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Abstract
We describe a method to model pronunciation variation for ASR
in a data-driven way, namely by use of automatically derived
acoustic subword units. The inventory of units is designed so as
to produce maximal separable pronunciation variants of words
while at the same time only the most important variants for the
particular application are trained. In doing so, the optimal num-
ber of variants per word is determined iteratively. All this is ac-
complished (almost) fully automatically by use of a state split-
ting algorithm and a variant distance measure. Compared to
a baseline system using triphones as subword units and with
minimal pronunciation variants, this method achieved a relative
improvement of the word error rate by 10%.

1. Introduction
Pronunciation variation is still one of the main reasons for au-
tomatic speech recognition to produce poor results (see [1] for
an overview and a listing of different phenomena). This is due
to variations in the speech signal of one and the same speaker,
depending on factors such as the particular situation, speaking
style, emotional state or external influences, and between differ-
ent speakers, depending e. g. on dialect, social background, sex
or age. All those factors prohibit a one-to-one correspondence
between acoustic signal and symbolic representation.

Still, most actual speech recognition systems do not take
pronunciation variants into account and model only one way of
pronunciation for every word in the lexicon. This is because
adding variants for a word increases the chances of confusabil-
ity between lexicon entries and enlarges the search space.

The methods to model pronunciation variation for ASR can
be divided into knowledge-based and data-driven methods. The
latter extract the information on pronunciation variation from
the data whereas the former assume that the information is al-
ready available (e. g. in pronunciation dictionaries). Presently,
none of these two classes of methods can be entirely preferred
over the other [1]. The approach described here belongs to the
data-driven class as information on pronunciation variants is ob-
tained exclusively from the acoustic signals. At the same time,
it aims at further automating the process of designing an ASR
system by building up lexical entries from automatically derived
subword units. Previous approaches with similar objectives are
[2] and [3].

We model pronunciation variation on the lexicon level by
allowing multiple lexical entries for one word. The acoustic
model is optimised in respect to pronunciation variants by us-
ing specifically trained, namely acoustic subword units (ASUs).
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These units are derived automatically from the acoustic signal
by grouping similar regions of the acoustic space. They stand
thus in contrast to phonetic subword units such as phonemes,
which are defined knowledge-based. No pronunciation mod-
eling is performed on the language model level. This is be-
cause the speech corpus used for testing does not use a language
model. It would be easy, however, to integrate the variants with
standard techniques [1].

The proposed system starts with some initial variant num-
ber per word. Then, optimal model topologies for this number
of variants are determined by use of a state splitting algorithm.
Words are ranked according to a variant distance measure that
indicates the similarity resp. the dissimilarity of the variants of
the words. Based on this ranking, the variant numbers of words
with dissimilar variants are increased by one while the variant
numbers of words with similar variants are decreased by one.
This procedure is iterated until no more variants are dissimilar
or some other stop criterion is met.

Section 2 gives an overview of the system with special fo-
cus on the two main aspects of the design, the state splitting
algorithm used to determine optimal model topologies, and the
variant distance measure. Section 3 presents experiments with
different configurations for the system parameters and the envi-
ronment in which they were conducted. Finally, some conclud-
ing remarks are given in section 4.

2. System outline
In this section we describe the steps involved in building the
system. The sequence of steps is shown in Fig. 1.

First of all, words applicable for data-driven modeling have
to be chosen. The acoustic subword units are word-dependent,
so not all words are applicable but only those with a minimal
occurence count. Their initial number of variants is set to two.

Afterwards, the system design operates in two main steps
which can be iterated until a stop criterion is met. The first step
consists in training a HMM (hidden Markov model) for every
variant of a word. Model parameters are initialized by distribut-
ing randomly all occurences of the word in the training corpus
on its variants. Then, a state splitting algorithm (see 2.1) de-
termines the optimal number of states for the HMMs. Parame-
ter re-estimation is performed with the Baum-Welch algorithm.
The states of the HMMs can be regarded as the acoustic sub-
word units which are thus word-dependent.

In the second step the similarity between the variant models
of every word is calculated using a special distance measure (see
2.2). The number of models is then decreased by one for words
with similar variants, while it is increased by one for words with
dissimilar variants. Then again, step 1 is executed, and HMMs
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Figure 1: System overview.

are trained for the variants of every word. The process is re-
peated until some stop criterion is met. This can be either that
no more variants are dissimilar or that a predefined maximum
number of variants is reached.

This procedure should find the most differing pronunciation
variants for every word and thus not increase the acoustic con-
fusability significantly. By controlling the number of variants
at the same time, the search space is not excessively enlarged.
Recognition time and WER (word error rate) improvement sup-
port the method while also a higher degree of automation is
reached.

2.1. State splitting algorithm

A good topology of the models is crucial to the performance of
the system. Since the models develop their characteristics dur-
ing the iterative parameter training, the model topology as well
should be determined iteratively. Therefore, a state splitting al-
gorithm is employed to find the optimal topology. Starting with
an initial number of states in a model, such an algorithm splits
states according to a split criterion after a predefined number of
training iterations. This is repeated until some stop criterion is
met.

Thus, the initial number of states in a model, the splitting
criterion and the stop criterion have to be defined.

We use 0.1∗fmin as the initial number of states where fmin

is the number of frames in the shortest occurence of the word in
the training corpus. fmin is a rough clue on the optimal number
of states, so 0.1 ∗ fmin is definitely an underestimation of the
latter.

After two iterations of Baum-Welch parameter re-
estimation all states chosen by the splitting criterion are split.
This criterion should select states which model very inhomoge-
nous regions of the acoustic space. Entropy as well as transition
probability of a state are hints for such regions. States with
high entropy apparently capture a high degree of acoustic in-
formation. However, this could also be caused by one and the
same phone with high variations. A high self-transition prob-
ability indicates that the state models a long time span which
contains probably lots of information. Though, this can be sen-
sible when the feature vectors in this time span are very similar.
So, entropy or self-transition probability alone are no secure in-
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Figure 2: State splitting algorithm: states with high entropy
and high self-transition probability are split. Initial state pa-
rameters are copied.

dicators of a good state to split, while a combination of both
ensures that states modeling long and inhomogenous acoustic
regions are split.

The thresholds used for high entropy and high self-
transition probability are 3 and 0.7 respectively. These values
have been determined empirically.

States chosen for splitting are duplicated. After the follow-
ing training iterations, their parameters differ as they come to
model different acoustic regions.

For the convergence of the number of states 5 iterations of
state splitting turned out to be sufficient. The definition of a
state deleting criterion has been considered but found not to be
necessary because it was never applied before the 5th iteration.

2.2. Variant distance measure

The number of variants per word should comply with maximal
separability. Thus, a measure has to be found to compute the
similarity resp. the dissimilarity between the models of a word’s
variants.

The models of the variants differ in the number of states
and in the states themselves. So, first an alignment of the states
of the two models has to be found. To this end, we use the edit
distance (e. g. [4]): A sequence of states is transformed into
another by substituting one or more states in the first sequence
by one or more states in the second sequence. The cost of the
alignment is the sum of the distance between aligned states. The
edit distance is then the alignment with minimal cost. For our
purposes, we need to modify the edit distance slightly, because
computing the edit-distance as the sum of the distances between
aligned states leads to generally high values for long models and
low values for short models. Since similarity of models should
be independent from their length, we do not take the whole cost
as distance value, but the average of the two largest distances
between aligned states taken from the alignment with minimal
cost.

The next step is to define a state distance measure. HMM
states differ in their transition probabilities and in their output
probabilities. Since transition probabilities are not significant
here concerning the difference of states, we rely on the output
probabilities. We use semi-continous HMMs, so all states share
the same Gaussians differing only in their mixture weights. The
mixture weights ci of a state describe a discrete probability dis-
tribution with

∑
i ci = 1. So, in principle, every distance mea-

sure for discrete probability distributions can be employed here
as state distance measure.

A good measure for the distance between distribution A

and distribution B is the cross-entropy or Kullback-Leibler dis-



tance:

δKL(A,B) =

I∑

i=1

ai log(
ai

bi
) (1)

where A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn).
It has one drawback, namely, it is not symmetric. Still, it can
be made symmetric by averaging δKL(A,B) and δKL(B,A).
Following [5] we decided to use the harmonic mean and call it
from now on the resistor average distance. Ignoring constants
and monoton functions (absolute values are not of importance
here) we get

δR =
δKL(A,B)δKL(B,A)

δKL(A,B) + δKL(B,A)
(2)

Another possibility is the following version of the symmetric
cross-entropy proposed by Kullback and Leibler [6], relating
distributions A and B to the joint distribution A + B:

δS = δKL(A,A + B) + δKL(B,A + B) (3)

Finally, the Bhattacharyya distance is another well-known dis-
tance measure for probabilities:

δB(A,B) = − log

I∑

i=1

√
aibi (4)

These measures are now used in order to modifiy the
definition of the edit distance by averaging over the two most
different pairs of states of two compared models.

Dδ(M1,M2) =

max{δ(Si, Tj) + δ(Sk, Tl)

2
|Si 6= Sk∨Tj 6= Tl} (5)

where (Si, Tj) and (Sk, Tl) are aligned pairs of states in an
alignment with minimal cost for the models M1 = S1 . . . SN1

and M2 = T1 . . . TN2
and δ is one of the distance measures

described above.
All variants of a word are compared with (5) and the word

receives the distance between the closest pair of its variants as
a score. For the distance measures (2) – (4), these scores de-
pend strongly from the particular system configuration and the
training iteration. Consequently, it is difficult to define absolute
thresholds separating words with similar variants from those
with dissimilar ones. This is why, currently, words are ranked
by the score and then a predefined percentage of them is con-
sidered as similar, the rest as dissimilar.

3. Evaluation
3.1. System configuration

For an evaluation of the presented approach the ESMERALDA
(Environment for Statistical Model Estimation and Recogni-
tion on Arbitrary Linear Data Arrays) [7] speech recognition
system was used. In the baseline system words are modelled
by a sequence of semi-continuous HMMs modeling context-
dependent triphones. In general each triphone model consists
of two or three states, thus imposing a minimal duration of 2 or
3 frames respectively on each phone. For each word one canon-
cial pronunciation model was given. The codebook holds 512
shared Gaussians with diagonal covariances. The features con-
sist of 12 standard MFCC (mel frequency cepstral coefficients)
plus energy and first and second order derivatives giving a 39-
dimensional feature vector. They are computed over a window

of 16 ms length which is shifted over the signal with a frame
rate of 10 ms. No language model was used.

Training and evaluation were performed on the German
SLACC (Spoken LAnguage Car Control) Corpus [8] which
consists of short utterances for the control of non-safety rele-
vant functions in a car. The read speech was recorded in differ-
ent cars with a far-field microphone mounted to the front jamb.
In total 22 different speakers were recorded from which 4 were
kept separately for the test set. Thus, the training set consists
of 18 speakers reading 9207 utterances which give a total dura-
tion of about 9.5 hours. In the test set the data of the remaining
4 speakers is used which gives 1787 utterances and a total of
around 2 hours.

3.2. Recognition Results

Various settings for the system parameters were tried on the
1787 utterances of the test corpus. In order to ensure the train-
ability of variants only words with a minimum occurence count
of 50 were modeled with acoustic units. This resulted in 95
words. As the corpus is relatively small, the maximum num-
ber of variants per word was set to 3 in order to have enough
training examples for every variant.

Different configurations for the variant distance measure
and the percentage of words defined as having similar/dissimilar
variants were tested. For the variant distance measure, (2) – (4)
were employed as state distance measures. Beginning with 2
variants for each of the 95 words, in the next step 3 variants
were trained for P1% of these words with the most dissimilar
variants while the remaining (100 − P1)% obtained only one
variant. In the third and last step, P2% of the words with 3
variants kept their number of variants while for (100 − P2)%
of them which had the most similar variants, only two variants
were trained. Thus, in step III less variants were trained than in
the previous step II.

The following percentages were tested:

• P1 = P2 = 33,
assumption: the majority of words has no variants;

• P1 = P2 = 50,
assumption: half of the words has variants;

• P1 = 66, P2 = 50,
assumption: the majority of words has variants.

Results for these configurations are shown in Table 1.

δ P1 Step II (WER) P2 Step III (WER)

R 20.7 21.3
S 33 20.9 33 21.3
B 22.6 21.5
R 21.6 22.4
S 50 22.6 50 22.9
B 22.5 21.7
R 22.2 24.2
S 66 24.1 50 23.7
B 23.3 22.9

Table 1: Recognition results (WER) for different state distance
measures (R=resistor average distance, S=symmetric Kullback-
Leibler distance, B=Bhattacharyya distance) and percentages
P1, P2 for similar/dissimilar variants.

Subsequently, we compared the best system of Table 1 (i. e.
the system with the resistor average distance as state distance



measure and P1 = 33 in step II) to the knowledge-based base-
line system in terms of recognition accuracy and decoding time
(see Table 2). The baseline system uses triphones as subword
units and has only a single pronunciation for every lexical en-
try, except for the word “zwei” (two), which is defined with
two variants, namely /tsvaI/ and /tsvo:/. Apart from
that, configurations are as given in section 3.1. This system is
used in practice and can be considered as the standard system.
To show the effect of pronunciation modeling alone, we also
trained a system using acoustic subword units for the 95 most
frequent words but with no variants. Finally, to demonstrate the
impact of both pronunciation modeling and acoustic subword
units, WER and decoding time of a system with triphones and
no variants at all is also given.

System WER Time

triphones, no variants 23.2 0:58h
triphones, variants for ”zwei” 22.4 1:06h
ASUs, no variants 21.6 0:56h
best system with variants and ASUs 20.7 1:15h

Table 2: Comparison with baseline systems. WER and decoding
time for the test corpus.

3.3. Discussion

As Table 1 shows, a system with the resistor average distance
yields the best performance overall. However, we cannot simply
draw the conclusion that the resistor average distance is the best
suited distance measure. One reason for this is that this per-
formance was unexpectedly achieved by a system that should
rather not have optimal variant counts. Furthermore, it was ob-
served that, when using the resistor average distance, the order
of the ranked word scores depends strongly on the random dis-
tribution of the variants on the occurences of the corresponding
words when initializing state parameters.

An advantage of the symmetric Kullback-Leibler distance
is that it yields only slightly worse performance than the resistor
average distance without sharing the disadvantages mentioned
above. Still, for both distances, a deterioration from step II to
step III can be observed, whereas using the Bhattacharyya dis-
tance, the WER improves in the last step. The latter one, how-
ever, does not achieve as good overall results as the other two,
so no distance measure can be considered to be absolutely su-
perior over the others. One reason for this could be that the
optimal ratio for the variant counts was not found, which leads
to the assumption that even more improvements of the WER
could be possible with this method. In order to realise this more
experiments are necessary.

Comparisons with the baseline systems also prove the po-
tential of the method. Acoustic subword units alone lead to a
relative improvement of 3.6% of the WER compared to the stan-
dard system. Adding pronunciation modeling leads to a further
6.5% improvement. This means, that the approach presented
here reduces the WER of the standard system by almost 10%,
which is a significant improvement. The need for at least slight
pronunciaton modeling is evident looking at the relatively poor
performance of the system with triphones and no variants at all.

At the same time, employing acoustic subword units does
not degrade recognition time, as figures in Table 2 show. Pro-
nunciation modeling, however, leads to an increase in time,
though this is still a justifiable increase considering the WER

improvements.

4. Conclusion
We have shown that the proposed approach of addressing the
problems of pronunciation variation and subword unit selection
in a single approach is able to reduce the WER by up to 10%.
This indicates that a significant degree of pronunciation vari-
ation occurs at a sub-symbolic level which escapes those ap-
proaches where symbolic manipulations are used to model vari-
ation. For example, variations which occur due to deletions of
whole phonemes might not be captured well by the phonemic
SWUs which represent canonical pronunciations. This effect is
expected to be even stronger in spontaneous speech.

In detail, the results indicate that the increase in perfor-
mance is not simply due to a higher number of parameters since
the best results were achieved with a system that only trained
variants for the smallest subset of words (with P1 = 33 - cf.
table 2). However, reducing the number of variants reduced the
performance in almost all cases which indicates that a reduction
of parameters does have a negative effect in certain cases. This
also indicates that the proposed system is very sensitive to some
of the arbitrarily chosen factors.

Thus, in future work it would be desirable to have a frame-
work that provides a data based fixation of the parameters. In
particular it would be desirable to provide a data-driven thresh-
old to distinguish between similar and dissimilar variants of a
word as well as to determine if a state should be split or not.

In order to allow new words to be modelled by ASUs it
would be necessary to find a mapping between ASUs and a
symbolic representation. This could be achieved for example
by specifying the conditional probabilities of ASUs given a cer-
tain grapheme.
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