
Evaluating Word String Embeddings and Loss
Functions for CNN-based Word Spotting

Sebastian Sudholt and Gernot A. Fink
Department of Computer Science

Technische Universität Dortmund University
44221 Dortmund, Germany

Email: {sebastian.sudholt, gernot.fink}@tu-dortmund.de

Abstract—The recent past has seen CNNs take over the field
of word spotting. The dominance of these neural networks is
fueled by learning to predict a word string embedding for a
given input image. While the PHOC (Pyramidal Histogram of
Characters) is most prominently used, other embeddings such
as the Discrete Cosine Transform of Words have been used as
well. In this work, we investigate the use of different word string
embeddings for word spotting. For this, we make use of the
recently proposed PHOCNet and modify it to be able to not only
learn binary representations. Our extensive evaluation shows that
a large number of combinations of word string embeddings and
loss functions achieve roughly the same results on different word
spotting benchmarks. This leads us to the conclusion that no
word string embedding is really superior to another and new
embeddings should focus on incorporating more information than
only character counts and positions.

I. INTRODUCTION

The field of word spotting has gained an increasing amount
of research interest lately. The goal in word spotting is to
retrieve parts of a document image collection with respect
to a given query. Often times, this query representation is
either an image (Query-by-Example, QbE) or a string defining
the sought after word (Query-by-String, QbS). Recently, both
segmentation-based (i.e. a word level segmentation is avail-
able) and segmentation-free (i.e. entire document images are
used without any segmentation) word spotting scenarios have
been investigated.

The best performing methods in segmentation-based word
spotting currently all make use of the same framework: Word
strings and word images are projected into an embedding
space through suitable transformations which are estimated
from annotated training data. This way, QbE as well as QbS
word spotting can be performed through a simple nearest
neighbor search. While early work in this regard made use of
classical, handcrafted features and SVMs [1], Convolutional
Neural Networks (CNN) have been used in a variety of ways
recently to predict embeddings for word images [2]–[4].

As of now, embedding-based approaches in conjunction
with deep neural networks represent the state-of-the-art in
segmentation-based word spotting. The question that arises,
though, is: Which word string embedding is the best and what
is the most suitable way to train a system to predict this
embedding?

In this work, we investigate different word string embed-
dings and loss functions for training a CNN in an end-to-end

fashion. Our experiments are conducted in a segmentation-
based scenario. Furthermore, we introduce a new global pool-
ing layer for CNNs, which is especially suitable to be used
for word images. We dub this new layer Temporal Pyramid
Pooling layer (TPP).

II. RELATED WORK

Besides sequential models, e.g. [5]–[7], recent approaches
for word spotting made heavy use of holistic representations
of word images [1], [8], [9]. Here, especially local descriptor-
based approaches were successfully applied to word spotting
problems. In [10] the authors propose to build a spatial pyra-
mid on top of a SIFT-based Bag-of-Features representation in
order to form word image descriptors. In [11] this concept is
extended to learn a common space between spatial pyramids
and word strings to allow for Query-by-String word spotting.

Very influential work concerning common spaces for word
spotting was presented in [1]. Here, the authors propose to
project word images into a word string embedding space. As
word string embedding, the authors propose to use a binary
attribute representation which they name Pyramidal Histogram
of Characters (PHOC). They employ an ensemble of SVMs to
learn predictions for each element of the PHOC individually.
Each SVM takes a Fisher Vector representation of the word
image and predicts one dimension of the PHOC. The presented
approach could be shown to achieve state-of-the-art results.

Recently, the concept of embedding word strings into a
vector space was extended by incorporating CNNs. In [2] the
authors replace the Fisher Vector with a deep CNN trained on
synthetic word image which is then fine-tuned to the specific
data sets. The CNN acts as a feature extractor for the ensuing
AttributeSVMs. In [3] the authors train a Triplet-CNN as fea-
ture extractor. For predicting a PHOC from these features, they
employ an MLP. In addition to the PHOC, the authors propose
and evaluate a different word string embedding called Discrete
Cosine Transform of Words (DCToW). In [4] a deep CNN
called PHOCNet is used to learn the PHOC representation for
a given word image. In contrast to [2] and [3], the training
of the PHOCNet is conducted in an end-to-end fashion, thus
optimizing features and prediction simultaneously. For this,
the PHOC is interpreted as an n-out-of-k encoding which can
then be learned through binary logistic regression.

III. METHOD

In this section, we describe our method to learn word string
embeddings with a CNN. We base our system on the recently
proposed PHOCNet [4] as it allows for easily learning a
binary string embedding in an end-to-end fashion and achieves
state-of-the-art results. Depending on the embedding to be
learned, we make slight alterations to the PHOCNet archi-
tecture, namely replacing the loss function used for training.
In the following we list all word string embeddings and loss
functions used in our experiments. In addition, we design a
new pooling layer, similar to the Spatial Pyramid Pooling layer
which is especially suitable for word images.

A. Word String Embeddings

Pyramidal Histogram of Characters The PHOC represen-
tation [1] is the one most commonly used in the embedding
framework for word spotting, e.g. [1]–[4]. It is a binary
histogram of character occurrences at different splits of the
string. For example, at the first layer of the PHOC, the string
is not split at all but rather the presence of each character
is indicated in a binary histogram. At the second level, the
string is split into two equally sized portions along the middle
and the binary histogram of character presence is built for each
side. A character’s membership to each partition is determined
as follows: Assume all characters have equal width then a
character belongs to a partition if at least 50% of it overlap
with the partition.

A PHOC can principally feature as many layers as desired.
The authors, however, argue to ignore the first layer as it is not
discriminative for strings featuring the same characters such as
silent and listen [1]. Instead, they augment the PHOC with two
binary histograms showing presence or absence of bigrams in
the left and right partition of the word.

In a number of pre-experiments, we found the first PHOC-
level to actually help in discriminating between PHOCs pre-
dicted from a CNN as the scenario described above rarely
occurs. In contrast, we found the bigrams to not have a signif-
icant impact on the entire system. Hence, for our experiments,
we use a 5-level PHOC of partitions 1, 2, 3, 4 and 5 ignoring
bigrams.

Discrete Cosine Transform of Words Another recently
used word string embedding is the Discrete Cosine Transform
of Words (DCToW) [3]. This representation is obtained by first
representing each character as a one-hot encoded vector with
respect to the alphabet. Stacking all vectors into a matrix, a
discrete cosine transform is applied per row and all values but
the highest three per row are discarded. The remaining values
are concatenated into a vector to form the DCToW descriptor.

Spatial Pyramid of Characters The Spatial Pyramid
of Characters (SPOC) [12] can be seen as a multinomial
generalization of the PHOC. Here, instead of showing binary
presence or absence of each character in each split, the cor-
responding characters are counted. At the first level, a simple
Bag-of-Characters (BoC) representation is created meaning a
histogram of character counts for each character of a given
alphabet. For every consecutive level, the string is split into a

number partitions equivalent to the level (e.g. two partitions at
the second level, three at the third and so on). For each such
partition a BoC is generated. Finally all BoC representations
are concatenated to form the SPOC.

We make a slight modification to the original SPOC pro-
posed in [12]. Instead of normalizing the individual BoC his-
tograms or assigning partial values, we use the same strategy
for counting characters to partitions as is done in the PHOC.
Considering each character to have equal width, a character
is counted as belonging to a partition if its overlap with the
respective split is at least 50%. Essentially, the SPOC in our
approach is a PHOC with counts instead of binary presence for
each character in each partition. To the best of our knowledge,
the SPOC has not been used in conjunction with a CNN or in
a word spotting context before.

B. Loss Functions

Having defined the word string embeddings, this section
describes which loss functions are used for the different
experiments to train the PHOCNet.

Binary Logistic Loss When learning to predict binary n-
out-of-k representations such as the PHOC, an oft-used loss
function is the Binary Logistic Loss, which is also known
as binary or sigmoid cross entropy loss. This loss can be
motivated from a probabilistic point of view: Let θ be the
parameters of a CNN and y(i) the desired output for a given
input x(i). Then the goal is to find the parameters θ̂ which
maximize the likelihood of predicting y(i) for x(i) for a total
of n samples:

θ̂ = argmax
θ

n∏
i=1

p(y(i)|x(i), θ) (1)

In order to derive a loss function from this expression, the
assumption is made that the elements of the binary label vector
y(i) are pairwise independent. While this assumption is of
course violated in the case of the PHOC, it can be empirically
shown, that the approach still works well in practice [4].

Treating each y as a vector of pairwise independent and
Bernoulli distributed variables, the Binary Logistic Loss com-
putes to

lBL(ŷ,y) = −
1

D

D∑
d=1

[yd log ŷd + (1− yd) log(1− ŷd)] (2)

where ŷ is the prediction form the CNN, D its dimensionality
and yd the value at the d-th dimension of the vector y.

Cosine Loss As the binary logistic loss is designed for
learning a number of Bernoulli-distributed variables, it cannot
be used for real-valued embeddings such as the DCToW.
In order to allow a CNN to learn real-valued word string
embeddings, the authors in [3] propose to make use of the
Cosine Embedding Loss

lCE(ŷ,y,m) =

{
1− cos(ŷ,y) if m = 1

max(0, cos(ŷ,y)− γ), otherwise
(3)

α

β

γ

ŷ

y

Fig. 1: Toy example showing a possible configuration where
learning with the Cosine Embedding Loss is hampered due to
disadvantageous weight initialization.

Here, ŷ is the output of the CNN to be trained, y an
embedding vector and m an indicator function evaluating to
1 if the embedding corresponds to the input x responsible for
obtaining ŷ. Figuratively speaking, the loss encourages the
CNN to minimize the angle between ŷ and y if the input and
the embedding match. Otherwise the angle is maximized. In
[3] the authors randomly sample word images and embeddings
in order to create pairs to train the CNN with. For this
they generate both corresponding (word image and string
embedding match) and non-corresponding (word image and
string embedding do not match) samples.

While this approach does allow for learning real-valued em-
beddings, we believe that the loss imposes a certain restriction
on the training process: While the actual goal is to have the
CNN output the desired embedding y, it is additionally asked
to maximize the distance of the predicted embedding to all
other embeddings. Depending on the weight initialization this
might cause the CNN to exhibit a slow learning behavior or
even get stuck during training. A simple example for this is
given in figure 1. Here, ŷ is the prediction of a CNN for a
given point after initialization and y the desired, i.e, matching
target. All other points are non-matching targets. During
training, the Cosine Embedding Loss tries to simultaneously
minimize α while maximizing β and γ. Thus training stalls
as the two objectives cancel each other out. While this is
only a toy example and the shown “blocking” behavior can
be expected to be not as severe in higher dimensional spaces,
it might still lead to slower learning and inferior results.

Thus, instead of the Cosine Embedding Loss, we propose
to use the Cosine Loss

lcos(ŷ,y) = 1− cos(ŷ,y) (4)

which is essentially the part of lCE for matching pairs. Again,
ŷ is the vector predicted from the CNN and y the desired
embedding. This loss was previously used in [13] for learning
an information-theoretical label embedding, which is also real-
valued. As in other supervised tasks, the loss only minimizes
the error between the label vector and the CNN’s output (in
this case the error is the angle between the two vectors), thus
circumventing the problem shown in figure 1.

For training a CNN with the Cosine Loss, the partial
derivative ∂lcos

∂ŷ has to be computed. In [13] the authors make
use of a computational graph to calculate the gradients for
backpropagation. Thus they do not have to compute an analyt-
ical derivative for lcos. In order to allow the use of the Cosine
Loss in frameworks not relying on a computational graph, we
give an analytical expression for the partial derivative of the
Cosine Loss w.r.t. the output of the CNN:

∂lcos(ŷ,y)

∂ŷ
=

1

||ŷ|| ||y||

(
ŷTy · ŷ
||ŷ||2

− y

)
. (5)

Using the partial derivative, we can backpropagate the error
in the usual stochastic gradient descent (SGD) framework to
train a CNN. When using the Cosine Loss, we also remove
the sigmoid activation from the last layer of the PHOCNet as
the desired output is in RD instead of {0, 1}D.

In all of our experiments, we do not make use of the
Euclidean loss. We argue that this loss is ill suited, as the
Euclidean distance is not a suitable distance measure for high-
dimensional data such as the presented attribute representa-
tions. This is due to the fact that all data points in high
dimensional spaces have roughly equal pairwise Euclidean
distances [14], [15]. Thus we exclude the Euclidean loss from
consideration.

C. Temporal Pyramid Pooling Layer

In our experiments, we make a modification to the PHOC-
Net architecture by introducing a new kind of pyramidal pool-
ing layer. This layer is independent of the loss or embedding
and can be plugged into any CNN architecture.

The Spatial Pyramid Pooling layer (SPP) [16] in the PHOC-
Net is used in order to enable the CNN to process arbitrarily
sized input images. The SPP layer subdivides its input feature
maps into an equal amount of horizontal and vertical bins,
similar to the original spatial pyramid [17]. When dealing with
spatial pyramids built on top of local image descriptors, it was
shown that subdividing a word image along the horizontal
axis is more important than along the vertical axis [11].
Common descriptor-based approaches thus feature a larger
number of bins along the horizontal axis than the vertical
axis [9], [18], sometimes even ignoring these subdivisions
altogether [10], [19].

Going back to the SPP layer, we expect a similar principle,
namely that subdivision of feature maps is more important
along the horizontal than vertical axis when dealing with word
images. Hence, we propose a new layer type based on the
principles of the SPP layer which ignores vertical bins. This
type of layer is especially suitable when dealing with images
of varying size where the content is of a sequential nature. As
this layer is designed to pick up features appearing at different
temporal positions of such sequences, we term this layer
Temporal Pyramid Pooling Layer (TPP). Figure 2 exemplarily
visualizes the TPP layer. Similar to the SPP layer, we pool
each feature map of the last convolutional layer in order to
create a fixed size representation from a number of arbitrarily
sized feature maps. However, the bins are only partitioned

...
...

...

...

...

...

. . .

. . .k feature maps from
last conv. layer pyramidal pooling along horiz.

axis for each feature map
fixed-size input

for MLP

Fig. 2: The figure exemplarily visualizes the principle behind the Temporal Pyramidal Pooling layer. For each of the k feature
maps of the last convolution layer the TPP layer generates pooling regions along the horizontal axis. Max pooling is applied
for each region and the results are concatenated. The resulting vector has a fixed size and can be processed by an MLP.

along the horizontal axis. The figure shows the example of
a 3-level TPP layer. The fixed output dimensionality of this
layer is the sum over all bins for a single feature map times the
number of input feature maps. In general, a number of pooling
strategies may be used in the TPP layer, e.g. max, average
or stochastic. In practice, however, we use max pooling as it
constantly achieves good results. In the following, we refer to
the PHOCNet using our new TPP layer as TPP-PHOCNet.

IV. EXPERIMENTS

A. Data Sets

We evaluate our word spotting systems on five publicly
available data sets. The George Washington (GW) data
set has become a standard benchmarks for word spotting. It
consists of 20 pages from a letter book by George Washington.
The corresponding annotation contains word level bounding
boxes and transcriptions for 4860 words. As there exists
no official training and test splits, we follow the common
approach by performing a fourfold cross validation, using the
splits proposed in [1].

Originally proposed as a handwriting recognition bench-
mark, the IAM-DB [20] data set has recently enjoyed an
increased use as word spotting benchmark as well. It contains
a total of 115 320 words from 657 different writers. We use
the official writer independent text line recognition partition to
split the data set into training and test sets. As is common for
this benchmark, we exclude the official stop words as queries
but keep them as distractors [1].

The third data set used is the Esposalles database [21], an
ancient marriage license register containing documents from
the 15th to 20th century. Again, we use the official partition
which splits the database into 32 052 training and 12 048 test
word images.

The last two data sets, Botany and Konzilsprotokolle, were
used as benchmark in the 2016 Keyword Spotting Competition
[22]. They come with a dedicated set of queries for QbE and

QbS. For the competition, the training data was partitioned
into a small, medium and large set in order to investigate the
effects of training data size on the proposed systems. For our
experiments, we use the largest training partition for both data
sets (Train III). This gives us 16 686 training images for
Botany and 9 102 for Konzilsprotokolle. The test sets contain
3 318 word images for Botany and 3 891 for Konzilsprotokolle.

B. Evaluation Protocol
Our experiments for the data sets GW, IAM-DB and Espos-

alles follow the de-facto standard protocol for segmentation-
based word spotting originally proposed in [1]: The training
partition of each data set is used to train a single TPP-
PHOCNet. For QbE, each word in the test partition is used
once as query to rank all remaining word images. For this, a
word string embedding is predicted from the TPP-PHOCNet
for the query as well as all other test words. Retrieval is then
performed by running a nearest neighbor search in the word
string embedding space. The distance metric used here is the
cosine distance which we found to perform better than the
Bray-Curtis dissimilarity used in [4]. For QbS, each unique
transcription from the test set is used to serve as query. The
string embedding is directly computed from the transcription
and retrieval is run as for QbE.

As the data sets Botany and Konzilsprotokolle come with
a dedicated query set for both QbE and QbS, we follow the
ICFHR 2016 Keyword Spotting Competition protocol [22] for
these two data sets. This protocol only slightly deviates from
the protocol defined above in that no word from the test set is
used as query but rather the dedicated query images or strings.

As performance metric for a single query we use the
interpolated Average Precision (AP)

AP =

∑n
i=1 p(i) · r(i)

t
(6)

where n is the length of the retrieval list, p(i) is the precision
of the retrieval list if cut off after i elements and r(i) is

TABLE I: Results for the QbE and QbS experiments in mAP [%]

Method GW IAM-DB Esposalles Botany Konzilsprotokolle
QbE QbS QbE QbS QbE QbS QbE QbS QbE QbS

Binary Log. Loss + PHOC 97.75 97.50 83.38 92.59 96.93 94.33 91.23 95.06 97.70 97.28
Cosine Loss + PHOC 97.96 97.92 82.74 93.42 97.10 94.32 80.81 90.15 96.42 94.63
Cosine Loss + SPOC 97.78 98.02 82.17 92.64 97.05 94.07 80.37 89.58 96.43 95.88
Cosine Loss + DCToW 97.98 97.65 70.44 83.02 97.11 93.75 79.36 88.68 96.61 94.83

PHOCNet [4] 96.71 92.64 72.51 82.97 97.24 93.29 89.691 74.471 96.051 94.201

Attribute SVM [1] 93.04 91.29 55.73 73.72 − − 75.771 65.691 77.911 82.911

Deep Feat. Embedding [2] 94.41 92.84 84.24 91.58 − − − − − −
Triplet-CNN [3] 98.002 93.692 81.582 89.492 − − 54.951 3.401 82.151 12.191

an indicator function computing to 1 if the i-th element of
the retrieval list is relevant with respect to the query and 0
otherwise. Finally, t is the total amount of relevant elements
in the database. Please note that the recall for each query is
always 100% as every element in the database is returned in
the retrieval list. The performance for an entire data set is
determined by computing the mean Average Precision (mAP)
over all queries.

C. Training Setup

For creating the different word string embeddings (cf.
section III-A) we always use all characters present in the
training set as alphabet. Thus the PHOC and SPOC exhibit
different dimensionalities, depending on the data set and
supplied annotation. All TPP-PHOCNets make use of a 5-level
TPP layer and are trained with standard stochastic gradient
descent (SGD) using momentum and weight decay. The meta-
parameters used for SGD in large parts follow the parameters
used in [4]. We use a batch of 10 images, momentum of 0.9
and weight decay of 5·10−5. We train all PHOCNets for 80 000
iterations except for the IAM-DB where we train for 240 000
iterations. Here, an iteration means computing the gradients for
a single batch and updating the weights accordingly. The initial
learning rate is determined by choosing the maximum value
at which the loss starts to converge. This approach yields a
learning rate of 10−4 for all systems using the Binary Logistic
Loss. For CNNs using the Cosine Loss, the initial learning rate
is 0.01 for all experiments but the ones on IAM-DB. Here, the
initial learning rate is 0.1. During training, the learning rate is
divided by 10 after 70 000 iterations for each experiment.

D. Results & Discussion

Table I lists the results for the QbE and QbS experiments
on the five benchmarks. In addition, figure 3 displays the
evolution of the mAP for the QbE experiments over the
course of training. As can be seen in the table and the
plots, the different embeddings and loss functions achieve very
similar results. Especially for the benchmarks yielding close
to 100% mAP (GW, Esposalles, Konzilsprotokolle) the results
are almost identical. The time at which learning starts to really
achieve good results can vary for these benchmarks but they

1results obtained from [22]
2results obtained with additional annotated training data [3]

eventually converge to roughly the same result. For Botany, the
combination of PHOC and Binary Logistic Loss outperforms
the other systems. However, increasing the amount of training
iterations to a maximum of 150 000, we achieved similar
results using the combination of Cosine Loss and SPOC
(QbE: 87.67, QbS: 94.87). We expect a similar behavior with
the other Cosine Loss-based systems as well. For IAM-DB,
the DCToW embedding performs worse than the others. As the
training loss is already quite low here, we expect that the result
achieved with the DCToW embedding won’t be improved by
allowing more training iterations.

Overall it can be seen, that integrating the TPP layer into the
PHOCNet architecture leads to a performance gain over the
original architecture. We are able to either achieve comparable
or better results on all benchmarks with respect to the current
state-of-the-art.

As almost all embeddings and loss functions achieve the
same results on the five different benchmarks, we conclude
that no combination of embedding and loss function is supe-
rior to another. Likewise, none of the evaluated word string
embeddings is easier or harder to learn given an appropriate
loss function.

The reason for the SPOC descriptor not performing better
than the PHOC is that it does not carry a large amount of
additional information compared to the PHOC. For example,
taking all SPOCs for the GW data set, only 3% of the non-
zero entries have a value greater than one, i.e. differ from the
PHOC.

V. CONCLUSION

In this work, we presented an extensive evaluation of word
string embeddings and loss functions for Query-by-Example
and Query-by-String word spotting. The experiments con-
ducted show that all embeddings and loss functions evaluated
perform almost equally well on five standard word spotting
benchmarks with minor outliers. This leads us to the hypothe-
sis that the current word string embeddings in combination
with CNNs have reached their performance limits. Future
embeddings should incorporate more information than only
character occurrence and position.

Additionally, we proposed a new pyramidal pooling layer
called Temporal Pyramidal Pooling layer. Using this new layer
as a connection between convolutional part and MLP in the

0 20 000 40 000 60 000
0

20

40

60

80

100

m
A

P
[%

]

GW

0 80 000 160 000

IAM-DB

0 20 000 40 000 60 000

Esposalles

0 20 000 40 000 60 000
0

20

40

60

80

100
Botany

0 20 000 40 000 60 000

Number of Iterations

Bin. Log. Loss + PHOC
Cosine Loss + PHOC
Cosine Loss + SPOC
Cosine Loss + DCToW

Konzilsprotokolle

Fig. 3: Evolution of mAP for the five QbE experiments over the course of training using the different loss functions and
embeddings.

PHOCNet architecture, we are able to achieve comparable
results to or even beat the state-of-the-art.

The source code used for our evaluations is made publicly
available at https://github.com/ssudholt/phocnet.git.

REFERENCES

[1] J. Almazán, A. Gordo, A. Fornés, and E. Valveny, “Word Spotting and
Recognition with Embedded Attributes,” Pattern Analysis and Machine
Intelligence, vol. 36, no. 12, pp. 2552–2566, 2014.

[2] P. Krishnan, K. Dutta, and C. Jawahar, “Deep Feature Embedding for
Accurate Recognition and Retrieval of Handwritten Text,” in Interna-
tional Conference on Frontiers in Handwriting Recognition, 2016, pp.
289–294.

[3] T. Wilkinson and A. Brun, “Semantic and Verbatim Word Spotting using
Deep Neural Networks,” in International Conference on Frontiers in
Handwriting Recognition, 2016, pp. 307–312.

[4] S. Sudholt and G. A. Fink, “PHOCNet : A Deep Convolutional Neural
Network for Word Spotting in Handwritten Documents,” in International
Conference on Frontiers in Handwriting Recognition, 2016.

[5] J. A. Rodrı́guez-Serrano and F. Perronnin, “A Model-Based Sequence
Similarity with Application to Handwritten Word Spotting,” Pattern
Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2108–2120, 2012.

[6] V. Frinken, A. Fischer, R. Manmatha, and H. Bunke, “A Novel Word
Spotting Method Based on Recurrent Neural Networks,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 34, pp. 211–
224, 2012.

[7] L. Rothacker, M. Rusinol, and G. A. Fink, “Bag-of-Features HMMs
for Segmentation-Free Word Spotting in Handwritten Documents,” in
International Conference on Document Analysis and Recognition, 2013,
pp. 1305–1309.

[8] M. Rusiñol, D. Aldavert, R. Toledo, and J. Lladós, “Towards Query-by-
Speech Handwritten Keyword Spotting,” in International Conference on
Document Image Analysis, 2015, pp. 501–505.

[9] ——, “Efficient segmentation-free keyword spotting in historical doc-
ument collections,” Pattern Recognition, vol. 48, no. 2, pp. 545–555,
2015.

[10] ——, “Browsing Heterogeneous Document Collections by a
Segmentation-Free Word Spotting Method,” in International Conference
on Document Analysis and Recognition, 2011, pp. 63–67.

[11] D. Aldavert, M. Rusinol, R. Toledo, and J. Llados, “Integrating Visual
and Textual Cues for Query-by-String Word Spotting,” in International
Conference on Document Analysis and Recognition, 2013, pp. 511–515.

[12] J. A. Rodriguez-Serrano and F. Perronnin, “Label Embedding for Text
Recognition,” in British Machine Vision Conference, 2013.

[13] F. Chollet, “Information-theoretical Label Embeddings for Large-scale
Image Classification,” arXiv, 2016.

[14] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the Surprising
Behavior of Distance Metrics in High Dimensional Spaces,” in Interna-
tional Conference on Database Theory, 2001, pp. 420–434.

[15] P. Domingos, “A Few Useful Things to Know about Machine Learning,”
Communications of the ACM, vol. 55, no. 10, p. 78, 2012.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid Pooling in Deep
Convolutional Networks for Visual Recognition,” European Conference
on Computer Vision, pp. 346–361, 2014.

[17] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond Bags of Features:
Spatial Pyramid Matching for Recognizing Natural Scene Categories,” in
Computer Vision and Pattern Recognition, vol. 2, 2006, pp. 2169–2178.

[18] S. Sudholt and G. A. Fink, “A Modified Isomap Approach to Manifold
Learning in Word Spotting,” in German Conference on Pattern Recog-
nition, 2015, pp. 529–539.

[19] C. Wieprecht, L. Rothacker, and G. A. Fink, “Word Spotting in
Historical Document Collections with Online-Handwritten Queries,” in
International Workshop on Document Analysis Systems, 2016.

[20] U. V. Marti and H. Bunke, “The IAM-database: An English Sentence
Database for Offline Handwriting Recognition,” International Journal
on Document Analysis and Recognition, vol. 5, no. 1, pp. 39–46, 2002.

[21] V. Romero, A. Fornés, N. Serrano, J. A. Sánchez, A. H. Toselli,
V. Frinken, E. Vidal, and J. Lladós, “The ESPOSALLES database: An
ancient marriage license corpus for off-line handwriting recognition,”
Pattern Recognition, vol. 46, no. 6, pp. 1658–1669, 2013.

[22] I. Pratikakis, K. Zagoris, B. Gatos, J. Puigcerver, A. H. Toselli, and
E. Vidal, “ICFHR2016 Handwritten Keyword Spotting Competition (H-
KWS 2016),” in International Conference on Frontiers in Handwriting
Recognition, 2016, pp. 613–618.

https://github.com/ssudholt/phocnet.git

	Introduction
	Related Work
	Method
	Word String Embeddings
	Loss Functions
	Temporal Pyramid Pooling Layer

	Experiments
	Data Sets
	Evaluation Protocol
	Training Setup
	Results & Discussion

	Conclusion
	References

