
Learning Local Image Descriptors for Word Spotting

Sebastian Sudholt, Leonard Rothacker, Gernot A. Fink
Department of Computer Science

Technische Universität Dortmund University
44221 Dortmund, Germany

Email: {sebastian.sudholt, leonard.rothacker, gernot.fink}@tu-dortmund.de

Abstract—The Bag-of-Features paradigm has enjoyed great
success in computer vision as well as document image analysis
applications. By far the most common approach here is to power
the Bag-of-Features pipeline with SIFT descriptors which are then
clustered into a visual vocabulary using Lloyd’s algorithm. In
contrast to using handcrafted descriptors, many researches have
started to use descriptors that have been learned from data. While
descriptor learning is common in other computer vision tasks,
there has been little work on learning descriptors for document
analysis purposes.

In this work we propose a descriptor learning pipeline
designed for word spotting. Evaluation results on the well known
George Washington database demonstrate that word-spotting
results can effectively be improved by learning specialized local
image descriptors.

I. INTRODUCTION

The automatic transcription of handwritten documents is a
challenging task, which, opposed to printed character recog-
nition, is still considered an unsolved problem. Often times,
the documents at hand are from ancient times and exhibit
severe degradations such as fading ink or noise. In addition to
that, the variability for identical characters is much higher than
for printed characters. This makes it hard for standard OCR
methods to obtain good results on these kinds of documents.

Over the years, different approaches have been proposed
to overcome the aforementioned limitations. Keyword spotting
or simply word spotting has been a succesful approach to
indexing document images. Instead of classifying word images,
word spotting seeks to retrieve all regions from a given doc-
ument or document collection that are similar to the supplied
query [1]. The most common approach to word spotting is
query-by-example. Here, the similarity between different word
images is computed from their visual appearance. The models
used for this task include Recurrent Neural Networks [2],
Spatial Pyramids [3] and Hidden Markov Models [4]. The
advantage of the latter two lies in the fact, that they only need
a single word image in order to train the model. This is a
desirable feature as word spotting is designed to automatically
index a document collection and intends to spare human
indexing [1]. Requiring less annotated word images is thus
a major advantage and leads to less manual work.

The backbone for recent word spotting methods has been
the use of local image features with the SIFT descriptor being
the most prominent ([3], [4], [5], [6]). The standard procedure
here is to compute local SIFT features over a dense grid
and to generate a visual vocabulary from it by applying the
generalized Lloyd clustering algorithm. While good results
were reported for such pipelines, the results still leave room

for improvement. Quantization is known to induce errors that
especially show when descriptors are close to the border of
two or more clusters. This limitation has been attempted to
be overcome by soft assigning descriptors to the respective
clusters [7]. The improvement over hard quantization was
only marginal. Furthermore, soft assignment does not tackle
the quantization error problem at its root. It would be much
more desirable to obtain descriptors that lead to a more
discriminative representation.

While learning such descriptors has been done succesfully
in other computer vision applications, there has been, to the
knowledge of the authors, no work concerning descriptor
learning in word spotting. In this paper, we propose a de-
scriptor learning pipeline that is tailor-made for query-by-
example word spotting applications. The rest of the paper
is organized as follows: In section II an overview of related
work concerning descriptor learning is presented. Section III
explains the proposed pipeline in detail. In section IV the
results of the conducted experiments are shown while section
V concludes the paper.

II. RELATED WORK

Recent descriptor learning approaches have made use of
distance learning techniques. Here, the goal is to learn a metric
under which a given classification problem can be solved more
easily. Different kinds of distance learning approaches have
been proposed that make use of either deep architectures [8],
SVMs [9] or linear projections [10]. Hua et al. [11] use Linear
Discriminant Embedding to project SIFT descriptors into a
subspace where matching descriptors lie together closely while
non-matching descriptors are pushed apart. Two descriptors are
considered matching, if they should lie closely together in the
projected subspace while non-matching descriptors should lie
apart. The main drawback here is that all descriptors need
to be manually labeled as matching or non-matching. This
is especially infeasable when descriptors are calculated over
a dense grid in which case there can easily be millions of
descriptors for a given image.

In order to conquer these limitations, Philbin et al. [12]
proposed a method that can determine matching and non-
matching descriptors in an unsupervised fashion. The first step
here is to extract local image descriptors from a set of images.
Afterwards, pairs of images A and B are randomly drawn
from the set and for each descriptor from A its descriptor
space nearest neighbor from B is calculated. From these
correspondences, a homography is calculated between the
two images. Descriptor pairs, that are consistent with this
transformation, are considered matches. Additionally, the class

of non-matching descriptors is further split up into two classes:
descriptor pairs that are inconsistent with the previsouly cal-
culated homography transformation and descriptor pairs that
are picked at random. The goal now is the same as in [11]:
find a projection that pushes together matching descriptor
while keeping descriptor pairs from the two non-match classes
apart. The results show that splitting the class of non-matching
descriptor pairs into two different sub-classes has an added
benefit on the performance of the descriptor learning system.

III. METHOD

Our method for learning descriptors in word spotting is
inspired by the work of Philbin et al. [12]. The basic concept
is to find pairs of descriptors that should lie closely in
descriptor space and pairs that should lie far apart. While it
is cumbersome to manually define the pairs, the supervised
approach is also infeasable in a query-by-example framework.
It is desirable here to infer all information necessary from the
raw, unannotated samples only instead of gathering a large
annotated set of word images. In [12] the pairs are generated
in an unsupervised fashion by randomly selecting image pairs
from the supplied collection and finding the descriptor space
nearest neighbors.

While this concept would be possible in a word spotting
scenario also, we can exploit the structural knowledge about
the problem at hand: the keypoints for matching descriptors
from two word images should lie approximately at the same
relativ position in their respective images. Figure 1 visualizes
this concept. In the left hand column, the location of descriptor
pairs is shown which are descriptor space nearest neighbors
and have approximately the same spatial position. The middle
column shows pairs, that are descriptor space nearest neighbors
but do not match spatially. Finally, the right hand column
shows random pairs of descriptors.

In order to find the three sets of descriptor pairs, two word
images have to be selected from which the descriptors are
taken. Randomly selecting two images, as is done in [12],
leads to a high number of image pairs being discarded as
the random selection generates a high amount of mismatching
image pairs. While this limitation could be overcome by
selecting word pairs in a supervised manner, this requires the
annotation of a number of words. This is a highly undesirable
characteristic, especially in a query-by-example scenario. In
order to overcome this, we propose an unsupervised approach
to find corresponding word images: a single run of query-by-
example word spotting is performed on the documents at hand.
After that, the retrieval list is cut off at a small number of items
thus only keeping the very best results. This leaves the system
with enough correspondences to infer the three descriptor pair
sets while keeping wrong correspondences at a minimum. The
selection of corresponding word images is even further refined
by only taking descriptors from those image pairs that contain
more positive matches than a certain threshold.

After finding the descriptor pairs, a projection function is
learned and the projected descriptors are clustered to gener-
ate the visual vocabulary. Figure 2 illustrates the descriptor
learning process: After generating an initial Bag-of-Feature
representation, a single run of word spotting is performed in
order to find word images that are similar. The retrieval list is

Generate BOF Representation

Wordspotting

Find Descriptor Pairs

Optimize Projection Function

W = W − δ · ∂l
∂W

Project Descriptors
&

Create Visual Vocabulary in Subspace

Fig. 2: Schematic overview of the proposed method: After an
initial word spotting run the three sets of descriptor pairs are
generated. The projection function is learned from the three
sets and the projected descriptors are clustered in the subspace
to produce the new visual vocabulary.

Fig. 1: The figure shows the three different classes of descriptor pairs for two words from the George Washington database.
The left column displays matching descriptor pairs (descriptor space nearest neighbors and spatially close). The middle column
shows nearest neighbor mismatches (descriptor space nearest neighbors but not spatially close). The right column shows random
descriptor pairs.

cut off at a small number of retrieved images in order to infer
the descriptor correspondences. Similar to [12], descriptors
from two word images are considered putative matches if they
are descriptor space nearest neighbors and pass Lowe’s second
nearest neighbor test [13]. Additionally, the relative position
for each descriptor is calculated from the word boundaries. A
putative match is considered a match if the relative position of
the descriptor varies by only a small amount. In the following,
we will refer to the test for relative positions as spatial test.

The procedure described above generates three sets of
descriptor pairs:
Positive Matches (P) The set of descriptor pairs that are
putative matches and pass the spatial test
Nearest Neighbor Mismatches (NM) The set of descriptor
pairs that are putative matches but do not pass the spatial test
Random Mismatches (RM) The set of randomly drawn
descriptor pairs
The pair-wise intersection of the three sets is empty. Having
found pairs of matching and mismatching descriptors, we now
try to find a function F that projects the descriptors into a
subspace in which positive matches are pushed together while
negative matches are pushed apart. In order to obtain this
projection function, the loss function

l(F) =
∑

(x,y)∈P

L(b1 − dF (x,y))+∑
(x,y)∈NM

L(dF (x,y)− b1)+∑
(x,y)∈RM

L(dF (x,y)− b2)

(1)

as proposed by Philbin et al. [12] is optimized with resepct to
F . Here,

L(z) = log(1 + e−z) (2)

is the logistic-loss function, which is an approximation of the
hinge-loss function, and

dF (v,w) = ||F (v)− F (w)||2 (3)

is the Euclidean distance of the two descriptors v and w after
projection. The margins b1 and b2 are used to seperate pairs
in P from those in NM while keeping the random pairs from
RM as distant as possible. As can be seen in equation 1, when
optimizing l w.r.t. F , the distance of pairs in P becomes less
than b1 while the distance from pairs in NM becomes larger
than this margin. The margin b2 accounts for keeping pairs
from RM away from each other. When optimizing l, scaling
both margins by a constant value only leads to scaling the
projected vectors. Thus, b1 and b2 can be combined into a
single parameter b2

b1
which is called the margin ratio.

Please note that we do not use a regularization term in
l as is done by Philbin et al. [12]. We found that it is not
necessary as the presented problem does not seem to be prone
to degradation. Thus, we left the costly evaluation of a spectral
norm out of the loss function.

For the projection function, we use a linear projection:

F (x) = Wx. (4)

F is optimized by running stochastic gradient descent on the
projection matrix W:

Wt+1 = Wt − δt ∗
∂l

∂W
. (5)

In stochastic gradient descent, the training set is divided into a
number of batches and W is optimized for every batch in an
iterative fashion. The learning rate δ should be adapted in order
for the stochastic gradient descent to reach an optimum. We
achieve this by a bold driver technique: after gradient descent
has taken place for all batches in a single iteration, we calculate
the average loss for each batch. If the loss is less than in the
previous iteration step we increase the learning rate by 5 %.
Otherwise we reset the model parameters and set the learning
rate to half of its previous value. This way the steps of the
gradient descent grow bigger as long as the local optimum is
still far away and decreases once the algorithm has come close
to the local optimum.

After optimization, the matrix W is used to project the pre-
viously generated SIFT descriptors. The projected descriptors

are then clustered to produce the optimized visual vocabulary.
A word image representation is then generated as is done in [5]
by extracting a two level spatial pyramid from the optimized
visual vocabulary.

IV. EXPERIMENTS

A. Setup

We use the well-known George Washington database in
order to show the usefulness of the proposed method. The
database consists of a 20 page excerpt from a bigger collection
of letters from George Washington and his associates (cf. [1],
[4], [5]). Its corresponding ground truth contains a bounding
box for each of the 4860 words.

For simplicity, we evaluate our method based on the seg-
mented words from the database. However, our approach could
be applied in a segmentation-free scenario as well. We use
the experimental setup as proposed in [14]: each word image
is used as a query to retrieve a ranked list of the remaining
word images. The cosine distance is used as metric to compute
the similarity between two word image representations. As
a baseline, we use the method proposed in [5]: For each
word image a Bag-of-Features representation is generated. This
representation is used to generate a two-level spatial pyramid
which is then re-weighted by applying the tf-idf transform.
Please note that, opposed to the method presented in [5], we
do not apply Latent Semantic Analysis as this has been shown
to produce inferior results on this specific database. We report
the results in terms of Mean Average Precision (mAP). This
value can be thought of as the average of the area under
the precision-recall curve for each query and is a common
performance measure in word spotting.

The visual vocabulary’s size is set to 4096 as this value has
been shown to be a good trade-off between model complexity
and overall accuracy (cf. [5]). Using the two-level spatial pyra-
mid design, each word descriptor vector has a dimensionality
of 12288. The retrieval list of the initial word spotting run is
cut off after ten words for each query. We found that cutting
off at this number yields a high precision per query while
generating a large number of descriptor pairs. For each query
word and each retrieved word the three sets of descriptors are
calculated. The second nearest neighbor ratio is set to 0.8 as is
done in [12]. A descriptor pair passes the spatial test if its two
descriptor’s spatial distance is less than 0.15. Descriptor pairs
are only considered in the following optimization if the number
of positive matches is greater than 20. This way, descriptor
pairs from wrong word pairs are not taking into consideration.

For optimization, we use the well known Theano toolbox
[15]. Optimization is done by stochastic gradient descent with
a batch size of 1000 and an initial learning rate of 10−5. We
use a bold driver technique as described in section III to adapt
the learning rate during optimization.

B. Results

For an evaluation of the proposed approach, we examine
the performance of the system with respect to changing margin
ratios and projection dimensionality. For each data point, we
execute five runs of model optimization and quantization. The
results can be seen in figure 3. Increasing the margin ratio

TABLE I: Results for segmentation-based query-by-example
word spotting on the George Washington database. The results
for the proposed approach were obtained at a margin ratio of
1.2 and a subspace dimension of 64.

Method mAP

non-rigid HOG [14] 44.59
Spatial Pyramid [5] 53.82
Proposed 56.93

beyond 1.2 has a negative effect on the performance of the
overall system. The reason for this is that the optimization
process concentrates on seperating the RM set from the other
two while failing to seperate the P and NM set. Furthermore,
the second margin has next to no benefit on the optimization.
A margin ratio of 1.2 is only marginally better than 1.0
which is equivalent to equal margins b1 and b2. Increasing
the dimensionality higher than 64 has no or only marginal
effect on the performance of the overall system (figure 3b).
Though a target dimensionality of 64 leads to a slightly smaller
mAP value than using 120 dimensions, the time for calculating
the visual vocabulary decreases dramatically from around 82
minutes to less than 50 minutes on a standard Intel Core i7-
3770 machine with 16 GB RAM.

Analyzing the retrieval result for each word, we found that
especially shorter words had an increase in average precision
while some longer words had a decrease in average precision.
This might by due to the fact that longer words are more likely
to contain identical characters than shorter words. Words that
contain identical characters could have descriptor space nearest
neighbors that are in the same relative position with respect to
a given character but in different relative positions with respect
to the word. This kind of descriptor pair would be assigned to
the NM set while it actually belongs to the P set.

Finally, table I shows how our results compare to those
of a Spatial Pyramid technique [5] and a deformable shape
descriptor [14]. As can be seen in the table, the performance
is improved by more than 27% when compared to the de-
formable shape descriptors. The relative improvement with
respect to the baseline is more than 5.7%.

V. CONCLUSION

In this work we presented a descriptor learning pipeline,
tailor-made for query-by-example word spotting applications.
Starting from a set of corresponding word images, we com-
pute matching and mismatching descriptor pairs. A projection
function is optimized to project the descriptor in a subspace
in which matching descriptor pairs are pushed together while
mismatching descriptor pairs are pushed apart. We evaluated
our approach on the well-known George Washington database
and demonstrated its usefulness. It proves to outperform the
standard SIFT descriptor and the recently introduced non-rigid
HOG in a query-by-example word spotting scenario. Not only
does our approach produce more discriminative descriptors,
but it is also able to decrease the number of dimensions used
for each descriptor. This lowers the model’s complexity and
has a positive effect on the overall runtime of the system.
Even though we evaluated our descriptor learning pipeline

0.5 1 1.5 2 2.5
53

54

55

56

57

Margin Ratio

Pe
rf

or
m

an
ce

[m
A

P]
Baseline SP

SP with learnt descriptors

(a)

20 40 60 80 100 120
53

54

55

56

57

Projected Dimension

Pe
rf

or
m

an
ce

[m
A

P]

Baseline SP
SP with learn Descriptors

(b)

Fig. 3: The figure displays the varying performances for the two parameters evaluated. In a) the Mean Average Precision is plotted
over the margin ratio with the dimension of the projected space set to 64. In b) the performance varying subspace dimensionality
is shown at a margin ratio of 1.6. The blue plots indicate the results for the baseline spatial pyramid while the red plots show
the results for the proposed method. .

in a segmentation based scenario, we are confident that the
approach can be applied to segmentation-free word spotting
applications with only minor modifications.

REFERENCES

[1] T. M. Rath and R. Manmatha, “Word Spotting for Historical Docu-
ments,” International Journal on Document Analysis and Recognition,
vol. 9, pp. 139–152, 2007.

[2] V. Frinken, A. Fischer, R. Manmatha, and H. Bunke, “A Novel
Word Spotting Method Based on Recurrent Neural Networks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34,
pp. 211–224, 2012.

[3] M. Rusiñol, D. Aldavert, R. Toledo, and J. Lladós, “Browsing Hetero-
geneous Document Collections by a Segmentation-Free Word Spotting
Method,” in Proceedings of the International Conference on Document
Analysis and Recognition, ICDAR, 2011, pp. 63–67.

[4] L. Rothacker, M. Rusinol, and G. A. Fink, “Bag-of-Features HMMs
for Segmentation-Free Word Spotting in Handwritten Documents,” in
Proceedings of the International Conference on Document Analysis and
Recognition, ICDAR, 2013, pp. 1305–1309.

[5] M. Rusiñol, D. Aldavert, R. Toledo, and J. Lladós, “Efficient
segmentation-free keyword spotting in historical document collections,”
Pattern Recognition, vol. 48, no. 2, pp. 545–555, 2015.

[6] D. Aldavert, M. Rusinol, R. Toledo, and J. Llados, “Integrating Visual
and Textual Cues for Query-by-String Word Spotting,” in Proceedings
of the International Conference on Document Analysis and Recognition,
ICDAR, 2013, pp. 511–515.

[7] L. Rothacker, S. Vajda, and G. A. Fink, “Bag-of-Features Representa-
tions for Offline Handwriting Recognition Applied to {Arabic} Script,”
in Proc. Int. Conf. on Frontiers in Handwriting Recognition, 2012.

[8] R. Salakhutdinov and G. Hinton, “Learning a nonlinear embedding by
preserving class neighbourhood structure,” in AI and Statistics, vol. 3,
2007, pp. 412–419.

[9] A. Frome, F. Sha, Y. Singer, and J. Malik, “Learning globally-consistent
local distance functions for shape-based image retrieval and classi-
fication,” in Proceedings of the IEEE International Conference on
Computer Vision, 2007.

[10] K. Mikolajczyk and J. Matas, “Improving descriptors for fast tree
matching by optimal linear projection,” in Proceedings of the IEEE
International Conference on Computer Vision, 2007.

[11] G. Hua, M. Brown, and S. Winder, “Discriminant embedding for
local image descriptors,” in Proceedings of the IEEE International
Conference on Computer Vision, 2007.

[12] J. Philbin, M. Isard, J. Sivic, and A. Zisserman, “Descriptor learning
for efficient retrieval,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 6313 LNCS, 2010, pp. 677–691.

[13] D. Lowe, “Object recognition from local scale-invariant features,”
Proceedings of the Seventh IEEE International Conference on Computer
Vision, vol. 2, 1999.

[14] J. Almazan, A. Fornes, and E. Valveny, “Deformable HOG-Based
Shape Descriptor,” in Proceedings of the International Conference on
Document Analysis and Recognition, ICDAR, 2013, pp. 1022–1026.

[15] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Berg-
eron, N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new
features and speed improvements,” Deep Learning and Unsupervised
Feature Learning NIPS 2012 Workshop, pp. 1–10, 2012.

