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ABSTRACT

Tracking multiple speakers with microphone arrays is one of
the key tasks in smart environments. For good accuracy in re-
verberant environments, several arrays should be distributed
in the room. The method presented is using distributed nodes
with microphone arrays that compute local angular speech de-
tections. In an integrating node, these are associated using the
spectra and tracks for multiple concurrent speaker are com-
puted. Euclidean coordinates are derived by triangulation,
which is improved by a quality based weighting. The method
is not only robust against reverberation, but also against trans-
mission errors and jitter. Test with real recordings show that
good precision for practical applications can be achieved.

Index Terms— sensor node, speaker tracking, machine
hearing

1. INTRODUCTION

A smart environment is defined by its capability of under-
standing of and interaction with human behavior by means of
sensors, actuators and dedicated processing. The implemen-
tation of perceptual capabilities that make sense of the sen-
sory data is the basis for this ability. Robust acoustic speaker
tracking is required for many practical scenarios like online
lectures, video conferencing or meetings [1–3]. It facilitates
automated camera control and selection as well as speaker
and context identification.

Acoustic localization is often done by the SRP-PHAT or
generalized cross-correlation approach [4]. The resulting spa-
tial likelihood can be modeled as mixture of Gaussians (MoG)
because reverberant speech is found to produce Gaussian dis-
tributed peaks over time [5]. In order to track speakers us-
ing a single microphone array, temporal integration can be
realized with a maximum likelihood approach [6] or particle
filtering [7,8]. Multiple microphone arrays can be used for
robust localization in reverberant environments. Their rela-
tive and absolute positioning can be derived manually or au-
tomatically [9–11]. If the arrays themselves do not have to be
strictly synchronized, the system is more robust and easy to
realize, especially when using radio connections.
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Fig. 1. Proposed system: Multiple distributed nodes localize
speech using microphone arrays and transmit to an integration
node that calculates speaker tracks in Euclidean space.

The emerging research field of machine hearing tries to
incorporate features of the human hearing process into com-
putational processing [12]. One key influence is the study
and modeling of the hearing process according to the “Au-
ditory Scene Analysis” (ASA) theory [13]. Recently, several
biologically inspired systems were shown to outperform tech-
nical approaches to localization [14–16].

A recent application of machine hearing for speaker track-
ing suggested the use of spectra as cues for associating con-
current estimates, inspired by the observation that human
listeners integrate streams from both ears using common
cues [17]. It has been successfully applied to recordings of
two microphone arrays [18]. Here we extended this approach
to the use of multiple distributes nodes. The proposed sys-
tem is illustrated in Fig. 1. Multiple distributed nodes are
equipped with microphone arrays. Each node calculates con-
current angular speaker detections and transmits the spatial
and spectral estimates to an integrating unit. There, the spec-
tral information is employed to solve the ambiguity problem
for multiple simultaneous detections for multiple concurrent
speakers. The angular estimates are used to integrate the lo-
calizations over time; Euclidean coordinates are calculated by
triangulation.

It is shown that the spectral cues allow to resolve the asso-
ciation ambiguity for multiple nodes. For triangulation, a pre-
cision oriented weighting is introduced that both allows the
integration of an arbitrary number of nodes and improves the
Euclidean localization over unweighted averaging. The sys-
tem is able to handle transmission errors and is robust against
drift and jitter.



2. NODE-BASED LOCALIZATION

Each node is equipped with a circular microphone array. The
machine hearing approach introduced in [14] is applied. The
cochlear and mid-brain model uses B = 16 frequency bands.
For time windows of L = 0.6 s with a time step of k · L/4
a set Dk of combined tuples x = (θ, s) with azimuth θ and
spectrum s = (s0, . . . , sB−1)T is extracted as set of speech
detections.

Sources Ψi are estimated by calculating clusters Ψi =
(Θi, σi, ti) with mean angle Θi, deviation σi, and spectrum
ti from the detections in the current and adjacent time frames
x ∈ Dk−1∪Dk∪Dk+1 using the EM-algorithm as described
in [18]. The probability of x to originate from Ψi is

p(x|Ψi) = pa(x|Ψi)ps(x|Ψi) (1)

where the angular probability density for a detection x is cal-
culated using the angular distance d(α, β) = min{360−|α−
β|, |α− β|} as

pa(x|Ψi) = pa(x|Θi, σi) =
e−0.5d(θ,Θi)
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and the spectral similarity of a detection x = (θ, s) to a model
spectrum t is calculated as normalized scalar product
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The number of sources can be estimated by observing the
typical variance of speaker localizations for the given array
geometry. If σi > Γsplit = 20◦, the source i is split into two
sources with θi,j = θi ± σi, when two estimates get closer
than a threshold d(θi, θj) < Γjoin = 12◦, the sources Ψi,j

are merged. The EM loop is converging quickly in less than
20 iterations, allowing for real-time calculation. After this
step, there are clustered source estimates E(m)

k = {Ψi} for
each time frame at each node m. The resulting sparse set of
positions and spectra amounts to below 32 kbps of data which
may be transmitted over a wireless connection.

Fig. 2. The problem of ambiguity of multiple concurrent esti-
mates: Without additional information, all four intersections
are possible source positions. Using the spectral similarity,
the correct intersections (circles) are chosen and the others
(squares) are discarded.

3. INTEGRATION AND TRACKING

The problem of ambiguity of multiple concurrent localiza-
tions by multiple nodes is illustrated in Fig. 2. To associate
the estimates from different nodes, their spectra are correlated
using (3), and the pairs with the strongest correlation are com-
puted. By thereafter combining all pairs with common angles,
sets of angular estimates over all nodes are derived.

The Euclidean position of the source can be derived
by triangulation using these sets. By calculating the inter-
section of the lines originating at two nodes’ center posi-
tions c(m,n) with the cluster angles Θ(m,n) the 2D position
z(m,n)

(
Θ(m),Θ(n)

)
is derived. Given two angles α, β the

quality of the localization by intersection may be expressed
as

q(α, β) = |sin(α− β)| (4)

to reflect the fact that an angular difference of 90◦ yields the
highest precision and an angular difference near 0◦ or 180◦

the worst. In order to calculate one point from multiple inter-
sections, the weighted sum
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is used. The effect is illustrated in Fig. 3.
A combined tracking state Ωj,k = (Ψ
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represents the states of the track with label j for time step k.
The probability of a new detection Ψ∗,k+1 to belong to a track
Ψj given the cluster angles is calculated for each node as

pa (Ψ∗,k+1|Ψj,k) = pa(Θj,k|Θ∗,k+1, (σ∗,k+1+σj,k)/2)
(6)

and then multiplied
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to compute the consensus. For each set of new estimates,
the track with the highest likelihood above a threshold εa is

Fig. 3. Incorporating angular intersection quality into the tri-
angulation: Using all pairwise intersections (circles) equally,
the center (square) is computed as localization. When weight-
ing by intersection quality, the steeper angles get favored and
a more precise localization is achieved (star).
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Fig. 4. Localization error for a single node for simulation of
a single speaker.

chosen from all tracks not older than a tTTL (e.g. 10 s). The
time-to-live covers gaps caused by speech pauses or detection
or transmission failure. If no such track exists, a new one is
started.

4. EVALUATION

The method was investigated using simulations and then eval-
uated on recordings in a real conference room. A localization
is considered correct if the angles hit the target within an av-
erage head width of 0.2 m or the 2D coordinates are within
a typical persons shoulder width of 0.5 m. The precision and
recall are calculated in 0.6 s windows based on the correct
localizations. These margins should be sufficient for most
practical applications.

4.1. Simulation of a Single Node

A single microphone array was simulated using the image-
source method [19] with a shoe-box model. A stationary
single speaker at varying positions was simulated with 30 dB
SNR and T60 times up 2.0 s. The proposed method was com-
pared to the SRP-PHAT approach, Fig. 4 shows the angular
RMS (root mean square) error εa. The SRP-PHAT shows a
higher localization error than the proposed method, especially
in cases of strong reverberation. Both an analysis of variance
and randomization tests showed the difference to be statisti-
cally significant (p < 0.01) for all T60s.

4.2. Simulation of multiple nodes

In order to test the method, a simulation of five nodes located
on a table in the center of the room and a single speaker mov-
ing around it, speaking from 18 static locations, was done
using the image-source method.

4.2.1. Localization

The error and its deviation over the room position for tracking
with all five nodes is listed in table 1. The weighting by the
intersection quality q consistently improves the results.

T60[s] εa[◦] εl [m] pr. [%] re. [%]
0.00 2.1±1.0 - 0.23±0.19 94±17 92±18

q 0.15±0.05 100±00 98±05
0.50 4.0±2.5 - 0.93±1.12 75±32 69±31

q 0.31±0.13 97±09 92±15
1.00 5.0±4.3 - 0.68±0.51 75±29 67±31

q 0.39±0.43 90±24 73±28

Table 1. Tracking error using five nodes in simulation without
(-) and with weighting (q) used in triangulation.
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Fig. 5. Tracking error for different node counts.

4.2.2. Node Count

In order to investigate the influence of the node count and
the effect of transmission failure, a fixed number of nodes
were selected randomly for each time step. Figure 5 shows
the RMS 2D localization error εl for different counts and re-
verberation times. When only two nodes can be used, the
accuracy is significantly worse because the triangulation is
using only bad angles in some cases. The accuracy increases
with the number of nodes.

4.2.3. Drift and Jitter

Drift can be avoided by using the integration nodes clock as
reference by exchanging information every frame in real time.
Exact clock synchronization is not required when using DoA
estimates rather than TDoAs [11]. Severe jitter of up to a time
step (L/4 = 0.15 s) may be the result of different clocks at
the nodes or the transmission to the integrating node. This
was simulated by introducing random jitter to the nodes in-
puts signals at T60 = 0.5 s. The tracking error increases
slightly only for jitter approaching the length of a time win-
dow (0.6s) as displayed in Fig. 6. This shows that jitter can
be neglected and no compensation is necessary.
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Fig. 6. Tracking error for different intra-array jitter.



#1 one static speaker #2 one moving speaker #3 two static speakers #4 three speakers
precision recall RMS pr. recall RMS pr. recall RMS pr. recall RMS

θ(0) 100% 96% 6.4◦ 100% 99% 7.2◦ 100% 96% 4.4◦ 93% 76% 6.3◦

θ(1) 100% 96% 4.8◦ 100% 99% 7.6◦ 100% 99% 6.5◦ 100% 99% 5.0◦

θ(2) 100% 96% 5.7◦ 100% 99% 4.6◦ 72% 69% 10.8◦ 94% 96% 3.3◦

x,y 99% 95% 0.22 m 93% 93% 0.34 m 88% 85% 0.33 m 99% 98% 0.19 m

Table 2. Tracking performance on real recordings.

4.3. Recordings

In order to test the real-world performance, recordings of
multiple moving speakers were made in a highly reverberant
3.7×6.8×2.6 m3 conference room of a smart house installa-
tion at our university. Signals from three circular microphone
arrays with 5 microphones in a 5 cm radius embedded in a
table were recorded at 48 kHz. Each array was captured by
a separate sound card. Recordings of coherent white noise
showed a jitter of 22 µs between the sound cards. A reverber-
ation time of 670 ± 89 ms over the microphone signals was
calculated using a blind estimation algorithm [20]. The lin-
earized ground truth annotations did not reflect slight head
movement or speed and position variations.

4.3.1. Speaker Localization

As a general test of localization quality for the intended appli-
cations, a single speaker took 15 position sitting at and stand-
ing around the table uttering a sentence at each one. As listed
in table 2, the angular precision was around 5◦ and about 95%
recall was achieved. The 2D tracking had an error around
0.22 m. Without application of the weighting q, the error was
1.04 m.

In sequence #2, the speaker was moving slowly in front
of the table on a linear trajectory. The angular precision was
around 7◦ and 99% recall was achieved. The 2D tracking had
an error around 0.34 m (0.54 m without q).

4.3.2. Concurrent Speakers

In sequence #3, speaker starts talking, a second one joins in so
that they then both talk concurrently and then only the second
one keeps talking. The association by the spectra produced no
errors. As listed in table 2, the angular precision was between
5◦-10◦ for the nodes, the higher error may reflect the fact that
one speaker was very far from the table. Despite this, the 2D
tracking had an error around 0.33 m with 85% recall.

Three speakers were talking around the table in sequence
#4. Figure 7 shows the tracking result. The association by the
spectra produced no errors. The angular precision was around
5◦ and about 96% recall was achieved. The 2D tracking had
an error around 0.19 m (0.28 m without q).
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Fig. 7. Tracking three concurrent speakers (sequence #4).

5. CONCLUSION

A method for multi-speaker tracking using distributed nodes
with microphone arrays was described. Its capability of accu-
rately tracking static as well as moving speakers was shown
with recordings of natural speakers in a reverberant environ-
ment. The correct association of the speakers was shown by
the ability to handle two or three concurrent speakers. The
weighted triangulation is shown to derive improved Euclidean
coordinates. The robustness against drift and jitter as well as
temporary transmission failure was shown in simulation. Two
to five nodes were used, where three nodes already produce
good precision for practical applications. The method is real-
time capable with a delay of below one second.
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