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Abstract

We study the quantification of uncertainty of Con-
volutional Neural Networks (CNNs) based on gra-
dient metrics. Unlike the classical softmax en-
tropy, such metrics gather information from all lay-
ers of the CNN. We show for the EMNIST digits
data set that for several such metrics we achieve
the same meta classification accuracy – i.e. the
task of classifying predictions as correct or incor-
rect without knowing the actual label – as for en-
tropy thresholding. We apply meta classification
to unknown concepts (out-of-distribution samples)
– EMNIST/Omniglot letters, CIFAR10 and noise
– and demonstrate that meta classification rates
for unknown concepts can be increased when using
entropy together with several gradient based met-
rics as input quantities for a meta classifier. Meta
classifiers only trained on the uncertainty metrics
of known concepts, i.e. EMNIST digits, usually
do not perform equally well for all unknown con-
cepts. If we however allow the meta classifier to
be trained on uncertainty metrics for some out-of-
distribution samples, meta classification for con-
cepts remote from EMNIST digits (then termed
known unknowns) can be improved considerably.

1 Introduction

In recent years deep learning has outperformed
other classes of predictive models in many appli-
cations. In some of these, e.g. autonomous driving
or diagnostics in medicine, the reliability of a pre-
diction is of highest interest. In classification tasks,
the thresholding on the highest softmax probabil-
ity or thresholding on the entropy of the classi-
fication distributions (softmax output) are com-
monly used metrics to quantify classification uncer-
tainty of neural networks, see e.g. Hendrycks et al.
2016. However, misclassification is oftentimes not
detected by these metrics and it is also well known
that these metrics can be fooled easily. Many works

demonstrated how an input can be designed to fool
a neural network such that it incorrectly classifies
the input with high confidence (termed adversarial
examples, see e.g. Szegedy et al. 2013; I. J. Good-
fellow et al. 2014; Kurakin et al. 2016; Yuan et al.
2017). This underlines the need for measures of
uncertainty.

A basic statistical study of the performance
of softmax probability thresholding on several
datasets was developed in Hendrycks et al. 2016.
This work also assigns proper out-of-distribution
candidate datasets to many common datasets. For
instance a network trained on MNIST is applied to
images of handwritten letters, scaled gray scale im-
ages from CIFAR10, and different types of noise.
This represents a baseline for comparisons.

Using classical approaches from uncertainty
quantification for modeling input uncertainty
and/or model uncertainty, the detection rate of
misclassifications can be improved. Using the base-
line in Hendrycks et al. 2016, an approach named
ODIN, which is based on input uncertainty, was
published in Liang et al. 2017. This approach shows
improved results compared to pure softmax prob-
ability thresholding. Uncertainty in the weights of
a neural network can be modeled using Bayesian
neural networks. A practically feasible approxima-
tion to Bayesian neural networks was introduced
in Gal et al. 2016, known as Monte-Carlo dropout,
which also improves over classical softmax proba-
bility thresholding.

Since the softmax removes one dimension from
its input by normalization, some works also per-
form outlier detection on the softmax input (the
penultimate layer) and outperform softmax proba-
bility thresholding as well, see Bendale et al. 2015.

In this work we propose a different approach to
measure uncertainty of a neural network based on
gradient information. Technically, we compute the
gradient of the negative log-likelihood of a single
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sample during inference where the class argument
in the log-likelihood is the predicted class. We then
extract compressed representations of the gradi-
ents, e.g., the norm of a gradient for a chosen layer.
E.g., a large norm of the gradient is interpreted as
a sign that, if the prediction would be true, major
re-learning would be necessary for the CNN. We in-
terpret this ’re-learning-stress’ as uncertainty and
study the performance of different gradient metrics
used in two meta classification tasks: separating
correct and incorrect predictions and detecting in-
and out-of-distribution samples.

The closest approaches to ours are probably
Hendrycks et al. 2016 and Bendale et al. 2015 as
they also establish a self evaluation procedure for
neural networks. However they only incorporate
(non-gradient) metrics for particular layers close
to the networks output while we consider gradi-
ent metrics extracted from all the layers. Just as
Hendrycks et al. 2016 and Bendale et al. 2015 our
approach does not make use of input or model un-
certainty. However these approaches, as well as our
approach, are somewhat orthogonal to classical un-
certainty quantification and should be potentially
combinable with input uncertainty and model un-
certainty, as used in Liang et al. 2017 and Gal et al.
2016, respectively.

The remainder of this work is structured as fol-
lows: First, in section 2 we introduce (gradient)
metrics, the concept of meta classification and
threshold independent performance measures for
meta classification, AUROC and AUPR, that are
used in the experiments. In section 3 we introduce
the network architecture and the experiment setup
containing the choice of data sets. We use EM-
NIST (Cohen et al. 2017) digits as a known con-
cept on which the CNN is trained and EMNIST
letters, CIFAR10 images as well as different types
of noise as unknown/unlearned concepts. Then
we statistically investigate the separation perfor-
mance of our metrics for correct vs. incorrect clas-
sifications provided by CNNs. This is followed by
a performance study for the detection of in- and
out-of-distribution samples (detection of unlearned
concepts) in section 4. Therefore we also combine
available metrics for training and comparing differ-
ent meta classifiers. In this section meta classifiers
are trained only using known concepts, i.e., EM-
NIST digits. Afterwards, in section 5, we insert
unlearned concepts (which therefore become known

unknowns) into the training of the meta classifiers.
While the softmax baseline achieves an AUROC
value of 95.83% our approach gains 0.81% in terms
of AUROC and even more in terms of AUPR val-
ues.

2 Entropy, Softmax Baseline and
Gradient Metrics

Given an input x ∈ Rn, weights w ∈ Rp and class
labels y ∈ C = {1, . . . , q}, we denote the output of a
neural network by f(y|x,w) ∈ [0, 1]. The entropy of
the estimated class distribution conditioned on the
input (also called Shannon information, Shannon
1948)

E(x,w) = − 1

log(q)

∑
y∈C

f(y|x,w) log(f(y|x,w)) ,

(1)
is a well known dispersion measure and widely used
for quantifying classification uncertainty of neural
networks. In the following we will use the term en-
tropy in the sense explained above. Note that this
should not be confused with the entropy underly-
ing the (not estimated and joint) statistical distri-
bution of inputs and labels. The softmax baseline
proposed by Hendrycks et al. 2016 is calculated as

S(x,w) = max
y∈C

f(y|x,w) . (2)

Using the maximum a posteriori principle
(MAP), the predicted class is defined by

ŷ(x,w) := arg max
y∈C

f(y|x,w) (3)

according to the Bayes decision rule Berger 1980,
or as one hot encoded label ĝ(x,w) ∈ {0, 1}q with

ĝk(x,w) =

{
1, ŷ(x,w) = k

0, else
(4)

for k = 1, . . . , q. Given an input sample xi with one
hot label yi, predicted class label ĝi (from eq. (4))
and a loss function L = L(f(y|xi, w), yi), we can
calculate the gradient of the loss function with re-
spect to the weights ∇wL = ∇wL(f(y|xi, w), ĝi).
In our experiments we use the gradient of the neg-
ative log-likelihood at the predicted class label,

2



which means

L = L(f(y|xi, w), ĝi)

= −
∑
y∈C

ĝiy log
(
f(y|xi, w)

)
= − log

(
f(ŷ|xi, w)

)
.

(5)

We apply the following metrics to this gradient:

• Absolute norm (‖∇wL‖1)

• Euclidean norm (‖∇wL‖2)

• Minimum (min (∇wL))

• Maximum (max (∇wL))

• Mean (mean (∇wL))

• Skewness (skew (∇wL))

• Kurtosis (kurt (∇wL))

These metrics can either be applied layerwise by
restricting the gradient to those weights belonging
to a single layer in the neural network or to the
whole gradient on all layers.

The metrics can be sampled over the input X
and conditioned to the event of either correct or
incorrect classification. Let T (w) and F (w) de-
note the subset of correctly and incorrectly clas-
sified samples for the network f(y|x,w), respec-
tively. Given a metric M (e.g. the entropy E
or any gradient based one), the two conditioned
distributions M(X,w)|T (w) and M(X,w)|F (w) are
further investigated. For a threshold t, we mea-
sure P (M(X,w) < t |T (w)) and P (M(X,w) ≥
t |F (w)) by sampling X. If both probabilities are
high, t gives a good separation between correctly
and incorrectly classified samples. This concept can
be transfered to the detection of out-of-distribution
samples by defining these as incorrectly classified.
We term this procedure (classifying M(X,w) < t
vs. M(X,w) ≥ t) meta classification.

Since there are many possible ways to compute
thresholds t, we compute our results threshold
independent by using Area Under the Receiver
Operating Curve (AUROC) and Area Under the
Precision Recall curve (AUPR). For any chosen
threshold t we define

TP = #{correctly predicted positive cases} ,
TN = #{correctly predicted negative cases} ,
FP = #{incorrectly predicted positive cases} ,
FN = #{incorrectly predicted negative cases} .

and can compute the quantities

R = TPR =
TP

TP + FN

(True positive rate or Recall) ,

FPR =
FP

FP + TN

(False positive rate) ,

P =
TP

TP + FP

(Precision) .

When dealing with threshold dependent classifica-
tion techniques, one calculates TPR (R), FPR and
P for many different thresholds in the value range
of the variable. The AUROC is the area under the
receiver operating curve, which has the FPR as or-
dinate and the TPR as abscissa. The AUPR is the
area under the precision recall curve, which has the
recall as the ordinate and the precision as abscissa.
For more information on these performance mea-
sures see Davis et al. 2006.
The AUPR is in general more informative for
datasets with a strong imbalance in positive and
negative cases and is sensitive to which class is de-
fined as the positive case. Because of that we are
computing the AUPR-In and AUPR-Out, for which
the definition of a positive case is reversed. In ad-
dition the values of one variable are multiplied by
−1 to switch between AUPR-In and AUPR-Out as
in Hendrycks et al. 2016.

3 Meta Classification – a Benchmark
between Softmax Probability and
Gradient Metrics

We perform all our statistical experiments on the
EMNIST data set Cohen et al. 2017, which contains
28 × 28 gray scale images of 280 000 handwritten
digits (0 – 9) and 411 302 handwritten letters (a –
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z, A – Z). We train the CNNs only on the digits, in
order to test their behavior on untrained concepts.
We split the EMNIST data set (after a random per-
mutation) as follows:

• 60,000 digits (0 – 9) for training

• 20,000 digits (0 – 9) for validation

• 200,000 digits (0 – 9) for testing

• 20,000 letters (a – z, A – Z) as untrained con-
cepts

Additionally we included the CIFAR10 li-
brary Krizhevsky 2009, shrinked and converted to
gray scale, as well as 20,000 images generated from
random uniform noise. All concepts can be seen in
fig. 1.

The architecture of the CNNs consists of three
convolutional (conv) layers with 16 filters of size
3 × 3 each, with a stride of 1, as well as a dense
layer with a 10-way softmax output. Each of the
first two conv layers are equipped with leaky ReLU
activations

LeakyReLU(x) =

{
x, x > 0

0.1x, x < 0
(6)

and followed by 2× 2 max pooling. We employ L2

regularization with a regularization parameter of
10−3. Additionally, dropout Srivastava et al. 2014
is applied after the first and third conv layer. The
dropout rate is 33%.

The models are trained using stochastic gradi-
ent descent with a batch size of 256, momentum of
0.9 and categorical cross entropy as cost function.
The initial learning rate is 0.1 and is reduced by a
factor of 10 every time the average validation accu-
racy stagnates, until a lower limit for the learning
rate of 0.001 is reached. All models were trained
and evaluated using Keras Chollet et al. 2015 with
Tensorflow backend Abadi et al. 2015. Note, that
the parameters where chosen from experience and
not tuned to any extent. The goal is not to achieve
a high accuracy, but to detect the uncertainty of a
neural network reliably.

In this section, we study the performance of gra-
dient metrics, the softmax baseline and the entropy
in terms of AUROC and AUPR for EMNIST test
data, thus considering the error and success predic-
tion problem, formulated in Hendrycks et al. 2016.

First of all we demonstrate that gradient metrics
are indeed able to provide good separations. Re-
sults for the entropy, euclidean norm and minimum
are shown in fig. 2 (green and red). Note that we
have left out the mean, skewness and kurtosis met-
ric, as their violin plots showed, that they are not
suitable for a threshold meta classifier.

In what follows we define EMNISTc as the set
containing all correctly classified samples of the
EMNIST test set and EMNISTw as the set con-
taining all incorrectly classified ones. From now
on we resample the data splitting and use ensem-
bles of CNNs. More precisely, the random splitting
of the 280,000 digit images in training, validation
and test data is repeated 10 times and we train
one CNN for each splitting. In this way we train
10 CNNs that differ with respect to initial weights,
training, validation and test data. We then repeat
the above meta classification for each of the CNNs.
With this non parametric bootstrap, we try to get
as close as possible to a true sampling of the statis-
tical law underlying the EMNIST ensemble of data
and obtain results with statistic validity.

Table 1 shows that the softmax baseline as well as
some selected gradient metrics exhibit comparable
performance on the test set in the error and success
prediction task. Column one corresponds to the
empirical distributions depicted in fig. 2 for 200,000
test images.

In a next step we aggregate entropy and all gra-
dient based metrics (evaluated on the gradient of
each layer in the CNN) in a more sophisticated clas-
sification technique. Therefore we choose a variety
of regularized and unregularized logistic regression
techniques, namely a Generalized Linear Model
(GLM) equipped with the logit link function, the
Least Absolute Shrinkage and Selection Operator
(LASSO) with a L1 regularization term and a reg-
ularization parameter λ1 = 1, the ridge regression
with a L2 regularization term and a regularization
parameter of λ2 = 1 and finally the Elastic net with
one half L1 and one half L2 regularization, which
means λ1 = λ2 = 0.5. For details about these
methods, cf. Hastie et al. 2001.

To include a non linear classifier we train a feed
forward NN with one hidden layer containing 15
rectified linear units (ReLUs) with L2 weight de-
cay of 10−3 and 2-way softmax output. The neural
network is trained in the same fashion as the CNNs
with stochastic gradient descent. Both groups of
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Figure 1: Different concepts used for our statistical experiments
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Figure 2: Empirical distribution for entropy, euclidean norm and minimum applied to correctly predicted
and incorrectly predicted digits from the test data (green and red) of one CNN. Further distributions
are generated from EMNIST samples with unlearned letters (blue), CIFAR10 images (gray) and uniform
noise images (purple).

classifiers are trained on the EMNIST validation
set. Results for the logistic regression techniques
can be seen in table 2 (column one) and those for
the neural network in table 3 (first row of each eval-
uation metric). For comparison we also include the
entropy and softmax baseline in each table. The re-
gression techniques perform equally well or better
compared to the softmax baseline. This is how-
ever not true for the NN. For the logistic regression
types including more features from early layers did
not improve the performance, the neural network
however showed improved results. This means the
additional information in those layers can only be
utilized by a non linear classifier.

4 Recognition of Unlearned Con-
cepts

A (C)NN, being a statistical classifier, classifies in-
side the prescribed label space. In this section,
we empirically test the hypothesis that test sam-
ples out of the label space will be all misclassified,

however at a statistically different level of entropy
or gradient metric, respectively. We test this hy-
pothesis for three cases: First we feed the CNN
with images from the EMNIST letter set and de-
termine the entropy as well as the values for all
gradient metrics for each of it. Secondly we follow
the same procedure, however the inputs are gray
scale CIFAR10 images coarsened to 28× 28 pixels.
Finally, we use uncorrelated noise that is uniformly
distributed in the gray scales with the same reso-
lution. Roughly speaking, we test empirical dis-
tributions for unlearned data that is close to the
learned concept as in the case of EMNIST letters,
data that represents a somewhat remote concept as
in the case of CIFAR10 or, as in the case of noise,
do not represent any concept at all.

We are classifying the output of a CNN on such
input as incorrect label, this way we solve the
in- and out-of-distribution detection problem from
Hendrycks et al. 2016, but are still detecting mis-
classifications in the prescribed label space. The
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Metric
EMNISTc /
EMNISTw

EMNISTc /
EMNIST
letters

EMNISTc /
CIFAR10

EMNISTc /
uniform
noise

AUROC
Softmax Baseline 97.82 87.62 99.13 92.95
Entropy 97.74 88.44 99.42 93.52
Absolute Norm 97.77 87.22 98.07 90.66
Euclidean Norm 97.78 87.27 98.34 91.05
Minimum 97.78 87.30 98.32 90.50
Maximum 97.70 86.92 98.34 87.05
Standard Deviation 97.78 87.26 98.34 90.98

AUPR-In
Softmax Baseline 99.97 98.39 99.98 99.31
Entropy 99.97 98.38 99.99 99.36
Absolute Norm 99.97 98.42 99.95 99.07
Euclidean Norm 99.97 98.42 99.96 99.11
Minimum 99.97 95.20 99.96 99.05
Maximum 99.97 95.03 99.96 98.67
Standard Deviation 99.97 95.04 99.96 99.11

AUPR-Out
Softmax Baseline 39.96 59.04 77.10 40.10
Entropy 95.56 60.36 86.07 42.46
Absolute Norm 95.28 58.39 41.70 33.08
Euclidean Norm 95.30 58.27 47.82 34.03
Minimum 95.36 58.76 49.32 33.00
Maximum 95.32 55.01 55.69 26.84
Standard Deviation 95.30 58.26 47.72 33.88

Table 1: AUROC, AUPR-In (EMNISTc as positive case) and AUPR-Out (EMNISTc as negative case)
values for the threshold classification on the softmax baseline, entropy as well as selected gradient metrics.
All values are in percentage and averaged over 10 differently initialized CNNs with distinct splittings of
the training data. Values in brackets are the standard deviation of the mean in percentage. To get the
standard deviation within the sample, multiply by

√
10.

empirical distributions of unlearned concepts can
be seen in fig. 2. As we can observe, the distri-
butions for incorrectly classified samples are in a
statistical sense significantly different from those
for correctly classified ones. The gradient metrics
however are not able to separate the noise samples
very well, but also resulting in an overall good sep-
aration of the other concepts, as for the entropy.
The threshold classification evaluation metrics can
be seen in table 1. For the logistic regression results
in table 2 one can see that the GLM is inferior to
the other methods. Regression techniques with a
regularization term like LASSO, Ridge and Elastic
net are performing best. We get similar AUROC
values as for the threshold classification with single

metrics, but can improve between 5% and 14.08%
over the softmax baseline in terms of AUPR-Out
values for unknown concepts, showing a better gen-
eralization.

5 Meta Classification with Known
Unknowns

In the previous section we trained the meta clas-
sifier on the training or validation data only. This
means it has no knowledge of entropy or metric
distributions for unlearned concepts, hence we fol-
lowed a puristic approach treating out of distribu-
tion cases as unknown unknowns. The classifica-
tion accuracy could be improved, by extending the
training set of the meta classifier with the entropy
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Metric /
Regression
technique

EMNISTc /
EMNISTw

EMNISTc /
EMNIST
letters

EMNISTc /
CIFAR10

EMNISTc /
uniform
noise

AUROC
Softmax Baseline 97.82 (0.03) 87.62 (0.20) 99.13 (0.11) 92.95 (1.86)
Entropy 97.74 (0.04) 88.44 (0.21) 99.42 (0.10) 93.52 (1.83)
GLM 94.76 (0.70) 85.94 (0.46) 80.26 (5.46) 89.41 (2.90)
LASSO 97.75 (0.03) 89.34 (0.17) 99.23 (0.03) 93.86 (1.04)
Ridge 97.59 (0.03) 88.63 (0.11) 98.93 (0.02) 94.08 (0.67)
Elastic net 97.79 (0.06) 89.27 (0.24) 98.82 (0.06) 93.47 (0.67)

AUPR-In
Softmax Baseline 99.97 (0.00) 98.39 (0.03) 99.98 (0.00) 99.31 (0.19)
Entropy 99.97 (0.00) 98.38 (0.04) 99.99 (0.00) 99.36 (0.19)
GLM 99.81 (0.05) 96.80 (0.21) 95.51 (1.15) 97.81 (0.84)
LASSO 99.97 (0.00) 98.30 (0.06) 99.95 (0.00) 99.33 (0.12)
Ridge 99.97 (0.00) 97.86 (0.04) 99.93 (0.00) 99.36 (0.08)
Elastic net 99.97 (0.00) 98.26 (0.09) 99.92 (0.00) 99.29 (0.08)

AUPR-Out
Softmax Baseline 39.96 (0.57) 59.04 (0.37) 77.10 (1.90) 40.10 (4.87)
Entropy 95.56 (0.05) 60.36 (0.42) 86.07 (1.76) 42.46 (5.38)
GLM 31.27 (0.79) 57.72 (0.74) 62.90 (6.77) 46.43 (5.24)
LASSO 36.27 (0.32) 64.04 (0.26) 91.18 (0.44) 48.38 (3.12)
Ridge 38.17 (0.34) 61.92 (0.18) 82.95 (0.61) 47.30 (2.20)
Elastic net 38.71 (0.65) 63.43 (0.62) 79.56 (1.76) 45.03 (1.92)

Table 2: Average AUROC, AUPR-In and AUPR-Out values for different regression types trained on
the validation set and all metric features including the entropy but excluding the softmax baseline. The
values are averaged over 10 CNNs and displayed in percentage. The values in brackets are the standard
deviations of the mean in percentage. To get the standard deviation within the sample, multiply by√

10.

and gradient metric values of a few unlearned con-
cepts and labeling them as false, i.e., incorrectly
predicted. As in the previous sections we then train
meta classifiers on the metrics. For this we use the
same data sets as Hendrycks et al. 2016, namely
the omniglot handwritten characters set Lake et
al. 2015, the notMNIST dataset Bulatov 2011 con-
sisting of letters from different fonts, the CIFAR10
dataset Krizhevsky 2009 coarsened and converted
to gray scale as well as normal and uniform noise.
In order to investigate the influence of unknown
concepts in the training set of the meta classifier,
we used the LASSO regression and the NN intro-
duced in section 3 and supplied them with different
training sets, consisting of

• EMNIST validation set

• EMNIST validation set and 200 uniform noise

images

• EMNIST validation set, 200 uniform noise im-
ages and 200 CIFAR10 images

• EMNIST validation set, 200 uniform noise im-
ages, 200 CIFAR10 images and 200 omniglot
images

We are omitting the results for the LASSO here,
since they are inferior to those of the NN. Includ-
ing known unknowns into the training set, the NN
has far better performance on the unknown con-
cepts, even though the amount of additional train-
ing data is small. Noteworthily the validation set
together with only 200 uniform noise images in-
creases the results on the AUPR-Out values for all
unknown concepts already significantly by 13.74%,
even comparable to using all concepts. Together
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Training set for the neural network meta classifier

Wrong
Datasets

Entropy
Softmax
Baseline

Hendrycks et al. 2016

EMNIST
validation

EMNIST
validation+
uniform
noise

EMNIST
validation+
uniform
noise+

CIFAR10

EMNIST
validation+
uniform
noise+

CIFAR10+
omniglot

AUROC
EMNISTw 97.74 97.84 94.59 96.51 96.69 96.68
Omniglot 98.05 97.84 94.38 97.29 97.44 97.84
notMNIST 95.41 95.24 85.90 93.22 94.49 94.86
CIFAR10 99.24 99.03 81.19 96.27 99.12 99.09
Normal noise 94.36 94.49 56.09 98.37 98.34 98.17
Uniform noise 94.31 93.87 86.77 94.22 93.87 94.42
All 96.04 95.83 80.55 95.49 96.36 96.64

AUPR-In
EMNISTw 99.97 99.97 99.89 99.95 99.96 99.96
Omniglot 99.84 99.82 99.04 99.73 99.75 99.80
notMNIST 99.45 99.43 95.86 98.83 99.19 99.29
CIFAR10 99.95 99.94 95.47 99.41 99.94 99.93
Normal noise 99.59 99.60 92.72 99.89 99.89 99.88
Uniform noise 99.65 99.62 98.05 99.56 99.53 99.57
All 98.66 98.59 84.98 97.72 98.53 98.71

AUPR-Out
EMNISTw 35.83 39.94 32.95 36.02 35.98 35.33
Omniglot 83.48 80.45 74.17 80.36 81.46 83.40
notMNIST 74.86 14.59 64.57 71.53 74.91 75.13
CIFAR10 91.27 87.38 54.45 73.93 90.84 89.82
Normal noise 54.98 57.32 18.57 68.73 67.89 65.12
Uniform noise 37.97 36.63 56.66 58.56 56.59 59.53
All 89.17 88.07 75.64 89.38 91.23 91.55

Table 3: AUROC, AUPR-In (EMNISTc is positive case) and AUPR-Out (EMNISTc is negative case)
values for a NN meta classifier. “All” contains omniglot, notMNIST, CIFAR10, normal noise and
uniform noise. We used 200 samples of each concept that was additionally included into the training
set. The supplied features are all gradient based metrics as well as the entropy. The displayed values
are averages over 5 differently initialized NN meta classifiers for each of the 10 CNNs trained on the
EMNIST dataset. All values are in percentage and the values in brackets are the standard deviations of
the mean in percentage. To get the mean within the sample multiply by

√
10.

with the fact, that noise is virtually available at no
cost, it is a very promising candidate for improving
the generalization of the meta classifier without the
need of generating labels for more datasets. The
in-distribution detection rate of correct and wrong
predictions is also increased when using additional
training concepts, making it only beneficial to in-
clude noise into the training set of the meta clas-
sifier. Our experiments show however that normal

noise does not have such a high influence on the per-
formance as uniform noise and is even decreasing
the in-distribution meta classification performance.
All in all we reach a 3.48% higher performance on
the out of distribution examples compared to the
softmax baseline in AUPR-Out and 0.81% in AU-
ROC, whereas the increase in AUPR-In is marginal
(0.12%).
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6 Conclusion and Outlook

We introduced a new set of metrics that measures
the uncertainty of deep CNNs. These metrics have
a comparable performance with the widely used en-
tropy and maximum softmax probability to meta-
classify whether a certain classification proposed
by the underlying CNN is presumably correct or
incorrect. Here the performance is measured by
AUROC, AUPR-In and AUPR-Out. Entropy and
softmax probability perform equally well or slightly
better than any single member of the new gradient
based metrics for the detection of unknown con-
cepts like EMNIST letters, gray scale converted
CIFAR10 images and uniform noise where simple
thresholding criteria are applied. But still, our new
metrics allow contributions of different layers and
weights to the total uncertainty. Combining the
gradient metrics together with entropy in a more
complex meta classifier increases the ability to iden-
tify out-of-distribution examples, so that in some
cases these meta classifiers outperform the baseline.
Additional calibration by including a few samples
of unknown concepts increases the performance sig-
nificantly. Uniform noise proved to raise the over-
all performance, without the need of more labels.
Overall the results for the classification of correct
or incorrect predictions increased when the meta
classifier was supplied with more distinct concepts
in the training set. It seems that the higher num-
ber of uncertainty metrics helps to better hedge the
correctly classified samples from the variety of out
of sample classes, which would be difficult, if only
one metric is available. Note that this increase in
meta classification is particularly valuable, if one
does not want to deteriorate the classification per-
formance of the underlying classifier by additional
classes for the known unknowns.

As future work we want to evaluate the perfor-
mance and robustness of such gradient metrics on
different tasks in pattern recognition. Further fea-
tures could be generated by applying the metrics
to activations rather than gradients. One could
also investigate the possibility of generating arti-
ficial samples, labeled as incorrect, for the training
set of the meta classifier in order to further improve
the results.
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