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Abstract

A domain where, even in the era of electronic document

processing, handwriting is still widely used is note-taking

on a whiteboard. Such documents are either captured by a

pen-tracking device or – which is much more challenging –

by a camera. In both cases the layout analysis of realistic

whiteboard notes is an open research problem.

In this paper we propose a camera-based three-stage

approach for the automatic analysis of whiteboard docu-

ments. Assuming a reasonable foreground-background sep-

aration of the handwriting it starts with a locally adaptive

binarization followed by connected component extraction.

These are then automatically classified as representing ei-

ther simple graphical elements of a mindmap or elementary

text patches. In the final stage the text patches are subject

to a clustering procedure in order to generate hypotheses

for those image regions where textual annotations of the

mindmap can be found.

In order to demonstrate the effectiveness of the proposed

approach we report results of an experimental evaluation on

a data set of mindmap images created by several different

writers without any constraints on writing or drawing style.

1. Introduction

In many areas writing down notes or texts manually us-
ing, for example, pens has been replaced by machine-based
techniques. Very prominently, it is nowadays standard to
write an email using a computer and a keyboard rather than
actually writing a letter. Without any doubts, electroni-
cally supported creation of documents implies several ad-
vantages. Machine-printed texts are easily to read by virtu-
ally everybody. Furthermore, storage and retrieval are more
convenient for electronic rather than for handwritten docu-
ments.

However, there are still certain application cases where
the “traditional” way of handwriting is more favorable [16].

Figure 1. Mindmap creation on a whiteboard

Especially for creative processes like brainstorming any
(electronic) equipment that might distract the attention of
humans is likely to hinder the process of generating ideas.
Basically, distraction kills creativity. Consequently, in such
cases people often fall back on “low-tech” equipment for
writing down their ideas, namely to pens and paper.

A standard means of writing down the results of a brain-
storming session in a well structured way is mindmapping

[1]. A mindmap basically corresponds to a graph with
nodes and edges. Nodes represent the ideas that are usu-
ally written down as short texts – mostly a single or just
a small number of words each. Relations between cer-
tain ideas are visualized by (directed) edges between these
nodes. Apart from that, there is no constraint in how to or-
ganize a mindmap, for example, w.r.t. writing style, writing
direction etc. For group based brainstorming mindmaps are
usually created on a whiteboard, which is nowadays stan-
dard equipment of a meeting room. In Fig. 1 the collabora-
tive creation of a mindmap is shown.

When restricting note taking to the use of pens and
whiteboard, unfortunately, all advantages of electronically
supported techniques (see above) are explicitly left out.
However, particularly for storage and retrieval, digital rep-
resentations of whiteboard notes in general and especially
mindmaps written on it are desirable. For their creation the
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paradigm of non-obtrusiveness remains, though.
In our work we develop a camera-based automatic white-

board reading system [13]. One goal is to monitor the dy-
namic process of creating mindmaps on a whiteboard using
a video camera and to automatically extract a digital repre-
sentation of the mindmap. The latter then can be used for
the desired electronic storage and retrieval. By means of
a projector recognized mindmaps can easily be reproduced
directly at the whiteboard. This allows intuitive interaction
(editing, erasing, browsing etc.) with the mindmap using
natural means, i.e. pens, eraser and whiteboard.

One prerequisite for its successful recognition is the seg-
mentation of a mindmap w.r.t. graphical elements (circles,
lines, arrows) and text blocks. In this paper we present
an approach for the automatic analysis of the structure of
handwritten mindmap drawings. Still images of mindmaps
written on whiteboards serve as input data. In a three-
stage procedure we first extract relevant connected compo-
nents, which are then fed into a classification system. At
this second stage of the proposed procedure features cal-
culated from the extracted connected components are auto-
matically classified as either belonging to some graphical
element or as being part of handwritten text. For a success-
ful mindmap recognition we then agglomerate connected
components of the same type to larger portions of struc-
turally connected basic elements. Clusters of connected
text components form single words that are the input for
our handwriting recognition system. The output of the pre-
sented approach is a full segmentation of a mindmap image
that includes region-based annotation at the level of graphi-
cal elements – circles, lines, arrows – and words. By means
of an experimental evaluation on a database of mindmaps
that have been sketched on whiteboards by multiple writers
we demonstrate the effectiveness of this new approach.

2. Related Work

A digital document consists of a huge variety of physical
items such as text blocks, lines, words, figures, tables and
background, etc. However, at a lower level all these items
are composed just by connected components, which are a
set of interconnected pixels containing no high-level infor-
mation at all. The goal of document structure and layout
analysis is to detect the different regions and to identify the
functional roles and relationships between them [9].

While a human reader uses several clues like context, and
a-priori information about the script together with a com-
plex reasoning mechanism, the machine can rely only on
the extracted low-level information. This is the reason why
automatic layout and structure analysis of an arbitrary doc-
ument is a very challenging task. However, we should dis-
tinguish between printed documents and handwritten ones.
While for printed documents we can presume a certain lay-

out, structure [4] or textual information, like font size, bold-
ness [6], for handwritten documents there is usually a total
lack of physical organization.

While some impressive results have been achieved for
the recognition of handwritten forms, postal documents
[2, 14] and mathematical formulas [3, 11, 17], the analy-
sis and recognition of whiteboard notes is a relatively new
issue in the scientific community and just some attempts can
be found in this subject.

In [7] the authors propose a system to recognize white-
board notes by using an HMM based recognizer. In this sys-
tem the image acquisition is performed on-line utilizing an
infrared sensor. Unfortunately the work addresses just the
problem of word recognition of well structured handwritten
notes without considering any extra information, which can
occur in such a document.

A kind of e-Learning strategy using a whiteboard has
been described in [20]. The authors use two cameras and
a pen capture tool on the whiteboard to recognize Japanese
characters based on some character matching. However, to
detect the text regions from the whiteboard, they consider
the software provided by the pen manufacturer.

In [12] the task of processing whiteboard images is ad-
dressed using portable digital cameras or cell-phones. How-
ever, the work is more related to image processing rather
than to its analysis. The focus is on the detection of board
boundaries and on image quality enhancement. The out-
put of the described procedure can then be used for further
analysis.

The authors in [13] consider a more challenging issue as
they recognize whiteboard notes taken with a camera and
without any on-line information. Their text detection strat-
egy is based on the different pieces of low-level information
extracted from the connected components and all this is cal-
culated as a probability. The drawback of this strategy is its
rigidity as it considers global thresholds to distinguish be-
tween textual and non-textual items.

Back in the 1980s research around textual documents has
been extended to line drawings. The original raw data was
scanned documents but the aim was not to recognize the
structure/layout and content but to rebuild the high-level
design from engineering drawings, recognize pipes, lines,
roads, rivers in maps, etc. [18]. Considering the content
of these documents, maybe they are more complex than
printed materials but still operating with a limited and well
defined set of graphical items.

3. Camera-Based Segmentation of Mindmaps

A mandatory pre-processing step for successful recog-
nition of hand-drawn mindmaps is their segmentation. The
goal of this process is to annotate regions of a camera image
w.r.t. graphical elements and text. We developed a three-
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Figure 2. Overview of the system for automatic segmentation of whiteboard notes

stage procedure that handles still images of mindmaps and
produces a complete region-based annotation. The overall
procedure is illustrated in Fig. 2. It starts with the extrac-
tion of relevant connected components (cf. Fig. 2c). In the
second stage, the latter are automatically classified using a
statistical modeling approach. Therefore, feature represen-
tations of all connected components are fed into a classifier
that provides a labeling w.r.t. circles, lines, arrows and text
(cf. Fig. 2d). In the last stage connected components of
the same type (graphical elements or text) are agglomerated
by means of a hierarchical clustering procedure (cf. Fig.
2e). The output of the segmentation procedure, in terms
of separate regions containing text blocks at word level as
well as the other graphical elements, serves as input for a
recognition system. It will analyze the graph structure and
recognize handwritten notes.

3.1. Connected Component Extraction

In the first step of our segmentation method connected
components are extracted. The structure of mindmap im-
ages suggests this procedure as there is apparently a clear
distinction between handwriting in the foreground and a
more or less homogeneous background (the surface of the
whiteboard). Thus, connected components are very likely to
be concentrated on the actual mindmap. Disregarding prob-

able flaws in the image (e.g. inhomogeneous lighting, or
non-opaque marker color) separating the mindmap by con-
nected component analysis is reasonable.

For the purpose of connected component extraction the
input image has to be binarized, which in our case is accom-
plished by use of Niblack’s algorithm [10]. A variant of the
basic approach is used that applies threshold optimization
[15] and local thresholding in a 51x51 pixels window. For
efficient computation integral images for plain as well as
for squared pixel values are analyzed [19]. The actual ex-
traction of connected components follows a straightforward
approach of segmenting contiguous black pixel regions.

By means of heuristic post-processing connected com-
ponents that obviously do not belong to the mindmap are
suppressed by trivial filtering. The remaining set of con-
nected components is not necessarily limited to well iso-
lated, known graphical elements and text portions only. In-
stead unknown and touching elements together with addi-
tional clutter are very likely to occur (cf. Fig. 2c). Thus, for
successful segmentation of mindmap images further analy-
sis of the extracted connected components is required.
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3.2. Classification of Connected
Components

In the second stage of our segmentation approach the
set of extracted connected components is classified w.r.t be-
longing to either one of the known graphical elements, text,
or unknown. In the latter case the particular connected com-
ponent is discarded from further processing.

In a mindmap circles/ellipses, lines and arrows are used
for the purpose of grouping, linking and structuring. This
stands in contrast to textual items which represent the ac-
tual content of a mindmap. Basically, all considered ele-
ments exhibit certain structural specialties. Textual com-
ponents, for example, differ from others by their texture,
(black) pixel density, and size. Similar conclusions can be
drawn for lines, circles and arrows. Consequently, reason-
ably discriminating features can be extracted from image
data that will serve as input for the classification system.

We investigated two kinds of feature sets. On the one
hand standard statistical features are calculated on im-
age data. These measures are invariant in size and rota-
tion. Roughly speaking they represent – to some extent –
shape related properties of the analyzed connected compo-
nents. Alternatively, intensities of gradient histograms (val-
ues ranging from 0 to 255, equally divided into 16 bins) of
the connected components serve as features (gradient set).

The shape-set is based on the features proposed by
Becker, the winner of the ICDAR 2005 Text Locating Com-
petition [8]. They have been used successfully for natural
scene text detection. In order to also cope with the detec-
tion and discrimination of graphical elements we extended
the original set by certain additional statistical measures. In
the reminder of this paper the first set of features is referred
to as shape feature set or extended Becker set.

Original Becker features [8]:
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Extended Becker set:

Becker features: (see above)

Canny edge intensity: The average of the intensity of an
edge of the canny edge image Icanny within the area of
a connected component’s bounding box.

Fcanny intensity =

widthcc−xccP
xcc

heightcc−yccP
ycc

Icanny(x, y)

weightcc · heightcc

Number of foreground gray levels: The number of gray
values in the foreground (i.e. on the connected com-
ponent) of the bounding box of a graphical element.

Ffg gray values =

P
i;histfg [i]>0

1

P
i;histfg [i]>0

1 +
P

i;histbg [i]>0

1

Foreground mean gray level:

Ffg mean =

P
i

histfg[i] · i
P

i;histfg [i]>0

1

Relative amount of gradient orientations: Using the his-
togram histangles of the angles of the gradient image,
the number of the angles appearing at least once is cal-
culated.

Fgradient orientations =

P
i;histangles[i]>0

1

360

Relative amount of foreground pixels: The number of
pixels of the connected component divided by its area.

Ffg pixels =

P
i

histfg[i]

widthcc · heightcc

Standard deviations : As the standard deviation is a mea-
sure of dispersion of data, in our case these features
select irregular/textured connected components.

– Gray level intensity:

Fgray level deviation = σ(I(cc))
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– Sobel gradient orientation:

Fgradient orientation deviation = σ(ISobel directions(cc))

– Sobel gradient magnitude:

Fgradient intensity deviation = σ(ISobel magnitudes(cc))

Using either the extended Becker set or the gradient set
two alternative feature representations for connected com-
ponents are extracted. In the first case input data is repre-
sented by a 12 dimension feature vector whereas in the latter
the resulting feature space contains 16 elements.

The actual classification of the particular feature vectors
is based on a Multi-Layer Perceptron (MLP). By means of
cross-validation the network topology has been adjusted.
We use one hidden layer with 15 or 20 neurons and the
sigmoid function as activation function. Model training is
based on standard backpropagation. The input and output of
the network is defined by the number of input features cal-
culated for each component (12 or 16 based on their nature)
and the number of classes to be identified (4, i.e. arrows,
circles/ellipses, lines, and text).

In order to deal with input data that does not belong to
one of the known classes the following rejection strategy
is considered. Let us denote by A1 and A2 the best two
outputs of the classifier. The rejection function can then be
defined as follows:

O(x) =

{
a1 = c(A1), if|A1 − A2| ≥ ε

M + 1, otherwise
(1)

where c() is the function, which gives the corresponding
class for the outputs, a1 is the top choice given by the clas-
sifier, M is the number of classes and M + 1 stays for the
additional, rejection class. The ε is a parameter controlling
the rejection rate (0 ≤ ε ≤ 1).

3.3. Text Agglomeration

Once the classification of the different connected compo-
nents is performed by the MLP, we can proceed to a higher
level in the mindmap analysis. At this stage we step from
a lower, connected component based level, to a higher one,
which projects a sort of vague layout analysis as we can al-
ready distinguish between text and non-text elements (lines,
circles, arrows). However, the primary goal is not to de-
tect the layout but to merge different identified textual con-
nected components into so-called “word structures”. This
pseudo word level cannot really be equated with the physi-
cal word level as there is no information about what might
be a word. This merging strategy is necessary for the further
processing when a subsequently applied word recognition
tool has to recognize the text.

Knowing that characters usually appear closer to each
other than to other elements, by clustering they should
group with their kind rather than with non-text elements.
For that reason we discard all the items tagged by the clas-
sifier as being non-text and we perform a hierarchical clus-
tering trying to merge the remaining items into words. Such
an attempt can be observed in Fig. 3.

We have considered different distances in order to mea-
sure the similarity between two clusters. As we selected an
agglomerative clustering strategy, we explored the suitabil-
ity of the Euclidean distance between the physical center
of the two connected components. A similar measure is
computed for the gravity centers. Furthermore, the mini-
mal distance between the boxes bounding graphical items
is also considered. While these measures are easy to cal-
culate their complexity is still high. Based on preliminary
results we select the minimal distance to be considered for
the further investigations.

A faster strategy is proposed by Yuan et al. [21], where
the distance is based on the size of components to be merged
as well as on the Euclidean distance between the com-
ponents. In [5] the same idea was used successfully in
a greedy clustering approach to separate text, drawings,
charts, etc. Alternatively to the hierarchical clustering ap-
proach (see above) we explore the capabilities of greedy
clustering thereby exploiting the following distance func-
tion:

f(s1, s2) =

r
ks1s2

s1 + s2

where s1, s2 represent the sizes of the two connected com-
ponents and k is a parameter controlling the level of the
grouping. Analyzing the function f it becomes clear that it
is rotation invariant, symmetric, and it does not respect just
the distances but also the sizes of the components.

In order to use this measure, we calculate the distance
between the components c1 and c2 having the size s1 and
s2. If this distance is smaller than the value given by the
function f then component c1 and c2 are merged and form
a new cluster. This operation is iterated while all the unique
components are tested.

4. Evaluation

In order to evaluate the effectiveness of the proposed sys-
tem we pursued practical experiments on real whiteboard
images. In the following we first give a description of the
data set. Then classification results for connected compo-
nents analysis are presented that illustrate the capabilities
of the system to discriminate between text and non-text el-
ements (circles, lines, arrows). Finally, results achieved by
clustering the connected components are discussed.
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Figure 3. Results of text agglomeration (rect-
angles) on an exemplary mindmap image.

4.1. Data-set

Our whiteboard images based document set consists of
31 photos we took from mindmap-drawings on a white-
board. Eleven different writers were asked to freely draw
one mindmap for each of the topics ”holiday”, ”party” and
”study” (two writers sketched only two mindmaps). The
writers were provided with a standard whiteboard marker
set containing four different colors (black, blue, green, red)
and a whiteboard eraser. Except for a basic set of words for
each topic, which had to be used and an obligation to add
at least three other words to the mindmap, there were no
restrictions in creativity.

After a writer had finished his mindmap, a photo of the
whiteboard was taken with a digital camera set to a resolu-
tion of 2,048x1,536 pixels. Reasoned by the image acquisi-
tion process, we can encounter in the picture items like the
wall, other printed documents linked to the whiteboard, and
frame parts of the board, which are not part of the docu-
ment. These items are considered being noise elements (cf.
e.g. [12] for a comparable argumentation).

In order to create the training and test we split the data
randomly. The only constraint was to have one image sam-
ple from each of the writers. So we have a training set con-
taining 20 images, while the test set consists of 11 images,
one image from each particular writer.

4.2. Results

In the first experiment we evaluated the classification ca-
pabilities of the second stage of our segmentation approach,
namely the analysis of connected components w.r.t. the dis-
crimination between texts, circles, lines and arrows. We
evaluated the two different feature sets described in Sec.

3.2. The overall classification accuracies (without rejec-
tion) for the extended Becker set and the gradient set are
given in Tab. 1. It can be seen that both types of features
are suitable for the classification. However, using the ex-
tended Becker features produces slightly better results. For
the sake of clarity we limit the further presentation of results
to this feature representation. The particular classification
results of each writer can be seen in Tab. 2.

Features Accuracy[%]
ext. Becker set(12) 95.7

gradient set(16) 93.0

Table 1. Results of connected components
classification using different feature sets.

Writer Accuracy[%] Writer Accuracy[%]
1 97.6 2 92.2
3 97.7 4 97.3
5 95.6 6 94.8
7 96.8 8 96.0
9 82.3 10 96.4

11 97.0

Table 2. Writer specific classification re-
sults for connected components analysis
(extended Becker feature set).

While the text items are recognized with a high precision
(99.4%) the arrows are often confused with lines. This con-
fusion can be explained by the fact that just a few arrows are
represented in our data set and there is not much difference
between them. Similar confusions can be encountered for
circles, related to text items where circles can be matched
with textual elements like “o”, “D”, etc.

The rejection rates and the corresponding recognition ac-
curacies for the different ε values (Eq. 1) are given in Tab.
3. Setting a stronger rejection criteria by increasing the pa-
rameter ε provides a higher accuracy, a decreasing misclas-
sification rate and an increasing rejection percentage. How-
ever, the number of false positive rejections (given as abso-
lute percentages in parentheses) also increases. Thus, care
needs to be taken when adjusting the rejection threshold.
For all further experiments reported in this paper we used
small ε values, which practically implies no rejection.

For the evaluation of the quality of the agglomeration
of textual elements we use the method introduced in the
context of the ICDAR 2005 Text Locating Competition [8].
That way we produce comparable and comprehensible eval-
uation results.

The bounding boxes of the annotated ground truth T and

47



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  20  40  60  80  100  120  140  160

pr
ec

is
io

n/
re

ca
ll

threshold

precision
recall

(a) Hierarchical agglomeration
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(b) Greedy clustering

Figure 4. Comparison of precision/recall values for one example document

ε Accuracy[%] Misclassified[%] Rejection[%]
(% FP)

0.1 96.2 3.8 1.1 (0.6)
0.3 97.1 2.9 3.5 (1.9)
0.5 97.9 2.1 6.3 (4.0)
0.7 98.7 1.3 10.9 (7.8)
0.9 99.5 0.5 22.8 (18.9)

Table 3. Dependency of classification accu-
racy on the choice of the rejection threshold

the agglomerated text components E are compared – the
larger the overlap of the bounding boxes, the higher the
level of match. A match mp between two rectangles r, r′

is defined as the quotient of their intersection area and their
union area:

mp =
A(

⋂
(r, r′))

A(
⋃

(r, r′))
.

The evaluation scheme is based on precision and recall

known from the domain of Information Retrieval. Having a
binary answer to whether there is a fitting ground-truth rect-
angle to an estimated one or not would not cope with partial
matches. This is why the quality for a single match mp in
this case lies in the range of [0; 1]. In order to calculate these
adapted versions of precision and recall the best match be-
tween a rectangle within the agglomerations and all rectan-
gles within the set of annotations is taken into consideration
– and vice versa. The best match m(r, R) of a rectangle r
within a set of other rectangles R is defined as:

m(r, R) = max {mp(r, r′)|r′ ∈ R}.

The recall then is the quotient of the sum of the best matches
of the ground truth among the agglomerated areas and the
number of all annotated bounding boxes within the ground
truth:

recall =

∑
rt∈T m(rt, E)

|T | .

The precision relates to the quotient of the sum of the best
matches of the agglomerated areas among the annotated re-
gions and the number of all agglomerated areas:

precision =

∑
re∈E m(re, T )

|E| .

We evaluated the output of the agglomeration using both
schemes described above (cf. Fig. 4). In Fig. 4(a) we dis-
play a typical result of the hierarchical clustering, stating
in this case the maxima for precision and recall at 83%
and 72%, respectively. One can see that the other cluster-
ing method (cf. Fig. 4(b)) reaches almost the same preci-
sion value (76%) while the maximum recall is significantly
lower (53%). Despite the worse overall results, this algo-
rithm might be preferable in some cases as it obviously
reaches the optimum a lot faster. These diagrams also il-
lustrate the agglomeration process – starting with the initial
component set and finishing with one huge cluster. As more
and more components get agglomerated, the granularity of
the clustering approaches its optimum. Further grouping
leads to too large clusters and by that to worse precision
and recall values.

5. Conclusion

In this paper we presented a segmentation approach for
handwritten whiteboard notes that is based on a three-stage
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(a) Touching items (b) False agglomeration for multi-
line texts

Figure 5. Segmentation challenges

processing strategy. First we extract connected components,
which are then classified w.r.t. belonging to known graph-
ical elements or text. In order to obtain segmentation at
word level in the final stage textual elements are merged by
an automatic clustering procedure.

By means of an experimental evaluation we demon-
strated the effectiveness of the proposed approach. We suc-
cessfully extracted graphical and textual elements of hand-
written mindmaps of real-world whiteboard images. Clus-
tering of connected components identified as being text pro-
duced reasonable word level hypotheses. The latter can now
serve as input for an actual handwriting recognition system.

Analyzing the segmentation results provided by the pro-
posed system certain still remaining challenges can be iden-
tified (cf. Fig. 5). As illustrated in Fig. 5(a) touching con-
nected components need to be separated properly. Further-
more, line separation is required for text portions before
feeding them to an actual recognition system (cf. Fig. 5(b)).

In our future work we will address the aforementioned
issues. Furthermore, we will consider to recognize the
whole structure of the mindmap and the integration of the
system with our handwriting recognizer [13].
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[13] T. Plötz, C. Thurau, and G. A. Fink. Camera-based white-

board reading: New approaches to a challenging task. In In-

ternational Conference on Frontiers in Handwriting Recog-

nition, pages 385–390, 2008.
[14] K. Roy, S. Vajda, A. Belaid, U. Pal, and B. B. Chaudhuri.

A system for indian postal automation. In International

Conference on Document Analysis and Recognition, pages
1060–1064, 2005.

[15] J. Sauvola, T. Seppanen, S. Haapakoski, and M. Pietikainen.
Adaptive document binarization. In International Confer-

ence on Document Analysis and Recognition, volume 1,
pages 147–152, 18–20 Aug. 1997.

[16] A. Sellen and R. Harper. The Myth of the Paperless Office.
MIT Press, 2002.

[17] E. Tapia and R. Rojas. Recognition of on-line handwrit-
ten mathematical expressions in the e-chalk system - an ex-
tension. In International Conference on Document Analysis

and Recognition, pages 1206–1210, 2005.
[18] K. Tombre and B. Lamiroy. Pattern recognition meth-

ods for querying and browsing technical documentation.
In Iberoamerican Congress on Pattern Recognition, pages
504–518, 2008.

[19] J. van Beusekom, D. Keysers, F. Shafait, and T. M. Breuel.
Example-based logical labeling of document title page im-
ages. In International Conference on Document Analysis

and Recognition, volume 2, pages 919–923, sep 2007.
[20] D. Yoshida, S. Tsuruoka, H. Kawanaka, and T. Shinogi.

Keywords recognition of handwritten character string on
whiteboard using word dictionary for e-learning. In Interna-

tional Conference on Hybrid Information Technology, pages
140–145, 2006.

[21] B. Yuan and C. L. Tan. Multi-level component grouping
algorithm and its applications. In International Conference

on Document Analysis and Recognition, pages 1178–1181,
2005.

49




