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Abstract Word spotting has become a field of strong

research interest in document image analysis over the

last years. Recently, AttributeSVMs were proposed which

predict a binary attribute representation [3]. At their

time, this influential method defined the state-of-the-

art in segmentation-based word spotting. In this work,

we present an approach for learning attribute represen-

tations with Convolutional Neural Networks

(CNNs). By taking a probabilistic perspective on train-

ing CNNs, we derive two different loss functions for bi-

nary and real-valued word string embeddings. In addi-

tion, we propose two different CNN architectures, specif-

ically designed for word spotting. These architectures

are able to be trained in an end-to-end fashion. In a

number of experiments, we investigate the influence

of different word string embeddings and optimization

strategies. We show our Attribute CNNs to achieve

state-of-the-art results for segmentation-based word spot-

ting on a large variety of data sets.

Keywords Attribute CNN · PHOCNet · TPP

Layer · Word Spotting · Deep Learning · Handwritten

Documents · Historical Documents

1 Introduction

Understanding the contents of handwritten texts from

document images has long been a traditional field of re-

search in computer science. Despite its long history, it’s
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still considered an unsolved task as classification sys-

tems are still not able to consistently achieve results as

are common for machine printed text recognition. This

is especially the case when the text to be recognized

either exposes a large amount of degradation or if the

variability in the word images of the same class is high.

In these situations, using a retrieval instead of a recog-

nition approach produces more robust results. This re-

trieval approach has been termed Keyword Spotting or

simply Word Spotting. Here, the database consists of

document or word images.

There exists a variety of different query types with

Query-by-Example (QbE) and Query-by-String

(QbS) being the most prominent ones. In QbE applica-

tions, the query is a word image whereas in QbS it is a

textual string representation. With respect to practical

applications, QbE poses certain limitations as the user

has to identify a query word image from a document im-

age collection. This might either already solve the task

(“does the collection contain the query?”) or be tedious

when looking for infrequent words as queries [2, 48].

Thus more recently, the focus has shifted towards

QbS-based approaches [2,3,43]. One notable drawback

of this method, however, is that the word spotting sys-

tem has to learn a mapping from textual to visual rep-

resentation first. Most of the time, this can only be

achieved through manually annotated training samples.

An elegant solution for enabling a word spotting

system to perform QbE as well as QbS are common

subspace approaches. Here, the textual representation

and the word image representation are projected into

a common subspace in which the word spotting task

boils down to a simple nearest neighbor search. A very

successful approach in this regard has been the em-

bedded attributes framework [3]. The projection for the

text is done by computing binary textual attributes in
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a d-dimensional space. Each attribute then represents

one dimension in a common attribute space. This at-

tribute representation is called Pyramidal Histogram of

Characters (PHOC). The projection from word images

to common subspace is then learned by an ensemble of

attribute detectors. More specifically, the images are en-

coded into a Fisher Vector representation which is then

forwarded to d Support Vector Machines (SVM), each

predicting one attribute of the PHOC. This ensemble

of SVMs is referred to as AttributeSVMs.

The approach of [3] has certain design aspects that

can be improved upon. First, the feature representa-

tion and the attribute detectors (SVMs) are optimized

separately. Moreover, the individual SVMs each have

to learn their own model and make no use of shared

parameters. As there exist strong correlations between

certain attributes of the PHOC, parameter sharing could

help an attribute detector in terms of training time as

well as detection accuracy.

In this paper we present an approach to word spot-

ting by using Convolutional Neural Networks (CNN)

which are able to predict multiple attributes at the

same time. The CNNs optimize the feature represen-

tation and the attribute detectors in a combined, su-

pervised fashion which leads to discriminative features

and highly accurate representations. By leveraging at-

tributes, the CNNs are able to predict representations

for word image classes with high precision, even if they

were not present at training time (out of vocabulary).

The presented CNNs are capable of dealing with binary

as well as real-valued attributes. In the fashion of At-

tributeSVMs, we refer to our CNNs as Attribute CNNs.

Fig. 1 gives an overview of how we use Attribute CNNs

in order to perform word spotting.

The contributions of this paper are as follows: We

design two CNNs for word spotting which are able to

predict binary as well as real-valued attribute represen-

tations. For this, we present a theoretical framework

which allows for designing loss functions and also in-

terpret the output and training of a CNN from a the-

oretical point of view. This framework is not only ap-

plicable to our problem at hand but can be used for

any task where CNNs are to be employed. Further-

more, we investigate the relationship between two com-

mon loss functions for learning real-valued representa-

tions, namely the Cosine Loss and the Euclidean Loss.

In addition to building our Attribute CNNs from well-

known CNN layers, we propose a novel pooling layer

called Temporal Pyramid Pooling layer. This layer is

especially suitable for processing word images of vary-

ing width and height. Finally, we evaluate our method

on a total of six publicly available data sets featuring

both Latin and Arabic script. The results show that

our CNNs are able to achieve equal or better results

than the current state-of-the-art. While the presented

Attribute CNNs are designed specifically for word spot-

ting applications, they could principally be used in any

attribute classification scenario.

Preliminary versions and results of the presented ap-

proach have already been published in ICFHR 2016 [58]

and ICDAR 2017 [59]. While [58] covers the initial ideas

of training a CNN with an attribute representation, [59]

introduces the TPP layer and reports further experi-

ments. In addition, [59] also introduces the Cosine Loss

for attribute CNNs but without giving theoretical ex-

planations as to why this loss is suitable for the task at

hand. This aspect is addressed specifically in this work.

2 Related Work

2.1 Deep Learning and CNNs

The recent success of Convolutional Neural Networks

(CNNs) has been sparked by a number of develop-

ments which enabled these neural networks to become

the backbone of state-of-the-art deep learning systems.

Key contributions in this regard have been the intro-

duction of Rectified Linear Units (ReLU) as activation

function [14], highly optimized implementations run-

ning on graphics cards [19], specialized weight initial-

ization strategies [16] and large scale data sets such as

ImageNet [49] to train on.

The architecture of classic CNNs like LeNet [30],

AlexNet [26] or VGG16 [53] all share a convolutional

part in the early layers and a set of fully connected

layers at the very end of the neural network. More re-

cent CNN designs like GoogLeNet [61], the All Convo-

lutional Net [55] or Residual Networks [17] ignore the

fully connected layers in large parts and build up the

individual CNN of (almost) only convolutional layers.

2.2 Attribute Representations

The typical classification problem in computer vision

deals with assigning one out of d labels to a given image.

However, classification systems can, in general, only as-

sign class labels that have been seen during training.

In order to alleviate this problem, semantic attributes

were proposed [9,27,28]. Instead of a single class label,

a number of attributes can be assigned to a class. Each

class is thus represented by a specific set of attributes

while single attributes are shared by all classes. If a

classifier is trained to predict the attributes, knowledge

about these semantic units can then be transferred from

the training to the test classes even if there exist classes
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Fig. 1: The figure visualizes the proposed system. For Query-by-String, the attribute representation is extracted

directly from the string (left side). For word images, a CNN predicts the attribute representation. This way,

annotations and word images can be projected into a joint attribute space. Similarity in the attribute space is

determined by applying the cosine distance, i.e., by determining the angle between attribute vectors. Not shown

in the figure is Query-by-Example, which is done by simply ranking the attribute representation obtained from

the word images in a nearest neighbor approach.

which were not seen during training [27]. If there at-

tribute configuration is known, they can be classified

even if no samples were seen during training.

2.3 Word Spotting

In the following, related work with respect to word spot-

ting is presented. For space limitations, we only give a

brief overview of this field of research. For a detailed
survey on word spotting see [13].

The goal of word spotting is to extract relevant parts

of document image collections with respect to a certain

query. The primary applications are browsing and in-

dexing document image collections, especially in situa-

tions where a recognition, i.e., transcription approach

does not achieve satisfying results [38,44,47]. However,

word spotting can be used for other tasks as well such

as refining OCR results [52].

In [31] word spotting was first applied to handwrit-

ten documents which is generally considered a much

harder task compared to doing word spotting on ma-

chine printed document images due to large variations

in writing style. While [31] used XOR-maps on binary

features, ensuing works often made use of sequential

methods which had proven successful in the field of

word image recognition. The two most prominent among

these are Dynamic Time Warping (DTW) [23, 38] or

Hidden Markov Models (HMM) [10]. Sequential mod-

els are still employed in recent approaches in the form

of Semi-continuous HMMs [40], Bag-of-Features HMMs

(BoF-HMM) [44] and Bidirectional Long Short Term

Memory (BLSTM) networks [11]. However, there has

been an ever growing amount of work focusing on holis-

tic representations as well. In [2,57] and [47] densely ex-

tracted SIFT descriptors are used in a Bag-of-Features

approach. The quantized descriptors are aggregated into

a Spatial Pyramid [29] to form a holistic word image

descriptor which can then be used in a simple nearest

neighbor approach for word spotting.

With the exception of QbE, one has to find a model

to map from the query representation to the word im-

age. In [43] this is achieved through a BoF-HMM. Other

approaches make use of label embedding techniques.

In [2] the holistic word image descriptor and a n-gram-

based textual descriptor are merged together and pro-

jected into a subspace. In a different and very influ-

ential approach, embedded attributes are used as com-

mon representations [3]. This method allows for an ef-

ficient framework, in which QbS as well as QbE can be

performed. For this, the transcription of a word image

is mapped to a binary attribute representation called

Pyramidal Histogram of Characters (PHOC). Extract-

ing a PHOC from a given transcription is visualized in

Fig. 2. The first level encodes which characters of the

given alphabet are present in the entire word. Note that

if a character appears multiple times it is not counted

but simply denoted as present. For the second layer, the

PHOC encodes whether characters are present in the
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Fig. 2: The figure shows how to extract a 3-level PHOC

from a given transcription. At each level, the word

string is split into a certain number of sections. For

each section, the presence or absence of characters from

a given alphabet is determined and saved in a binary

histogram. The resulting histograms are concatenated

in order to form the PHOC vector.

left and right split of the transcription. For determin-

ing whether a character is present in a split or not, the

normalized occupancy Occ(k, n) =
[
k
n ,

k+1
n

]
is used [3].

Here, n is the length of the transcription and k is the

position index of a specific character in the word. If

the normalized occupancy overlaps at least 50% with

a given split the character is considered present in this

split. For example, the character a is present in both

splits in the second level in Fig. 2 as the occupancy

overlaps 50% with both partitions. A nice trait of the

PHOC representation is that it can be extracted from

a given transcription directly without the need for any

sort of training.

In order to predict PHOCs from a given word im-

age, [3] makes use of an ensemble of SVMs which are

trained on the Fisher Vector representation of the word

image. Each SVM predicts one attribute in the PHOC.

This ensemble is referred to as AttributeSVMs by the

authors [3].

2.4 Word Spotting with CNNs

Due to their recent success in other fields of computer

vision, CNNs have been increasingly used for word spot-

ting as well. One of the first works in this regard was

presented in [51]. Here, the authors finetuned an AlexNet

pretrained on the ImageNet database to predict word

image classes. The CNN features from the second to

last layer are then used in order to perform word spot-

ting. The results presented are already quite competi-

tive. However, the framework does not allow for QbS

word spotting.

Simultaneously to the preliminary conference ver-

sion [58] of this paper, three other approaches investi-

gated the use of attribute representations in combina-

tion with CNNs. In [36], an approach very close to ours

is used in a word recognition task. Here, the authors

make use of a custom architecture which processes fixed

sized word images and outputs a PHOC representation.

In their approach, they extend the PHOC representa-

tion in order to account for one level of trigrams. Each

level of the PHOC is then predicted by an individual

MLP. All MLPs, however, make use of a shared convo-

lutional part of the network.

The approach in [24] also makes use of a CNN in or-

der to learn PHOCs, albeit not in an end-to-end fashion

as is done in our case. The authors pretrain a network

architecture inspired by [18] on a synthetically gener-

ated data set of one million word images [25]. Then

they fine-tune on the training partition of the respec-

tive data sets used in their evaluation. For predicting

attributes, they take the outputs from the last hidden

layer of the neural network and use them as features

for training an AttributeSVMs. This approach is very

similar to the one presented by [3] in that [24] sim-

ply replace the Fisher Vectors with features from their

CNN.

A different approach is presented by [64] in form of

a Triplet-CNN. Here, a Residual Network [17] is used in

combination with a Soft Positive Negative Triplet Loss

[4] in order to learn holistic descriptors for word images.
These descriptors are then used as features for training

an MLP to predict the desired attribute representation.

For this they make use of the the Cosine Embedding

Loss. Using this special loss function, not only binary

attribute representations can be used for training but

also real-valued label vectors. In addition to PHOC vec-

tors, the authors investigate their approach using a new

word string embedding method called Discrete Cosine

Transform of Words (DCToW) which achieves compa-

rable results to the PHOC representation. For the DC-

ToW, an indicator matrix is build which uses a given

alphabet as row and the letter positions in the word

as column indices. In each column, the respective char-

acter position from the alphabet is marked with a 1.

Afterwards, a DCT is applied to each row of he ma-

trix. The largest three coefficients from each row are

then concatenated in order to form the final DCToW

descriptor.

In our previous work of this paper, we have also in-

vestigated the use of the Spatial Pyramid of Characters
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(SPOC) descriptor as attribute representation for word

images. The SPOC is very similar to the PHOC. How-

ever, instead of denoting character presence or absence

with a binary value in each level, the SPOC creates

histograms of characters, i.e., counts the occurrence of

each character in each level.

3 Attribute CNNs

In this section we describe our proposed Attribute CNN

architectures. The two important aspects which we elab-

orate on are the loss functions used and the architec-

tures themselves. First, we explain how the loss func-

tions for our Attribute CNNs are derived. The concepts

explained with respect to the loss functions are of a

general nature and do not only apply for word spotting

or document image analysis applications. Second, we

present our Attribute CNNs and explain certain design

choices.

3.1 Loss Functions for Attribute CNNs

Traditionally, CNNs have been heavily used in the do-

main of multi-class recognition. The task here is to pre-

dict one out of k classes for a given image. Usually, this

is achieved by computing the element-wise softmax

ŷi(o) =
eoi∑d
j=1 e

oj
(1)

for each element i in the last layer’s output o which rep-

resents the posterior probability for the i-th of d classes.

The predicted class is the one with highest probability.
For training, a one-hot-encoded vector is supplied to

the CNN with the sought-after class having a numerical

value of 1 and all other classes a value of 0. When deal-

ing with attribute representations, the softmax output

is infeasable as at most one element in the output vec-

tor can become 1. Attribute representations, however,

are often times made up of a number of binary (e.g.

PHOC) or real-valued (e.g. DCToW, SPOC) labels. In

order to get the output for binary targets in the correct

range one could use the sigmoid function as activation

in the last layer. This leads to the question what loss

function is suitable for learning such a representation.

A straightforward approach would be to make use of

the Euclidean Loss

lN =
1

2

n∑
i=1

||y− ŷ||22 . (2)

This, however, bares the drawback, that the overall

gradient is scaled by the derivative of the sigmoid in

the last layer [33]. If the initialization of the networks

weights leaves the sigmoid neurons in a saturated state

(large or small values before the activation) this causes

a slow convergence behavior or even a complete stall

in training. The sigmoid activation function could, of

course, be replaced by a linear function. This way, how-

ever, the output of the CNN would not be bounded any-

more and the CNN could produce output values outside

of the desired range. Whether a sigmoid or a linear ac-

tivation is used, there exists another disadvantage: By

using lN one implicitly assumes that the Euclidean dis-

tance is a feasible metric for comparing vectors (in our

case binary or real-valued attribute representations). As

for high-dimensional vectors the ratio of closest and far-

thest points approaches 1 [1,7], the Euclidean distance

is not a suitable metric in our situation.

It is obvious, that the activation function in the last

layer and the loss function are tightly coupled when

training neural networks. A very elegant framework for

finding suitable combinations of activation functions

and loss functions are Generalized Linear Models (GLMs).

Moreover, GLMs also allow for interpreting the training

of neural networks from a probabilistic perspective. In

the following, we derive loss functions and correspond-

ing activation functions for binary as well as real-valued

representations from these statistical models.

3.1.1 Binary Attribute Representations

GLMs are statistical tools for predicting the expected

value of a random variable Y conditioned on an inde-

pendent random variable X, e.g., [50, p. 281]. When

using a GLM, two important assumptions are made:
First, Y follows a distribution from the exponential

family and the expected value E[Y ] depends on a trans-

formation of a linear combination of X. For the linear

combination, the GLM uses a so-called linear predictor :

η(x) = wTx, (3)

where x is a realization of X and w are the parameters

or weights of the GLM. The output of the GLM is then

forwarded to a so-called link function which maps the

linear prediction into a suitable range. The concept of

GLMs is demonstrated in the following example: As-

sume we want to predict a single binary attribute from

a word image. It can be reasonably assumed that Y , i.e.,

the random variable from which we assume the labels

are drawn, follows a Bernoulli distribution. The proba-

bility mass function of a Bernoulli distributed variable

is defined as

fB(k, p) = pk (1− p)1−k for k ∈ {0, 1} (4)
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Fig. 3: Visualization of the PHOCNet architecture. All convolutional layers make use of 3 × 3 convolutions and

are followed by a ReLU activation. Each convolutional layer applies a padding of 1 pixel on each side to its input

feature map in order to preserve dimensionalities. The pooling layers downsample the input feature maps by

applying max pooling over a 2× 2 region with a step size of 2. A 50% dropout is applied to the output of the first

two fully connected layers (black) during training.

where p is the probability of drawing a 1 from Y and k

is an indicator variable for the desired event. The GLM

predicts the conditional expected value E[Y |X = x]

for the dependent variable Y . As the expected value for

any Bernoulli distributed variable is again the probabil-

ity p, the GLM thus predicts the posterior probability

for Y = 1 given x. We will denote this prediction of the
posterior probability as ŷ. In the case of a Bernoulli dis-

tributed dependent variable, the link function of choice

is the sigmoid function

σ(x) =
1

1 + exp(−x)
(5)

where x is a generic argument to the sigmoid function.

The sigmoid squashes the result from the linear predic-

tor to (0, 1) thus putting the output of the GLM in the

correct range for a Bernoulli distributed variable.

Putting it all together, the GLM gB for a Bernoulli

distributed random variable predicts the conditional

probability ŷ through

ŷ = gB (x,w) =
1

1 + exp (−wTx)
. (6)

This special case of using a Bernoulli distributed ran-

dom variable Y is also known as logistic regression. As

can be seen from Eq. 6, the logistic regression can also

be interpreted as a single layer, fully-connected neural

network with sigmoid activation (similar to a percep-

tron). As is the case for neural networks, the GLM is

trained by tuning the weights w using a training set

S =
{(

x(1), y(1)
)
, . . . ,

(
x(n), y(n)

)}
of samples x(i) and

their annotation y(i). Training is performed through

Maximum Likelihood Estimation (MLE): The negative
log-likelihood function for a Bernoulli distributed vari-

able is given by

lB (w |S) =

n∑
i=1

− log fB

(
y(i), gB

(
x(i),w

))
. (7)

The estimated model parameters are obtained by min-

imizing the negative log-likelihood with respect to the

weights of the GLM. Here, the dependent variable Y

represents the label distribution.

As hinted at earlier, the GLM can be compared to

a single-layer neural network. This model can of course

simply be replaced by switching the linear predictor

(Eq. 3) with a deep neural network without invalidat-

ing any of the previous statements. The only difference

is that instead of being able to solve the MLE analyti-

cally, it has to be done in the standard backpropagation

framework with the negative log-likelihood serving as

loss function. This allows us to create problem-specific
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loss functions by simply assuming a suitable probabil-

ity distribution for the dependent variable Y , i.e., the

label distribution. For example, substituting Eq. 4 into

Eq. 7 yields the following loss function for Bernoulli

distributed variables:

lB = −
n∑

i=1

y(i) log ŷ(i) +
(

1− y(i)
)

log
(

1− ŷ(i)
)
. (8)

Here, ŷ(i) is the output of the neural network for the

i-th sample and y(i) the label. It can be shown, that

minimizing lB is equivalent to minimizing the cross en-

tropy between the output distribution of the network

and the label distribution [33].

To sum it all up: Training a neural network with

sigmoid activation functions in the last layer using the

Binary Cross Entropy Loss is equivalent to maximum

likelihood estimation of the weights given the training

set and assuming that the predicted variable follows a

Bernoulli distribution. The output of the network can

directly be interpreted as posterior probability for the

attribute being 1 given an input sample x.

Up to this point, we have only considered a sin-

gle Bernoulli distributed variable as output of the net-

work. In the case of binary attribute representations

such as the PHOC, however, a neural network has to

deal with a number of binary attributes. A straightfor-

ward approach would thus be to assume that Y follows

a multivariate Bernoulli distribution [6]. This approach

has the drawback that the neural network used would

have to have an output layer size of 2d where d is the

dimensionality of the attribute representation. In our

experiments, typical PHOC sizes are larger than 540

which would demand an output layer size greater than

3.599 · 10162.

In order to make the problem tractable, the assump-

tion can be made that the attribute representation is

a collection of d independent and Bernoulli distributed

variables, each having their own probability p of eval-

uating to 1. This way, we can compute d separate loss

functions and simply add up their values to form the

final loss:

lB = −
n∑

i=1

d∑
j=1

y
(i)
j log ŷ

(i)
j +

(
1− y(i)j

)
log
(

1− ŷ(i)j

)
.

(9)

This generalization of the loss function for single Bernoulli

distributed variables is known as Binary Cross Entropy

Loss. Due to the squashing function used, another com-

mon name is Sigmoid Cross Entropy Loss.

3.1.2 Real-valued Attribute Representations

When dealing with real valued representations, we can

again make use of the GLM framework and adapt it to

account for the different data characteristics. A straight-

forward approach would be to assume that the label y

is a set of d random variables, each following a Nor-

mal distribution, similar to the assumption made for

lB (Eq. 9). However, applying MLE this leads to the

Euclidean loss lN (Eq. 2) with all the drawbacks men-

tioned above.

When dealing with high-dimensional representations,

the cosine distance

dcos(a,b) = 1− aTb

||a|| · ||b||
(10)

has proven effective in a number of applications for com-

puting similarity between two vectors a and b, e.g., [2,

3,47]. In order to transfer this to the GLM framework,

a distribution for Y would be desirable that depends on

the angle between vectors.

A very prominent distribution in this regard is the

von Mises-Fisher distribution. Its probability density

function for a d-dimensional vector is defined as

fMF (x,µ, κ) = Cd(κ) exp
(
κµTx

)
(11)

where µ is the mean direction, κ is the concentration

parameter and C is a normalization constant, depend-

ing on the dimensionality of the data and κ. µ and x

are required to have unit length. The von Mises-Fisher

distribution can be considered as a normal distribution

on a d-dimensional hypersphere with the mean direc-

tion as analogy to the mean and the concentration pa-

rameter as analogy to the (inverse) variance. The den-

sity value for a given sample, however, depends on the

angle of the sample to the mean direction and not its

Euclidean distance. Another property of the von Mises-

Fisher distribution is that it belongs to the exponential

family thus making it suitable for the GLM framework.

As link function, we choose the normalization function.

This leads to the following GLM model:

ŷ = gMF (x,W) =
Wx

||Wx||2
. (12)

The negative log-likelihood function of the model given

a training data set S is then defined by

lMF (W |S) =

n∑
i=1

− log fMF

(
x(i), gMF

(
x(i),W

)
, κ
)

(13)

=

n∑
i=1

1− cos
(
y(i), ŷ(i)

)
. (14)
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Again, this function can be used as loss function for

training a neural network. The loss is thus simply the

Cosine distance between the prediction and the label

(Eq. 10) which is why it is known as Cosine Loss. Al-

though this loss in itself is not novel, e.g., [5], this is,

to the best of our knowledge, the first time it has been

theoretically motivated from a statistical point of view.

This motivation helps in understanding the assump-

tions which are made when using the Cosine Loss for

training.

Interestingly, the Cosine Loss and the Euclidean

Loss (Eq. 2) are equal given that both the labels y(i)

and the outputs ŷ(i) of the network are normalized:

1

2

n∑
i=1

||y− ŷ||22 =

n∑
i=1

1

2

(
yT y−2yT ŷ+ ŷT ŷ

)
=

n∑
i=1

1

2

(
2− 2yT ŷ

)
=

n∑
i=1

1− cos (y, ŷ)

3.2 Attribute CNN Architectures for Word Spotting

The above-mentioned loss functions could simply be at-

tached to any existing CNN architecture in order for

the network to predict attributes. However, most CNN

architectures have been designed with the task of oper-

ating on natural images in mind. The problem in this

work is concerned with document or word images which

often times have different properties than can be found

in typical natural images. Hence, we specifically design

a set of CNN architectures suitable to be applied to

document images.

3.2.1 PHOCNet

As the first proposed architecture was originally de-

signed to predict PHOCs [58], we dubbed it PHOCNet.

The architecture is visualized in figure Fig. 3. It is in-

spired by the successful VGG16 architecture [53]. Just

as in [53], we use a small number of filters in the lower

convolutional layers and increase the amount of filters

in the higher convolutional layers. This forces the CNN

to learn less and thus more general features in the first

layers while giving it the possibility to learn a large

number of more abstract features later in the architec-

ture. Additionally, we only use 3 × 3 filters in all con-

volutional layers. This imposes a regularization on the

filters kernels [53].

The previous two design choices work for both nat-

ural images in the case of the VGG16 as well as word

images in our case. However, there are certain aspects

to be taken into account when designing a CNN ar-

chitecture for document image analysis applications. In

our case, we want the CNN to predict a representation

for previously segmented word images. Usually, these

word images exhibit a large variation in size. In related

natural image applications such as multi-class classifi-

cation, size variations are combated by either anisotrop-

ically rescaling an image to a fixed size [26] or sampling

different crops from the image [17, 53]. In the case of

segmentation-based word spotting, we would like to ob-

tain a holistic representation of a word image. We could

possibly rescale all input images but this leads to severe

distortions whenever the original aspect ratio does not

approximately match the desired aspect ratio. Likewise,

cropping is infeasable in our application as well: When

predicting PHOCs for different crops of the input im-

age, it is unclear how the final representations should

be merged. While in multi-class classification problems

the outputs for different crops can simply be averaged,

this is not possible in our case as PHOCs contain a cer-

tain level of positional encoding of the attributes. Fus-

ing outputs for different crops is thus very cumbersome

and not straightforward at all.

In order to be able to process input images of differ-

ent sizes, we employ a Spatial Pyramid Pooling (SPP)

layer after the last convolutional layer (red layer in

Fig. 3) [15]. This way, the first fully connected layer fol-

lowing the convolutional part is always presented with

a fixed size image representation, independent of the

input image size.

As we do not alter the input image sizes, we only

use two pooling layers in the PHOCNet architecture.

This way, we can even process the smallest word images

in the data sets we tested on (26 × 26 pixels for the

George Washington data set). The pooling layers are

placed rather close to the input layer in order to lower

the computational cost (orange layers in Fig. 3).

3.2.2 TPP-PHOCNet

The use of the SPP layer enables the PHOCNet to ac-

cept almost arbitrarily sized input images and still out-

put a representation of constant size. The SPP layer lay-

out follows the one used for the “classic” spatial pyra-

mid [29]: the number of cells along each dimension in a

layer is doubled with respect to the previous layer.

In the field of document image analysis, however, us-

ing this layout was found to lead to inferior results com-

pared to other cell partitions when using spatial pyra-

mids on top of Bag-of-Feature representations [2,46,47].
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last conv. layer

pyramidal pooling along horiz.
axis for each feature map

fixed-size input
for MLP

Fig. 4: The figure visualizes the TPP Layer. For every feature map of the last convolution layer (left) a sequence

of max pooled values is extracted in a pyramidal fashion (middle). Here, a TPP Layer of size 1, 2, 3 is visualized.

The layer produces output values for 9 max pooled regions per feature map. These values are stacked like in an

SPP Layer in order to form a representation of fixed size for variably sized input feature maps. This representation

is then fed to the MLP-part of the network (right).

Here, the retrieval results can be increased when using

spatial pyramids featuring a fine-grained split along the

horizontal axis while only using a rough partitioning

for the vertical axis of a word image. This concept is

pursued even further by HMM-based approaches, such

as SC-HMMs [40], Bag-of-Feature HMMs [43, 44] or

HMMs using word graphs [63], as well as methods based

on Recurrent Neural Networks such as BLSTMs [11].

In the case of these sequential models, the vertical axis

is not partitioned at all while the partitioning of the

horizontal axis is implicitly done by splitting the word

image in frames and processing them as sequence. In

a way, this can be seen as a probabilistic version of a

spatial pyramid.

In general, choosing a fine grained cell partition-

ing along the horizontal axis and a coarser partition-

ing along the vertical axis is important when dealing

with word images. Incorporating this observation into

a neural network layer, we propose a modified version of

the SPP layer which we term Temporal Pyramid Pool-

ing (TPP) layer. Pooling in this layer is done similarly

to the PHOC pooling of binary attributes: Each layer

splits the entire image into n horizontal cells where n is

the index of the layer. Each cell covers the entire ver-

tical axis of the word image. The pooling is thus only

done along the axis of writing and each cell roughly rep-

resents features from consecutive intervals of the word

image. When stacking multiple of these pooling layers

with different amounts of splits along the axis of writ-

ing, we end up with a pyramidal representation encod-

ing the progression of writing, hence the name Tem-

poral Pyramid Pooling. This concept is visualized in

Fig. 4. Here, the feature maps of the last convolution

layer (left part of the figure) are followed by the tem-

poral pyramid pooling approach described above.

For evaluating the TPP layer, we simply swap the

SPP layer with the TPP layer in our experiments. The

rest of the PHOCNet architecture is left unchanged. In

our experiments, we use a TPP layer with max pooling

and levels 1, 2, 3, 4 and 5 where each level indicates the

amount of pooling bins along the horizontal axis. With

the last convolution layer having 512 filters, the output

size of the TPP Layer amounts to 7680.

3.3 Word Spotting with Attribute Representations

All our Attribute CNNs predict an attribute represen-

tation for a given word image. In order to perform word

spotting or retrieval in general with these networks, we

need a ranking functionality that is able to compare

these representations. In other word spotting applica-

tions that make use of holistic word image representa-

tion, this has been achieved through a simple nearest

neighbor approach with a suitable metric, e.g., [2,3,47].

The most widely used metric in word spotting is the Co-

sine distance (Eq. 10) which has been exclusively used

in the literature when dealing with PHOC representa-

tions [3, 24, 36, 64]. Therefore, we adopt this metric for

our word spotting method as well.
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4 Experimental Evaluation

4.1 Data Sets

We evaluate our approach on six publicly available data

sets in order to assess the performance of our Attribute

CNNs and compare our approach to recent state-of-the-

art methods from the literature.

4.1.1 George Washington

The George Washington database (GW) has become

the standard benchmark for word spotting. It consists

of 20 pages of correspondences between George Wash-

ington and his associates dating from 1755. It is an

excerpt of a larger collection available at the library of

congress1. As the documents in the George Washing-

ton data set are obtained from the letter book 2, which

is not an original, but a later re-copied volume, it can

be assumed that the data set has been produced by a

single writer only.

There actually exist two versions of this data set

which have been used to evaluate word spotting meth-

ods. The first version contains binarized word images

which have been slant-corrected2. The second version3

contains the plain gray-level document images and is

by far the one more commonly used for evaluating word

spotting methods, e.g., in [3, 44, 46–48, 51]. For our ex-

periments, we will make use of the plain gray-level doc-

ument images as well.

The annotation contains 4860 segmented words with

1124 different transcriptions [47]. As there exist no offi-

cial training and test partitions, we follow the approach

proposed in [3] and perform a fourfold cross validation.

In order to be able to compare our results to those in [3],

we use the exact same cross validation splits4.

4.1.2 IAM DB

Although designed for handwriting recognition, the IAM

Database [32] has become a major word spotting bench-

mark as well. It consists of more than 13 000 text lines

containing a total of more than 115 000 words. The of-

ficial partitioning splits the database in 6161 lines for

training, 1840 for validation and 1861 for testing. One

of the main challenges of this data set is that each writer

1 https://memory.loc.gov/ammem/gwhtml/
2 http://www.fki.inf.unibe.ch/databases/

iam-historical-document-database/washington-database
3 http://ciir.cs.umass.edu/downloads/old/data_sets.

html
4 cross validation partitions available at https://github.

com/almazan/watts/tree/master/data

Table 1: Training set sizes for the Botany and Konzil-

sprotokolle data sets

Botany Konzilsprotokolle

Train I 1684 1849
Train II 5295 7817
Train III 21 981 16 919

contributed to only one partition (either training, vali-

dation or test).

4.1.3 Esposalles

The ESPOSALLES Database [42] is an excerpt of a

larger collection of marriage license books at the archives

of the Cathedral of Barcelona. Among the major diffi-

culties of the data set are several forms of degradation

such as uneven illumination, smearing or bleed-through

as well as high variability in script.

We use the official training and test partitioning

that comes with the database. Overall, the annotation

contains 32 052 training word images and 13 048 test

word images.

4.1.4 IFN/ENIT

The IFN/ENIT database [35] contrasts all other data

sets used as it features Arabic script. It consists of word

images of Tunisian town or village names. The total

amount of word images is 26 459 which were contributed

by 411 different writers. There exists an official parti-

tioning of the database into four subsets A, B, C and

D. As is custom in handwriting recognition benchmarks

run on the IFN/ENIT database, we use sets A,B and

C for training and D for testing.

In order to extract attribute representations from

the Arabic annotation we use a reduced character set

which is generated in the following way: First all char-

acter shapes are mapped to their representative Arabic

characters. Characters with optional Shadda diacritic

are replaced with characters without the Shadda dia-

critic. Special two-character-shape ligature models are

mapped to two-character ligature models without the

shape contexts. This mapping produces a character set

of size 50 for this data set.

4.1.5 Botany and Konzilsprotokolle

The two data sets Botany in British India and Alver-

mann Konzilsprotokolle where introduced and used in

the Handwritten Keyword Spotting Competition held

during the 2016 International Conference on Frontiers

https://memory.loc.gov/ammem/gwhtml/
http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/washington-database
http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/washington-database
http://ciir.cs.umass.edu/downloads/old/data_sets.html
http://ciir.cs.umass.edu/downloads/old/data_sets.html
https://github.com/almazan/watts/tree/master/data
https://github.com/almazan/watts/tree/master/data
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in Handwriting Recognition5. While the former covers

botanical topics such as gardens, botanical collection

and useful plants, the latter is a collection of protocols

from the central administration at the university library

of Greifswald, Germany, dating from 1794 to 1797.

As part of the competition was to evaluate how well

the participating systems deal with small to large train-

ing data sets, each data set comes with three increas-

ingly larger sets for training. Tab. 1 lists the sizes for

the three different sets. The respective test set sizes are

3230 for Botany and 3533 for Konzilsprotokolle.

Different from the other data sets, Botany and Konzil-

sprotokolle are dedicated word spotting benchmarks and

come with a separate set of query word images for

QbE and query strings for QbS. There exist 101 string

queries for each data set. The query word images in

Botany amount to 150 while for Konzilsprotokolle there

exist 200.

4.2 Word Spotting Protocol

We evaluate our Attribute CNNs in segmentation-based

QbE as well as QbS word spotting scenarios. For the

data sets GW, IAM DB, Esposalles and IFN/ENIT we

follow the protocol proposed in [3] (Almazan Protocol)

while for the Botany and Konzilsprotokolle data sets

we follow the protocol from the ICHFR 2016 Handwrit-

ten Keyword Spotting Competition [37] (Competition

Protocol) to be able to directly compare our results to

others from the literature.

The Almazan Protocol in [3] is defined as follows:

For each data set, the annotation is used to create a

segmentation for each word image. For QbE, each word

image in the respective test sets is used once as query

to rank all the remaining words in the test set which we

will refer to as test words under this protocol. Queries

that do not have a relevant word among the test words

are discarded. For the other queries, however, they are

kept as test words in order to act as distractors. For

QbS, each unique transcription in the test set is ex-

tracted and the respective attribute representations are

used as queries to rank all the words in the test set. As

each query in QbS has at least one relevant item, no

queries are discarded.

The IAM DB is treated differently from the other

data sets under the Almazan protocol as for both QbE

and QbS stop words are discarded as queries. Again,

they are kept as distractors among the test words though.

Different from the Almazan protocol, the segmentation-

based Competition Protocol used in [37] makes use of a

5 https://www.prhlt.upv.es/contests/icfhr2016-kws/

data.html

separate query set. All queries are assumed to have at

least one relevant item in the test set thus no query is

discarded. Please note that both protocols ignore char-

acter cases, e.g. the words “Spotting” and “spotting”

are considered to belong to the same class.

In all of our experiments, the attribute representa-

tion for a given word image is predicted by the respec-

tive Attribute CNN. The query representations are ei-

ther extracted directly (QbS) or are also obtained from

the CNN (QbE). The test words are then ranked based

on their Cosine distance to the query representation.

For both word spotting scenarios, we assess the per-

formance of the respective Attribute CNN by calcu-

lating the mean Average Precision (mAP) which is a

standard measure for determining word spotting per-

formance. As the name suggests, the mAP is defined as

the mean of the Average Precision

APq =

∑n
i=1 Pq(i)rq(i)

number of relevant elements
(15)

for each query q where Pq(i) is the precision

P =
number of relevant retrieved elements

number of retrieved elements
(16)

after cutting off the retrieval list for query q at index

i. rq(i) is a function yielding 1 if the i-th element of

the retrieval list is relevant with respect to q and 0

otherwise. The average precision is equivalent to the

area under the interpolated precision-recall curve for a

given query.

4.3 Creating Attribute Representations

We evaluate three different attribute embeddings: PHOC [3],

SPOC [41] and DCToW [64]. Each of the three repre-

sentations is built using a set of predefined unigrams

or alphabet. In our experiments, we determine data-set

specific alphabets by extracting all unique characters

from the training transcriptions. Thus, attribute repre-

sentations for data sets with differing alphabets exhibit

different dimensionalities.

4.4 Training Details

4.4.1 Training Procedure

All the Attribute CNNs used in our experiments are

trained in an end-to-end fashion given word images as

input and the corresponding attribute representation as

label. We do not pre-process the word images but scale

their pixels to floating point values in the range of [0, 1]

with 0 representing background portions of the word

https://www.prhlt.upv.es/contests/icfhr2016-kws/data.html
https://www.prhlt.upv.es/contests/icfhr2016-kws/data.html
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Fig. 5: Visualization of how to extract a synthetic image

(bottom) is from an original image (top) for data set

augmentation

image and 1 representing ink. This is done as we want

the CNNs to concentrate on the ink parts of the word

image rather than the background.

For training the CNNs to predict PHOCs, we evalu-

ate both Binary Cross Entropy Loss (Eq. 8) and Cosine

Loss (Eq. 14). For the other two representations, we use

the Cosine Loss only as they cannot be processed by the

Binary Cross Entropy Loss.

4.4.2 Regularization

Due to the massive amount of free parameters in the

fully connected parts of the PHOCNet and the TPP-

PHOCNet, both architectures are prone to overfitting.

Hence, we apply a number of regularization techniques

which have become standard approaches in deep learn-

ing architectures. First, dropout is applied to all but the

last fully connected layers (all black layers in Fig. 3).

In dropout, the output of a neuron is randomly set to 0

with a given probability. This prevents a neural network

to learn certain paths for a given input image “by heart”

as neurons can no longer rely on a neuron in a previous

layer to always be active for a given image. Another

way to think of dropout is the network learning an en-

semble of smaller networks which all share weights [56].

The size of this ensemble is exponential in the number

of neurons used in the layer applying dropout. For our

experiments, we chose a dropout probability of 50%.

In addition to dropout, we augment the number

of training images in an unsupervised way. For this,

we take three points at fixed relative positions in the

middle of an image and multiply each of the coordi-

nates with a random number uniformly sampled from

[0.8; 1.1]. Then, we compute the homography to obtain

the second set of points from the first and use this trans-

formation to generate an augmented image from the

original. Fig. 5 illustrates how a new image is gener-

ated from an original one. The homography accounts

for several transformations that are to be expected in

word images at retrieval time, including shear, rotation,

translation as well as different slants and scales of the

images seen during training.

Another crucial step in training a deep neural net-

work is the weight initialization strategy. As we train

our networks with gradient descent, the final solution

is inherently dependent on the initial weights of the

network. Throughout the literature, various initializa-

tion strategies have been used. The influential AlexNet

architecture [26], for example, is initialized by drawing

weights from a Normal distribution with zero mean and

a standard deviation of 0.01. However, choosing initial

weights this way hampers training for increasingly deep

architectures [16,53]. In [16], a weight initialization ap-

proach is presented which negates the stall in training

when using ReLU activation functions in increasingly

deeper architectures. We adopt this approach and ini-

tialize all weights in our networks from a normal distri-

bution with zero mean and variance 2
n where n is the

number of inputs for a given filter. As is common for

CNNs, the biases in the layers are initialized to zero.

4.4.3 Optimization of the Network Weights

Traditionally, the optimization strategy of choice in deep

learning has been stochastic gradient descent with mo-

mentum, e.g., [26,53]. The drawback with this approach

is that each weight uses the same learning rate which

could possibly hamper training convergence. Recent im-

provements for classic SGD have thus incorporated ad-

ditional information into the training process for adapt-

ing learning rates individually. For example, AdaGrad [8]

assigns low learning rates to frequently occurring fea-
tures while giving high learning rates to those occurring

only rarely. On the other hand, RMSprop [62] normal-

izes the gradient length for a given weight by a moving

average over recent gradient lengths. The optimization

strategy Adam [21] combines the advantages of Ada-

Grad and RMSprop. It works by computing a sliding

average for the mean and variance of the gradient for

each weight. The weights are then updated by applying

the mean gradient normalized with its mean standard

deviation. The Adam approach has been increasingly

used lately as optimization strategy for deep neural net-

works, e.g., [12, 20]. In our experiments, we evaluate

both standard SGD and Adam optimization.

All our Attribute CNNs are trained with stochastic

gradient descent using a mini-batch size of 10. The ini-

tial learning rate values are determined by taking the

largest value for which training started to converge. For

networks being trained with standard SGD this value

is 10−4 when using the Binary Cross Entropy Loss and

10−2 when using Cosine Loss. For Adam based opti-
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mization we found that the maximum initial learning

rate to achieve convergence is 10−4 which matches the

proposed default value [21]. In order to generate more

stable gradients, we use a momentum of 0.9 for the

standard SGD. For Adam, we use the recommended

hyperparameters β1 = 0.9 and β2 = 0.999 [21]. We set

the weight decay to 5 · 10−5 as is standard for VGG-

style architectures [53]. Training is run for a maximum

of 80 000 iterations with the learning rate being divided

by 10 after 70 000 iterations. The step size of 70 000 was

determined by monitoring the training loss for plateaus.

After a total of 80 000 iterations the loss could not be

improved upon anymore by lowering the learning rate

which is why we stopped training at this point. Only

for the experiments on the IAM DB we use a maxi-

mum number of iterations of 240 000 as we found the

training loss to improve beyond 80 000 iterations. Please

note that a training iteration here refers to calculating

the gradient for a given mini-batch and updating the

weights of the network accordingly.

All the parameters regarding training were chosen

based on pre-experiments on the GW data set. Only

for the IAM-DB we increased the number of training

iterations. Training is carried out on a single Nvidia

Pascal P100 using a customized version of the Caffe

library [19]. Our Python source code and the custom

version of Caffe are made available online6.

4.5 Significance Testing

Before reporting the results of our experiments, we would

like to highlight the importance of running statistical

significance tests. Unfortunately, it is common practice

to simply report mAP values when comparing results

of word spotting methods. We advocate for comparing

word spotting performances based on statistical signif-

icance tests. This allows for assessing whether differ-

ences in performance stem from mere chance or are re-

ally significant from a statistical point of view.

There exist a number of statistical tests which al-

low for comparing mAP values. However, most of them

make an assumption on the distribution of the test

statistic. A notable exception is the permutation test

which is also known as resampling or randomization

test [54]. We propose to use this significance test when-

ever comparing mAP results for different word spotting

methods.

The null hypothesis for the test is that all average

precisions obtained from two different methods (e.g.

two different CNNs) on the same data set have equal

mean, i.e., the mAP for the two methods is identical.

6 https://github.com/ssudholt/phocnet

In order to test this hypothesis, we first compute the

observed difference of means, i.e., difference in mAPs.

The test then creates random permutations and com-

putes the difference of means of these randomized sam-

ples, i.e., the difference of mAPs if average precision

values were randomly assigned to one of the two meth-

ods. The fraction of permutations where the difference

of the randomized average precision values is greater

than the observed difference is exactly the p-value for

the significance test [34,54]

For an exact test, all possible permutations of the

data at hand have to be evaluated. In practice, however,

computing all permutations quickly becomes impossible

as the sample sizes grow [34]. A solution to this problem

is to view the p-value of the test as a random variable

and approximate it by sampling an adequate number

of permutations. Let p̂ denote the approximation of the

true p-value. The standard deviation sp̂ of p̂ is

sp̂ =

√
p(1− p)

k
(17)

where k is the number of sampled permutations and p

is the underlying true p-value [54]. We can rearrange

this formula in order to find the number of iterations

necessary to obtain a desired standard deviation:

k =
p(1− p)
s2p̂

. (18)

As the true p-value is unknown, we compute the up-

per limit of permutations necessary to obtain a desired

standard deviation for any p-value by finding the max-

imum of p(1 − p). The maximum value is obtained for

p = 0.5 and inserting this into Eq. 18 gives

k =
1

4s2p̂
. (19)

For our tests, we chose a small desired sp̂ of 0.001. Sub-

stituting this value into Eq. 19 yields an upper bound of

250 000 random permutations for the permutation test.

4.6 Results

Due to the vast amount of possible configurations for

our Attribute CNNs, we opt to evaluate the influence

of different loss functions and embeddings on the TPP-

PHOCNet only and then compare it to the PHOCNet

for a smaller amount of feasible set ups. Tab. 2 com-

pares the results obtained for the different string em-

beddings and loss functions for the TPP-PHOCNet7.

7 We denote the classic stochastic gradient descent opti-
mization as SGD and the Adam optimization [21] as Adam
although technically Adam is a form of stochastic gradient
descent as well.

https://github.com/ssudholt/phocnet
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Table 2: Comparison of results using different configurations for the TPP-PHOCNet in mAP [%]. Please note that

for values marked with DNC, training did not converge to a solution.

Loss Func. Embedding Optimization
GW IAM DB Esposalles IFN/ENIT

QbE QbS QbE QbS QbE QbS QbE QbS

BCE PHOC Adam 97.90 96.73 84.80 92.97 97.20 94.15 96.66 94.90

Cosine PHOC Adam 97.15 92.35 75.11 90.27 97.23 93.64 94.06 91.38
Cosine SPOC Adam 96.93 92.17 77.87 91.40 DNC DNC 92.31 89.46
Cosine DCToW Adam 96.84 91.41 67.06 81.71 96.91 92.80 DNC DNC
BCE PHOC SGD 97.75 97.50 83.38 92.59 96.93 94.33 96.49 94.68
Cosine PHOC SGD 97.96 97.92 82.74 93.42 97.10 94.32 93.86 94.53
Cosine SPOC SGD 97.78 98.02 82.17 92.64 97.05 94.07 94.00 94.60
Cosine DCToW SGD 97.98 97.65 70.44 83.02 97.11 93.75 94.40 93.81
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Fig. 6: The figure displays the mAP over the different training iterations for the four QbE experiments evaluated

under the Almazan Protocol using the TPP-PHOCNet. Please note that we only show up to 40 000 iterations for

the GW and Esposalles experiments as the curves did not exhibit any noticeable difference afterwards.
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Table 3: Comparison to results from the literature for experiments run under the Almazan Protocol in mAP [%]

Method
GW IAM Esposalles IFN/ENIT

QbE QbS QbE QbS QbE QbS QbE QbS

TPP-PHOCNet (BPA) 97.90 96.73 84.80 92.97 97.20 94.15 96.66 94.90
TPP-PHOCNet (CPS) 97.96 97.92 82 .74 93.42 97.10 94.32 93 .86 94.53
PHOCNet (BPA) 97.58 95.58 85.50 92.38 97.40 93.67 96.58 94.92

PHOCNet (CPS) 97.72 97.44 75 .85 91.12 97.17 94.89 93 .33 93.87

Deep Feature Embedding [24] 94.41 92.84 84.24 91.58 − − − −
Attribute SVM + FV [3] 93.04 91.29 55.73 73.72 − − − −
Finetuned CNN [51] − − 46.53 − − − − −
LSA Embedding [2] − 56.54 − − − − − −

Triplet-CNN (*) [64] 98.00 93.69 81.58 89.49 − − − −
BLSTM (*) [11] − 84.00 − 78.00 − − − −
SC-HMM (*) [40] 53.10 − − − − - 41.60 −
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Fig. 7: The figure displays the mAP over the different training iterations for the four QbE experiments using the

two different Attribute CNNs.
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Table 4: Results for the experiments run on the Botany and Konzilsprotokolle data sets in mAP [%] (results for

comparison were obtained from [37])

Method
Botany Konzilsprotokolle

Train I Train II Train III Train I Train II Train III
QbE QbS QbE QbS QbE QbS QbE QbS QbE QbS QbE QbS

TPP-PHOCNet (BPA) 47.75 45 .38 83.51 87.42 96.05 97.38 86 .01 78 .23 97.05 96.98 98.11 98.02

TPP-PHOCNet (CPS) 51.25 53.82 75 .48 87.34 80 .81 90 .15 90.97 87.37 96.45 94.80 96.42 94.63
PHOCNet (BPA) 44 .56 26 .62 78.93 77 .22 94.10 95.43 84 .34 76 .45 96.05 95.27 97.08 96.22
PHOCNet (CPS) 45.82 42 .95 71 .32 81 .21 79 .90 89 .60 88.31 83.62 95.51 93.78 95.54 93.49

AttributeSVM 75.77 65.69 − 65.69 − − 77.91 55.27 − 82.91 − −
HOG/LBP 50.64 − − − − − 71.11 − − − − −
Triplet-CNN 54.95 3.40 − − − − 82.15 12.55 − − − −
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Fig. 8: Comparison of the evolution of the QbE experiments for the Botany and Konzilsprotokolle data sets.
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The corresponding Fig. 6 visualizes the evolution of the

mAP over training for the four QbE experiments.

Based on the results from Tab. 2, we chose two con-

figurations for which Binary Cross Entropy Loss and

Cosine Loss yielded the best results. The first is Binary

Cross Entropy Loss, PHOC embedding and Adam opti-

mization (BPA) while the second is Cosine Loss, PHOC

embedding and standard SGD optimization (CPS).

Tab. 3 gives a comparison of these configurations

for our Attribute CNNs to results obtained from the

literature with Fig. 7 showing the corresponding mAP

curves. The best results from a numerical point of view

are printed in bold. For all regularly printed values no

significant difference to the best result can be deter-

mined through the permutation test. Finally, all results

printed in italics are significantly worse than the best

obtained result (significance level α = 0.05).

Please note that we can not compare our results

to those from the literature through the permutation

test as we would need the average precision values for

each query instead of the global mAP. Our achieved

average precision values will be made publicly available

in order for other researchers to compare themselves to

our results by means of a statistical test.

Approaches marked with an asterisk do not share

the exact same evaluation protocol and can thus not be

compared directly to our results. In particular, [40] uses

different splits for training and test, effectively reducing

the number of test words. This makes the word spotting

task easier as the number of distractors is reduced. The

BLSTM approach in [11] follows a line spotting proto-

col. Finally, [64] makes use of the CVL-Database [22]

for pre-training their network and thus incorporating

more annotated training data.

Finally, Tab. 4 displays the mAP for the experi-

ments evaluated under the competition protocol with

Fig. 8 showing the corresponding curves.

4.7 Discussion

4.7.1 Attribute CNN Configurations

The results obtained from the experiments suggest that

there is no definitive answer to the question whether one

of the word string embeddings examined is superior to

another. All embeddings exhibit pathological examples

where they perform worse than others. The PHOC em-

bedding might be considered the only exception here as

it always achieves state-of-the-art results. In addition,

it allows for the fastest training of all configurations

when combined with Binary Cross Entropy Loss and

Adam optimization (cf. Fig. 6, Fig. 7 and Fig. 8).

The experiments show that replacing the SPP with

a TPP layer has a positive influence on the performance

for the smaller training partitions of the Botany and

Konzilsprotokolle data sets (Tab. 4 and Fig. 8). For the

other data sets, both PHOCNet and TPP-PHOCNet

achieved similar results. It should be noted, however,

that the TPP layer produces a 29% smaller output rep-

resentation than the SPP layer. This greatly reduces

the number of neurons in the ensuing fully connected

layer. Furthermore, we found that the TPP layer is able

to learn representations that generalize better than the

SPP layer. For example, running QbE with the fea-

tures extracted from the SPP and TPP layers on the

IAM DB, the TPP layer is able to achieve 71.41% mAP

while the SPP layer only achieves 64.65% mAP. Thus

the TPP layer is especially suitable in situations, where

a pretrained Attribute CNN is used as a deep feature

extractor for document images as is done, e.g., in [39].

4.7.2 Comparison to Results from the Literature

As can be seen in Tab. 3 and Tab. 4 our Attribute

CNN architectures achieve state-of-the-art results on

all data sets in both QbE and QbS scenarios except for

the Train I partition of the Botany data set.

As we do not have the average precision values for

other methods, we cannot run the permutation tests in

order to assess significance between our results and re-

sults from the literature. However, as the TPP-PHOCNet

with CPS configuration already achieves a significantly

higher mAP than the PHOCNet using the same setup,

it is very likely that the mAP for QbS on IAM DB is

significantly higher than that of the Deep Feature Em-
bedding and the Triplet-CNN. A similar argument can

be made for the QbE scenario on this data set. For the

GW, it is likely that the permutation test would not

find a significant difference on the mAP values for QbE

between our CNNs and the Triplet-CNN as there is al-

ready no significant difference between the two mAPs

obtained from the TPP-PHOCNets.

4.7.3 Training Set Size Considerations

One of the stigmas that is still attached to CNNs today

is that they require large amounts of annotated train-

ing. Our Attribute CNNs can be trained with very lim-

ited training data from scratch as demonstrated for the

GW experiments. Here, the training set encompasses

only 3615 annotated samples. As can be seen from the

evaluations during training (Fig. 7 and Fig. 8), the reg-

ularizations added to our networks prevent any form of

overfitting even when faced with as few samples as is
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Table 5: Run times for single forward passes and single

PHOC queries [ms]

Data Set
Forward Pass

Retrieval
CPU GPU

GW 2191 6.2 2.0
IAM DB 3474 6.1 1.7
Esposalles 2676 5.0 1.0
IFN/ENIT 4309 11.5 1.2
Botany 8493 15.5 0.2
Konzilsprot. 4318 13.8 0.2

the case for the GW data set. We investigated this be-

havior even further and used as few as 200 training sam-

ples and augmented them with synthetic handwritten-

like word images from the HW-SYNTH data set [25].

For space limitations, we can unfortunately not discuss

all these experiments in this paper. Interested readers

may find a detailed report of these experiments in [60].

To summarize the findings: Pretraining a network with

synthetic, handwritten-like data allows for drastically

reducing the number of training samples necessary to

achieve state-of-the-art results. In addition, having the

pretrained network, finetuning converges in a manner

of minutes, making the approach suitable for human-

in-the-loop scenarios.

4.7.4 Run Time Considerations

In order to assess the applicability of our CNNs in word

spotting applications, we investigate the times needed

for training and evaluation. When evaluating the times,

one has to consider two different points in time: training
time and query time. At training time, the system is

allowed to be fitted to the data at hand. Run times here

are not as critical as query times and can be considered

offline precomputations. At query time, however, the

user is demanding a responsive system which is able to

run the retrieval in a minimal amount of time.

Training times for our Attribute CNNs depend on

the number and size of the word images in the data

sets. In our experiments, training finished after 9 to 18

hours when run on a Nvidia Pascal P100 GPU.

The query time for our method depends on the time

it takes to generate a query representation plus the time

for comparing the query representation to the test rep-

resentations and sorting them. For QbS, the query rep-

resentation generation time is effectively zero as it can

be directly obtained from the string. For QbE, the gen-

eration time is the time for the forward pass of the

query image. Tab. 5 lists relevant timings for the ex-

periments in milliseconds. Running retrieval with the

attribute representations was done using Python and

the sklearn library8. We note that using an advanced

graphics card as is done in our case might not be possi-

ble in some situations, hence we evaluated timings for

a forward pass using a CPU as well. For this we use

an Intel Xeon E5-2650 processor which is similar to an

Intel Core i7 processor.

From the timings in Tab. 5 it can be seen that a

single QbE query takes at most 8.5 s total (forward pass

+ retrieval) on the CPU and can be as fast as 6 ms when

using a GPU. We want to emphasize that the retrieval

time for the CPU scenario is almost exclusively due

to the forward pass of the query image. In addition,

we could increase the corpus size by a factor of 100 in

all experiments which would only add at most 200 ms

to the query time irrelevant of the usage of a CPU or

GPU. Hence, we think that our method is suitable for

applications from a timing point of view.

5 Conclusion

In this work we present an approach for attribute-based

word spotting using CNNs. For this we theoretically de-

rive loss functions which are suitable for training binary

as well as real-valued attribute-representations. We are

also able to show that the Binary Cross Entropy Loss

and the Euclidean Loss yield the same results when the

output and the label vectors are normalized.

In addition to the loss functions, we carefully design

two AttributeCNN architectures specifically for word

spotting. While the first architecture features well-known

layer types, the second architecture is equipped with

our proposed TPP layer. This layer is able to extract

fixed-size representations for arbitrary word images while

only considering splits along the horizontal axis.

We evaluate the proposed architectures in a num-

ber of experiments on different data sets. The proposed

approach is very robust with respect to the choice of

meta-parameters.

Though there is no clear cut winner in terms of word

string embeddings, we recommend to use the PHOC

embedding in conjunction with Binary Cross Entropy

Loss and Adam optimization as it did not exhibit one

sub-par result in our experiments and achieved the fastest

training times.

In this work, we have only focused on segmentation-

based word spotting. However, the presented approach

can be easily adapted to a segmentation-free scenario

as was already shown in [45]. Here, a number of word

hypotheses is processed by a TPP-PHOCNet. At query

time, the representations for the word hypotheses can

be compared to the query representation as is done in

8 http://scikit-learn.org/

http://scikit-learn.org/
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the segmentation-based case. As the number of word

hypotheses per page are of the same order of magni-

tude as the largest data sets in the segmentation-based

approach, query times per page and per query are sim-

ilar to the times presented above.
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