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Abstract—Semantic word spotting is an extension of the
traditional word spotting approach that uses not only visual but
also semantic information to determine the similarity between a
word image and a given query. Current approaches in this area
achieve a semantic retrieval by embedding word images into a
textually trained semantic space. The related literature presents
remarkable results regarding established metrics indicating that
the task of semantic word image retrieval is solved. A closer look
at the results reveals, however, that this is only partially the case.
In this work, we identify and solve current key challenges for
semantic word spotting. We analyze the published works in this
field towards these challenges and show why they do not solve
them. For this purpose, we demonstrate that the used embedding
space from current methods contains strong artifacts influencing
the retrieval task. Furthermore, we evaluate a more suitable and
established embedding approach from Natural Language Pro-
cessing for semantic word spotting. We also explain the challenges
of mapping word images into a semantic embedding space and
evaluate different architectures for this task. Thereby, we present
a new architecture that outperforms current approaches in this
area. In addition, we show that commonly used metrics are not
suitable for evaluating a semantic retrieval and present a new
evaluation metric for this task.

I. INTRODUCTION

In recent years, there has been an increased interest in
tasks related to text recognition and retrieval for handwritten
documents. Due to the high variability in handwriting, it is still
an open research topic. As the recognition of these challenging
documents is not always easy to obtain, the interest in more
robust approaches such as word spotting increases [1]. The
goal of this task is to retrieve the most relevant instances of
words in a collection of scanned documents w.r.t. a query.
There exists a variety of different query types with Query-by-
Example (QbE) and Query-by-String (QbS) being the most
prominent ones. In QbE applications, the query is a word
image whereas in QbS it is a textual string representation.
Furthermore, word spotting can be divided into segmentation-
free (i.e. entire document images are used without any segmen-
tation) and segmentation-based (i.e. a word level segmentation
is required) approaches. There is a wide range of methods
in this area covering Bag-of-Feature representations, sequence
models, Support Vector Machines and Neural Networks [1].
Recently, approaches based on Convolutional Neural Networks
(CNNs) have achieved remarkable results for most benchmark
datasets in this area [2], [3]. For state-of-the-art word spotting

methods, only instances with the same transcription as the
query are considered relevant. Therefore, a search for the
word ”dog” would not show any result for ”dalmatian”,
despite being relevant to a user. A procedure that has already
significantly improved the user satisfaction for web search
engines is the consideration of semantic information in the
retrieval. This allows users to not only search for words, but
also for concepts which are latent or hidden inside a query. A
concept could be a similar meaning (e.g. great and huge) or
a categorical relationship (e.g. animal and cat).

Semantic word spotting realizes a semantic word image
retrieval and can be seen as an extension of the traditional
word spotting approach. The aim of this task is to retrieve
all word images with the same transcription as the query,
followed by semantically similar ones. Even if there are
multiple ways to achieve a semantic word image retrieval, we
only consider approaches that predict semantic information
directly from a word image without transcribing it. Due to a
different interpretation of semantic similarity between words,
the publications in this field can be divided into ontology-
based and context-based semantic retrieval. In ontology-based
approaches, the semantic relationship between words is based
on categories [4], [5]. These relationships are mostly organized
in a handcoded graph like WordNet [6]. In context-based
approaches the semantic relationships between words rely on
the distributional hypothesis. This states that words appearing
in the same context have a similar meaning. There are many
models from Natural Language Processing (NLP) that can
extract these similarities between words [7]–[9]. State-of-the-
art approaches for context-based semantic word spotting obtain
the semantic information of a word image by embedding the
image into a textually trained semantic space [2]. Based on the
published retrieval lists and the remarkable results regarding
common metrics, it seems that the approach from Wilkinson
et al. [2] solves the task of semantic word image retrieval. A
closer look at the results, however, shows that their approach
can only partially solve it.

In this work, we identify the current key challenges for
context-based semantic word spotting on segmented word
images. We also analyze the published works in this field
towards these challenges and show why they are not able
to solve them. Furthermore, we present solutions for two of



Captain

Colonel
certain

sent

ment
send

Green

Yellow

Blue

Captain

Lieutenant
Sergeant

forwarded

sent
send

Green

Yellow

Blue

ment

certain

Lieutenant

Colonel

Sergeant

Fig. 1: Comparison between the learned semantic spaces de-
fined by the CharLSTM (green) and FastText (orange) model.

these challenges. The remainder of this paper is structured as
follows. In section II, we compare the word embedding model
used in [2] to a well known approach from NLP. In section
III, we explain the challenges of mapping word images into a
semantic embedding space and evaluate different architectures.
In section IV, we show that commonly used metrics are not
suitable for the evaluation of a semantic retrieval list and
present a new evaluation metric for semantic word spotting.

II. WORD EMBEDDINGS

Word embeddings are a well known approach in NLP to
convert strings into a vector representation. They are already
used in word spotting systems (e.g. Pyramidal Histogram of
Characters (PHOC) and Discrete Cosine Transform of Words)
to enable a comparison between word images and strings.
Thereby, the choice of the embedding approach has a strong
influence on retrieval [2], [3]. This is particularly true for
context-based semantic word spotting, since the embedding
approach is also used to encode semantic relationships be-
tween words. Therefore, it is a major challenge to find or
create a suitable word embedding model for this task.

Due to the recent progress in NLP, there are several
promising models to choose from. However, not every model
is directly applicable to the problem. This is especially the
case for state-of-the-art approaches, as they require context
information that is not available for segmentation-based word
spotting. Furthermore, the approach should not generate an
embedding for each word independently (e.g. Word2Vec [10]),
but provide a learnable structure for encoding words. This
may allow a word spotting system to extract a structure
from embeddings already seen during training. Based on
this structure, the correct embedding can then be predicted
for words that were not part of the training. This is very
important because otherwise the word spotting system can
only determine the correct embedding for words that were
part of the training set.

The semantic word spotting system from Wilkinson et
al. [2] uses the Character-Aware Neural Language Model
(CharLSTM) [9]. This model seems to work fine for this
task, because it offers a learnable structure and does not need
context information to produce embeddings. In this model,
several steps are performed to calculate a vector representation

TABLE I: Most similar words from GW and IAM dataset
w.r.t. captain and sent using the CharLSTM model. Values in
brackets show the cosine similarity w.r.t the query times 100.

GW IAM
captain (100) sent (100) captain (100) sent (100)
captains (75) send (47) curtain (62) cent (63)
cap (39) ment (38) certain (57) ment (62)
tain (34) sen (37) captain’s (56) went (55)
colonel (34) sending (37) explain (44) set (55)
subaltern (33) set (30) entertain (42) event (54)
adjutant (33) getting (25) acceptable (42) send (53)
lieutenant (32) tents (25) ception (41) spent (50)
major (32) gene (24) uncertain (41) sect (45)
certain (30) returned (24) casting (39) seat (44)

TABLE II: Most similar words from GW and IAM dataset
w.r.t. captain and sent using the FastText model. Values in
brackets show the cosine similarity w.r.t the query times 100.

GW IAM
captain (100) sent (100) captain (100) sent (100)
captains (78) send (74) commander (62) send (74)
sergeant (53) sending (71) sailor (57) received (63)
colonel (51) forwarded (68) admiral (56) returned (57)
officer (51) received (63) coach (51) arrived (51)
ensign (51) returned (57) officer (51) came (51)
lieutenant (49) delivered (55) crew (50) brought (51)
chief (46) arrived (51) ship (49) mail (48)
soldier (44) came (51) lieutenant (49) receive (48)
adjutant (42) ordered (51) chief (46) letter (47)

for a given word. The first step is to transform the word into a
character embedding matrix. Then multiple filters of different
sizes extract n-gram-like information from it. By applying a
Max-Over-Time Pooling operation to these features, a fixed
length representation is created. The resulting vector can be
used as an independent representation or can be transformed
into a semantic space by using a highway network [11]. In the
training phase, a distribution over the vocabulary is predicted
by using the determined word representation and a Recurrent
Neural Network Language Model. Finally, the Cross Entropy
Loss between the predicted distribution and the next word
from the training is minimized. As there are no pre-trained
models available, the authors of [2] suggested, that the model
could be trained on all the 40 Volumes of ”The Writings
of George Washington from the original Manuscript Sources
1745-1799” for the George Washington (GW) dataset [12]. For
the IAM database [13], they suggest to use the text corpus of
the Penn Treebank. To obtain an impression of the semantic
spaces generated by the CharLSTM model, table I lists the ten
most similar words for two exemplary queries w.r.t. the model.
The analysis of the spaces shows that there are qualitatively
good semantic relations for some words, especially for the GW
dataset (e.g. captain). But it is obvious that for most queries
there are artifacts in the spaces that lead to a high ranking for
orthographically but not semantically similar words. In case
of the IAM database, the artifacts become even more obvious
and apply to almost all query words.
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Fig. 2: Comparison between CharLSTM and FastText. The figure depicts the top ten unique results for the queries captain
(top), sent (middle) and chief (bottom). The retrieval lists were generated using the approach of [2] and the GW test dataset.

To analyze the influence of the semantic embedding on the
retrieval, we also use the FastText [8] model. This approach
seems to be well suited for this task, because it has a
learnable structure, established pre-trained models and does
not need context information to produce embeddings. Figure
1 visualizes both embedding spaces for exemplary words.
The comparison indicates that FastText provides a qualita-
tively better semantic embedding that is more independent
from the word’s orthography. The FastText approach uses a
Neural Network and an unstructured training corpus to learn
a mapping of words to real vectors. Instead of learning an
embedding for each word independently, it uses the internal
structures of words. This is achieved by representing each
word as a composition of n-grams. There are also special
boundary symbols < and > at the beginning and end of
words, allowing to distinguish prefixes and suffixes from other
character sequences. The word itself is also included in the
set of its n-grams. Taking the word where and n = 3 as an
example, it will be represented by the character n-grams: <wh,
whe, her, ere, re> and the special sequence <where>. For
training, either the Skip-gram model or the Continous Bag-
of-Words model can be used. The overall goal of training
is to produce similar embeddings for words that occurred
in the same context. A main reason for using FastText is
the availability of publicly released pre-trained models [14].
We use the model trained on Common Crawl and Wikipedia
for the English language. Table II offers a first impression
regarding the high semantic quality of this model. The effect
of using an embedding space with qualitatively better semantic
relationships for word spotting can be seen in figure 2. It shows
a qualitative comparison of the generated semantic retrieval
lists on GW using the CharLSTM and FastText model.

III. WORD IMAGE MAPPING

Semantic word spotting exploits the encoded knowledge
available in the textual domain for retrieval. Since semantic

information is directly predicted from a word image without
transcribing it, a mapping of word images to the representation
of their transcriptions in the semantic space is required. State-
of-the-art approaches in traditional word spotting achieve
remarkable results by using models based on CNNs to learn
an embedding for word images [3]. This is mainly due to
the strong relationship between the distances of word images
in the embedding space and the edit distance of their tran-
scriptions. In the case of a semantic embedding, however,
this property is not given and word images with a small edit
distance w.r.t. their transcriptions often have to be mapped into
very different areas of the embedding space. The challenge of
mapping word images to a semantic space can be seen in
figure 3. Here, it is shown that similar-looking word images
are close to each other in an embedding space traditionally
used for word spotting, whereas in a semantic space they are
often far away from each other. Although almost all word
images have the transcription fire, most of them are mapped
to different words in the semantic space due to their visual
appearance. Therefore, they are located far away from the
target representation in the semantic space. As a result, these
word images have a lower ranking for the query word fire.
Whereas in traditional word spotting, all the word images from
the example are still quite close to the target representation,
even if they are mapped incorrectly. This is why they are still
having a high ranking in the retrieval list of fire.

Instead of learning an embedding for each word directly,
suitable NLP models for semantic word spotting divide words
into their n-gram representations in order to determine their
embeddings. This approach allows the mapping function to
calculate an embedding even for unseen words during training.
Even though this is a very useful property, it is still a challenge
for the model to not only learn an embedding for word
images used in training, but to generalize and approximate
the learnable embedding function used in the NLP model.
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Fig. 3: Visualization of the challenges for mapping word
images into semantic space (orange) and compares them to
traditional embedding space (green). The dashed dots indicate
the correct position of the corresponding word in the respective
space and the dashed rectangle shows the word images whose
transcription did not occur during training.

If the model cannot approximate the underlying embedding
function accurately enough, it can only predict the correct
representation for transcriptions occurring in training. It can
be seen that this kind of function very often maps word images
with unseen transcriptions in completely wrong areas of the
semantic space. This problem is visualized in figure 3, where
the green highlighted word image with the transcription five
was not a part of training and is therefore incorrectly mapped
to the representation of the orthographically similar word fire.

The semantic word spotting approach in [2] uses a two-
stage architecture to realize a mapping from word images to
a semantic space. The first step is to transform word images
into image descriptors by using a TripletCNN. This approach
tries to ensure that word images with the same transcrip-
tion are mapped to similar, and word images with different
transcriptions to dissimilar vector representations. The second
and final step is to map these descriptors into a semantic
space by using a fully connected Multilayer Perceptron (MLP).
We reproduced their approach with the suggested training
procedure and hyperparameters. Thereby, we achieved higher
mAP scores for the CharLSTM embeddings. This can be
explained by the different pre-processing of the training data
for the CharLSTM models. In the following, we will refer to
the reproduced model as TripletCNN + MLP. In table III it
can be seen that the architecture produces satisfying results
for the CharLSTM embedding. This may be explained by the
high similarity between the CharLSTM and an orthographic
space, as this avoids the problems of mapping a word image
into a fully semantic space. By using this architecture for a
semantically better space (e.g. FastText), it becomes clear that
it cannot solve the problems described above. This cannot
only be illustrated by the example of figure 2 for the query

word chief, but also by the results in table III. A feasible
explanation for this is that the extracted image descriptors
from a TripletCNN strongly restricts the ability of mapping
word images into a semantic space. Even if the descriptors
calculated by the TripletCNN are effective in distinguishing
word images with different transcriptions, they do not take
orthographic information into account. Since the NLP methods
used to determine word embeddings are based on n-gram
information, it becomes difficult or even impossible for the
MLP to extract the correct mapping function.

In order to avoid the possible drawbacks of the TripletCNN,
this work evaluates two architectures for semantic word spot-
ting. We first evaluate the end-to-end architecture proposed
by Sudholt et al. [3] that yields state-of-the-art results for
traditional word spotting. Although the architecture seems to
be well suited for semantic word spotting, it could not solve the
identified problems and even performs worse (see table III).
Since the end-to-end principle has not been able to achieve
satisfying results, the use of a two-stage approach seems to be
preferable for this task. To better approximate the embedding
function of the NLP models, we replace the image descriptors
obtained from the TripletCNN by a representation that ap-
proximates the orthographic information. An embedding that
fulfills these conditions is the PHOC representation. Therefore,
we replace the TripletCNN in the architecture of [2] by the
TPP-PHOCNet from Sudholt et al. [3]. For training, we use the
standard configurations published in the respective works. The
only differences are that we pre-train the PHOCNet with the
IIITHWS dataset [15] and freeze the weights of the PHOCNet
when training the MLP.

Table III shows, that our new architecture outperforms state-
of-the-art results for semantic word spotting. By analyzing the
QbS values for the CharLSTM embedding, it becomes obvious
that the model from [2] cannot approximate the mapping
functions properly. Whereas our architecture can learn the
structure almost perfectly and therefore there is only a small
difference between the QbS values of all queries and those that
only occurred during training. The major difference between
these values in the FastText model is that the additional n-gram
is dominant for the construction of the representation. Thus,
the encoding of the additional n-gram is needed in order to
reconstruct the representation. The FastText structure is not as
learnable as expected because it is not possible to compute the
representation of a word from the vocabulary by just summing
up his n-gram representations. Therefore, words that do not
occur in the MLP training are mapped far away from the target
representation. Furthermore, it can be seen that the CharLSTM
embedding yields higher QbS and QbE values than FastText.

IV. EVALUATION

Mean Average Precision (mAP) has traditionally been used
as a measure for the evaluation of retrieval lists in word
spotting. This metric is well suited for a traditional approach,
since it is only important that the word images with the same
transcription w.r.t. the query are highly ranked. Secondary
retrievals (i.e. all word images with a different transcription



TABLE III: Comparison of the CharLSTM and FastText model on the GW dataset and IAM database for the three architectures.
The values in brackets show the mSP using only those words and word images that were part of the training as queries. Results
reported as mean Average Precision [%].

GW IAM
Embedding Architecture QbE QbS QbE QbS
CharLSTM TripletCNN + MLP 97.55 (97.82) 83.89 (98.10) 82.57 (85.84) 80.96 (91.32)

AttributeCNN 92.31 (94.01) 76.46 (94.54) 65.57 (63.71) 75.91 (79.14)
PHOCNet + MLP 94.94 (96.82) 94.33 (98.66) 85.93 (86.94) 88.62 (91.45)

FastText TripletCNN + MLP 94.12 (95.07) 57.42 (85.54) 51.01 (63.01) 19.29 (44.52)
AttributeCNN 87.58 (88.13) 59.39 (85.58) 10.02 (12.07) 12.26 (20.90)
PHOCNet + MLP 96.45 (96.56) 69.14 (98.32) 81.61 (86.58) 54.41 (91.66)

than the query), however, are completely ignored. Since the
focus of semantic word spotting is also on the ranking of the
secondary retrievals, the use of this metric is not suitable for
the evaluation of this task. This can be illustrated by using
figure 2 as an example, where all retrieval lists except the last
one have a mAP of 1.0 but a totally different semantic quality.
The misuse of the mAP score for the evaluation of semantic
retrieval lists is also evident in the evaluation of the semantic
models in section III. Here the CharLSTM has a high mAP
score for both the GW dataset and the IAM database, although
the secondary retrievals are mostly semantically dissimilar. For
FastText the mAP scores are lower, although the secondary
retrievals show a high semantic similarity. For this reason we
present and evaluate a more suitable metric for semantic word
spotting in this section.

For evaluating a semantic retrieval list, the semantic similar-
ities between the query and the elements of the retrieval list
are required. A fundamental question here is how semantic
relations between words can be quantified. One possibility
that is explored in this work is to use a semantic word
model, such as FastText or the CharLSTM, to determine
the semantic similarities between the words. The proposed
evaluation measure extends the idea of the Average Precision
(AP) by considering semantic information in the evaluation
of the retrieval order. The AP is a measure for evaluating the
sorting of a retrieval list and can be formally calculated, for a
list with the length n, by

AP =

∑n
k=1 p(k) · r(k)

t
. (1)

Here r(·) ∈ {0, 1} is an indicator function with r(i) being
1 if the transcription of the i-th element in the retrieval list is
equal to the query and 0 otherwise. Furthermore t =

∑n
i=1 r(i)

is the number of word images in the list with the same tran-
scription w.r.t. the query. Equation 2 determines the precision
for the retrieval list up to position k. This score describes the
ratio between the number of relevant and irrelevant items in the
list. The number of relevant items is calculated by summing
up the values r(1) to r(k).

p(k) =
∑k

i=1 r(i)
k

(2)

In the following, the AP formula is adapted to the evaluation
of semantic retrieval lists. For this purpose, it is obvious that,

unlike AP, there is no 1 or 0 decision on whether a word
is semantically similar to the query or not. It is rather the
case that every word in the list has a semantic relationship
regarding the query and therefore all elements of the list are
relevant for the evaluation. Therefore, the indicator function
r(i) is replaced by the function sim(a, i). This function uses
a semantic model to determine semantic similarity between a
query a and the word at position i in the retrieval list. This
modification in the precision formula results in the so-called
similarity or short s score, which is formally calculated by

s(a, k) =
∑k

i=1 sim(a, i)

k
. (3)

Instead of the precision p(k) the s(a, k) score determines
the ordering of the semantic similarities up to the position k in
the list. The replacement of these functions in the numerator
of the AP formula yields to the so-called Semantic Precision
or short SP, which can be formally determined for a list l of
size n by

SP(a, l) =
n∑

k=1

s(a, k) · sim(a, k). (4)

For the interpretation of this evaluation metric, it is impor-
tant to normalize the scores to the interval [0, 1]. However,
normalizing the SP for a list is not as straightforward as using
t =

∑n
k=1 sim(a, k). In order to achieve this, the semantically

best possible ranking for a query is needed, which can be
obtained by sorting the word images contained in the database
in descending order of their semantic similarity to the query.
In a traditional segmentation based word spotting approach all
elements of the database are part of the retrieval list, which
makes it possible to calculate the best retrieval list by just
sorting it w.r.t. the similarity scores. Finally, the normalization
of the SP for the retrieval list can be achieved by dividing it
with the SP of the best possible ranking for the query. This
results in the complete definition of the normalized Semantic
Precision, which can be formally calculated for the retrieval
list lretrieval, a query a and the best possible retrieval lbest by

SPnorm(a, lretrieval) =
SP(a, lretrieval)

SP(a, lbest)
. (5)

Averaging the normalized SP scores for all queries from the
test set leads to the definition of the mean Semantic Precision
(mSP).



TABLE IV: Evaluation results for the two semantic models and PHOC as baseline with mSP. The values in brackets show the
mSP using only those words and word images that were part of the training as queries. Results reported as mSP [%].

GW IAM
Dataset Architecture mSPall mSP10 mSPall mSP10

PHOC TripletCNN + MLP 50.58 (56.66) 53.61 (59.67) 42.83 (56.81) 45.67 (58.93)
AttributeCNN 51.59 (57.61) 55.52 (60.08) 48.34 (58.35) 50.48 (59.71)
PHOCNet + MLP 51.39 (57.46) 54.88 (59.87) 48.02 (57.89) 50.31 (58.49)

CharLSTM TripletCNN + MLP 53.89 (61.86) 57.79 (68.48) 45.91 (63.08) 48.44 (65.95)
AttributeCNN 52.66 (53.61) 56.66 (59.67) 49.08 (66.84) 45.32 (59.94)
PHOCNet + MLP 54.79 (62.18) 60.27 (70.53) 49.19 (61.06) 52.55 (63.00)

FastText TripletCNN + MLP 76.87 (85.81) 71.06 (87.52) 54.82 (73.76) 39.04 (62.13)
AttributeCNN 60.12 (70.44) 59.72 (75.15) 54.22 (69.72) 26.68 (33.12)
PHOCNet + MLP 78.46 (89.52) 75.50 (94.25) 73.29 (87.74) 69.82 (90.90)

To demonstrate the applicability of the new metric for
semantic word spotting, we present the mSPs for the two
semantic models on the GW dataset and the IAM database.
We use a pre-trained FastText model to obtain the semantic
similarities for the metric. Thereby, it is important to note that
we do not use the same pre-trained FastText model to avoid
any bias. The results are shown in table IV where not only the
mSP is calculated for the whole retrieval list (mSPall) but also
for the first ten (mSP10) elements. We further report values for
using all words as queries and for only using those that were
part of training. First of all, it is obvious that the quality of the
retrieval lists for queries that were part of the training is sig-
nificantly better than for queries that did not occur in training.
The PHOC representation can be considered a baseline as it
does not encode semantic information. Contrary, it is obvious
that the CharLSTM, unlike the PHOC, encodes semantic
information which is also reflected in the mSP results, as
the CharLSTM has higher scores for this metric. It is also
evident that the FastText embedding achieves by far the best
results. Furthermore, this evaluation supports the observations
from our analysis and shows that the FastText model encodes
significantly more semantic information than the CharLSTM.
Another indicator for the high semantic quality of the FastText
model is that even after the first ten results there are highly
ranked semantic word images. This can be seen by comparing
the mSPall and mSP10 values. For the PHOC and CharLSTM
the mSPall values decreases.

V. CONCLUSION

In this work, we highlight the advantages of using semantic
information in word spotting approaches and identify the
current key challenges for this task. Our analysis shows that
the choice of the semantic embedding model has a major
influence on retrieval. Therefore, the first key challenge is
to find or create a semantic word embedding that offers
a learnable structure, encodes relevant semantic information
and does not need context information. We show that the
CharLSTM embedding used in [2] has a strong relationship
to a orthographic space and does not encode many semantic
relationships. We also show that the FastText approach offers
a better semantic space but is not as learnable as expected.
Therefore, further research in this area is needed to overcome
this challenge. The second key challenge is the mapping of

word images into a semantic space. We show that the approach
from [2] has a major drawback for semantic word spotting and
evaluate an end-to-end approach which unexpectedly performs
worse. However, we are able to tackle the challenge by
replacing the TripletCNN in the architecture of [2] with a TPP-
PHOCNet. We also demonstrate that the current metrics in
word spotting are not suitable for evaluating semantic retrieval.
Therefore, the third key challenge is to find or create a metric
for semantic word spotting. In this work, we introduce the
mean Semantic Precision for this purpose and show that this
metric is able to reasonably score a semantic ranking.
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