
A Weighted Combination of Semantic and
Syntactic Word Image Representations
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Abstract. In contrast to traditional keyword spotting, semantic word
spotting allows users to search not only for word images with the same
transcription as the keyword, but also for concepts which are latent or
hidden inside a query. However, it has been shown that mapping word
images to semantic representations proves to be a difficult task. As se-
mantic embeddings do not consider syntactic similarity, it is common to
find search results with highly ranked semantically similar word images,
while words with the same transcription as the search query appear in
lower ranks. To counteract this problem, a combination of semantic and
syntactic representations usually provides a good trade-off w.r.t. seman-
tic and syntactic metrics. In this work, we present methods for realizing a
weighted combination of semantic and syntactic information. This allows
users to focus more on semantic or syntactic aspects and thus provides
new insights to their document collections. Thereby, our proposed meth-
ods are not limited to the use of word spotting, but also aim to address
the optimization of recognition-free NLP downstream tasks.

1 Introduction

In recent years, great progress has been made in the field of handwriting recogni-
tion [18]. However, the transformation of handwritten document images into dig-
ital text remains a difficult task, especially for small as well as historical datasets
[17]. For this reason, there is a sustained interest in and use of recognition-free
word spotting approaches [7]. The goal of word spotting is to retrieve word im-
ages from a collection of document images that are similar w.r.t. a given query.
Traditional approaches define similarity based on visual properties and avoid an
explicit recognition step. This leads to search results in which word images with
syntactically close transcriptions to the query are highly ranked. Thereby, two
words are syntactically similar if their string edit distance is small. Over the last
few years, deep learning based approaches achieved remarkable results on most
benchmark datasets in this domain [13,21,24].

An extension of this task is semantic word spotting [14,22,24], where seman-
tic information is taken into account during retrieval. This allows users to not
only search for syntactically similar words, but also for concepts which are latent
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or hidden inside a query. A concept could be a similar meaning (e.g. great and
huge) or a categorical relationship (e.g. animal and cat). Searching for semanti-
cally similar occurrences of words in a given document collection offers users a
new way to efficiently explore their collections. However, from a technical per-
spective, such a search poses major challenges [14,22]. This is mainly due to the
high variability of handwriting, which often leads to an incorrect prediction of
semantic information [14,22,24]. Another limiting factor is the challenging pre-
diction of semantic information for words that have not been seen during training
[14,22]. To overcome these limitations, Krishnan et al. have recently shown that
a stacking of semantic and syntactic representations can yield promising results
in terms of both semantic and syntactic evaluation measures [14].

However, a simple stacking of these embeddings often leads to a semantic
or syntactic bias caused by the different characteristics of the representations
(e.g. dimensions and dynamic ranges). In this work, we show how syntactic and
semantic representations can be combined with equal importance. Thereby, we
present methods for combining both semantic and syntactic information into a
single representation by using a weighted combination. The adjustment of the
weighting parameter is task-dependent and enables users to prioritize semantic
or syntactic aspects and thus obtain new insights into their document collections.

The remainder of this paper is organized as follows. Section 2 introduces the
basics and related work in the field of word spotting and word embeddings. In
section 3, we present the approaches used for predicting semantic and syntactic
embeddings from word images and how to combine them appropriately. We
then evaluate the weighted combinations quantitatively as well as qualitatively
on three handwriting datasets in section 4. Finally, we summarize the results in
section 5.

2 Related Work

In this section, we provide an overview on traditional as well as semantic word
spotting. We further introduce an outline of syntactic and semantic word repre-
sentations used in the context of word spotting.

2.1 Traditional Word Spotting

Word spotting is a retrieval-based method for determining regions in a document
image that are similar w.r.t. a given query. The approaches avoid an explicit text
recognition and use visual features to determine the similarity between a word
image and a query. The similarities are finally used to determine a retrieval list
of the most similar word images w.r.t. a given query.

Word spotting approaches can be divided into multiple categories. There ex-
ists a variety of different query types with Query-by-Example (QbE) and Query-
by-String (QbS) being the most prominent ones. In QbE applications, the query
is a word image whereas in QbS it is a textual string representation. Further-
more, word spotting can be divided into segmentation-free (i.e. entire document
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images are used without any segmentation) and segmentation-based (i.e. a word
level segmentation is required) approaches. There is a wide range of methods
in this area covering Bag-of-Feature representations, sequence models, Support
Vector Machines and Neural Networks [7]. Recently, approaches based on Con-
volutional Neural Networks (CNNs) have achieved remarkable results for most
benchmark datasets in this area [13,21]. For a more detailed overview of word
spotting, see [7].

2.2 Semantic Word Spotting

Semantic word spotting realizes a semantic word image retrieval and can be
seen as an extension of the traditional word spotting approach. The aim of
this task is to retrieve all word images with the same transcription as the query,
followed by semantically similar ones. Even if there are multiple ways to achieve a
semantic word image retrieval, we only consider approaches that predict semantic
information directly from a word image without transcribing it.

The first approaches of semantic word spotting rely on ontology-based knowl-
edge [8,11] and are thus limited to a small set of human labeled semantic re-
lationships. To overcome this limitation, Wilkinson et al. [24] use a two-stage
CNN-based approach to map word images into a textually pre-trained semantic
space. Tueselmann et al. [22] show that the semantic space used in [24] encodes
only few semantic relations and is close to a syntactic embedding in many parts.
They suggest to use a pre-trained FastText [3] embedding and present an op-
timized two-stage architecture for mapping word images into a semantic space.
Recently, Krishnan et al. [14] proposed an end-to-end approach for mapping
word images into a semantic space and explored word normalization methods
from the Natural Language Processing (NLP) domain, such as Lemmatization
and Stemming. Furthermore, they showed that a stacking of semantic and syn-
tactic representations is able to tackle major problems of just using semantic
word image embeddings.

2.3 Word Embeddings

Word embeddings convert strings into vector representations. They are often
used in word spotting systems to enable a comparison between word images and
strings [2,21,24]. The Pyramidal Histogram of Characters (PHOC) embedding
is the most commonly used embedding in the field of word spotting [2,13,21]. A
PHOC is a binary pyramidal representation of a character string and is used to
represent visual attributes of a given word image. Besides PHOC, the Discrete
Cosine Transform of Words (DCToW) [24] and the Deep Embedding approach
by Krishnan et al. [13] provide state-of-the-art results for many word spotting
benchmark datasets.

For realizing a semantic word spotting approach, it is necessary to encode se-
mantic relationships between word images. There are several approaches from the
NLP domain that provide this kind of information for textual inputs [3,5,19,20].
The approaches can be divided into context-based and static word embeddings.
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Context-based methods [5,20] calculate a word representation for a given word
based on the context in which it appears. Whereas, static methods [3,19] always
output the same embedding for a word, regardless of the context in which it
occurs. Since words in different contexts often have different meanings, context-
based models are preferable in most applications [6]. However, if there is no
context information as in segmentation-based word spotting, static embeddings
are preferable.

The combination of embeddings has already been successfully applied in the
NLP domain [1,4,23]. The motivation for this combination is that different em-
beddings encode different semantic aspects and thereby, their combination leads
to performance gains in many tasks [1,23]. In contrast to our work, the con-
catenated embeddings just serve as input to neural architectures and the equal
importance of both embeddings is ignored.

3 Method

In this section, we present methods for realizing a weighted combination of se-
mantic and syntactic word image representations. In section 3.1, we introduce
the representations used and show how they are predicted from word images
using CNNs. Then, we present two approaches for a weighted combination in
section 3.2. Finally, we motivate in section 3.3 that a normalization of seman-
tic and syntactic embeddings is necessary before stacking them, due to their
different properties in dimensionality and ranges.

3.1 Word Image Representation

For realizing a weighted combination of semantic and syntactic information, suit-
able word image representations are needed. Similar to previous works in the
semantic word spotting domain [14,22], we use FastText as the semantic repre-
sentation. Due to the state-of-the-art performance in traditional word spotting
and the ability to adjust the dimensionality of the embedding size, we use the
HWNetv2 [13] for obtaining our syntactic representation.

We use the proposed networks from Krishnan et al. [14] for mapping word
images to word representations. Thereby, the HWNetv2 [13] is used for predict-
ing syntactic and a modified ResNet (Attribute-ResNet) for semantic features.
The Attribute-ResNet uses a ResNet34 architecture [10] for feature extraction,
whereby the global average pooling layer at the end of the network is replaced
with a Temporal Pyramid Pooling (TPP) layer. The output of the TPP layer
is transferred into a 3-layer Fully-Connected Network (FCN). This FCN has as
many neurons in the last layer as there are dimensions in the word representa-
tion to be predicted (e.g. FastText=300). Except for the final layer, the ReLU
activation function is applied to the output of all layers in the network.
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Fig. 1: An overview of the indirect weighting approach.

3.2 Weighted Combination Approaches

We propose two approaches for a weighted combination of semantic and syntactic
embeddings. Both approaches receive a query, a word image from the test set,
and a weighting factor m ∈ [0, 1] as input and output a similarity score. In the
following, the proposed methods are described in more detail.

We obtain the semantic (qsem) and syntactic (qsyn) representations for a
given query q as already shown in the previous section. The query can be either
a word image or a text string. Similarly, for an element of the test set t, the
representations are denoted by tsyn and tsem. As a metric we employ the cosine
similarity which is commonly used in retrieval tasks.

Indirect Approach The indirect approach follows an intuitive realization of a
weighted combination. After computing the semantic and syntactic similarities
separately, the weighted similarity score is obtained by using a linear interpola-
tion (see Fig. 1). Technically, the cosine similarity simsyn of qsyn and tsyn, as
well as simsem of qsem and tsem are computed respectively. Finally, simsyn and
simsem are weighted by a parameter m and (1−m) respectively, resulting in its
new similarity score simq,t (see Eq. 1).

simsyn = similarity(qsyn, tsyn)

simsem = similarity(qsem, tsem) (1)

simq,t = m · simsyn + (1−m) · simsem (0 <= m <= 1)

Direct Approach In contrast to the indirect approach, the semantic and syn-
tactic vectors for both the query and the test image are first weighted element-
wise. Afterwards, these weighted representations are concatenated and finally,
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Fig. 2: An overview of the direct weighting approach.

the similarity between the concatenated representations of the query and test
element is calculated (see Fig. 2). A fundamental benefit of this approach is that
the concatenated representations can be used not only for obtaining similarity
scores, but also for recognition-free downstream tasks in the NLP domain. Tech-
nically, each element of the syntactic and semantic embeddings is multiplied
with m and (1 −m) respectively. The weighted syntactic and semantic embed-
dings of q and t are then stacked, resulting in new representations qweighted and
tweighted. Finally, the cosine similarity of these two embeddings provides their
new similarity score simq,t (see equation 2).

qweighted = concat((1−m) · qsem,m · qsyn)

tweighted = concat((1−m) · tsem,m · tsyn) (0 <= m <= 1) (2)

simq,t = similarity(qweighted, tweighted)

3.3 Normalization

For the indirect combination of semantic and syntactic embeddings we can com-
pute the distances in the original embedding spaces. For our approach of stacking
the embeddings, however, we have to take the differences of the embedding spaces
into consideration. First, the dimensionality of FastText (300-D) differs from the
dimensionality of the HWNet embedding (2048-D). Second, the dynamic range
of the features in the embeddings differ as shown in Fig. 3a.

In order to mitigate these problems, we apply different normalization meth-
ods to the embeddings before the concatenation. The effects of the different
normalization approaches to the statistics of the concatenated embeddings can
be observed in Fig. 3. Following the approach of Krishnan et al. [14], we nor-
malize the embeddings to have zero mean and unit variance (standardization,
see Figs. 3c and 3d). In contrast to their work, we standardize both embeddings
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(a) FT & HW2048 (base) (b) FT & HW300 (base)

(c) FT & HW2048 (std.) (d) FT & HW300 (std.)

(e) FT & HW2048 (l2) (f) FT & HW300 (l2)

(g) FT & HW2048 (std. & l2) (h) FT & HW300 (std. & l2)

Fig. 3: Mean, standard deviation and dynamic range of the different embed-
ding components for combinations of FastText (FT, blue) and HWNet (orange)
with 2048 (HW2048) and 300 (HW300) dimensions. We applied standardization
(std.), L2-normalization (l2) and combinations of the both to the embeddings
before concatenation. The embeddings were computed on the IAM test set.

instead of only FastText. Another common approach is normalizing the embed-
dings to have an L2-norm of 1 (see Figs. 3e and 3f). While this normalization
has no effect on the cosine similarity of the individual embeddings, changing
the length of the vectors before stacking changes the orientation and thus the
cosine similarity of the combined embeddings. Additionally, we explore the com-
bination of standardization and length normalization (see Figs. 3g and 3h). In
order to examine the influence of the difference in dimensionality of the embed-
ding spaces, we trained the HWNet embeddings to have the same number of
dimensions as FastText (300 instead of 2048). The statistics of the combined
embeddings using less dimensions are shown in the right column of Fig. 3.

4 Experiments

We evaluate our proposed approaches quantitatively as well as qualitatively on
three handwriting datasets (see Sec. 4.1). We supply implementation details in
section 4.2 and present in section 4.3 the metrics used. In section 4.4, the impact
of our proposed normalization steps before concatenating the semantic and syn-
tactic embeddings is evaluated. Finally, we show and discuss the quantitative as
well as qualitative results in section 4.5.
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(a) IAM-DB [16] (b) HW-Synth12k [12] (c) GNHK [15]

Fig. 4: Example images for the datasets used.

4.1 Datasets

In our experiments, we train and evaluate our approaches on three English hand-
writing datasets (see Fig. 4). The datasets vary considerably in their size and
characteristics and include synthetically generated as well as real handwritten
documents.

IAM-DB The IAM Database [16] is a popular benchmark for handwriting
recognition and word spotting. The documents contain modern English sentences
and were written by a total of 657 different people. The database includes 1539
text pages containing a total of 13353 text lines and 115320 words. The official
writer independent partitioning splits the database in 6161 lines for training,
1840 for validation and 1861 for testing. The pages contain text from a diverse
set of categories (e.g. press, religion, fiction).

HW-Synth12k The HW-Synth12k (HW) dataset is an in-house version of the
HW-Synth dataset proposed in [12]. The dataset consists of synthetically ren-
dered word images from handwritten fonts. The word images contain the 12000
most common words from the English language. For each word, a writer inde-
pendent split of 50 training and 4 test images is generated. The font is randomly
sampled from over 300 publicly available True Type fonts that resemble hand-
writing.

GNHK The GoodNotes Handwriting Kollection (GNHK) dataset [15] includes
unconstrained camera-captured images of English handwritten text. It consists
of 687 documents containing a total of 9363 text lines and 39026 words. The
official partitioning divides the data into training and test sets with a ratio of
75% and 25%, respectively.
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4.2 Implementation Details

In all of our semantic experiments, we use the pre-trained FastText model pro-
posed by [9]. Similar to Krishnan et al. [14], we normalize the FastText repre-
sentations to have zero mean and unit variance. For the HWNetv2 model, the
PHOC representation consists of layers 2, 3, 4, 5 and an alphabet with characters
a − z and 0 − 9. The syntactic network follows the proposed optimization and
hyper-parameter settings as described in [14].

The semantic network is optimized using the Mean Squared Error Loss and
the Stochastic Gradient Descent (SGD) algorithm. The SGD algorithm uses a
momentum of 0.9 and a batch size of 64. The networks are first pre-trained on
the HW-Synth12k dataset and then fine-tuned on the IAM or GNHK dataset
respectively. A learning rate of 0.01 is used during pre-training and 0.001 while
fine-tuning. Furthermore, a warm-up strategy is used to train the networks. The
images are scaled and padded to a fixed size of 128 × 384, while keeping the
aspect ratio.

4.3 Evaluation Protocol

We use mean Average Precision (mAP) for evaluating the syntactic quality of
our approach. MAP is a metric for evaluating retrieval tasks and is de-facto
the standard quality measure in the word spotting domain [2,13,21]. In our
experiments, we perform evaluation under both segmentation-based QbE and
QbS setting. Thereby, we follow the protocol proposed in [2] and discard stop
words as queries for the IAM-DB.

Similar to Krishnan et al. [14], we use Word Analogy (WA) for evaluating
the semantic quality of our approach. In the WA task, three words a, b and c
are given and the goal is to infer the fourth word d that satisfies the following
condition: a is to b as c is to d. For example, Berlin is to Germany as Paris is to
France. In our evaluation, we use the collection of human-defined WA examples
proposed in [19]. Note, that questions which contain words that are not part of
the test corpus of a dataset are excluded from the evaluation. The accuracy of
correctly predicted analogies is used as the final semantic evaluation score.

4.4 Normalization

Figure 5 shows the influence of the weight parameter for the direct combina-
tion on the evaluation metrics when applying different normalization methods
as explained in Sec. 3.3. The goal of our approach is to allow a user to interpo-
late between a semantic and syntactic representation as intuitive as possible by
adjusting the weight parameter m. Therefore, the course of the metrics should
be smooth and robust to small changes in the weighting. When combining the
embeddings without any normalization (Fig. 5a), we can observe that FastText
is only taken into account for very small values of m. For larger m, the met-
rics are solely determined by the HWNet embedding. Applying standardization
to zero mean and unit variance (Fig. 5b) helps slightly smoothing the metrics
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(a) FT (gt) & HW2048 (base) (b) FT & HW2048 (std.) (c) FT & HW2048 (std. & l2)

(d) FT & HW300 (std.) (e) FT & HW300 (std. & l2)

Query-by-Example
Query-by-String
Word Analogy

Fig. 5: Impact of the weighted combination for different normalization steps.
Results are given in accuracy for WA and mAP for QbE and QbS on the IAM
dataset. The values on the x-axis represent the weighting factor m from purely
semantic (0) to purely syntactic (1).

as a function of the weight parameter. A further improvement can be achieved
by applying L2-normalization after the standardization (Fig. 5c). Reducing the
number of dimensions of the HWNet embedding to match the 300 dimensions
of FastText allows for a smoother weighting than just combining the original
HWNet with 2048 dimensions and FastText (Fig. 5d). However, this combina-
tion is still dominated by the HWNet embedding for most choices of m. There-
fore, we apply standardization and normalization on these embeddings as well
(Fig. 5e), achieving a well balanced influence of both embeddings.

A similar effect of the normalization strategies can be observed in Fig. 6 where
similarities between example words are depicted depending on the weight param-
eter. For this example, we chose three syntactically similar (edit distance of 1 or
2) but semantically unrelated words and three semantically similar words which
do not share a single character. As a baseline, Fig. 6f shows the indirect approach
which is a linear interpolation of the semantic and the syntactic similarity. Fig-
ure 6a shows the aforementioned problem of highly unbalanced contributions of
the different embeddings towards the similarity between the stacked embeddings
when no normalization is applied. Applying standardization (Figs. 6b & 6d) and
the combination of standardization followed by L2-normalization (Figs. 6c & 6e)
leads to an S-shaped course of the similarity score approximating the desired
behaviour of the linear interpolation in the indirect combination. In contrast
to the indirect embedding, however, the combined embeddings can be used for
other downstream tasks.
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(a) FT & HW2048 (base) (b) FT & HW2048 (std.) (c) FT & HW2048 (std. & l2)

(d) FT & HW300 (std.) (e) FT & HW300 (std. & l2) (f) FT & HW2048 (indirect)

captain & curtain sent & seat fire & five

husband & wife nine & four black & white

Fig. 6: Combined similarities for either syntactically or semantically similar word
pairs. The values on the x-axis represent the weighting factor m from purely
semantic (0) to purely syntactic (1).

4.5 Results

We evaluate our method quantitatively based on the semantic and syntactic
metrics described in section 4.3. Since the benefit for a human adaptation of the
weighting cannot be easily expressed in a score, we further provide a qualitative
evaluation where we show representative retrieval lists for different weightings.

Quantitative Evaluation We provide the performances of the direct and in-
direct weighting approaches in Fig. 7. The plots show the course of the syntactic
(QbE and QbS) and semantic (WA) metrics at different weights from purely
semantic (0) to purely syntactic (1). Interestingly, the results are very similar
for both approaches on all datasets. However, the S-shaped course for the direct
method provides a qualitatively improved and more natural ranking. This is also
supported by the plots in Fig. 6. In general, the QbS score is strictly monotoni-
cally increasing and rises most strongly for weights in the range between 0 and
0.5. After that, only small improvements can be achieved. Furthermore, the QbE
score remains fairly constant. The WA score shows a surprising course on the
IAM and GNHK datasets, as it rises in the range from 0 to 0.2, drops slightly
from 0.2 to 0.5 and finally drops sharply. The increase at the beginning can be
explained by the fact that there are a few syntactic analogies in the WA task
and they may benefit from the syntactic information.
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(a) IAM direct (b) HW-Synth12k direct (c) GNHK direct

(d) IAM indirect (e) HW-Synth12k indirect (f) GNHK indirect

Query-by-Example Query-by-String Word Analogy

Fig. 7: Impact of the weighted combination for the proposed direct and indirect
combination approaches. Results are given in accuracy for WA and mAP for
QbE and QbS. The values on the x-axis represent the weighting factor m from
purely semantic (0) to purely syntactic (1).

Table 1: Performances on the three evaluated datasets using accuracy for the
WA task (semantic) and mAP for QbE and QbS word spotting (syntactic).

HW-Synth12k IAM-DB GNHK

Approach WA QbE QbS WA QbE QbS WA QbE QbS

FastText GT [3] 82.6 — — 87.4 — — 91.3 — —

Syntactic (HW300) 16.4 89.4 95.8 18.9 91.3 95.7 17.4 79.9 81.0
Semantic (FastText) 81.2 87.3 92.3 78.4 87.1 65.0 76.0 76.3 58.7

Krishnan et al. (Stacked) [14] — — — 61.5 90.6 94.3 — — —
Ours (Indirect) 57.7 92.8 96.8 66.6 92.8 94.3 72.7 82.6 78.5
Ours (Direct) 57.1 92.2 96.3 64.1 92.8 94.3 70.3 83.1 79.8

Table 1 compares our proposed approaches with the recently published stack-
ing method by Krishnan et al. [14]. The main focus of this evaluation is on the
comparison of syntactically and semantically combined methods. However, for
a better interpretation of the results, we also provide the scores of the purely
syntactic and semantic models. Unfortunately, a comparison with [14] is not
straightforward, as it is trained and evaluated on an unpublished version of the
HW-Synth dataset and no scores have been published for the GNHK dataset.
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Fig. 8: The top-10 of the retrieval lists for the query jacky and different weightings
of combination on the IAM-DB test set.

Therefore, we can only compare our optimized concatenation approaches on the
IAM dataset. The results show that both of our models outperform the approach
of Krishnan et al. [14] w.r.t. the WA and QbE metrics and achieve identical scores
for QbS. Our methods achieve a proper trade-off between the syntactic and se-
mantic metrics and can enhance the QbE scores remarkably on all datasets.
Compared to the textual FastText model, working on the ground truth (GT)
annotations of the datasets, the pure semantic model is able to achieve fairly high
scores on the IAM and GNHK datasets. However, these are still several points
behind the textual approach. For the HW-Synth12k dataset the WA scores are
close to the annotation-based system, which is presumably due to the lower vari-
ability of the synthesized data and that all words of the test set have been seen
during training.

Even though achieving high scores on these metrics is beneficial, the inter-
pretability of the quantitative results is limited. Since the focus of this work
is on the realization of an appropriate weighting, the insights from the trajec-
tories given in Fig. 5 and the following qualitative evaluation are increasingly
important.

Qualitative Evaluation Even though the quantitative results for the combi-
nation of syntactic and semantic embeddings could show their ability to perform
well on both semantic and syntactic scores, the benefit for the user in exploring
document collections cannot be captured that easily. Hence, Fig. 8 and 9 show
two examples for the query words jacky and hotel on the IAM-DB test set with
the weightings of (0, 0.25, 0.5, 0.75, 1). The figures illustrate the problem of a
purely semantic embedding (0), whereby semantically similar words w.r.t. the
query appear in the top 10 of the result lists, but word images with the same
transcription as the query are often missing. When syntactic information is taken
into account (0.25, 0.5), these words are highly ranked and the list also contains
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Fig. 9: The top-10 of the retrieval lists for the query hotel and different weightings
of combination on the IAM-DB test set.

many semantically relevant word images. When the focus shifts more to the
syntactic representation (0.75, 1), the words with the same transcription as the
query are highly ranked, however, the semantic information is lost. The examples
show that a weighted exploration of datasets has many advantages, for example
a user searching for the word hotel is likely more interested in occurrences of the
words hostel, stay or room then to words like motor or heel.

5 Conclusions

In this work, we present and evaluate two approaches for realizing an user-
adaptable weighted combination of semantic and syntactic word image repre-
sentations. Our experiments show both qualitatively and quantitatively that a
weighted combination of such representations offers many advantages and yields
interesting results especially in the area of semantic word spotting. Although the
primary objective of this approach is on the manual adjustment of the weighting
parameter by the user, the approach could be extended by an automatic recom-
mendation of this parameter. In future work, we plan to investigate the effect of
this combination in the context of recognition-free NLP tasks.
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