
PHOCNet: A Deep Convolutional Neural Network for Word Spotting in
Handwritten Documents

Sebastian Sudholt, Gernot A. Fink
Department of Computer Science

TU Dortmund University
44221 Dortmund, Germany

Email: {sebastian.sudholt, gernot.fink}@tu-dortmund.de

Abstract—In recent years, deep convolutional neural net-
works have achieved state of the art performance in various
computer vision tasks such as classification, detection or
segmentation. Due to their outstanding performance, CNNs are
more and more used in the field of document image analysis
as well. In this work, we present a CNN architecture that
is trained with the recently proposed PHOC representation.
We show empirically that our CNN architecture is able to
outperform state-of-the-art results for various word spotting
benchmarks while exhibiting short training and test times.

I. INTRODUCTION

In recent years, Convolutional Neural Networks (CNN)
have received increased attention as they are able to con-
sistently outperform other approaches in virtually all fields
of computer vision. Due to their impressive performance,
CNNs have found their way into document image analy-
sis as well. However, the use of CNNs in word spotting
applications has been scarce. Word spotting is an effective
paradigm to index document images for which a direct clas-
sification approach would be infeasable. In [1] the authors
use a pretrained CNN to perform word spotting on the
IAM database. However, this approach has several short
comings: Each word image has to be cropped to a unit
width and height which almost always distorts the image.
Moreover, their CNN is pretrained on the ImageNet database
which comes from a completely different domain than word
images. Although the results are good, this approach bares
the question whether a CNN trained on word images only
can produce even better results.

In this work, we present a CNN architecture specifically
designed for word spotting. By using the recently proposed
Pyramidal Histogram of Characters (PHOC) [2] as labels,
this CNN is able to achieve state-of-the-art performance in
Query-by-Example as well as Query-by-String scenarios on
different datasets1. This is also due to the network being
able to accept input images of arbitrary size. Figure 1 gives
a brief overview over our proposed approach. Due to the
PHOCs being used for training, we refer to our deep CNN
as PHOCNet throughout the paper.

1source code is made available at http://patrec.cs.tu-dortmund.de/cms/en/
home/Resources/index.html

Input Image Deep CNN Estimated PHOC

PHOCNet

...1 1 10 0 1

...0 0 11 0 0

...1 0 00 0 1

QbE QbS
Figure 1: Overview over the proposed PHOCNet approach for
Query-by-Example (QbE) and Query-by-String (QbS) word spot-
ting.

II. RELATED WORK

A. Word Spotting

The goal in word spotting is to retrieve word images from
a document image collection which are relevant with respect
to a certain query. This paradigm has shown itself to be very
effective in situations where a recognition approach does not
produce reliable results.

Numerous query representations have been proposed
throughout the literature. In Query-by-Example (QbE) word
spotting, e.g. [2]–[4], the query is a word image and re-
trieval is based on the visual similarity of the test word
images. This approach, however, poses certain limitations
in practical applications as the user has to identify a query
word image from the document image collection. This might
either already solve the task (does the collection contain the
query?) or be tedious when looking for infrequent words as
queries [5], [6].

Thus the focus for word spotting has shifted towards
Query-by-String (QbS) based approaches [2], [5], [7]. Here,
the user supplies the word spotting system with a textual
representation of the sought word and is returned a list of
word images. The drawback of QbS systems with respect
to QbE systems is that they need to learn a model to map
from textual representation to image representation first, thus
requiring annotated word images.

The predominant features used in word spotting have been



"place"

"place"Level 1

Level 2

"place"Level 3

a b c d e
1 0 1 10

a b c d e
1 0 1 10

l
1...0 ...0

p
1 ...0

l
1

p
1 ...0...0...0

a
1 ...0

l
1

p
1 ...0...0...0

a b c
1 0 1 ...0 ...0

a b c d e
0 1 100

Figure 2: The figure visualizes the extraction of a PHOC from a
given text string at levels 1,2 and 3.

SIFT descriptors [2], [4], [5], [7], [8], geometric features
[3], [9] and HOG-based descriptors [10]. All features share
their expert design and the ability to be generated in an
unsupervised fashion.

The current state-of-the-art in segmentation-based word
spotting are AttributeSVMs trained on an attribute represen-
tation called Pyramidal Histogram of Characters (PHOC)
[2]. This representation encodes visual attributes of the
corresponding word image. Here, an attribute refers to a
semantic unit that may be shared between word images.
Intuitive attributes of a word image are its characters. The
PHOC encodes if a certain attribute (i.e. character) is present
in a certain split of the string representation of a word. For
example, the 2nd level of the PHOC encodes whether the
word contains a certain character in the first or second half
of the word. Figure 2 exemplarily visualizes the extraction
of a PHOC from a text string. In [2] the authors skip a global
representation and represent a word image by a PHOC with
2, 3, 4 and 5 splits. This yields a binary histogram of size
504. Additionally, they use the 50 most frequent bigrams at
level 2. Using the lower case Latin alphabet plus the ten
digits, the PHOC has a size of 604.

B. Convolutional Neural Networks

Although CNNs were initially proposed in the early
1990’s [11], it has only been recently that they received
major attention. The advent of large scale datasets such
as ImageNet [12] and highly optimized implementations
running on graphic cards enabled the typically thousands of
parameters of such a network to be trained in an acceptable
amount of time.

The convolutional part of a CNN can be thought of
as producing a feature representation that can be fitted to
the data at hand in a supervised manner. After this part,
deep CNNs usually make use of a standard Multilayer
Perceptron (MLP) as a classifier. Here, multiple so called
fully connected layers are stacked together to form the MLP.

The recent success of deep CNN architectures is in large
parts due to the use of Rectified Linear Units r(x) =
max(0, x) as non-linear activation functions. With these
activation functions, neural networks with a large number of
layers can be trained efficiently as they eliminate the prob-
lem of vanishing gradients. Other regularization measures
such as Dropout or input image augmentation help prevent

the problem of overfitting [13], [14]. This is especially
important as deep neural networks often feature millions of
parameters.

Despite their large success, there has been very limited
work on using CNNs for word spotting. In [1] a pretrained
deep CNN is finetuned to learn classes of word images. The
output is then used to perform word spotting. However, using
a pretrained CNN and finetuning on word images might
leave the network stuck in a local optimum specific to the
initial training domain (in this case the ImageNet database)
which might not yield top performance. Additionally, the
CNN used needs a fixed image size. The majority of word
images has thus either to be scaled or cropped to this size.
This leads to either distorting or erasing important parts of
the word image. In our approach, the word image size is
not altered which helps the CNN to generalize better over
common semantical units (i.e. characters, bigrams,...).

The approach closest to ours is described in [15]. Here,
an ensemble of a character and an n-gram CNN is used to
perform unconstrained text recognition. While the first CNN
predicts the character at each position of a word image the
latter classifies whether a certain n-gram is present in the
word. This approach resizes the word images similar to [1].
However, the encoding of the characters at the individual
positions is somewhat similar to the PHOC representation.

III. METHOD

A. PHOCNet Architecture

The architecture of our PHOCNet is visualized in figure 3.
The design choice is based on a number of considerations.
First, we only use 3 × 3 convolutions followed by ReLU
activations in the convolutional parts of the neural network.
These convolutions have been shown to achieve better results
compared to those with a bigger receptive field as they
impose a regularization on the filter kernels [14]. Similar
to the design presented in [14], we select a low number
of filters in the lower layers and an increasing number in
the higher layers. This leads to the neural network learning
fewer features for smaller receptive fields and more features
for higher level and thus more abstract features.

Usually, CNNs are fed with images of the same width
and height. Most word images would thus have to be
either cropped or anisotropically rescaled. As was already
mentioned in section II-B, this resizing might severily distort
similar semantic aspects in the visual domain (consider the
chracter a in two hypothetical word images showing as and
about). In order to counter this problem, we make use of
a Spatial Pyramid Pooling Layer [16]. This type of layer
allows CNNs to accept differently sized input images and
still produce a constant output size which is essential for
training the network. The key insight is, that convolutional
and pooling layers can already handle different image sizes
as the only thing changing is the feature map size. In
traditional CNN architectures, only fully connected layers



64 64

12
8

12
8

25
6

25
6

25
6

25
6

25
6

25
6

51
2

51
2

51
2

40
96

40
96 60

4

3× 3 Convolutional Layer + ReLU
2× 2 Max Pooling Layer
3-level Spatial Pyramid Max Pooling Layer

Fully Connected Layer + ReLU and Dropout
Fully Connected Layer + Linear Activation
Sigmoid Activation (estimated PHOC)

Figure 3: The figure displays the PHOCNet architecture. All convolutional layers are depicted by a green, all max pooling layers by an
orange and the fully connected layers by a black box. The red box depicts the spatial pyramid pooling layer while the blue box represents
the sigmoid activation layer. The number of filters for each convolutional layer is shown underneath as are the number of neurons for the
fully connected layers. The number of neurons in the last layer is equal to the size of the PHOC. Convolutional layers use stride 1 and
apply 1 pixel padding. Pooling layers use stride 2. If the PHOC is created using only the lower case characters from the Latin alphabet
plus the ten digits, it has a dimensionality of 604.

can not deal with changing image sizes. Thus the authors
propose to use a pooling strategy similar to the well known
spatial pyramid principal as the last pooling layer before the
fully connected part of the CNN. This way, a CNN can be
fed with arbitrarily sized input images and is still able to
produce a constant output size. In our method, we use a 3-
level Spatial Pyramid max pooling to circumvent the need
for cropping or resizing the input image.

The common task for a CNN is a 1 of k classification.
Usually, this is achieved by applying the softmax activation

sm(o)i =
eoi∑n
j=1 e

oj
= ŷi (1)

to the output o of the CNN which produces pseudo-
probabilites for each class. For word spotting, using this
single label classification paradigm is infeasable due to a
number of reasons: If the query word class is not among
the training classes (out of vocabulary), it is not obvious
how to perform QbE word spotting. Even worse, QbS word
spotting is altogether impossible for these queries. Also, the
softmax is usually overconfident for misclassifications which
makes it hard to automatically detect errors.

In order to alleviate the problems at hand, we let the CNN
predict a PHOC representation for a given word image. This
allows for transfering knowledge about attributes from the
training images to the test images as long as all attributes
in the test images are present in the training images.

o1

o2

...

on

sm1 ŷ1

sm2 ŷ2

...

smn ŷn

SoftmaxLast FC Layer

Standard CNN

o1

o2

...

on

sg1 â1

sg2 â2

...

sgn ân

SigmoidLast FC Layer

PHOCNet

Figure 4: Visualization of a standard softmax output and the output
of the PHOCNet.

In order to train a deep CNN with PHOCs, the softmax
activation can no longer be used as multiple elements of the
PHOC can be 1. However, training the CNN with PHOCs as
labels can be seen as a multi-label classification task. Thus
we replace the softmax activation by a sigmoid activation
function

sg(x) =
1

1 + e−x
(2)

which is applied to every element of the output vector.
Figure 4 visualizes the changes compared to a standard
softmax CNN. In this figure and also in figure 3 we show the
sigmoid activation as a seperate layer in order to visualize



the replacement of the softmax layer. Here, âi refers to
the pseudo probability for attribute i being present in the
word image. Using the sigmoid this way, each attribute is
interpreted as a label in a multi-label classification task.

For training, we apply the cross entropy loss

E(a, â) = − 1

n

n∑
i=1

[ai log âi + (1− ai) log(1− âi)] (3)

to the output â of the CNN and backpropagate the error
gradient. Here, ai represents the annotation label for attribute
i extracted from the PHOC label.

The output of the resulting deep CNN can be used as
a holistic word image representation in a simple retrieval
approach. For QbE, the representations can be compared
directly while for QbS a PHOC can be generated from the
query and be compared to the output representation of the
neural network.

B. Regularization

The vast amount of parameters in our PHOCNet makes
it prone to overfitting. Hence, we apply a number of regu-
larization techniques that have become common when using
deep CNNs.

In many image classification tasks, CNNs have greatly
benefitted from the use of Dropout in the fully connected
layers [13], [14]. In Dropout, activations of a certain layer
are randomly set to 0 [17]. This acts as a regularizer on
the CNN as neurons following a layer with dropout can no
longer rely on a neuron in the previous layer to be active for
a specific input image. In our approach, we apply Dropout
of 0.5 to all but the last fully connected layer (all black
layers in figure 3).

Additionally, we augment the set of training word images.
This balances the classes of word images and imposes
another measure of regularization on the CNN. For the
augmentation we randomly sample a number of word images
from each class and apply a random affine transform per
sampled word image. This affine transform is obtained by
selecting the relative coordinates (0.5, 0.3), (0.3, 0.6) and
(0.6, 0.6) and multiplying each coordinate value with a
random factor drawn from a uniform distribution with limits
[0.8, 1.1]. The transform is then the homography needed to
obtain the new coordinates from the initial coordinates. For
each class we generate images such that the classes are
balanced and the number of training images amounts to
500 000.

C. Training

We train our PHOCNet using stochastic gradient descent
with a batch size of 10, momentum of 0.9, weight decay of
5 · 10−5 and an initial learning rate of 10−4. The selection
of these parameters is based on those used in [14] for
a similar network architecture. Training is run for 80 000
iterations with the learning rate being divided once by 10

after 70 000 iterations. The chosen parameters stay the same
for all experiments.

Initializing the CNN parameters before training is a
critical aspect in learning the model. We follow [18] and
initialize the weights by randomly sampling from a zero-
mean uniform distribution with variance 2

n where n is the
number of parameters in a given layer. Likewise, layer
biases are initialized with 0. We found this initialization to
produce slightly better results compared to initializing from
a Gaussian distribution as proposed in [19]. Training is then
carried out on a single Nvidia GeForce Titan X GPU using
the Caffe framework [20].

IV. EXPERIMENTS

A. Datasets

We use a total of four datasets to assess the performance of
the PHOCNet. The first is the well known George Washing-
ton dataset (GW).It consists of 20 pages of correspondences
from George Washington and his associates which contain
a total of 4860 words. As there is no official partition
in training and test images, we use the approach as was
presented in [2] and perform a fourfold cross validation. We
use the exact same partitions as were used in [2]2.

The second dataset is the IAM Handwritten Database
(IAM)3. It is made up of 115 320 words written by 657
writers. We use the official partition available for writer
independent text line recognition. In order to be able to
directly compare our results to [2] we exclude the official
stop words as queries but keep them as distractors in the
dataset.

The third dataset is the Esposalles database [22]4. It is an
ancient marriage license register written between 1451 and
1905 by multiple writers. Here, we use the official word
partition which contains 32 052 training images and 13 048
test images.

The last dataset used is the IFN/ENIT database5. Dif-
ferent from the previous datasets it features Arabic script in
the form of handwritten city names. The IFN/ENIT is made
up of seven different subsets. We use the common partition
of subsets a, b and c for training and subset d for testing.
This way, the training set contains a total of 19 724 word
images while the test set contains 6735 images. In order to
extract PHOCs from the Arabic script we used a reduced
character set which was created in the following way: First
all character shapes were mapped to their representative
Arabic characters. Characters with optional Shadda diacritic
are replaced with characters without the Shadda diacritic.
Special two-character-shape ligature models were mapped
to two-character ligature models without the shape contexts.

2partitions available at https://github.com/almazan/watts/tree/master/data
3http://www.iam.unibe.ch/fki/databases/iam-handwriting-database
4http://dag.cvc.uab.es/dag/?page id=3704
5http://www.ifnenit.com/download.htm



Table I: Results for the QbE and QbS experiments in mAP [%]

Method GW IAM Esposalles IFN/ENIT
QbE QbS QbE QbS QbE QbS QbE QbS

BLSTM (*) [9] - 84.00 - 78.00 - - - -
SC-HMM (*) [21] 53.10 - - - - - 41.60 -

LSA Embedding [5] - 56.54 - - - - - -
Finetuned CNN [1] - - 46.53 - - - - -
Attribute SVM [2] 93.04 91.29 55.73 73.72 - - - -

Softmax CNN 78.24 - 48.67 - 89.38 - 91.78 -
PHOCNet 96.71 92.64 72.51 82.97 97.24 93.29 96.11 92.14

This mapping produces a character set of size 50, the
corresponding PHOC representation has a dimensionality of
800.

B. Protocol

We evaluate our PHOCNet in segmentation-based QbE
and QbS scenarios. For both scenarios we use the same
protocol as was presented in [2]: First, the annotation
bounding box is used to create a perfect segmentation. Then
the PHOCNet is trained on the training partition of each
dataset (for training parameters see section III-C). During
query time, each word image in the test set is used once
as a query to rank the remaining word images in the test
set for QbE. As a distance measure, we chose the Bray-
Curtis dissimilarity [8]. Queries which appear only once in
the test set are discarded (they still appear as distractors
in the other retrieval lists though). For QbS we extract all
unique transcriptions in the test set and use their PHOC
representation as queries to rank all images in the test set. As
a performance measure, the Mean Average Precision (mAP)
is calculated for all queries (only valid queries for QbE).

We compare the performance of our PHOCNet to state-
of-the-art results reported in the literature. As an additional
baseline, we evaluate a deep CNN trained to predict word
labels on the four datasets as well (Softmax CNN). This
CNN has the same architecture as the PHOCNet except for
using a softmax activation instead of a sigmoid activation as
the last layer (see figure 4). During some pre-experiments,
it became evident that the Softmax CNN needs considerably
more training iterations than the PHOCNet. Thus, we set the
total number of iterations for the Softmax CNN to 500 000
with the learning rate being divided by 10 after 250 000
iterations.

C. Results & Discussion

Table I lists the results for the different experiments run
on the four datasets. Methods marked with an asterisk do
not share the same evaluation protocol and can thus not
be compared to our method directly. However, we include
them to give a general idea on where the PHOCNet ranks
performance-wise. For example, in [9] the authors retrieve
entire lines of word images which in [2] could be shown
to be easier than retrieving single word images as is done

here. In [21], a fifefold cross validation is performed which
leaves the system with a smaller test set and thus also an
easier retrieval task.

Figure 5 displays the mAP over the course of the training
for the four QbE experiments. Note that an iteration means
computing the gradient for the current batch and adjusting
the weights of the CNN accordingly.

There are a number of interesting observations to make
from the experiments. First, we can disprove the notion that
deep CNNs always need massive amounts of training data
when trained from scratch as is stated in [1]. Using simple
data augmentation and common regularization techniques,
we are able to outperform other methods on even small
datasets like the GW (in our setup 3645 training images,
964 classes in training on average). Driven by this result,
we investigated using even smaller training partitions for this
dataset. Using the same cross validation splits as presented
in section IV-A and taking only one fold for training and one
fold for testing, the PHOCNet was able to achieve a mAP
of 86.59 (1215 training images, 488 classes in training on
average).

Second, the multi-label classification approach in our
PHOCNet leads to faster training times and higher perfor-
mance compared to a standard softmax CNN. For the IAM,
training terminates in less than 17 hours. Estimating the
PHOC representation for a given word image takes less than
28 ms. In comparison, training Attribute SVMs on the IAM
database takes roughly two days [2]. Moreover, if training
speed is the primary concern, highly competitive results can
already be achieved after 40 000 iterations (see figure 5).

Another very appealing aspect of our PHOCNet is its
robustness with respect to the parametrization. In all ex-
periments we chose the exact same set of parameters. Addi-
tionally, the PHOCNet’s performance on the IAM database
shows its robustness in a multi writer scenario.

V. CONCLUSION

In this paper we introduced PHOCNet, a deep CNN
architecture designed for word spotting. It is able to process
input images of arbitrary size and predicts the corresponding
PHOC representation. We show empirically that the PHOC-
Net is able to outperform current state-of-the-art approaches
on various datasets. Compared to a CNN trained on the



0 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000

10

20

30

40

50

60

70

80

90

100

Training Iteration

m
A

P
[%

]

GW
IAM
Esposalles
IFN/ENIT

Figure 5: The figure displays the mAP over the different training iterations for the four QbE experiments (GW showing cross validation
standard error).

ImageNet database and finetuned on word images, it is able
to produce vastly better results [1]. Likewise, it is able to
outperform Attribute SVMs in both Query-by-Example and
Query-by-String scenarios on the presented datasets. This
holds true for Latin as well as Arabic script.

ACKNOWLEDGMENT

The authors thank Irfan Ahmad for helping to set up the
IFN/ENIT experiment and supplying the character mapping.

REFERENCES

[1] A. Sharma and K. Pramod Sankar, “Adapting off-the-shelf
CNNs for Word Spotting & Recognition,” in ICDAR, 2015,
pp. 986–990.

[2] J. Almazán, A. Gordo, A. Fornés, and E. Valveny, “Word
Spotting and Recognition with Embedded Attributes,” TPAMI,
pp. 2552–2566, 2014.

[3] T. M. Rath and R. Manmatha, “Word Spotting for Historical
Documents,” IJDAR, pp. 139–152, 2007.

[4] M. Rusiñol, D. Aldavert, R. Toledo, and J. Lladós, “Efficient
segmentation-free keyword spotting in historical document
collections,” Pattern Recognition, pp. 545–555, 2015.

[5] D. Aldavert, M. Rusinol, R. Toledo, and J. Llados, “Inte-
grating Visual and Textual Cues for Query-by-String Word
Spotting,” in ICDAR, 2013, pp. 511–515.

[6] M. Rusiñol, D. Aldavert, R. Toledo, and J. Lladós, “Towards
Query-by-Speech Handwritten Keyword Spotting,” in ICDAR,
2015, pp. 501–505.

[7] L. Rothacker and G. A. Fink, “Segmentation-free Query-
by-String Word Spotting with Bag-of-Features HMMs,” in
ICDAR, Nancy, France, 2015, pp. 661–665.

[8] S. Sudholt and G. A. Fink, “A Modified Isomap Approach
to Manifold Learning in Word Spotting,” in 37th German
Conference on Pattern Recognition, ser. LNCS, Aachen,
Germany, 2015.

[9] V. Frinken, A. Fischer, R. Manmatha, and H. Bunke, “A
Novel Word Spotting Method Based on Recurrent Neural
Networks,” TPAMI, pp. 211–224, 2012.

[10] J. Almazán, A. Fornés, and E. Valveny, “Deformable HOG-
Based Shape Descriptor,” in ICDAR, 2013, pp. 1022–1026.

[11] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel, “Handwritten Digit
Recognition with a Back-Propagation Network,” NIPS, pp.
396–404, 1990.

[12] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual
Recognition Challenge,” IJCV, pp. 211–252, 2015.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,”
NIPS, pp. 1097–1105, 2012.

[14] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” arXiv, 2014.

[15] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman,
“Deep Structured Output Learning for Unconstrained Text
Recognition,” in ICLR, 2015, pp. 1–10.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid Pool-
ing in Deep Convolutional Networks for Visual Recognition,”
in ECCV, 2014, pp. 346–361.

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout : A Simple Way to Prevent Neural
Networks from Overfitting,” IJML, vol. 15, pp. 1929–1958,
2014.

[18] X. Glorot and Y. Bengio, “Understanding the Difficulty of
Training Deep Feedforward Neural Networks,” AISTATS, pp.
249–256, 2010.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rec-
tifiers: Surpassing Human-Level Performance on ImageNet
Classification,” in ICCV, 2015, pp. 1026–1034.

[20] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional
Architecture for Fast Feature Embedding,” in Int. Conf. on
Multimedia, 2014, pp. 675–678.

[21] J. A. Rodrı́guez-Serrano and F. Perronnin, “A Model-Based
Sequence Similarity with Application to Handwritten Word
Spotting,” TPAMI, pp. 2108–2120, 2012.

[22] V. Romero, A. Fornés, N. Serrano, J. A. Sánchez, A. H.
Toselli, V. Frinken, E. Vidal, and J. Lladós, “The ESPOS-
ALLES database: An ancient marriage license corpus for off-
line handwriting recognition,” Pattern Recognition, pp. 1658–
1669, 2013.


