-Free Learning of Deep
Representations for Word Spotting Using Synthetic Data and Self
Labeling. In: IAPR International Workshop on Document Analysis Systems,
DAS, 2020, S. 293–308

[WRF16] Wieprecht, Christian ; Rothacker, Leonard ; Fink, Gernot A.: Word
Spotting in Historical Document Collections with Online-Handwritten
Queries. In: IAPR Workshop on Document Analysis Systems, DAS, 2016,
S. 162–167

[ZZ09] Zhang, Ethan ; Zhang, Yi: Encyclopedia of Database Systems. 2009

	1 MOTIVATION
	2 FUNDAMENTALS
	2.1 Word Spotting
	2.2 Neural Networks
	2.2.1 Feedforward Neural Networks
	2.2.2 Training
	2.2.3 Convolutional Neural Network

	3 related work
	3.1 Generation of Synthetic Word Image
	3.1.1 Glyphcentric approach
	3.1.2 Generational method
	3.1.3 Font-based method

	3.2 PHOCNet
	3.2.1 PHOC Representation
	3.2.2 PHOCNet Architecture

	4 methods
	4.1 Synthetic Word Image Generation
	4.1.1 The Vocabulary of Words
	4.1.2 Font Rendering

	4.2 Applying Deformations
	4.2.1 Affine Transformation
	4.2.2 Elastic Distortion
	4.2.3 Naturalization of Pixel Distribution
	4.2.4 Gaussian Smoothing

	5 experiments
	5.1 Datasets
	5.1.1 George Washington
	5.1.2 IAM

	5.2 Evaluation Protocol
	5.3 Training Details
	5.4 Results and Discussion
	5.4.1 The Size of Vocabulary
	5.4.2 The Number of Fonts
	5.4.3 Pixel Distribution of Fore- and Background Pixels
	5.4.4 Synthetic Data Sets with Deformations

	5.5 Comparison to Results from the Literature

	6 conclusion

