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Abstract—A word spotting system is in large parts charac-
terized by the query modalities it is able to process. The most
common modalities here are Query-by-Example and Query-by-
String. However, recently a new query type has been proposed:
In Query-by-Online-Trajectory (QbO) the query is presented as
a set of online-handwritten trajectories. In this work we devise a
cross-domain word spotting framework using CNNs which is able
to accomplish the QbO task. In particular, we design two different
QbO systems which we evaluate in a number of experiments.
We are not only able to outperform the current state of the
art in QbO word spotting but also show that a system using a
single CNN for both online and offline data achieves superior
results compared to a system that uses a CNN for each domain
individually.

I. INTRODUCTION

Word spotting has garnered a large amount of research
attraction over the recent past. The goal in word spotting is to
retrieve parts of a document collection which are relevant with
respect to a certain query. Typically, the sought after elements
are word or line images.

A current trend in word spotting is to create a common,
holistic representation of queries and test documents. Very
influential work in this regard was presented in [1] in the from
of Pyramidal Histograms of Characters (PHOC) which is an
embedded attribute representation for text strings. Learning
this representation from document images can successfully
be achieved with either an ensemble of SVMs [1], [2] or
Convolutional Neural Networks (CNN) [3], [4]. Performing
Query-by-Example (QbE) word spotting (query is a document
image) boils down to a simple nearest neighbor search within
the predicted representations. Query-by-String (QbS) (query is
a text string) can be as easily achieved as the query string can
directly be mapped into the PHOC space. In general, a wide
variety of query modalities is possible under this framework
as long as the query can be mapped to a PHOC representation.

This work will focus on Query-by-Online-Trajectory (QbO).
QbO is an emerging paradigm in the field of word spotting
which enables a natural interface for running word spotting
applications on either touchscreen-equipped devices or smart
boards [5]. For these devices, the human machine interaction is
vastly improved by QbO as a user can intuitively define the de-
sired query without the need for additional input devices such
as keyboards. In the context of this work, online-handwritten
trajectories are sequences of points (pen positions) contrasting

offline document images which are pixel representations of
scanned documents.

If a query to a word spotting system can be represented as
an image, CNNs achieve superior results to other approaches
[2]–[4]. It is desirable to transfer this success to sequential
online trajectories as well. However, it is not obvious how to
feed online trajectories into a CNN. While recurrent neural
networks such as Long Short Term Memories (LSTM) are
capable of processing online-handwritten data [6], it is unclear
how an LSTM can be incorporated into the embedded attribute
framework or how it can generate a PHOC representation.
Moreover, processing online trajectories with LSTMs requires
pre-processing techniques which are largely based on heuris-
tics [6], [7]. Some of the pre-processing could be remedied by
Convolutional-LSTMs [8] but the question of how to generate
a PHOC representation from these networks still prevails.

A CNN is inherently designed to process offline images.
Thus a simple solution for a CNN to process online trajectories
is to render them into offline images. These images can then be
feed to the CNN as input. This approach was already used in
[9] for allowing an offline HMM-based classifier to be trained
and tested on online trajectories.

Our contribution in this work is to devise a unified frame-
work for word spotting with online-handwritten trajectories
based on CNNs. Rendered online trajectory images are used
for training CNNs and generating an embedded attribute
representation from a given query trajectory. We evaluate
both, a system with two separate CNNs for rendered online
trajectories and offline word images and one with a single
CNN for data from both domains. We show empirically that
results for cross-domain word spotting can be vastly improved
by using a single CNN for predicting the PHOC representation
for both rendered online trajectories and offline document
images.

II. RELATED WORK

One of the earliest works on word spotting in handwritten
documents performs word spotting through the use of XOR-
maps and Euclidean Distance Mapping [10]. Ensuing works
made heavy use of techniques that had proven effective for
handwriting recognition tasks. In [11] the authors use a Dy-
namic Time Warping approach for comparing contour features
of different word images. The approaches in [12] and [13] both
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Fig. 1. The figure exemplarily visualizes the creation of a three-level PHOC
from a word string.

use Hidden Markov Models (HMM). In [14] a Bidirectional
Long Short Term Memory is used to spot query words in
segmented line images.

Alongside the sequential models, holistic models have been
successfully used for word spotting as well. In [15] the authors
make use of a Spatial Pyramid representation on top of a Bag-
of-Features (BoF) representation of quantized SIFT-features in
order to perform segmentation-free word spotting. This con-
cept is extended in [16] by incorporating product quantization
for efficient retrieval. Spatial Pyramids and SIFT-features are
used in [17] as a visual representation as well. Using Latent
Semantic Analysis, the visual representation together with a
textual representation of the sought after query are projected
into a common subspace in which QbS word spotting is
possible. Combining the BoF principle and sequential models,
Bag-of-Feature HMMs are used for segmentation-free word
spotting in [18]. The approach of BoF-HMMs is further
extended to segmentation-free QbS in [19].

One of the most recent trends in word spotting has been
learning an embedded attribute representation for a given word
image. Very influential work in this regard was presented
in [1] in the form of Pyramidal Histograms of Characters
(PHOC). A PHOC is a binary histogram representing presence
or absence of certain characters in a string. A three-level
PHOC is visualized in figure 1. Except for the first layer, a
binary histogram is created for certain splits of the word string.
E.g., the word string is split into halves at the second level
and a binary histogram is created for each split representing
presence or absence of characters in the specific split. Finally,
all histograms from all levels are concatenated to form the final
PHOC. One of the PHOC’s main traits is that it can directly

be generated from a string. If a model is able to predict a
PHOC representation for a given word image, this prediction
can directly be used for QbE and QbS. Moreover, new
query modalities can be plugged into the PHOC framework
if they can be mapped to this attribute embedding. This is
exactly the approach in [5] where a PHOC representation
is learned from online-handwritten trajectories through the
AttributeSVM framework.

Due to the current success of Deep Learning in other
fields of computer vision, recent works in word spotting have
focused on learning representations through neural networks
as well. In [2] a CNN is used as feature extractor. These fea-
tures are then used as input to the AttributeSVM framework,
effectively replacing the Fisher Vector in [1]. Another recent
approach makes use of Triplet-CNNs as feature extractors
[4]. The generated features are forwarded to a 3-layer MLP
which is trained by applying the Cosine Embedding Loss. This
way, the system is not only able to predict binary attribute
representations like the PHOC, but also real valued ones. The
authors compare the results achieved with a PHOC compared
to those using a novel holistic word image representation
called Discrete Cosine Transform of Words. The evaluation
suggest that both representations achieve quite similar results.

The current state of the art for a wide range of segmentation-
based word spotting benchmarks is set by the PHOCNet [3].
This CNN is able to learn the PHOC in an end-to-end fashion
through a non-linear from of logistic regression: The output of
each neuron in the last layer is forwarded through a sigmoid
activation functions which squashes the output to the range
(0, 1). As each neuron is processed individually, the network
is able to predict the n out of k encoding of the PHOC.

III. QBO WITH THE PHOCNET

The goal in Query-by-Online word spotting is to retrieve a
list of offline word images from a given document image col-
lection with respect to an online-handwritten trajectory. Here,
an online-handwritten trajectory is assumed to be a sequence
of trajectory points and the document image collection a set of
images. Note that QbO differs from other retrieval scenarios
such as [20] where online-trajectories are retrieved from
textual representations such as ASCII. Informally speaking,
we want to retrieve offline images from online data. In the
following, we will refer to the word images to be retrieved
simply as test images.

In order to solve the problem at hand, we draw inspiration
from [5] and project online and offline data into a common
attribute space. For this, we first render the online trajectories
into offline images which can then be fed to a CNN. This
approach allows us to neglect pre-processing techniques such
as skew and slant correction or removal of delayed strokes
[6], [7]. Much rather than applying these heuristics, we let
the CNN learn an appropriate normalization of the unwanted
variability during training.

In order to predict the PHOC representation from the
rendered online images, we employ the recently proposed
PHOCNet [3]. The PHOCNet is a 19-layer CNN which can be
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Fig. 2. Outline of 2-PHOCNet System: The online trajectory is first rendered and then passed through the PHOCNet trained on rendered online images. The
offline document image is passed through a separate PHOCNet which was previously trained on offline data. The predicted PHOC representations can then
be exploited for word spotting by ranking them with a suitable distance metric.

trained with a set of document images and their corresponding
PHOC annotation in an end-to-end fashion. We chose this
CNN over other architectures as it is able to achieve state
of the art results on even small data sets without the need for
extensive additional amounts of data as are needed for e.g.
Deep Feature Embedding [2] or Triplet-CNNs [4].

Using the PHOCNet for the rendered online images and
the offline document images, we devise two different word
spotting systems.

For the first system, one PHOCNet is trained on the rendered
online trajectory images (ROTI) and another PHOCNet is
trained to predicting PHOCs from offline word images. In
the following, we refer to this system as 2-PHOCNet System.
Figure 2 gives an overview over the first system. It is important
to note here, that the two different PHOCNets do not share any
parameters and are only trained on their respective data (either
ROTI or word images). At query time, we render the query
trajectory and predict the corresponding PHOC representation
from the PHOCNet trained only on the ROTIs. Likewise, we
predict PHOC representations for the offline word images to
be retrieved through the CNN trained on offline data. Word
spotting is then performed as usual in the PHOC framework:
compute the Cosine distance between predicted query PHOC
and predict test PHOCs and rank the test set according to these
distances.

The second system makes use of a single PHOCNet only
which is trained on both ROTIS and offline word images. We
refer to this as the 1-PHOCNet System. Figure 3 visualizes
this approach. Here, the single PHOCNet is able to predict
PHOCs for both ROTIs and offline word images in a joint

fashion. The rest of the pipeline is very similar to the first
approach: Predict PHOCs for the rendered query image and
offline test images and run a nearest neighbor search.

IV. EXPERIMENTS

We evaluate the presented systems in a number of different
experiments. In this section, we first introduce the data sets
used for the experiments. Then we present the protocols used
for assessing the performance of the two system and finally
present the results and an accompanying discussion.

A. Data Sets

The George Washington (GW) data set is a collections of
letters and correspondences written by George Washington and
his associates in the 18th century. The data set is made up of
20 scanned pages with the ground truth containing annotation
and word-level segmentation for 4860 words. The ground truth
does not contain an official partitioning into training and test
set. However, it is common to use a cross validation approach
with the exact same cross validation partitions as were chosen
in [1]1 (e.g. [2], [4]). In our experiments, we follow this cross
validation approach as well.

The George Washington Online (GWO) is a data set of
online trajectories. It was created for the experiments in [5]
in order to be able to perform QbO word spotting on the GW
data set. The GWO data set contains the online-handwritten
trajectories for every word in the GW data set. All trajectories
were created by a single writer.

1partitions available at https://github.com/almazan/watts/tree/master/data
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Fig. 3. Outline of the 1-PHOCNet System: The online trajectory is first rendered and then passed through a PHOCNet which has been jointly trained on
both rendered online images and offline document images. Word spotting is then performed as in the first approach.

The Unipen data set is a collection of online-handwritten
trajectories from the Unipen foundation [21]. The ground truth
comes with annotations and segmentations at line, word and
character level. In order to be able to directly compare our
evaluation to the one reported in [5], we use the same subset
of trajectories (sta0) for our experiments. The subset contains
on average 400 trajectories for each of the 62 writers. The
total amount of word-trajectories is 27 112.

The IAM Handwritten Database (IAM-DB) [22] consists
of 115 320 words written by 657 writers. For our experiments,
the official partition available for writer independent text line
recognition is used for generating the training and test splits.
These splits yield a training and test set of 60 453 and 13 752
words respectively. Please note that a single writer does only
contribute to either the training or the test split in this official
partitioning.

The last data set used is the IAM On-Line Handwrit-
ing Database (IAM-OnDB) [23]. It is made up of 13 049
trajectories of online-handwritten text lines, contributed by
221 writers. The IAM-OnDB does only come with line-level
segmentations for the trajectories. As our PHOCNets need
a word-level segmentation, we created it through a forced
alignment by an HMM. The word-level segmentation will be
made publicly available. The exact specifications for running
the forced alignment are presented in the next section. As
test partition, we use the official testset f that comes with the
annotation. All other word images are used for the training
partition. Similar to the IAM, a single writer does only
contribute to either the training or the test split in this setup.

B. Word-Level Segmentation of IAM-OnDB

In order for the PHOCNets to be trained on rendered online
trajectories, a word-level segmentation of the training images
is required. This word-level segmentation already exists for
the GWO but is missing for the IAM-OnDB. Thus, we create
such a segmentation by means of forced alignment with a
semi-continuous BoF-HMM using an Exponential Dirichlet
Compound Multinomial (EDCM) output model [24].

BoF can automatically be adapted to the application domain
and have shown excellent performance for word spotting and
handwriting recognition [24]. In this regard, BoF-based repre-
sentations have also shown high robustness if no preprocessing
is applied for normalizing word images, cf. [1].

In order to integrating BoF with HMMs, the generation
of sequences of BoFs is modeled. BoF are column-wise
extracted from a dense grid of quantized SIFT descriptors
(visual words). The probability for generating a BoF in a
specific HMM state can then be modeled with a multinomial
distribution. The EDCM is an extension of a multinomial
model that is suitable when the observations are very sparse.
Within a line image, columns in the dense grid contain only
few visual words. Due to our large visual vocabulary, sparse
BoF are our standard scenario.

For computing the forced alignment we closely follow the
configuration as reported in [24]. Rectangular SIFT descriptors
containing 4×2 cells (rows×columns) at a cell size of 13×13
pixels are extracted in a dense grid of 5 × 5 pixels. After
quantizing SIFT descriptors with respect to 4096 visual words
we model BoF with an EDCM mixture model consisting of
1024 mixture components. Finally, we estimate 83 character
models with a Bakis topology and 6 states per model.

C. Evaluation Protocol

In this section we are going to outline the protocol used
for the word spotting experiments. In order to simplify ex-
planations, we only point out the training set, query set and
test set used in each experiment. For the 2-PHOCNet system,
the ROTIs and offline word images of the respective training
set are used to train two different PHOCNets (cf. figure 2)
while for the 1-PHOCNet system both sets are combined to
train one PHOCNet (cf. figure 3). The query set is always
a set of online-handwritten trajectories for which PHOCs are
computed by first rendering them and then forwarding them
through the PHOCNet trained on the ROTIs or the joint
PHOCNet. The test set is always a list of offline word images
for which PHOCs are predicted through the PHOCNet trained



on offline images or the joint PHOCNet. For each experiment,
word spotting is performed following the protocol used in [1]
(this protocol was used in [5] as well): Each query PHOC
is used to rank the test PHOCs through the Cosine distance.
A query is only considered if it has at least one relevant
occurrence in the test set. For each query and ranked retrieval
list, the Average Precision is calculated. Finally, the overall
performance of the system is assessed by computing the mean
Average Precision (mAP).

In our experiments, we evaluate three different QbO word
spotting scenarios. The training, query and test sets for respec-
tive experiments are generated as follows:

Exp. 1: Single Known Writer (SKW): For the first
experiment, the queries originate from a single writer, who
already contributed other trajectories for training the word
spotting system. The data sets used are the GWO and GW.
First, we render all online trajectories of the GWO with a
stroke width of 10 pixels. The stroke width was determined by
taking five trajectories from the training partition and creating
a visually appealing rendered word image. The GWO and GW
are then divided into four cross validation splits. For both
GWO and GW, we use the splits defined in [1].

The training set for this experiment is then the combination
of both training splits for GWO and GW. The query set is the
test split of the GWO while the test set is the test split of the
GW.

Exp. 2: Single Unknown Writer (SUW): For the second
experiment, the queries originate from a single writer, who did
not contribute other trajectories for training the word spotting
system. The data sets used are the Unipen, GWO and GW.
First, the GWO is rendered with a stroke width of 10 pixels
while for the Unipen we chose a stroke width of 20 pixels.
The stroke widths were determined as in the first experiment.
Afterwards, GWO and GW are again split up into the four
cross validation batches.

For the training set, we use the entire Unipen data set as
well as the GW training split. The query set is again the test
split of the GWO data set. During pre-experiments it became
evident that simply using the query set this way does not
allow the CNN to reliably predict PHOCs. This is due to
the vastly different scales of the Unipen and GWO images.
In order to cope with this size mismatch, a scaling factor is
determined which is applied to the GWO images. For this,
we first compute all common words from the Unipen and the
respective training partition of the GWO. Then the average
height of these common words is calculated for both data sets.
The scaling factor is then the quotient between the average
height of the Unipen and the average height of the GWO.
Finally, the test set is again the test split of the GW data set.

Exp. 3: Multiple Unknown Writer (MUW): For the third
experiment, the the queries originate from multiple writers,
who did not contribute other trajectories for training the word
spotting system. For this, we use the IAM and IAM-OnDB
data sets. The IAM-OnDB is rendered with a stroke width of
20 pixels (stroke width was determined as for Exp. 1 and 2).
The training set for this experiment is the union of the two

TABLE I
SUMMARY OF THE DIFFERENT SETS FOR THE THREE QBO EXPERIMENTS

Experiment Training Set Query Set Test Set

Exp. 1: SKW GWO Train
+ GW Train

GWO Test GW Test

Exp. 2: SUW Unipen
Train + GW

Train

GWO Test GW Test

Exp. 3: MUW
IAM Train +
IAM-OnDB

Train

IAM-OnDB
Test

IAM Test

training splits of IAM and IAM-OnDB. The query set is the
official test split f of the IAM-OnDB. Please note that we use
all words from the f split as queries. All other trajectories in
the IAM-OnDB are accounted to the training set. Finally, the
test set is the test split of the IAM.

Table I summarizes the training, query and test sets for the
three experiments. Note that exp. 1 (SKW) and 2 (SUW) are
following the same protocol as was presented in [5].

D. Experimental Setup Details

For rendering online-handwritten trajectories, we let a
sphere of the diameter explained in the previous section slide
along the trajectory. Each image is rendered as a binary image
with no post-processing whatsoever.

All PHOCNets are trained with the exact same parameters
as had been chosen in [3]: The CNNs are trained with
stochastic gradient descent (SGD). The learning rate is set to
10−4, momentum to 0.9 and weight decay to 5 · 10−5. After
70 000 iterations the learning rate is set to 10−5. An iteration
here means computing the forward and backward pass through
the CNN for a single batch and updating the weights with
respect to the gradient. The batch size is set to 10. The training
is run for a maximum of 80 000 iterations.

Each layer of the PHOCNet is initialized with the weights
randomly drawn from a zero-mean Gaussian distribution with
variance 2

nl
where nl is the number of inputs in layer l [25].

For example, if a convolution layer with a kernel size of 3×3
is presented with a feature map of 512 channels, nl computes
to 32 · 512 = 4608. The layer biases are initialized with 0.

We use the Caffe framework [26] in order to train our
PHOCNets. Please note that Caffe by default scales the gradi-
ents calculated for training with the computed loss. This has to
be taken into consideration when recreating the experiments.

E. Results & Discussion

The results for the three experiments and two word spotting
systems are reported in table II. As can be seen in the table,
the approach of using CNNs instead of AttributeSVMs leads
to a considerable performance gain.

Another interesting observation is that the 1-PHOCNet
System is able to consistently outperform the 2-PHOCNet
System across all experiments. This result might seem counter
intuitive at first as using individual CNNs for the rendered



TABLE II
RESULTS FOR THE THREE EXPERIMENTS IN MAP [%]

Method SKW SUW MUW

2-PHOCNet System 96.91 83.04 55.57
1-PHOCNet System 97.35 90.96 77.73

AttributeSVM [5] 86.49 21.71 −

online images and offline document images should enable each
CNN to focus better on the intricacies of the respective data.

However, as the CNNs essentially only see offline images,
combining both data sets lets the CNN experience more
intraclass variability during training. This enables it to learn
a much more robust representation compared to seeing data
from one domain only. What is really interesting about this
is that the online trajectories are rendered as binary images
while the offline word images are gray-scale images. Yet, the
CNN is able to draw knowledge from combining both binary
and gray-scale images. This further demonstrates the excellent
generalization capability of the PHOCNet.

V. CONCLUSION

In this work, we present a unified framework for run-
ning cross-domain word spotting. Using online trajectories
of handwriting, we are able to retrieve offline word images
from historic as well as contemporary document images. We
evaluate two different systems for this Query-by-Online word
spotting approach. Using the recently proposed PHOCNet,
both systems project offline document images or online-
handwritten trajectories into a PHOC space in which the QbO
retrieval can be solved through a simple nearest neighbor
approach.

In a number of experiments, we showed that both systems
are able to outperform the current state of the art in QbO.
Additionally we found that the system using a single PHOC-
Net for both rendered online images and offline document
images consistently performed better than the system using an
individual PHOCNet for the two domains. This observation
holds true for different amounts of known and unknown
writers as well as historic and contemporary data sets.

As part of our experiments, we created a new word-level
segmentation for the IAM-OnDB. This segmentation will be
made available to the research community.
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