
Attribute Representations for Word Spotting
in Arabic Handwriting

Bachelor Thesis

Hatem Hamad
May 16, 2020

Supervisors:
Prof. Dr.-Ing. Gernot A. Fink
Fabian Wolf, M.Sc.

Department of Computer Science
TU Dortmund University
www.cs.tu-dortmund.de



C O N T E N T S

1 introduction 3
2 fundamentals 5

2.1 Arabic Writing System 5
2.1.1 Characteristics 5
2.1.2 Handwriting 6

2.2 Word Spotting 7
2.3 Artificial Neural Networks 8

2.3.1 Feedforward Neural Networks 8
2.3.2 Multilayer Perceptrons Optimisation 11
2.3.3 Convolutional Neural Networks 13

3 related work 17
3.1 Embedded Attributes Framework 17
3.2 PHOCNet 19

4 method 23
4.1 Unigrams sets 23

4.1.1 PHOCNet unigrams (Baseline) 24
4.1.2 Direct unigrams 24
4.1.3 Sub-Character unigrams 24
4.1.4 Ground Form Representation unigrams 25

4.2 Attributes Representations 26
4.2.1 PHOC-d 27
4.2.2 Dynamic PHOC 28

5 experimental evaluation 31
5.1 Dataset 31
5.2 Performance Measures 32
5.3 Evaluation Protocol 33
5.4 Training Setup 33
5.5 Results and Discussion 34

5.5.1 Baseline 34
5.5.2 Direct Unigrams 35
5.5.3 Sub-Character Unigrams 35
5.5.4 GFR Unigrams 36
5.5.5 PHOC-d 37

1



2 contents

5.5.6 Dynamic PHOC 37
5.5.7 Comparison 40

6 summary and conclusion 45
a appendix 47



1
I N T R O D U C T I O N

The urge to automate trivial labour has been a compelling motivation for humans.
At first, we humans tried to harness mechanical machines to do none intellectual
work for us. Then, we tried adding humble intellectual capabilities to our machines;
computers were invented. When computers were invented, tasks that used to take
humans years to finish could then be completed in seconds. Based on this feature,
computer scientists and engineers hoped that computers could tackle more difficult
perceptual tasks like recognising objects in images, distinguishing faces, or transcribing
speeches or handwritten books. Even though these tasks may seem unrelated, they all
boil down to the task of learning recurrent patterns in a medium.

Generally, research in pattern recognition field aims to enable machines to mimic
and - eventually - master the human perceptual capabilities. Thus, the task is to find,
learn and classify those reappearing patterns in different media. Text recognition is
one of many sub-fields in pattern recognition which has been receiving a considerable
amount of effort and research.

While it is generally accepted that text recognition is solved for machine printed
text, recognition-based approaches often do not yield a comparable level of accuracy
for handwritten text. This characteristic is particularly pronounced when dealing
with historical handwritten documents. In contrast to text recognition, word spotting
deals with finding all instances of a query word that exists in a scanned document
image, without fully recognising the word text. Word spotting is used as an efficient
alternative to index document images for which a direct classification approach would
be infeasible. This also allows for indexing and glancing through extensive document
image collections for information, especially historical documents and books.

The general goal of a word spotting system is to map the word image onto a
representation that allows ranking the image collection according to their relevance
with respect to a query. Both the choice of this representation and how it is derived,
play a very vital role in the system efficiency.

Although word spotting systems have been receiving an outstanding amount of
attention from researchers in recent years, word spotting on Arabic documents has
achieved relatively modest results as compared to other major scripts like Latin and
Chinese. Investigating potential refinement to existing word spotting systems on
Arabic documents is the motive behind this thesis.

3



4 introduction

In this thesis, we explore various approaches for adapting the Arabic script for
the Embedded Attributes Framework proposed by Almazán et al. and further improved
by the introduction of PHOCNet proposed by Sudholt et al.. The choice of attribute
representation, which plays a critical role when performing word spotting in the
embedded attributes framework, is one of the areas investigated for possible adaptions.
In addition, multiple thoughts on optimising the actual embedding used in the
PHOCNet are also investigated.

This thesis is structured as follows. Chapter 2 introduces the fundamental concepts
underlying the proposed method. Consequently, a brief overview of the basic concepts
and methods in the field of word spotting is given. Another essential overview is the
introduction to the Arabic script. We present its characteristics and the challenges
that arise from performing word spotting on Arabic documents. Furthermore, the
fundamental concepts of Artificial Neural Networks (ANNs) and especially Convolu-
tional Neural Networks (CNNs) are discussed. CNNs have become the state-of-the-art
method in word spotting, and they are a crucial tool for the proposed method. Chap-
ter 3 presents the works that lay the groundwork for this thesis. The first part will
discuss the attributes framework, which had a tremendous impact on the word spot-
ting field. Moreover, a very influential work using CNNs for word spotting, called
PHOCNet, is presented in the second part of this chapter. Chapter 4 discusses the
proposed method, which will be evaluated by the experiments presented in Chapter 5.
Finally, Chapter 6 reviews the work done in this thesis and present the conclusions
drawn from the experimental evaluation as well as discussion and future work.



2
F U N D A M E N TA L S

2.1 arabic writing system

The Arabic script is the second most widely used alphabetic writing system in the
world; originally developed for writing the Arabic language [EB16]. Although it has
evolved as a direct descendant of the Aramaic alphabet in the 4th century A. D., its
early history is vague. Many scholars believe that the earliest living example of Arabic
script is a royal funerary inscription dating from A. D. 328 [EB16].

Quite similar to Arabic numerics, Arabic script is used not only by the Arabic
language, but has also been adapted to such diverse languages as Persian, Kurdish,
Sindhi, Urdu, and many others [Maj96]. Historically, the Arabic script was used for
Turkish1 and other Turkic languages (Uzbek, Azerbaijani, etc.), Indonesian, Swahili,
and Spanish [Maj96].

2.1.1 Characteristics

The Arabic script is written from right to left in a cursive style in both printed and
handwritten documents. The Arabic alphabet is one of the Abjads, alphabets that
represent consonants only, consisting of 28 unique letters. However, as the script came
to be used as the primary script for other languages besides Arabic, it led to the
addition of new letters and other symbols to represent phonemes that do not appear
in Arabic phonology. Therefore, in Persian, the alphabet consists of 32 letters, 33 in
Kurdish, and 39 in Urdu [Omn20].

Additionally, Arabic script uses diacritics that symbolise additional phonetic infor-
mation including I’jam (ÐA �j. «@
�), consonant pointing, and Tashkı̄l (ÉJ
º� �����), supplementary
diacritics. The latter are vowel marks, whereas I’jam diacritics are the points added
to same-formed letters to help distinguish them based on the number and position
of these points [Gac09]. Originally, I’jam diacritics were introduced to help foreigners
and early learners of the language, but later emerged to be considered as part of the

1 Following the 1928 Reforms, the use of the Arabic alphabet was abandoned and a new Latin-based
alphabet was developed [Lew99].

5



6 fundamentals

letter itself [Gac09]. For example, letters like H. , �H, and �H share the same base-form
H. Thus, a word like HAK can mean H. AK. (door) and �HAK. (to spend the night).

2.1.2 Handwriting

Although Arabic characters have no upper- and lowercase variations, they have either
two or four different position-dependent shapes (see Table 2.1). Each letter, with the
exception of six (which have two shapes only), is connected with its next and previous
neighbouring letters in the same word [LG06].

Additionally, a Ligature is a shape formed by combining two or more characters.
Arabic has several standard ligatures, which are exceptions to the above rules for
connecting letters. e.g., combining the letter laam È and alif @ would look like B and

not AË which is clearly not the “Final” shape of alif in Table 2.1.
Considering that I’jam points are part of the letter itself, the Arabic alphabet dis-

tinguishes 15 out of 28 letters based on these diacritical points [Gac09]. On the other
hand, Tashkı̄l are normally omitted from handwriting except for hamza, shadda, and
madda showed in Figure 2.1.

(a) madda (b) shadda (c) hamza

Figure 2.1: Handwritten Arabic words containing the obligatory diacritics. Images are extracted
from IfN/ENIT Dataset [PMM+02].

After examining these different characteristics of the Arabic script, we can find a
notable contrast to Latin scripts in terms of the quantity of distinct patterns. Attempting
to address each unique position-dependent shape as a distinct entity will eventually
result in a rather large set of patterns. A superficial comparison between Arabic and
Latin scripts shows that Latin has 26× 2 possible patterns2 whereas Arabic could have
22× 4+ 6× 2 unique patterns3. Additionally, diacritics like shadda, for example, can be
placed on most letters thereby forming a slightly modified pattern. Thus, the Arabic
script has a very large set of patterns making the task harder for automatic systems to
recognise and distinguish this wide range of patterns.

2 Upper- and lowercase have different shapes in Latin.
3 Considering the position-dependent shapes characteristic of Arabic letters.



2.2 word spotting 7

Name Isolated Initial Medial Final

alif @ - - A
baa H. K. J. I.
jeem h. k. j. i.
dal X - - Y
haa è ë ê é

Table 2.1: Example for position-dependent shapes of some Arabic letters.

2.2 word spotting

Historical books and documents have a great amount of information relevant to all
fields, primarily science and history. Still, such documents are rare and have a poor
accessibility. Digitization allows preserving these types of documents from degrading
and protects them from frequent usage. Digitized documents can then be indexed and
searched with help of pattern recognition methods.

Although traditional OCR4 approaches excel in recognition tasks within modern
printed documents, they do not yield satisfactory results when handling highly de-
graded historical documents [GSGN17]. Nonetheless, these systems are confronted
with challenging barriers when dealing with historical documents. Such barriers ex-
tend from the difficulties in segmenting characters or words, the variability of the
handwriting, and the degeneration of the original documents [GSGN17].

On one hand, recognition-based methods rely on the full recognition of documents,
either at a character or word level, to obtain its correct transcription. On the other hand,
word spotting methods i.e. recognition-free are tasked to retrieve all relevant elements
from a collection of document images in a retrieval list without the need for correct
character recognition, but by directly characterising image features at a character or
word level [GSGN17].

Word spotting methods may be categorized based on multiple factors. Based on the
query type we can distinguish Query-by-Example (QbE) from Query-by-String (QbS)
methods. In the QbE scenario, the user selects an image of the word to be searched
in the document collection, whereas if the query can be provided as an arbitrary text

4 Optical Character Recognition



8 fundamentals

string, a method is able to perform Query-by-String. Finally, word spotting methods
that are directly applied to whole document pages are considered segmentation-free
methods, whereas in segmentation-based methods, a previous segmentation of the word
images from the page has to be applied during preprocessing [GSGN17].

In recent years, the topic of word spotting has been the subject of extensive research.
As a result, various methods have emerged that usually rely on Hidden Markov Models
(HMMs), Conditional Random Fields (CRFs), Artificial Neural Networks (ANNs), or
they might follow a hybrid approach by combining different classifiers such as Support
Vector Machines (SVMs) with HMMs or HMMs with ANNs [GSGN17].

2.3 artificial neural networks

Artificial Neural Networks (ANNs) play a fundamental role in pattern recognition
and computer vision in general. Word spotting task has been greatly benefiting from
ANNs especially in Zhong’s SpottingNet [ZPJ+16] and Sudholt’s PHOCNet [SF16],
both have obtained state-of-the-art results. PHOCNet will be discussed in detail in
section 3.2. The following subsection gives an overview of neural networks as these
machine learning models also have a significant part in the methodology used later in
this thesis.

ANNs have been originally inspired by the way our brains process information using
biological neural systems that rely on networks of neurons. However, its development
has since diverged and has become a matter of engineering and achieving good results
in Machine Learning tasks [KL20]. The general idea behind an ANN is that the weights
w (the analogon to the biological synaptic strength) control the strength of influence of
one neuron on another, and these weights are then parameters to be adapted in the
learning phase (described in detail in subsection 2.3.2). When activating a sequence of
neurons it ends by activating a single end-unit that indicates which pattern or class
has been recognised.

2.3.1 Feedforward Neural Networks

One of the early influential works on neural networks was the Perceptron model
introduced by Rosenblatt [Ros58]. The Perceptron classifies input samples x ∈ RD into
either of two classes y ∈ {−1, 1}. A weighted linear combination of the vector elements
is forwarded to a threshold activation function which effectively extracts the sign of



2.3 artificial neural networks 9

the linear combination. This is the class y predicted by the Perceptron. The output of
the Perceptron is therefore given by

y(x) =

1 when wTx+w0 > 0,

−1 otherwise
(2.1)

where w is the vector of weights for the input and w0 is a bias.
The main drawback of a Perceptron is its inability to handle non-linearly separable

data [Bis95]. However, Minsky and Papert [MP72] argued this inability could be
resolved by stacking multiple layers of Perceptrons. This approach gave rise to a neural
network model which is known as Feedforward Neural Networks, or Multilayer
Perceptrons (MLP). The term feedforward network describes a multilayer network
where the output of any layer i does only depend on the output of the (i− 1)-th
layer. Furthermore, in feedforward networks there are no feedback connections in
which outputs of the model are fed back into itself. However, when networks include
feedback connections, they are called Recurrent Neural Networks [GBC16].

The goal of these networks is to approximate some function f∗. For example,
a classifier y = f∗(x) maps an input x to a category y. A feedforward network
defines a mapping ŷ = f(x; θ) and the parameters θ may be optimised such that they
approximate the function [GBC16].

An MLP contains multiple Perceptrons in sequentially stacked layers that have
connections or edges between them. When each neuron in a layer is connected to all
neurons in the preceding layer, we call the layer a fully connected layer [KL20]. All
these connections have weights associated with them and form a directed acyclic graph
that represents how the functions are composed [Sch15]. For example, in Figure 2.2
we have L− 1 functions f1, f2, ..., fL all connected in a chain, to form

ŷ = fL(fL−1(...(f1(x))...)). (2.2)

As each layer s in an MLP is a Perceptron, the layer-wise output is computed as such:
first the weighted sum of the layer’s input vector is calculated (for simplicity, bias ws0
is encoded into the weights matrix W s)

is(x,W s) = W sx. (2.3)

The result of the weighted sum of inputs is then forwarded to a function called the
activation function

fs(x,W s) = Θ (is(x,W s)) . (2.4)



10 fundamentals

x1

x2

...

xi

...

. . .

. . .

. . .

...

y1

y2

...

yj

Input Layer
1st Hidden Layer Lth Hidden Layer

Output Layer

Figure 2.2: Visualization graph of a Multilayer Perceptron. Each layer except for the input layer
is a fully connected layer.

The simplest activation function is referred to as linear activation, where no transfor-
mation is applied at all. Non-linear activation functions, like the sigmoid function,
were introduced to address this problem. Hence, non-linear functions are differentiable
and therefore more effective while optimising the network. This is an important aspect
for optimising MLPs which will be discussed in subsection 2.3.2.

In contrast to the activation function used in the Perceptron, MLPs traditionally
made use of the sigmoid activation function which can be defined as

Θσ(x) =
1

1+ e−x
. (2.5)

A different activation function was proposed in [GBB11] called the Rectified Linear
Unit (ReLU). ReLU is a unit using the rectified activation function g(x) that simply
outputs the input directly if it is positive, otherwise, it will output zero. The ReLU is
defined as

ΘReLU (x) = max{0,x}. (2.6)

Because rectified linear units are nearly linear, they preserve many of the properties
that make linear models easy to optimise with gradient-based methods [GBC16]. With
these activation functions, neural networks with a large number of layers can be
trained efficiently as they eliminate the problem of vanishing gradients. Additionally,
computations are cheaper when using ReLU since we abandoned the exponential



2.3 artificial neural networks 11

function. Furthermore, negative input values can output true zero values (compared
to sigmoid where there are values very close to zero, but not a true zero) allowing the
activation of hidden layers to contain one or more true zero values. This is called a
sparse representation and is a desirable property in representational learning as it can
accelerate learning [GBC16].

2.3.2 Multilayer Perceptrons Optimisation

During network optimisation, we optimise f(x; θ,W ) to match f∗(x). This optimisa-
tion process is referred to as network training or simply training. The training data
provides examples of f∗(x) evaluated at different training points. Each example x is
accompanied by a label y ≈ f∗(x). The output layer then must produce a value that is
as close to y as possible i.e. as accurate as possible. The behaviour of the hidden layers
is to help produce the desired output by activating different paths in the network
resulting in a better output. This is done by minimising the difference between the
output obtained for a specific input and the desired output with respect to the weights
of the MLP [GBC16]. The network updates the weights and biases iteratively with a
procedure known as gradient descent.

The loss function l lets us quantify the quality of any particular set of weights W .
This function computes a numerical value that represents a measure of deviation of the
network’s prediction ŷ = f(x; θ,W ) from y. Hence, our goal is to find the optimal W
that minimises the loss function [KL20]. One of the simplest functions is the Euclidean
loss

leuc(ŷ, y) =
n∑
i=1

1

2
(ŷi − yi)2. (2.7)

Gradient descent uses a loss function to iteratively find a local minimum for l as follows:
the weight wsi,j in layer s is updated by adding a fraction of the negative gradient of
the loss with respect to wsi,j

wsi,j ← wsi,j − η
δl

δwsi,j
. (2.8)

η, representing what is called the learning rate, controls how much to change the model
in response to the estimated error each time the model weights are updated. If chosen
too large, the optimization might oscillate or even diverge. On the other hand, a small
learning rate might require a large amount of iterations for the algorithm to converge
to a local minimum [GBC16].

The above formulation suffices for optimising a network’s single layer, but when
dealing with the remaining hidden layers a more complex approach called Backpropa-



12 fundamentals

−6 −4 −2 2 4 6

0.5

1

(a) Sigmoid function

−6 −4 −2 2 4 6

1

2

3

4

5

6

(b) Rectified linear function

Figure 2.3: Example of known activation function used in different types of ANN.

gation is used [KL20]. The function f that resembles a MLP consists of compositions of
functions (Eq. 2.2), each of which is modelled by one layer of the network. If we now
want to determine the gradients of all layers, we have to derive the partial derivative
considering the chain rule.

A weight has an influence on the results along different paths through the following
layers. This implies that for computing the gradient of any weight wsi,j , we first need
to find the gradient for the previous layer. Hence, for updating all the weights in
the network the gradients are computed starting at the last layer and ending at the
first layer. The process of updating the weights starts by the output layer computing
the gradient of its weights directly from the loss function. The output layer also
computes the gradient with respect to its input and sends this gradient “back” to
its preceding layer. The preceding layer is handed the gradient for its output. All
hidden layers then compute their gradients the same way. This process is known as
the Backpropagation algorithm. Backpropagation is proven to be an efficient algorithm for
computing gradients on neural networks using the chain rule [Bis95].

In the preceding subsection, we talked about how using linear activation functions
is not a feasible approach when optimising a network with gradient descent. The
gradient of a linear step function is 0 everywhere except for when x = 0 – for which
the gradient is not defined. Meaning that the overall gradient would be the zero vector,
and the weights would never receive any updates [Bis95].



2.3 artificial neural networks 13

2.3.3 Convolutional Neural Networks

Intelligent systems that deal with images expect input with high-dimensional data.
When neural networks were introduced to the field of image recognition, they were
faced with a massive number of parameters making the optimisation task a highly
computationally intensive problem. Convolutional Neural Networks (CNNs) represent
a type of feedforward networks specialised for image processing. CNNs offer a
significant reduction of the number of parameters in a network while preserving much
of the model quality. These specialised neural networks were proposed initially by
Fukushima [Fuk80] under the name of Neocognitron but did not receive significant
attention until made famous by LeCun et al. [LBD+90] as CNNs.

While CNNs and MLPs share many similarities, they have several differences that
make CNNs specialised in detecting pattern in images. In comparison to MLPs, CNNs
use layers called the convolutional layers, which consist of small filters of trainable
weights to slide (more precisely, convolve) over the input [GBC16]. These filters are
responsible for the core functionality of a CNN, which is to let these filter learn what
patterns to detect in the data. This learning process is conducted by facilitating filter
weights. These filters can be considered as feature detectors that get activated by
particular structures or objects in the image, e.g., edges or strokes. However, CNNs can
also – and usually do – have non-convolutional layers side by side with convolutional
ones.

Furthermore, Convolutional layers, unlike regular MLP layers, are made up of n
different filters (also referred to as kernels) and a bias b for each filter. In particular,
the convolutional layers of a CNN have neurons arranged in 3 dimensions: width w,
height h and channel c (also called depth) [KL20]. During the forward pass, the input
image Ih,w,c is discretely convolved with the different filters to produce n distinct
outputs which in this context are known as feature maps. Each convolution is only
applied in a small spatial region but spans across all channels of the input [GBC16].

For example, the input image might have thousands or millions of pixels, but we
can detect small, meaningful features with filters that occupy only tens or hundreds of
pixels. Hence, fewer parameters have to be trained and stored [GBC16]. This reduction
benefits not only the optimisation process but also reduces the memory requirements
of the model.

A typical layer of a convolutional network consists of three stages. In the first
stage, the layer performs several convolutions in parallel to produce a set of linear
activations. In the second stage, each linear activation is ran through a non-linear
activation function. Traditionally, CNNs use the Rectified Linear Unit (ReLU) men-
tioned previously (cf. Eq. 2.6). In the third stage, a pooling function is used to further



14 fundamentals

Figure 2.4: Pooling layer downsamples the volume spatially, independently in each depth slice
of the input volume. Figure is taken from Almazán et al. work [AGFV14].

modify the output of the layer [GBC16]. A pooling function replaces the feature maps
at a particular location with an aggregation of the nearby outputs. For example, the
max-pooling (Zhou and Chellappa [ZC88]) operation extracts the maximum output
within a rectangular neighbourhood. Whereas in average pooling, the output feature
map values are computed from averaging the values in the respective pooling regions.
Figure 2.4 visualises the pooling operation.

As we discussed in the previous section, optimising the weights requires selecting a
suitable loss function l. CNNs make use of the categorical cross-entropy loss between
the CNN’s output and the label vector. CNNs are expected to work with images and
predict a single class to each image. In order to do so, a CNN computes the softmax

ŷi(o) =
eoi∑Nc
j=1 e

oj
(2.9)

for each element oi of the last layer’s output o in order to obtain the posterior prob-
ability ŷi for the i-th of Nc classes. The predicted class is the one with the highest
probability ŷ. The gradient of the computed loss is then backpropagated through the
neural network.

However, convolutional layers can also accept the output of other convolutional
layers, meaning, a convolutional layer can be applied on previous feature maps
extracted from an image. Hence, CNNs can learn more complex and hierarchical
features. Natural images contain objects composed of object parts which in turn can
be composed of edges or strokes. This fact explains why convolutional layers close



2.3 artificial neural networks 15

to the input image typically learn to detect colour blobs and edges, whereas deeper
layers have filters that are activated by objects parts or entire objects [GBC16].

In conclusion, CNNs can learn hierarchical representations of an input. These
hierarchical structures are typically given for images of handwritten text. Word images
can be decomposed into characters which in turn can be decomposed into strokes.
This explains the state-of-the-art performance of the PHOCNet, a CNN developed by
Sudholt et al. specifically for the application to word images [SF16].





3
R E L AT E D W O R K

3.1 embedded attributes framework

Initially proposed by Almazán et al. [AGFV14], the embedded attributes framework
has inspired the work on word spotting considerably [GSGN17]. The framework has
inspired many recent works, further extending or adapting the base model [KDJ16,
WB16, SF16]. This framework introduces a learning-based method which can deal
with both types of query formulation (QbE and QbS). It can learn projections from
an image space and a text-string space to a common latent subspace using Kernel
Common Subspace Regression (CSR).

As seen in Figure 3.1, the primary concept of the attributes framework is to encode
both word strings and word images, as common fixed-length representation using
attributes. Attributes are entities that are then shared between different classes. Hence,
two mappings are needed to encode inputs into the common attribute space: textual
and visual. The textual model serves as a mapping for the word strings, i.e. word
classes, whereas a visual model maps word images into the attribute space. Fixed-length
representations present a clear advantage over sequential representations, as the fixed-
size feature vectors can be compared using standard distances such as the Euclidean
distance. This way, image matching is reduced to a much faster nearest neighbour
search problem [GSGN17]. While Almazán et al. require the mapping for the word
classes to be directly obtainable from the respective string representation, the mapping
from word images to attribute space is advised to be obtained by a trainable model.

By learning character attributes independently, training data is better used (since
the same training words are used to train several attributes). Additionally, by making
the visual model learn attributes instead of class labels, the framework allows for
predicting attribute representations from classes which were not known during train-
ing [AGFV14]. However, this characteristic benefits QbS word spotting in particular:
In QbS, the textual model is responsible for predicting the query representations.
However, since it can compute this representation directly from a string unknown at
training time, the queries are not constrained to come from a predefined or closed
lexicon.

17



18 related work

Figure 3.1: In this common subspace representations are comparable and labels and images
that are relevant to each other are brought together [AGFV14].

The selection of the attribute representation for the attributes, computed from word
strings or images, plays a vital part in the embedded attributes framework. Almazán
et al. propose an embedding called the Pyramidal Histogram of Characters (PHOC).
This PHOC encodes, pyramidally, if a particular character appears in a specific spatial
region of the string [AGFV14].

To construct the representation, an alphabet of characters or unigrams needs to be
defined first. As unigrams, Almazán et al. initially used all lower-case characters from
the Latin alphabet plus the ten digits. They assumed that a word image should be
considered relevant for a given query if the transcriptions match regardless of the letter
case. Next, an attribute is created for each unigram, indicating its presence or absence
in a particular split of the string. However, splits of a string are grouped into levels.
Each level represents further splits of the prior level split. Thus, forming a pyramidal
structure. At the first level of the PHOC, all unigrams in the string are considered, and
the respective attribute is set to 1 if the corresponding unigram appears at least once
in the word. In the following levels, the string is split into regions of same sizes. For
each unigram and region, it is then evaluated whether the region contains at least one
of the respective unigrams.

To determine whether a specific unigram appears in the given string (within a
specific region), certain criteria are set. Foremost, all unigrams in a string are treated
with equal width of 1. In the example in Figure 3.2, the total width of the word would
thus be 5. Almazán et al. then define a unigram to be present in a given region if
it overlaps at least 50% with the particular region. For example, the character a in
Figure 3.2 has an overlap of 50% with both left and right regions in the second level.
Hence, it is marked as present for both regions. In the ensuing levels, the string is
split into increasingly smaller regions. This pattern continues for as many levels as are
desired. Almazán et al. propose to not use the first level in the PHOC as the resulting



3.2 PHOCNet 19

vector for this level can not distinguish between anagrams, e.g., asleep and please. In
their PHOC definition, they use the levels 2, 3, 4 and 5.

After defining a global feature representation, the goal is to predict the PHOC
representation corresponding to the query word image. Almazán et al. make use
of an ensemble of SVMs as the visual model, which they term AttributeSVM. The
AttributeSVM requires that the image is encoded into some form of holistic feature
representation. For this, Almazán et al. choose the Fisher Vector on top of enriched SIFT
descriptors which are extracted in a grid. However, to predict the PHOC representation
corresponding to the transcription of the word image, an SVM for predicting each
attribute is created. Each SVM learns its own model and does not benefit from the
shared parameters. The combination of all SVMs then predicts the entire PHOC.

Apart from that, there are other approaches based on this framework reported in
the literature. Although these approaches are not related to word spotting, they offer
a visual model facilitating neural networks [SGC15, RASC14]. However, since we are
interested in the application of this framework on word spotting task, this study makes
use of a CNN-based visual model called the PHOCNet.

3.2 PHOCNet

PHOCNet is a deep Convolutional Neural Network developed by Sudholt et al. [SF16].
PHOCNet has achieved state-of-the-art result in both QbS and QbE word spotting
while maintaining short training and test times [GSGN17].

However, this CNN can predict the attribute representation for all word images in
the desired corpus prior to running retrieval. QbE word spotting can then be performed
by predicting the attribute representation for a given query word image and ranking

Figure 3.2: Visualization of a PHOC vector for the word string “place” with levels 1,2 and 3.
The figure is courtesy of Sudholt work [SF16].



20 related work

all images in the database according to the distance to the query representation. As
the attribute representation is a function of word strings, QbS word spotting can be
performed by computing the attribute representation for the given query string and
ranking all attribute representations of word images in the corpus as was done for
QbE. Figure 3.3 visualises the PHOCNet method.

Figure 3.3: For Query-by-String, the attribute representation is extracted directly from the
string (left side). For word images, a CNN predicts the attribute representation.
This way, annotations and word images can be projected into a joint attribute space.
Similarity in the attribute space can be determined by applying the cosine distance.
Not shown in the figure is Query-by-Example, which is done by simply ranking
the attribute representation obtained from the word images in a nearest neighbour
approach. Figure and caption were extracted from [SF18].

Inspired by the successful VGG16 architecture [SZ15], Sudholt et al. proposed a
CNN architecture to directly embed image features to PHOC attributes. Usually, CNNs
are used to predict one out of k classes for a given image, i.e. multi-class classification.
However, the last layer in the network represents the probability of each class being
recognised in the input. By computing the softmax (c.f Eq. 2.9) of each element in
the last layer’s output, the predicted class is determined by the highest probability.
In contrast to the multi-class, PHOCNet goal is to predict attribute representations,
i.e. multi-label. Here, the softmax output becomes infeasible since at most one element
in the output vector can become 1. To overcome this, Sudholt et al. proposed using
sigmoid activation in the final layer of the PHOCNet. Furthermore, Sudholt et al.
investigated in [SF17], how different loss functions affect the network performance.
They found that both Cosine Loss, and Binary Cross Entropy (BCE) Loss are well fit to
be used with binary vectors like PHOC. PHOCNet was reported to preform well using



3.2 PHOCNet 21

either, Cosine or BCE loss, since no choice was superior to the other over different
configuration with different datasets.

Another aspect to consider regarding segmentation-based word spotting is that the
input images witness broad diversity in their size. Besides, traditional strategies to
generate fixed-size images, such as resizing and cropping, possibly produce semantic
distortion. While in multi-class classification problems, the outputs for different crops
can simply be averaged. A similar approach is not feasible in the case of PHOCNets
since PHOCNets contain a certain level of positional encoding of the attributes [SF16].
In order to fix this, Sudholt et al. employ a Spatial Pyramid Pooling (SPP) layer
after the last convolutional layer. This way, the first fully connected layer following
the convolutional part is always presented with a fixed size image representation,
independent of the input image size [SF18].

As we described in the previous chapter, the first step of defining a PHOC structure
is choosing the set of unigrams which the PHOC will be built upon. This step plays
a very vital role in building an efficient word spotting system. This role takes its
importance from the fact that the same unigram appearing in multiple word strings
should have the same pattern or shape in the corresponding word images. Hence,
optimizing the selection of unigrams will facilitate and improve efficiency in the task
of learning a unigram shape through a visual model.





4
M E T H O D

In this work, various attribute representations for the embedded attributes framework
are investigated. We discuss how these different representations perform for the task
of word spotting on Arabic scripts. A comparison of efficiency is also reported later
in the experiments section. The PHOCNet is used to carry out theses comparisons
by evaluating a model created using each representation. The choice of PHOCNet
is because of its significant impact on word spotting and its state-of-the-art results
[GSGN17].

The current investigation involves integrating and experimenting with multiple sets
of unigrams for the PHOC representation. Then, other representation approaches are
introduced and implemented with the goal to raise model efficiency and performance.
However, all of the previously mentioned approaches are constructed with careful
consideration of the particularities of the Arabic script (c.f. subsection 2.1.2).

The first two unigrams sets are chosen to establish a baseline for the rest. Then,
the Sub-Character set, supplied by I. Ahmad the author of [AFM14], is tested. Also,
a new unigrams set is introduced. Furthermore, we implement and experiment two
approaches to reduce the PHOC size regardless of which unigrams set is selected.

The following section presents each set of unigrams in detail and gives related
background information. Section 4.2 deals then with the proposed representation
approaches.

4.1 unigrams sets

Previously in the fundamentals section, we explored the important characteristics of
the Arabic script and brought challenging aspects into the light. However, we noted
how the Arabic characters are context dependant and how this context affects character
pattern. As a result of which, Arabic scripts have up to four position-dependent shapes
for each letter. For simplicity, we define the extended Arabic alphabet. This alphabet
considers each position-dependent shape of Arabic letters an individual character.
Hence, the extended alphabet contains 100 characters while the regular alphabet has
only 28. Table A.2 shows the full extended alphabet.

23



24 method

For each set of unigrams, a lookup table is created to map each character to a
responding unigram. This lookup is then used to transform the labels of word images.
A Label represents the transcription of the word image stating what characters are
present in the image.

4.1.1 PHOCNet unigrams (Baseline)

To create a baseline for further sets, we reconstruct the unigrams set used in the
original work of Sudholt et al. in [SF16]. They use a reduced character set which
is generated in the following way: First, all character shapes are mapped to their
representative Arabic characters regardless of their position within a word. Shadda
diacritic is ignored in the sense that, characters with a Shadda diacritic are handled as
characters without it. Additionally, ligatures are simply mapped to their constructing
characters without the shape contexts.

4.1.2 Direct unigrams

This set represents a very simple set created using the same characters used to
build the dataset labels. Note that, while raw shape contexts are present in the
labels and represented as unique letters, ligatures are considered individual unique
characters without stating its relation to the constructing characters. Additionally, since
Shadda diacritic could be placed on almost all characters, characters with Shadda are
handled as different from the originals. This makes this set the largest set of unigrams
considered in this study.

4.1.3 Sub-Character unigrams

The Sub-Character unigrams set is derived from the work of Ahmad et al. which
proposed and improved [ARFM13, AFM14] a different approach for handling the
Arabic script. This approach is originally developed for building HMM models with a
considerably reduced number of HMMs while still capturing the variations in shape
patterns. However, Ahmad’s approach suggests modelling Arabic characters at the
sub-character level, i.e. strokes that build a character. Modelling at this level allows
the sharing of common patterns between different position-dependent shapes of an
Arabic character as well as between different characters. Figure 4.1 illustrates the idea
with some example characters. Moreover, just like the previous set, ligatures here are
handled as stand-alone patterns.



4.1 unigrams sets 25

In addition to the above patterns, two special patterns are required. A connector
pattern which is the small horizontal stroke between two connected letters. Whereas a
space pattern is required to represent the gap between letters that do not connect with
the following letter. A space pattern is also needed to indicate the end of a word.

For this set, a lookup is not created since the labels were pre-transformed and
supplied by the author.

Figure 4.1: An example of sub-character modelling presenting common patterns shared be-
tween different Arabic letters. Figure is extracted from [ARFM13].

4.1.4 Ground Form Representation unigrams

The approach we use intuitively is to split each character into three groups of patterns
and focus on the ground form pattern of the character. Hence, this approach is dubbed
the Ground Form Representation (GFR). This discrimination into separate patterns
takes a very similar approach used by Kaplony for reading Arabic words [Kap08]. He
uses three layers, each representing a group of different phonetic information. The first
layer is the rasm, undotted characters representing the actual most basic form. To this
rasm, we add I’jam dots, to have a second layer with unambiguous characters. Lastly,
we add Tashkı̄l strokes to make vocalized characters. Table 4.1 visualises these layers.



26 method

Name Rasm I’jam Tashkı̄l

Letter baa HH H.H �H.H.H
kitab (a book) HAJ»HAJ» H. A�J»HAJ» �H. A�J»�H. A�J»HAJ»

Table 4.1: Visualisation of the three layers used to separate pattern groups.

Early written Arabic used only rasm letters and did not have I’jam dots. Later on,
they are added to remove ambiguity in words without context. This, however, explains
the current presence of shared shapes between different Arabic letters; namely a shared
rasm. Moreover, since I’jam dots are also shared across the alphabet, it is only fair
to represent these shapes as individual entities. These shapes can then be combined,
theoretically, with any rasm to form a full character. Table 4.2 shows how a single rasm
can supersede three characters with the help of three add-ons.

In this set, characters glyphs are divided into two pattern groups. On one hand,
there is a ground form pattern which represents the rasm. On the other hand, we defined
the add-on pattern, which represents any additional pattern added on top of the ground
form. Figure 4.2 illustrates how ground form and add-on patterns are combined to
form a full character. Furthermore, considering that Tashkı̄l diacritics are very rare in
handwritings, the last layer is not represented within the resulting unigrams set. Yet a
few diacritics are obligatory and could be placed on various characters (c.f. Figure 2.1).
Therefore, hamza, shadda, and madda diacritics are handled as add-on patterns.

The resulting unigrams set consists of all unique patterns from both groups. How-
ever, although ligatures are not handled as separate patterns, they are mapped to the
unigrams used to construct that ligature; preserving the shape contexts. A full list of
the resulting unigrams is provided in Appendix Table A.3.

4.2 attributes representations

After we implemented the previous sets and integrated them in the PHOC representa-
tion. We next investigate further modifications on the original representation.



4.2 attributes representations 27

Name Isolated Initial Medial Final

baa H.H K.K J.J I.I
taa �HH �KK �JJ �II

thaa �HH �KK �JJ �II
shared H K J I

Table 4.2: This table contain three different Arabic letters and their shared patterns.

4.2.1 PHOC-d

As discussed in section 3.1, PHOC represents a pyramidal view for characters within
a word. These characters are grouped into splits in each level. However, the process
of creating splits is conducted based on spatial region overlaps. Which is why the
calculation of the overlap steers the virtual segmentation of a word.

The original criteria to calculate this overlap suggests that each unigram gets a
width of 1. After that, a word with n characters gets the width of n. Furthermore, at
each level, the word width is split into same-sized horizontal regions.

However, in GFR, the approach suggests dividing a character into two groups of
patterns. These patterns are separated vertically and not horizontally like the rest of
the sets. This in turns transforms each character with these patterns into two or more
unigrams. Hence, transforming into the GFR set may mislead the width of the word
and cause wrong spatial information of the regions of a PHOC.

In this work, a modification of the PHOC representation is suggested, to avoid the
spatial inaccuracy. This modification is considered for vertical diacritics that should not
affect the width of the word. Thus it is called Pyramidal Histogram of Characters with
suffixing Diacritics (PHOC-d). Figure 4.3 illustrates how the suggested representation
works.

In this approach, diacritics would not take a space of a unigram, rather be assigned
the same spatial region of its carrier unigram. This is done by giving all diacritics the
width of 0 while calculating the width of word n. Then, in the calculation of overlap
factor, diacritical unigrams are handled exclusively– returning the overlap value of the
previous unigram.



28 method

GFR unigrams set

G
ro

un
d

Fo
rm

gr
ou

p K
...

�
A

dd
-o

n
gr

ou
p .

...

. ..

position-dependent shapes

K.
�K
...

�P
...

�
��

Figure 4.2: This figure illustrates how a ground form unigram can be combined with different
add-on unigrams to form other characters. An add-on unigram can also be used in
different combination to form new characters.

This modification has the disadvantage of requiring a predefined group of diacritical
unigrams to be provided. Additionally, no vertical spatial information is stored in the
architecture. This can be bypassed, for example, by dividing each PHOC unit into
multiple vertical regions.

4.2.2 Dynamic PHOC

Dynamic PHOC is the last approach proposed in this study. This approach sug-
gests reducing the number of trainable parameters in the PHOCNet by reducing the
corresponding PHOC size.

The motivation behind this approach comes from the observation, that some at-
tributes have a very low occurrence rate in the lower levels of a PHOC – sometimes
none at all. This rate is observed locally on the PHOCs Vector of the entire training set.
Locally here means that these occurrences are collected in each region –in each level–
separately and then the rate is calculated relatively to the attribute region. However,



4.2 attributes representations 29

Word Image

Corresponding
GFR unigams © K
K K @ P ��� � Ë @

PHOC

Level 1 © K
K K @ P ��� � Ë @

Level 2 © K
K K @ P ��� � Ë @

Level 3 © K
K K @ P ��� � Ë @

PHOC-d

Level 1 © K
 @ P �� Ë @© K @ P � Ë @

Level 2 © K
 @ P �� Ë @© K @ P � Ë @

Level 3 © K
 @ P �� Ë @© K @ P � Ë @

Figure 4.3: Illustration of how the PHOC-d (on the right) handles unigrams with diacritics
side-by-side with the normal PHOC. Diacritics (in red) are handled as individual
unigrams by PHOC while PHOC-d handles them combined with the carrier. Note
how the width of the word n = 9 in PHOC changes to n = 7 when using the
corresponding PHOC-d.

lower occurrence rate indicates that these attributes are hardly learned by the network
and their representation remains a burden.

In this representation, a threshold θ is selected. This θ value represents the lower
limit for the relative occurrence rate of an attribute. So for an attribute α in a region S,
we define the relative occurrence rate

rSα =

n∑
i=0

xiα

Sn∑
i=S0

h∑
j=0

xij

, (4.1)

where h represents the PHOC size while Sn and S0 represent the start and end indices
of the region S respectively.



30 method

Based on the above, the process to extract dynamic PHOC is simple. We first generate
the PHOCs Vector of the entire training set. Then, all regions S have to be iterated over
to exclude all attributes α in this region, which has a rSα ≤ θ. This process offers to
reduce a huge amount of parameters and thus minimizing overhead during network
training.

However, there is a clear disadvantage of this approach: removing attributes will
result in inhomogeneous regions in the PHOC while also causing a slight loss of
information. Moreover, since the attributes elimination process is based solely on the
training data, attributes that were not present during network training will not be
predicted correctly.



5
E X P E R I M E N TA L E VA L UAT I O N

This chapter covers the experiments conducted to evaluate the method described in the
previous chapter. All experiments are performed for the IfN/ENIT dataset presented in
5.1. Then the choice of the performance measure applied in this evaluation is described
in 5.2. All experiments follow the same evaluation protocol described in 5.3. Finally,
in 5.5, the results of the different experiments are analysed and compared with the
state-of-the-art results reported in the literature.

5.1 dataset

Representative datasets are needed for the evaluation and comparison of different
approaches. These provide training and test data with the necessary annotations for
training models in a supervised manner and for evaluating performances.

The IfN/ENIT Dataset [PMM+02] is the benchmark dataset for word spotting in
Arabic in the form of pre-segmented annotated word images. The dataset in version
2.0 patch level le (v2.0p1e) consists of more than 32,000 handwritten word images
by more than 1000 writers. The words represent 937 Tunisian town/village names
written in Arabic. It holds about 138,000 pieces of Arabic words (PAWs), and about
257,000 characters. The IfN/ENIT is divided into subsets from a to e ranging by
difficulty based on deformation intensity. Two new subsets f and s were also added
for testing. These subsets witness the most deformation and different writing styles as
compared with the other sets. Set f was collected in Tunisia, while set s was collected
in the United Arab Emirates (UAE) at the University of Sharjah [MA09]. Thus, set s is
regarded as the most challenging set. Table 5.1 shows sample images from the subsets.

IfN/ENIT dataset has been used in various text recognition competitions, and the
results are published in the top conferences like ICDAR [MA09] and ICFHR [MA10].
The dataset is also publicly available 1.

Furthermore, the existence of subsets simplifies dividing the dataset into training
and testing sets. Hence, we use the most common train test configuration, as reported
in the literature, including the various competitions held using this dataset.

1 http://www.ifnenit.com/

31

http://www.ifnenit.com/


32 experimental evaluation

a b c d

f s

Table 5.1: Comparing training sets to the test subsets f and s. Notice how the f image has
some distortion and how the writing style in s is different from the above. Images
represent the same word and are selected from the IfN/ENIT dataset.

5.2 performance measures

As word spotting is primarily an information retrieval problem, performance measures
for specific word spotting methods are typically obtained from this field of research as
well. A retrieval list for Word spotting consists of a number of word images from the
dataset, which are relevant with respect to the query. A very well known measure for
assessing the precision, recall as well as sorting of a retrieval list simultaneously is the
Average Precision (AP) [GSGN17]. Mathematically, Average Precision for query q can
be defined as

APq =

n∑
i=1

pq(i) · rq(i)

tq
(5.1)

where n is the length of the retrieval list, and p(i) denotes the precision, with respect
to the first i elements, r(i) indicate if the i-th element is relative to the query and t is
the total number of relevant elements in the list.

However, we need to test the retrieval system to not only perform well for a single
query but rather a number of different ones. Thus, the use of the mean Average
Precision (mAP) which corresponds to the mean over all Average Precisions computed
for each query.



5.3 evaluation protocol 33

5.3 evaluation protocol

Evaluation is based on a commonly used protocol, which is also applied in [AGFV14]
and [SF16]. The evaluation process starts by training a network which maps a word
image to the respective attribute representation.

Prior to training, we transform the labels of all images in the dataset using the
regarded unigrams set. Additionally, since that Arabic script is written from right to
left opposed to Latin script, the word images from the IfN/ENIT had to be mirrored
along the vertical axis. Then we train the PHOCNet with the corresponding train-test
configurations. The training setup is defined in section 5.4.

Once the network was trained, the mAP value on the test subset is calculated. To
do so, first, the attribute representation of the query is derived. In QbS, the attribute
vector can be directly derived from a string. However, to exclude redundant queries,
we only use the unique strings in the test set. For QbE, we use the previously trained
PHOCNet to derive the attribute representation from a query image. Word spotting
is then performed by ranking all images in the test set with respect to the query,
represented by a PHOC vector. Each word image in the test set is used once as a query.
The ranking succeeds by sorting the test set based on their distance to the query vector.
The Cosine distance is used as a distance metric [SF17].

For each set of unigrams2, we train and evaluate the network on the following
train-test combinations: abc−d, abcd−e, abcde−f , abcde−s. Where the letters before
the "−" represent the training subsets, and the letter after that, is the subset we test on.

5.4 training setup

PHOCNet is trained in an end-to-end fashion given word images as input and their
corresponding attribute representation as labels. The chosen attribute representation is
the PHOC where the levels 2, 3, 4 and 5 are used; representing 14 spatial regions. The
network training for all experiments made use of the same set of configurations. The
training is performed using an Adam optimiser [KB15], and its parameters are derived
from [Sud18]. In the following experiments, we use the Binary Cross Entropy (BCE)
loss function for training. All networks are trained with a mini-batch size of 10,
momentum of 0.9, weight decay of 5 · 10−5 and an initial learning rate of 10−4. We
let the training run for a maximum of 80000 iterations with the learning rate being
divided by ten after 70000 iterations.

2 Except the Sub-Character set where the labels were not supplied for the subsets f and s.



34 experimental evaluation

Weight initialisation follows the same approach in [Sud18]. Layer biases are ini-
tialised with zeros, and all other initial weights are randomly sampled from a zero-
mean uniform distribution. The corresponding variance is set to

n

2
, where n cor-

responds to the number of parameters in the respective layer. Implementation is
accomplished in Python using the PyTorch framework [PGC+17].

5.5 results and discussion

In this section, we present and discuss the results of all the conducted experiments.
We also share some observations regarding the experiments. Finally, we compare our
results with the findings reported in the literature.

5.5.1 Baseline

In this experiment, we adopt the set of unigrams from [SF16], which we set as a
baseline for the other sets. We are able to reproduce the results reported in their work
for the same configurations. Table 5.2 shows the results for both QbE and QbS on
different train-test combinations. Additionally, we evaluate this set of unigrams on the
new subsets f and s, which were not reported in Sudholt’s work. The performance on
set s is not quite good as on other test subsets. This can be traced back to the variation
in writing style used in training and test subsets (cf. section 5.1).

The resulting unigrams set has a size of 50, and the corresponding PHOC size is 700.
However, this set does not store any shape context for the characters nor distinguish
diacritics or ligatures. Thus, this set is the smallest compared with the rest.

Table 5.2: Baseline results for the QbE and QbS experiments in mAP [%]

Unigrams Set
abc−d abcd−e abcde−f abcde−s

QbE QbS QbE QbS QbE QbS QbE QbS

Original [SF16] 96.11 92.14 - - - - - -

Baseline 96.30 94.56 94.67 96.87 96.21 97.17 88.90 93.08



5.5 results and discussion 35

5.5.2 Direct Unigrams

This approach has no mapping for the characters since it is directly extracted from
the unique characters used in the dataset labels. Thus, no actual transformation was
applied to the labels before training. The resulting unigrams number is 178 while the
PHOC is of size 2492. This set is the largest of the four because complete shape context
information remain intact with addition to the various combinations of characters with
diacritics, e.g., Shadda.

Using the Direct set, the PHOCNet performance is significantly underdeveloped
examined alongside the other unigrams sets. Table 5.3 lists the mAP values for QbE
and QbS using the direct unigrams set.

Table 5.3: Results for the QbE and QbS experiments in mAP [%] using a Direct set

Unigrams Set
abc−d abcd−e abcde−f abcde−s

QbE QbS QbE QbS QbE QbS QbE QbS

Direct 90.17 89.52 93.82 96.96 95.40 96.99 87.52 92.26

5.5.3 Sub-Character Unigrams

After transforming the labels using the Sub-Character set, we get 97 unique unigrams.
The resulting PHOC size is 1358. While the size of this set is noticeably larger than the
baseline, one should remark that this set stores both shape context and diacritics.

We observed that the extra two unigrams used in this set – namely the separator (sp)
and the connector (cnn) – were forming two highly redundant attributes. Nonetheless,
based on what we previously presented in subsection 4.1.3, we investigate taking
these two unigrams out of the set commutatively. We assume that the separator is
superfluous since it represents an empty space between characters which led to no
useful pattern learned to this attribute.

On the other hand, the connector represents a length-varied stroke that is almost
absent not only in all ligatures but also in many writing styles. However, the variations
without these unigrams3 achieve slightly better results than the original while also
reducing the PHOC size.

3 This approach is referred to with the (no-sp-no-cnn) flag.



36 experimental evaluation

Compared to the direct set, the Sub-Character set witnesses a major reduction in the
unique unigrams number used to represent the dataset labels. Table 5.4 reports the
results for different variations of this set.

Table 5.4: Results for the QbE and QbS experiments in mAP [%] using Sub-Character unigrams

Unigrams Set Variation
abc−d abcd−e

QbE QbS QbE QbS

Sub-Character - 91.66 90.49 94.49 96.70

Sub-Character no-cnn 91.70 90.22 94.68 96.99

Sub-Character no-sp 91.82 90.39 94.25 96.46

Sub-Character no-sp-no-cnn 91.91 90.96 94.16 96.62

5.5.4 GFR Unigrams

In this experiment, we apply the unigrams set proposed in subsection 4.1.4 and
evaluate its efficiency. By employing the GFR approach, 53 unique unigrams are
obtained, and the resulting PHOC size is 742. Even though the GFR set is slightly
larger than the baseline in term of unigrams count, GFR proved to be a rather compact
set since it simultaneously preserves the shape context while using a small number of
unigrams. The same argument we used in comparing the previous Sub-Character set
with the baseline does also apply here. However, opposed to the two sets that store
context information, this set is the smallest set of unigrams among them.

Regarding performance aspects, the results listed in Table 5.5 shows that GFR set
outperforms all other unigrams sets presented in this work, with the exception for
the abc−d. The fallback in performance when evaluating this train-test configuration
motivated us to examine the distribution of unigrams in the corresponding training
subsets. As a result of which, we deduced that distinguishing characters with a Shadda
diacritic could be the reason since the Shadda unigram is under-represented in these
subsets. We then took Shadda unigram out of the set, thereby ignoring Shaddas in
words. This means that characters containing a Shadda in their labels are now mapped
to their analogous characters without a Shadda. This removal4 led to the PHOCNet
performing better for all the train-test configurations.

4 This approach has the (no-shd) flag.



5.5 results and discussion 37

Table 5.5: Results for the QbE and QbS experiments using GFR set

Unigrams Set
abc−d abcd−e abcde−f abcde−s

QbE QbS QbE QbS QbE QbS QbE QbS

GFR 93.30 90.55 96.14 98.36 96.87 97.79 90.42 93.56

GFR (no-shd) 97.66 94.32 96.46 98.35 96.96 98.02 90.12 93.57

5.5.5 PHOC-d

While the previous experiments are testing different unigrams set for the same at-
tribute representation, in this experiment, we test a new representation formulated
in subsection 4.2.1. We implement a slightly different representation of the PHOC
with special handling for diacritics. The experiment is conducted using the GFR set
because it is the only set among the four presented that depicts diacritics in individual
unigrams. Nonetheless, a predefined list of diacritics is supplied to the representation.
A full list of the used GFR diacritics (add-on patterns) is provided in Table A.3.

Furthermore, Table 5.6 shows the results of using PHOC-d for both variations of
GFR. Although there is just a slight difference between the results here and the original,
there is an efficiency advantage when using PHOC-d representation. Figure 5.1 shows
how the performance in early training iterations is better than the regular PHOC. The
performance is measured for the QbE task evaluated on the subset d.

Table 5.6: Results for the QbE and QbS experiments in mAP [%]

Representation
abc−d abcd−e abcde−f abcde−s

QbE QbS QbE QbS QbE QbS QbE QbS

PHOC-d (GFR) 93.02 90.12 96.24 98.35 96.69 97.78 90.41 93.90

PHOC-d (GFR (no-shd)) 97.24 94.20 96.34 98.37 96.92 97.85 90.27 93.49

5.5.6 Dynamic PHOC

In subsection 4.2.2, we proposed an approach to reduce the PHOC size. This experi-
ment then shows how this reduction has affected network performance and efficiency.



38 experimental evaluation

0 5000 10000 15000 20000
0

20

40

60

80

100

Iteration

Q
bE

m
A

P
[%

]

PHOC
PHOC-d

Figure 5.1: The figure compares the mAP between PHOC and PHOC-d representations over the
training iterations. It shows that the network can learn the PHOC-d representation
faster while performing relatively the same compared to learning PHOC.

We start by selecting different values for θ and then evaluate the network using the
new representation. The Table 5.7 lists the changes in PHOC size corresponding to
different θ values using different unigrams sets.

Table 5.7: PHOC sizes for different sets when using different values of θ. Here, the modified
versions of Sub-Character and GFR are used: Sub-Character (no-sp-no-cnn) and GFR
(no-shd).

Unigrams Set
θ

None 0 0.20 0.50 0.80 1

Baseline 700 589 481 410 348 317

Direct 2492 1815 1115 639 419 347

Sub-Character 1330 1069 773 518 381 325

GFR 728 650 539 434 360 334



5.5 results and discussion 39

In addition, Figure 5.2 visualises how a reduction in the represented attributes
number can affect both efficiency and performance of the PHOCNet. In particular, we
found how applying a θ = 0.2 has raised the performance of the Direct representation
while also keeping the performance of the others semi-stable.

Based on the value of θ, the number of reduced attributes differ. Consequently, the
number of attributes that need to be learned by the network is reduced and thus, the
learning is faster in the newly trained networks. However, for high values for θ, the
network did not yield comparable results.

∅ 0 0.2 0.5 0.8 1
0

500

1,000

1,500

2,000

2,500

Threshold [θ]

PH
O

C
Si

ze

Direct
Baseline

Sub-Character
GFR

PHOC Size
mAP

80

82

84

86

88

90

92

94

96

98

100

Q
bE

m
A

P
[%

]

Figure 5.2: Relation between changes in PHOC Size and QbE Performance. It shows that for θ ≤
0.2 the QbE performs the same or even better as in the case of Direct Representation.
However, less resources and time are required to reach this performance.

Figure 5.3 illustrates how choosing a θ = 0.2 affects the PHOC built using different
unigrams sets. In 5.3b (larger figures are available in the appendix Figure A.2b), we
see how the Direct PHOC witnesses the most significant number of attributes being
removed. This number can be argued in the view of two aspects. On the one hand,
there are certain letters or unigrams that appear only rarely in certain parts of the word,



40 experimental evaluation

e.g., numbers appears mostly at the end of the word. Thus, attributes representing
these unigrams may have a very limited occurrence rate in one PHOC region, and
have a higher rate in the others. This aspect represents a rather general property in the
language that is not only specific to this set of unigrams.

On the other hand, many attributes have a rare occurrence in the whole dataset,
e.g., ligatures combined with a Shadda occur only once or twice. However, these
two aspects define an abstract rule for reduction. When a represented attribute has
a minimal projection into actual patterns in the images, attempting to learn such
attribute will either slow down the whole learning process or cause a high error rate
in prediction.

(a) Baseline Representation (b) Direct Representation

(c) Sub-Character Representation (d) Ground Form Representation

Figure 5.3: Distribution of attribute occurrences in Level 2 of their PHOC in different Repre-
sentations. The top distribution is for the left split of the word, whereas the bottom
represents the right split. Below threshold θ = 0.2 attributes are marked in red.

5.5.7 Comparison

After evaluating all the experiments, we now present our evaluation results compared
to the state-of-the-art results reported in the literature. First of all, we begin with



5.5 results and discussion 41

summarising results of all the previous evaluations, Table 5.8 contains the best results
from each approach. Also, a more comprehensive list of evaluated approaches is
available at the appendix in Table A.1.

Table 5.8: Results for all the conducted QbE and QbS experiments by their mAP [%]5.

Unigrams Representation
abc−d abcd−e abcde−f abcde−s

QbE QbS QbE QbS QbE QbS QbE QbS

Baseline PHOC 96.30 94.56 94.67 96.87 96.21 97.17 88.90 93.08

Direct PHOC 90.17 89.52 93.82 96.96 95.40 96.99 87.52 92.26

Sub-Character PHOC 91.91 90.96 94.16 96.62 - - - -

GFR PHOC 97.66 94.32 96.46 98.35 96.96 98.02 90.12 93.57

GFR PHOC-d 97.24 94.20 96.34 98.37 96.92 97.85 90.27 93.49

Baseline Dynamic PHOC 96.37 94.82 94.93 96.86 96.27 97.35 88.96 92.82

Direct Dynamic PHOC 90.65 89.10 93.88 96.83 95.36 96.97 88.28 92.84

Sub-Character Dynamic PHOC 91.81 90.27 94.17 96.54 - - - -

GFR Dynamic PHOC 97.60 94.00 96.43 98.56 96.94 98.02 89.85 93.57

In Table 5.9, we compare the evaluation results of the investigated approaches with
results reported using the same performance measure, mAP. Also, all these results are
evaluated only on the default abc−d train-test configuration. Since the model proposed
and used in [SF16] is the same model used by the evaluated approaches above, the
results are directly comparable. Furthermore, both the evaluation protocol and the
training data, are shared with [SF16]. However, the Sub-Character approach shows
a lower mAP when compared to the original PHOCNet, whereas the proposed GFR
clearly outperforms both. Nonetheless, using the proposed Dynamic PHOC with the
GFR slightly enhances the mAP performance while enabling more efficient network
training.

Compared to the results reported by Uni-script in [ARVK19], all the used approaches
in this work show a drawback in performance. This drawback can be attributed to the
disparity in training data. All the other mentioned approaches uses IfN/ENIT as the
only training data, whereas Uni-script uses IfN/ENIT with additional training datasets

5 For the Sub-Character and GFR, the modified versions (no-sp-on-cnn) and (no-shd) are used respectively.
For the Dynamic PHOC evaluations, a threshold θ = 0 is chosen.



42 experimental evaluation

Table 5.9: Comparison of the results obtained in this work with state-of-the-art results reported
in the literature. Results represent values of mAP [%] on subset d. Marked in italic is
the best result among our experiments.

Method
IfN/ENIT

QbE QbS

PHOCNet [SF16] 96.11 92.14

Uni-script [ARVK19] 99.00 99.00

PHOCNet + Sub-Character 91.91 90.96

PHOCNet + Dynamic PHOC†+ Sub-Character 91.81 90.27

PHOCNet + GFR 97.66 94.32

PHOCNet + PHOC-d + GFR 97.24 94.20

PHOCNet + Dynamic PHOC?+ GFR 97.72 94.55
† Threshold θ = 0
? Threshold θ = 0.2

like the George Washington database [LRM04], IAM [MB02], and MLT [NYB+17] 6.
This additional amount of training data enables the network to have more examples
for each attribute and thus better learn this attribute.

Although the main focus of this work is to report various approaches for word
spotting tasks, we evaluated these approaches simultaneously for the task of text
recognition. In order to perform recognition, the PHOC vector is computed for each
entry of a lexicon. For a word image, the CNN predicts a PHOC representation and the
recognition is then performed by projecting all PHOCs of the lexicon into a subspace
and computing the nearest neighbour of the predicted PHOC of the word image. The
results for recognition are reported using the Word Error Rate (WER) which measure
the fraction of falsely predicted word from total predictions.

Table 5.10 shows how the proposed GFR approach also outperforms both the
Baseline and the Sub-Character approaches. It also shows how the reduced size of the
Dynamic PHOC assisted the performances in the recognition scenario as well. The

6 Both George Washington and IAM have only Latin scripts, MLT on the other hand have Latin, Arabic
and Bengali scripts.



5.5 results and discussion 43

table shows how the performances reported by Poznanski’s are superior to all the
other methods.

When compared to the HMM models [RF16, AF15], the GFR achieves on par results
on the d and e subsets, but achieves even more significant results on the harder subsets
f and s. These models have sequence structures that are well suited for recognition,
whereas our model (PHOCNet) was not designed with the task of text recognition in
mind but rather for the recognition-free task of word spotting.

Table 5.10: Comparison of the WER [%] of different methods on the IfN/ENIT dataset. The
best result among our experiments is marked in italic.

Method
IfN/ENIT

abc−d abcd−e abcde−f abcde−s

Bag-of-Features HMM [RF16] 3.0 5.8 8.7 18.2

Multi-Stage HMM [AF15] 1.9 5.1 7.7 15.4

CNN-N-Gram [PW16] 0.7 2.9 3.2 5.9

PHOCNet + Baseline 5.3 12.4 9.5 13.8

PHOCNet + Dynamic PHOC†+ Baseline 4.8 12.4 9.5 13.6

PHOCNet + Sub-Character 10.3 19.9 - -

PHOCNet + Dynamic PHOC†+ Sub-Character 9.8 19.6 - -

PHOCNet + GFR 3.8 5.4 5.5 8.9

PHOCNet + Dynamic PHOC?+ GFR 3.5 5.4 5.6 9.1

† Threshold θ = 0
? Threshold θ = 0.2





6
S U M M A RY A N D C O N C L U S I O N

By developing the PHOCNet, Sudholt et al. proved that convolutional neural networks
are a powerful tool for building excellent word spotting systems. The PHOCNet has
set the state-of-the-art performances for word spotting on most benchmark datasets for
different scripts including IfN/ENIT for Arabic. This CNN learns a mapping between
word images and an attribute representation, such as the PHOC. This mapping is
highly dependant on both the choice of the representation and the set of unigrams
used. So the two aspects were investigated in this work.

In the first series of experiments, various sets of unigrams were explored, and it is
shown how the presented GFR improved the mAP of the used system significantly.
Experiments have also shown that the use of GFR not only keeps the shape context of
characters intact but also maintains a compact number of unigrams. In addition, we
tested using the Sub-Character proposed unigrams, and it shows no improvements to
the original unigrams presented in PHOCNet.

Furthermore, two modified versions of the PHOC representation were also evalu-
ated in the second series of experiments. PHOC-d is inspired by the virtual vertical
segmentation of word characters used by GFR. While this representation does not
always improve the performance of the original PHOC, it improves the efficiency
during the network’s learning when using the GFR set. Apart from that, we presented
the Dynamic PHOC, which shows almost the same performance as the original while
significantly reducing the number of attributes. A higher number of attributes corre-
sponds to a higher number of parameters in the MLP part of the CNN. A reduction of
the number of attributes is therefore an improvement as it results in a network that is
easier to optimise and is less prone to overfitting. Finally, the results of the adapted
Sub-Character set as well as the proposed GFR were compared to results reported
in the literature. GFR achieved competitive accuracies compared to state-of-the-art
results.

Nonetheless, in this work, we found that reducing the dimensionality of the attribute
representation via the Dynamic PHOC can improve the efficiency of a network. This
could also be utilised in future work to other vectorised representations, such as the
SPOC. Apart from that, in addition to selection of representation, we found how the
amount of training data has a significant influence on the resulting performance since

45



46 summary and conclusion

the proposed approach is only exceeded by methods that use additional data sources
(Out of Domain data) (cf. Table 5.9).

Additionally, GFR offers an open set of characters that can be extended and used to
represent all other languages of the Arabic scripts like Kurdish, Persian, Urdu, and
others. In order to adapt the GFR to Persian for example, only two additional add-on
unigrams are required. Since these approaches were only evaluated on IfN/ENIT for
Arabic, future work might focus on evaluating these approaches on datasets of other
languages that use the Arabic script.



A
A P P E N D I X

Table A.1: A list of all experiments conducted during the thesis. QbE and QbS results are
presented in mAP [%]. Word Error Rate (WER) [%] values are also included. The
size refer to the corresponding PHOC size.

Unigrams Representation Test Set Variation θ Size QbE QbS WER

Baseline PHOC d 700 96.30 94.56 5.27

Baseline PHOC d 0 589 96.37 94.82 4.77

Baseline PHOC d 0,2 481 96.36 94.44 5.42

Baseline PHOC d 0,5 410 96.22 94.49 5.36

Baseline PHOC d 0,8 348 95.10 93.81 6.73

Baseline PHOC d 1 317 95.16 94.34 7.80

Direct PHOC d 2492 90.17 89.52 12.62

Direct PHOC d 0 1815 90.65 89.10 11.49

Direct PHOC d 0,2 1115 91.11 89.92 11.54

Direct PHOC d 0,5 639 89.99 87.92 14.94

Direct PHOC d 0,8 419 86.47 85.40 26.15

Direct PHOC d 1 347 84.96 84.62 34.33

GFR PHOC d 742 93.30 90.55 10.45

GFR PHOC d no-shd 728 97.66 94.32 3.83

GFR PHOC-d d no-shd 728 97.24 94.20 4.14

GFR PHOC-d d 742 93.02 90.12 10.76

GFR PHOC d no-shd 0 650 97.60 94.00 3.91

GFR PHOC d 0 666 93.34 90.36 10.66

47



48 appendix

Unigrams Representation Set Variation θ Size QbE QbS WER

GFR PHOC d no-shd 0,2 539 97.72 94.55 3.53

GFR PHOC d no-shd 1 334 96.17 93.92 8.55

GFR PHOC d no-shd 0,5 434 97.38 93.91 4.10

GFR PHOC d no-shd 0,8 360 96.15 92.91 6.76

Sub-Char PHOC d 1358 91.66 90.49 10.04

Sub-Char PHOC d no-sp-no-cnn 1330 91.91 90.96 10.32

Sub-Char PHOC d no-sp 1344 91.82 90.39 10.48

Sub-Char PHOC d no-cnn 1344 91.70 90.22 10.84

Sub-Char PHOC d no-sp-no-cnn 0 1069 91.81 90.27 9.81

Sub-Char PHOC d no-sp-no-cnn 0,2 773 91.58 90.28 10.45

Sub-Char PHOC d no-sp-no-cnn 0,5 518 91.44 90.38 11.28

Sub-Char PHOC d no-sp-no-cnn 0,8 381 89.63 89.84 15.74

Sub-Char PHOC d no-sp-no-cnn 1 325 89.23 89.59 17.67

Baseline PHOC e 700 94.67 96.87 12.40

Baseline PHOC e 0 595 94.93 96.86 12.46

Direct PHOC e 0 1824 93.88 96.83 20.12

Direct PHOC e 2492 93.82 96.96 20.22

GFR PHOC e no-shd 728 96.46 98.35 5.35

GFR PHOC-d e 742 96.24 98.35 12.76

GFR PHOC-d e no-shd 728 96.34 98.37 5.35

GFR PHOC e no-shd 0 655 96.43 98.56 5.35

GFR PHOC e no-shd 0,2 540 96.30 98.45 5.47

GFR PHOC e 742 96.14 98.36 12.86

GFR PHOC e 0 669 96.32 98.47 12.86

Sub-Char PHOC e 1358 94.49 96.70 19.41

Sub-Char PHOC e no-cnn 1344 94.68 96.99 19.39



appendix 49

Unigrams Representation Set Variation θ Size QbE QbS WER

Sub-Char PHOC e no-sp 1344 94.25 96.46 19.59

Sub-Char PHOC e no-sp-no-cnn 1330 94.16 96.62 19.92

Sub-Char PHOC e no-sp-no-cnn 0 1076 94.17 96.54 19.61

Baseline PHOC f 700 96.21 97.17 9.48

Baseline PHOC f 0 595 96.27 97.35 9.49

Direct PHOC f 0 1824 95.36 96.97 15.77

Direct PHOC f 2492 95.40 96.99 15.78

GFR PHOC f no-shd 728 96.96 98.02 5.52

GFR PHOC-d f no-shd 728 96.92 97.85 5.89

GFR PHOC-d f 742 96.69 97.78 11.89

GFR PHOC f no-shd 0 655 96.94 98.02 5.55

GFR PHOC f no-shd 0,2 542 96.97 97.97 5.70

GFR PHOC f 742 96.87 97.79 10.96

GFR PHOC f 0 669 96.87 97.84 10.67

Baseline PHOC s 700 88.90 93.08 13.76

Baseline PHOC s 0 595 88.96 92.82 13.57

Direct PHOC s 0 1824 88.28 92.84 22.42

Direct PHOC s 2492 87.52 92.26 22.61

GFR PHOC s no-shd 728 90.12 93.57 8.92

GFR PHOC-d s no-shd 728 90.27 93.49 8.60

GFR PHOC-d s 742 90.41 93.90 17.71

GFR PHOC s no-shd 0 655 89.85 93.57 8.79

GFR PHOC s no-shd 0,2 542 89.99 93.56 9.11

GFR PHOC s 0 669 90.80 94.26 17.71

GFR PHOC s 742 90.42 93.56 17.67



50 appendix

0 20000 40000 60000
0

10

20

30

40

50

60

70

80

90

100

Iteration

Q
bE

m
A

P
[%

]

Direct
Sub-Character

GFR
Baseline

Figure A.1: The figure displays the mAP over the training iterations for the four QbE Relation
between changes in PHOC Size and QbE Performance. It shows that for θ ≤ 0.2

the QbE has performed the same or even - in case of Direct Representation - better.
However, less resources and time were required to reach this Performance.



appendix 51

(a) Baseline Representation

(b) Direct Representation

Figure A.2: Distribution of attribute occurrences in Level 2 of their PHOC in different Repre-
sentations. The top distribution is for the left split of the word, whereas the bottom
represents the right split. Below threshold θ = 0.2 attributes are marked in red.



52 appendix

(c) Sub-Character Representation

(d) Ground Form Representation

Figure A.2: (cont.) Distribution of attribute occurrences in Level 2 of their PHOC in different
Representations. The top distribution is for the left split of the word, whereas the
bottom represents the right split. Below threshold θ = 0.2 attributes are marked in
red.



appendix 53

Name
Extended Alphabet Rasm Alphabet

Final Medial Initial Isolated Final Medial Initial Isolated

alef A - - @ A - - @
beh I. J. K. H.

I

J K

Hteh �I �J �K �H
theh �I �J �K �H
noon 	á 	J 	K 	à á à
yeh ù
 J
 K
 ø
 ù ø
alef maqsurah ù J K ø
jeem i. j. k. h.

i j k h
hah i j k h
khah q 	j 	k p
dal Y - - X Y - - X
thal

	Y - - 	X
reh Q - - P Q - - P
zain 	Q - - 	P
seen � � � � � � � �
sheen �� �� �� ��
sad � � � � � � � �
dad 	� 	� 	� 	�
tah ¡ ¢ £   ¡ ¢ £  
zah 	¡ 	¢ 	£ 	 
ain © ª « ¨ © ª « ¨
ghain 	© 	ª 	« 	̈

feh 	­ 	® 	̄ 	¬ ­ ® ¯ ¬
qaf �� �® �̄ ��
kaf ½ º » ¼ ½ º » ¼
lam É Ê Ë È É Ê Ë È
meem Ñ Ò Ó Ð Ñ Ò Ó Ð
heh é ê ë è é ê ë è
waw ñ - - ð ñ - - ð

Table A.2: This table contains the extended Arabic alphabet side-to-side with the original rasm
characters used to build it. Note how most rasm glyphs are shared between normal
characters.



54 appendix

Isolated Initial Medial Final

@ - - -

H K J -

h k j -

X - - -

P - - -

� � � -

� � - -

  - - -

¨ « ª ©
¬ ¯ ® -

- » º -

È Ë Ê -

Ð Ó Ò -

à - - -

ð - - -

è ë ê é
ø - - -

Z - - -

(a) List of all unique patterns for the ground
form group

Name Pattern

Shadda

One Upper point .
Two Upper points . .

Three Upper points � ������
Upper Hamza Z

One Lower point .
Two Lower points . .

Madda ˜
Lower Hamza Z

(b) List of all unique patterns for the add-
on group

Table A.3: List of unigrams used in the GFR set.



B I B L I O G R A P H Y

[AF15] Ahmad, Irfan ; Fink, Gernot A.: Multi-stage HMM based Arabic Text
Recognition with Rescoring. In: Int. Conf. on Document Analysis and Recog-
nition (ICDAR). Nancy, France, 2015, S. 751–755

[AFM14] Ahmad, Irfan ; Fink, Gernot A. ; Mahmoud, Sabri A.: Improvements in
sub-character HMM model based Arabic Text Recognition. In: Int. Conf.
on Frontiers in Handwriting Recognition (ICFHR). Crete, Greece, 2014, S.
537–542

[AGFV14] Almazán, Jon ; Gordo, Albert ; Fornés, Alicia ; Valveny, Ernest: Word
Spotting and Recognition with Embedded Attributes. In: IEEE Trans. on
Pattern Analysis and Machine Intelligence 36 (2014), Nr. 12, S. 2552–2566

[ARFM13] Ahmad, Irfan ; Rothacker, Leonard ; Fink, Gernot A. ; Mahmoud,
Sabri A.: Novel sub-character HMM models for Arabic text recognition.
In: Int. Conf. on Document Analysis and Recognition (ICDAR). Washington,
DC, USA, 2013, S. 658–662

[ARVK19] Al-Rawi, Mohammed ; Valveny, Ernest ; Karatzas, Dimosthenis: Can
One Deep Learning Model Learn Script-Independent Multilingual Word-
Spotting? In: Int. Conf. on Document Analysis and Recognition (ICDAR).
Sydney, Australia, 2019, S. 260–267

[Bis95] Bishop, Christopher M.: Neural Networks for Pattern Recognition. Oxford
university press, 1995

[EB16] Encyclopaedia Britannica, The E.: Arabic alphabet. https://www.

britannica.com/topic/Arabic-alphabet. Version: Aug 2016

[Fuk80] Fukushima, Kunihiko: Neocognitron: A self-organizing Neural Network
Model for a Mechanism of Pattern Recognition unaffected by shift in
Position. In: Biological cybernetics 36 (1980), Nr. 4, S. 193–202

[Gac09] Gacek, Adam: Arabic manuscripts: a vademecum for readers. Bd. 98. Brill,
2009

55

https://www.britannica.com/topic/Arabic-alphabet
https://www.britannica.com/topic/Arabic-alphabet


56 bibliography

[GBB11] Glorot, Xavier ; Bordes, Antoine ; Bengio, Yoshua: Deep Sparse Rectifier
Neural Networks. In: Proc. Int. Conf. on Artificial Intelligence and Statistics.
Fort Lauderdale, USA, 2011, S. 315–323

[GBC16] Goodfellow, Ian ; Bengio, Yoshua ; Courville, Aaron: Deep Learning.
MIT Press, 2016. – http://www.deeplearningbook.org

[GSGN17] Giotis, Angelos P. ; Sfikas, Giorgos ; Gatos, Basilis ; Nikou,
Christophoros: A Survey of Document Image Word Spotting Techniques.
In: Pattern Recognition 68 (2017), S. 310–332

[Kap08] Kaplony, Andreas: What are those few dots for? Thoughts on the orthog-
raphy of the Qurra Papyri (709-710), the Khurasan Parchments (755-777)
and the inscription of the Jerusalem Dome of the Rock (692). In: Arabica
55 (2008), Nr. Fasc. 1, S. 91–112

[KB15] Kingma, Diederik P. ; Ba, Jimmy: Adam: A Method for Stochastic Opti-
mization. In: Proc. Int. Conf. on Learning Representations (ICLR) (2015)

[KDJ16] Krishnan, Praveen ; Dutta, Kartik ; Jawahar, C. V.: Deep Feature Em-
bedding for Accurate Recognition and Retrieval of Handwritten Text. In:
Proc. Int. Conf. on Frontiers in Handwriting Recognition (ICFHR). Shenzhen,
China, 2016, S. 289–294

[KL20] Karpathy, Andrej ; Li, Fei-Fei: CS231n Convolutional Neural Networks
for Visual Recognition. http://cs231n.github.io/. Version: Mar. 2020. –
Online

[LBD+90] LeCun, Yann ; Boser, Bernhard E. ; Denker, John S. ; Henderson, Donnie
; Howard, Richard E. ; Hubbard, Wayne E. ; Jackel, Lawrence D.: Hand-
written Digit Recognition with a back-propagation Network. In: Advances
in Neural Information Processing Systems, 1990, S. 396–404

[Lew99] Lewis, Geoffrey: The Turkish Language Reform: A Catastrophic Success. OUP
Oxford, 1999

[LG06] Lorigo, L. M. ; Govindaraju, V.: Offline Arabic Handwriting Recognition:
a Survey. In: IEEE Trans. on Pattern Analysis and Machine Intelligence 28
(2006), Nr. 5, S. 712–724

http://www.deeplearningbook.org
http://cs231n.github.io/


bibliography 57

[LRM04] Lavrenko, Victor ; Rath, Toni M. ; Manmatha, Raghavan: Holistic Word
Recognition for Handwritten Historical Documents. In: Proc. of the First
Int. Workshop on Document Image Analysis for Libraries, 2004, S. 278–287

[MA09] Märgner, V. ; Abed, H. E.: ICDAR 2009 - Arabic Handwriting Recognition
Competition. In: Int. Conf. on Document Analysis and Recognition (ICDAR).
Barcelona, Spain, 2009, S. 1383–1387

[MA10] Märgner, V. ; Abed, H. E.: ICFHR 2010 - Arabic Handwriting Recognition
Competition. In: Proc. Int. Conf. on Frontiers in Handwriting Recognition
(ICFHR). Kolkata, India, 2010, S. 709–714

[Maj96] Majidi, Mohammad R.: Einführung in die arabisch-persische Schrift. Buske
Helmut Verlag GmbH, 1996

[MB02] Marti, Urs-Viktor ; Bunke, Horst: The IAM-database: an English Sentence
Database for Offline Handwriting Recognition. In: Int. Journal on Document
Analysis and Recognition (IJDAR) 5 (2002), Nr. 1, S. 39–46

[MP72] Minsky, Marvin ; Papert, Seymour: Perceptrons: An Introduction to
Computational Geometry. In: Bulletin of the American Mathematical Society
78 (1972), Nr. 1, S. 12–15

[NYB+17] Nayef, Nibal ; Yin, Fei ; Bizid, Imen ; Choi, Hyunsoo ; Feng, Yuan
; Karatzas, Dimosthenis ; Luo, Zhenbo ; Pal, Umapada ; Rigaud,
Christophe ; Chazalon, Joseph u. a.: ICDAR2017 Competition on Ro-
bust Reading: Multi-lingual Scene Text Detection and Script Identification
Challenge–RRC-MLT. In: Int. Conf. on Document Analysis and Recognition
(ICDAR) Bd. 1. Kyoto, Japan, 2017, S. 1454–1459

[Omn20] Omniglot: "Alphabets and Writing Systems". https://www.omniglot.com/
writing/. Version: Mar. 2020. – Online

[PGC+17] Paszke, Adam ; Gross, Sam ; Chintala, Soumith ; Chanan, Gregory
; Yang, Edward ; DeVito, Zachary ; Lin, Zeming ; Desmaison, Alban ;
Antiga, Luca ; Lerer, Adam: Automatic differentiation in PyTorch. (2017)

[PMM+02] Pechwitz, Mario ; Maddouri, S S. ; Märgner, Volker ; Ellouze, Noured-
dine ; Amiri, Hamid u. a.: IfN/ENIT-database of Handwritten Arabic
Words. In: Proc. of CIFED Bd. 2 Citeseer, 2002, S. 127–136

https://www.omniglot.com/writing/
https://www.omniglot.com/writing/


58 bibliography

[PW16] Poznanski, Arik ; Wolf, Lior: CNN-N-Gram for Handwriting Word
Recognition. In: Proc. Conf. on Computer Vision and Pattern Recognition
(CVPR). Las Vegas, NV, USA, 2016, S. 2305–2314

[RASC14] Razavian, Ali S. ; Azizpour, Hossein ; Sullivan, Josephine ; Carlsson,
Stefan: CNN Features Off-the-Shelf: An Astounding Baseline for Recogni-
tion. In: Conf. on Computer Vision and Pattern Recognition (CVPR) Workshops.
Columbus, OH, USA, 2014, S. 512–519

[RF16] Rothacker, Leonard ; Fink, Gernot A.: Robust Output Modeling in Bag-
of-Features HMMs for Handwriting Recognition. In: Int. Conf. on Frontiers
in Handwriting Recognition (ICFHR). Shenzhen, China, 2016, S. 199–204

[Ros58] Rosenblatt, Frank: The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain. In: Psychological Review 65 (1958),
Nr. 6, S. 386–408

[Sch15] Schmidhuber, Jürgen: Deep Learning in Neural Networks: An Overview.
In: Neural Networks 61 (2015), S. 85 – 117

[SF16] Sudholt, Sebastian ; Fink, Gernot A.: PHOCNet: A Deep Convolutional
Neural Network for Word Spotting in Handwritten Documents. In: Proc.
Int. Conf. on Frontiers in Handwriting Recognition (ICFHR). Shenzhen, China,
2016, S. 277–282

[SF17] Sudholt, Sebastian ; Fink, Gernot A.: Evaluating Word String Embeddings
and Loss Functions for CNN-based Word Spotting. In: Int. Conf. on
Document Analysis and Recognition (ICDAR) Bd. 1. Kyoto, Japan, 2017, S.
493–498

[SF18] Sudholt, Sebastian ; Fink, Gernot A.: Attribute CNNs for Word Spotting
in Handwritten Documents. In: Int. Journal on Document Analysis and
Recognition (IJDAR) 21 (2018), Nr. 3, S. 199–218

[SGC15] Shankar, Sukrit ; Garg, Vikas K. ; Cipolla, Roberto: Deep-carving:
Discovering visual attributes by carving deep neural nets. In: Proc. Conf.
on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA, 2015,
S. 3403–3412

[Sud18] Sudholt, Sebastian: Learning Attribute Representations with Deep Convolu-
tional Neural Networks for Word Spotting. Dortmund, Germany, TU Dort-
mund University, Dissertation, 2018



bibliography 59

[SZ15] Simonyan, Karen ; Zisserman, Andrew: Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In: Int. Conf. on Learning Repre-
sentations (ICLR). San Diego, CA, USA, 2015

[WB16] Wilkinson, Tomas ; Brun, Anders: Semantic and Verbatim Word Spotting
Using Deep Neural Networks. In: Proc. Int. Conf. on Frontiers in Handwriting
Recognition (ICFHR). Shenzhen, China, 2016, S. 307–312

[ZC88] Zhou, Yi-Tong ; Chellappa, Rama: Computation of Optical Flow using a
Neural Network. In: Proc. Int. Conf. on Neural Networks (ICNN). San Diego,
CA, USA, 1988, S. 71–78

[ZPJ+16] Zhong, Z. ; Pan, W. ; Jin, L. ; Mouchère, H. ; Viard-Gaudin, C.: Spot-
tingNet: Learning the Similarity of Word Images with Convolutional Neu-
ral Network for Word Spotting in Handwritten Historical Documents. In:
Proc. Int. Conf. on Frontiers in Handwriting Recognition (ICFHR). Shenzhen,
China, 2016, S. 295–300


