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Abstract— When persons interact, non-verbal cues are used
to direct the attention of persons towards objects of interest.
Achieving joint attention this way is an important aspect of
natural communication. Most importantly, it allows to couple
verbal descriptions with the visual appearance of objects, if
the referred-to object is non-verbally indicated. In this contri-
bution, we present a system that utilizes bottom-up saliency
and pointing gestures to efficiently identify pointed-at objects.
Furthermore, the system focuses the visual attention by steering
a pan-tilt-zoom camera towards the object of interest and thus
provides a suitable model-view for SIFT-based recognition and
learning. We demonstrate the practical applicability of the
proposed system through experimental evaluation in different
environments with multiple pointers and objects.

Index Terms— Saliency, Joint Attention, Pointing Gestures;
Object Detection and Learning; Active Pan-Tilt-Zoom Camera

I. INTRODUCTION
Attention is the cognitive process of focusing the process-

ing of sensory information onto salient data, i.e. data that is
likely to render objects of interest. When persons interact,
non-verbal attentional signals – most importantly pointing
(cf. [1]) and gazing (cf. [2]) – are used in order to establish a
joint focus of attention. Human infants develop the ability to
interpret such non-verbal signals around the age of one year,
enabling them to associate verbal descriptions with the visual
appearance of objects (cf. [3], [4]). There is strong evidence
“that joint attention reflects mental and behavioral processes
in human learning and development” [5]. Accordingly, for
human-machine interaction (HMI), e.g. in human-robot inter-
action or smart environments, interpreting attentional signals
to establish the joint focus of attention is an important aspect.

In HMI, non-verbal attentional signals can be used to
influence either the attention of the human or the machine
(e.g. [6] and [7], respectively). In interactive scenarios non-
verbal signals can be used to explicitly direct the attention
either towards a general direction, e.g. "(go) there", or to-
wards a specific object, e.g. "(take) that". In this contribution,
we first introduce a model that combines bottom-up saliency
with top-down deictic information to identify non-verbally
referred-to objects. Then, we present an implementation that
is able to efficiently identify and recognize pointed-at objects.
Since information about the object appearance may not be
available from the conversational context, specialized object
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Fig. 1. A person points toward a specific region of interest. Due to the
low resolution image, the content of the referred-to region can neither be
reliably recognized nor learned. Using bottom-up saliency and the top-down
information of the pointing gesture, it is possible to estimate the referred-to
region. By foveating the region with a pan-tilt-zoom camera, an appropriate
view for recognition and learning tasks can be acquired.

detectors and object recognition cannot be applied in general
to identify the referred-to object. Therefore, we base our
model on a computational bottom-up model of attention to
identify regions in the image that are likely to render objects
of interest (cf. e.g. [8], [9]). In order to estimate the position
of the referred-to object, we combine the visual saliency with
the directional information obtained from a pointing gesture.
The foundation of this model is the assumption that the
body posture, non-verbal signals, and deictic expressions are
(subconsciously) chosen in order to maximize the expected
saliency of the referred-to object in the perception of the
interaction partners. In contrast to pointing gestures the
recognition of more inconspicuous non-verbal signals as,
e.g., gaze and facial expressions, requires close-up views of
the respective person’s face, which might not be available in
realistic scenarios. Therefore, in this contribution we focus
on pointing gestures, as these can be robustly identified even
in low-resolution images taken from a distance.

II. RELATED WORK

In recent years computational attention models have at-
tracted an increasing interest in the field of robotics (e.g. [8],
[10]) and various other application areas (e.g. [11]–[13]).
Assuming that interesting objects are visually salient (cf. [9]),
the aim of these models is to concentrate the available
computational resources by directing the attention towards
potentially relevant information, e.g. to achieve efficient
scene analysis [14]. In general, saliency models can be
distinguished as either object-based (e.g. [15], [16]) or space-
based models (cf. [15], [8, Sec. II]). In contrast to the
(traditional) theory of space-based attention, object-based
attention suggests that visual attention can directly select
distinct objects rather than only continuous spatial locations
within the visual field. Recently, saliency models based
on the phase spectrum [17], [18] have attracted increasing



interest (e.g. applied in [14]). These models exploit the
well-known effect that spectral whitening of signals will
“accentuate lines, edges and other narrow events without
modifying their position” [19, Sec. III]. The use of saliency
models for robotics applications – i.e. shifting the focus
of attention for efficient scene exploration (e.g. [8], [10])
and analysis (e.g. [14], [20], [21]) – has attracted increasing
interest during the last years. [20] applied the attentional shift
to detect, recognize and learn objects using SIFT (cf. [22];
see [23]) in static images. For active scene exploration,
saliency can be used to steer the sensors towards salient –
thus potentially relevant – regions to detect objects of interest
(e.g. [8], [10], [12]). Combining these methods, [14] utilized
bottom-up attention, stereo vision and SIFT to perform robust
and efficient scene analysis on a mobile robot. Similarly,
salient objects are detected and foveated for recognition in
[21]. However, the latter systems rely on an object database
for recognition and do not learn new objects in a natural way
as our proposed system. Most similar to our system, [24]
used bottom-up attention to detect and SIFT to recognize
objects, but new objects have to be placed directly in front
of the (static) stereo vision camera in order to learn them.

Since establishing joint attention is an important factor in
human-human and human-machine interaction, it has been
an active research area throughout the years. Accordingly,
we can only present a brief overview of state-of-the-art
psychological and computational literature. In general, two
main research areas can be distinguished: the development
of joint attention (e.g. [4], [25]–[27]) and its role in natural
communication (e.g. [1], [2], [28]–[30]). In (spoken) human-
robot interaction (HRI), computational models of joint atten-
tion can be used to direct the attention of human (e.g. [6],
[25], [30]) or artificial dialog-partners (e.g. [27], [30]). As
we are mainly interested in computational methods to control
the attention of a robot, we will focus on that aspect in the
following. Especially gaze following as a means to achieve
joint attention has been researched intensively (e.g. [26],
[27], [31]). In particular, [26] and [27] used constructive
models to learn gaze-based joint attention. Furthermore,
[31] developed a saliency-based probabilistic model of gaze
imitation and shared attention. A specialized scenario is
considered in [32], in which the addressee – i.e. the focus of
attention – in multi-person interaction scenarios is identified
through head pose estimation. Although it has been shown
“that pointing helps establish a joint focus of attention” [1],
surprisingly little work exists that explicitly addresses shared
attention with pointing gestures. Particularly, Sugiyama et
al. (see, e.g., [29] and [30]) developed a model to draw the
attention of humans as well as robots in HRI with pointing
gestures and verbal cues. However, they rely on motion
capturing techniques that require markers attached to the
persons in order to recognize human pointing gestures, which
limits the practical applicability of their system.

Visually recognizing pointing gestures (e.g. [33]–[35])
and estimating the referred-to target has been addressed by
several authors in recent years, aiming at applications in
robotics (e.g. [36]–[39]), smart environments (e.g. [40]) and

wearable visual interfaces (e.g. [7], [41]). Object references
may be established by proximity in the image space (e.g.
[42]) or by tracing an estimate of the pointing direction.
An often utilized approach is to calculate the direction as
the line-of-sight between the eyes and the pointing hand or
finger (e.g. [37], [40]). In [39], 3 different possibilities were
evaluated, and the line-of-sight model was reported to be the
best. It achieves a good approximation when the pointing
arm is extruded, but is less suitable for finger pointing or
pointing with a bent arm. In fact, pointing is inherently
inaccurate, as discussed in [43]. The authors estimated that a
human pointing gesture has an angular uncertainty of approx.
10◦, which should be taken into account when inferring the
pointing target. This naturally leads to the definition of a
corridor of attention in which referred-to targets are expected,
which also allows searching for targets outside the camera’s
initial field of view. However, all mentioned systems have in
common that the positions and/or the (simplified) appearance
of the target objects in the scene are known beforehand.
Thus, these systems can hardly handle environments in which
the objects and/or their location or the viewpoint change
(cf. [30, Sec. II]). In contrast to this, we aim at using pointing
to steer the attention towards arbitrary – including unknown
or unspecified – objects.

III. MODEL

Analyzing the process to identify referred-to objects and
establish a shared focus of attention by non-verbal signals
only, leads to a set of subsequent tasks. Accordingly, we
model this process as a sequence of states, which we describe
in the following. Firstly, the (attentional) behavior of the
observed person has to be interpreted in order to detect
the occurrence of non-verbal attentional signals (cf. [4,
Sec. 2.2.2]), e.g. pointing gestures as in our implementation.

Next, the referred-to object has to be identified. Therefore,
we determine the indicated direction, e.g. the pointing direc-
tion, and estimate the probability that a specific image region
has been addressed. The probability distribution has to reflect
the ambiguity and vagueness of object references, which
may be caused by the natural impreciseness of the indicated
direction. As the addressed object may be unknown to the
observer or no further knowledge about the appearance is
known from the (conversational) context, specialized object
detectors cannot be applied in general. Therefore, we apply
bottom-up saliency to detect potential regions of interest
without prior knowledge about objects. By combining the
bottom-up saliency with the top-down information acquired
from the pointing gesture, we are then able to infer a
hypothetical position of the referred-to object. In order to
identify the addressed object, its shape has to be extracted via
figure-ground segmentation, which is implicit in object-based
saliency models. In our experience, this two-phased model,
decoupling pointing gesture recognition and identification of
the referred-to object, is of advantage, because the object
may lie outside the field of view.

Finally, the referred-to object has to be visually focused.
In natural systems this serves two tasks: firstly, the change



Fig. 2. Left to right: the input image, bottom-up saliency map, top-down pointing saliency map, and attended object.

in body posture and gaze direction acts as a feedback
to the indicating person, who can use this feedback to
refine the attentional signal. Secondly, the foveation enhances
the visual perception of the object, which supports object
recognition and learning. In artificial systems using pan-
tilt-zoom cameras, we are able to emulate the first by
actively steering the camera to center the referred-to object
in the field of view. This forms also the basis to acquire
detailed views of the object via zooming. Furthermore, if
the object cannot be identified unambiguously due to the
presence of distracting objects, an iterative shift of attention
can be applied, sequentially focusing on different objects of
interest.

IV. REALIZATION

In this section, we present our implementation of the
described model for pointing gestures as attentional signal.
First, we describe the attention process, consisting of point-
ing detection, (space-based as well as object-based) saliency
calculation, and object selection. Then, we describe how we
foveate the referred-to objects, and how we recognize known
and learn new objects with SIFT using the foveated views.

Note that we do not discuss the problem of providing
appropriate views to recognize attentional signals of the
interacting person. Instead, we assume that the views are
feasible to detect pointing gestures. Nevertheless, in our
experience, steering the cameras towards visually (e.g. [8])
or audio-visually (e.g. [10], [12]) salient regions is a natural
and efficient method to detect and focus interacting persons.

A. Saliency-based Object Detection and Selection

1) In order to detect pointing gestures, we use a modified
version of the system presented in [40]. Most importantly,
we replaced the face detector with a head-shoulder detector
based on histograms of oriented gradients, which – in prac-
tice – is more robust and less view-dependent. This system
robustly estimates a pointing direction from an image se-
quence. Furthermore, it offers real-time responsiveness, user
independence and robustness against changing environmental
conditions. The output for each frame i is a detection rectan-
gle di around the person’s head and a list of hand position
hypotheses hi,j . From these, using the well-established line-
of-sight model, the pointing direction hypotheses ôi,j can
easily be calculated as ôi,j = oi,j/||oi,j || with oi,j =
hi,j − d̄i, where d̄i is the center point of di. To detect
the occurrence of pointing gestures, we characterize them

through the inherent holding phase of the pointing hand.
Accordingly, temporally stable pointing hypotheses have to
be identified. Therefore, we calculate the angle difference
∆αj,k

i,i+1 = arccos (ôT
i,j · ôi+1,k) between pairs of pointing

hypotheses ôi,j , ôi+1,k in succeeding frames i and i + 1,
and the length of their difference vector ∆lj,ki,i+1 = ||ôi,j -
ôi+1,k||. The angle differences and vector lengths are utilized
to group the pointing hypotheses over time. Sufficiently large
temporal clusters are selected as pointing occurrence ôi.
In this process, we exclude pointing hypotheses alongside
the body, because – without further assumptions about the
pointing person and viewpoint – pointing gestures cannot be
distinguished reliably from idle arms alongside the body.

As pointing is inherently inaccurate and further influenced
by the positional uncertainty of the head and hand hypothe-
ses, we calculate a corridor of attention around the mean
direction of a selected group as follows: The head-shoulder
detection windows tend to shift around slightly horizontally
and vertically as well as in size due to image noise and
detection jitter. We calculate a running mean s̄ (we omit
the frame indices in the following for better readability)
of the detection rectangle’s size over the last frames and
model the positional uncertainty of the eyes by a Normal
density around the detection center, with one quarter of s̄
being covered by 2σe, hence pe(x|d) = N (d̄i, σ

2
e) with

σe = s̄/8. This models the system-inherent uncertainty
caused by estimating the eye position from the detection
rectangle. Furthermore, there are two additional sources of
uncertainty that can be identified: The variation in size of the
head detection rectangle, and the uncertainty of the estimated
pointing direction ô due to shifts in the head and hand
detection centers. We treat these as independent Gaussian
noise components and estimate their variances σ2

s and σ2
o ,

respectively, from the observed data. Note that σ2
e and σ2

s

are variances over positions, whereas σ2
o is a variance over

angles, so they cannot be combined directly. But we can
approximately transform a positional into an angular variance
by normalizing by the length r = ||ô|| of the pointing vector.
Thus, the combined distribution becomes a distribution over
angles: p(α(x, ô)|d, ô) = N (0, σ2

c ), with α(x, ô) being the
angle between the vector from the pointing origin to the point
x and the pointing direction ô, and σ2

c ≈ σ2
e/r

2+σ2
s/r

2+σ2
o .

This equation represents the probability pG(x) that a point
x in the image plane was referred-to by the pointing gesture
given the current head-shoulder detection d and the pointing
direction ô, and thus defines our corridor of attention. To



account for the findings in [43], we set a lower bound of
3◦, i.e. σ̂c = max(3◦, σc), so that 99.7% (corresponding
to 3σ) of the distribution’s probability mass covers at least
a corridor of 9◦. Modeling the corridor of attention as
distribution over angles takes into account that the positional
uncertainty increases with the distance to the pointer.

2) The bottom-up saliency calculation was inspired by
the phase-based approach presented in [17]. However, we
perform a pure spectral whitening (cf. [19]), because the
spectral residual is negligible in most situations (cf. [18]).
An advantage of this approach is that it can be implemented
efficiently on multi-core CPUs and modern GPUs. This
spectral whitening saliency is calculated for intensity, Red-
Yellow opponency and Blue-Green opponency. The corre-
sponding conspicuity maps Ci are normalized to [0, 1] and
interpreted as probabilities that a pixel attracts the focus
of attention (FoA). Therefore, we calculate the bottom-up
saliency map Sb as mixture density Sb =

∑N
i=1 wiCi with

uniform weights wi = 1
N .

In our space-based saliency model we first calculate a top-
down saliency map St based on the pointing gesture, which
is defined as the probability pG(x) for each pixel in the
image. This, in effect, defines a blurred cone emitted from
the hand along the pointing direction in the image plane.
The final saliency map S is obtained by calculating the joint
probability, S(x) = Sb(x)St(x). The position of the FoA
is then determined as xFoA = argmaxx S(x). To determine
the underlying object O, we segment the image with the
maximally stable extremal regions (MSER) algorithm [44]
and select the segment closest to the FoA. In the selection
process, we exclude segments with a high spatial variance,
because these segments are likely to represent background.

For our object-based saliency model, a saliency is cal-
culated for each object. Therefore we apply the MSER
algorithm (as above) to segment the scene and then calculate
a saliency value – based on the bottom-up saliency – for each
segment as the average probability that a pixel in the segment
attracts the focus of attention, i.e. Sb(Ok) =

∑
x∈Ok

P (x)
|Ok| .

The top-down saliency of each object is calculated as the
probability that the center of the object xc is referred-to by
the pointing gesture, i.e. St(Ok) = gG(xc). The combined
saliency for each object is then calculated according to the
joint probability S(Ok) = Sb(Ok)St(Ok). Finally, the object
with the maximal saliency is selected, i.e. argmaxk S(Ok).

To allow an iterative shift of attention, we implemented
an inhibition-of-return mechanism for each model. For the
space-based saliency, a 2-D Gaussian weight function is
subtracted from the saliency map. The center of the Gaussian
is located at the position of the selected FoA and the variance
is estimated from the spatial dimensions of the selected
object. For the object-based model, we inhibit the selection
of already attended objects by setting their saliency to 0.

B. Object Foveation, Recognition and Learning

To attend the selected object, we center it in the view and
use the camera’s zoom to acquire a model view in which
the object fills most of the image (cf. Fig. 2). We estimate

Fig. 3. The objects used in the evaluation.

Fig. 4. Examples of pointing gestures performed in the evaluation.

the necessary zoom factor based on the approximate object
dimensions obtained through the segmentation.

In order to recognize and learn objects, we calculate SIFT
features (cf. [22]; see [23]) for the acquired model views.
These features are matched with a database, which is ac-
quired by storing previous model views and their associated
SIFT features. The generalized Hough Transform is applied
to decide upon the presence of an object (cf. [23]). Therefore,
the matches are grouped in accumulator cells according to
an object pose hypothesis, i.e. position, rotation and scale,
which can be estimated from the matched SIFT features.
Finally, for accumulator cells with sufficient matches to
estimate the assumed transformation, RANSAC (cf. [23]) is
applied to determine the pose of the detected object. New
model views, i.e. objects, and their SIFT features are stored
in the database, which additionally links specified object
identifiers, e.g. text or speech signals, to the models.

V. EXPERIMENTAL EVALUATION
A. Setup

Since joint attention is especially important for natural
HRI with humanoid robots, we mounted a monocular Sony
EVI-D70P pan-tilt-zoom camera on eye height of an av-
eragely tall human to reflect a human-like point of view
(cf. [45]). The pan-tilt unit has an angular resolution of
roughly 0.75◦ and the camera offers up to ×18 optical zoom.

To assess the performance of the proposed system, we
collected a data set containing 3 persons pointing at 27
objects. We limited the number of pointing persons, because
we do not evaluate the performance of the pointing detector.
Instead, we focus on the object detection and recognition
capabilities. Therefore, we tested the system in two natural
environments with a large set of objects of different category,
shape, and texture (cf. Fig. 3). As evaluation scenarios we
chose a conference room and a cluttered office environment.

B. Procedure and Measures

Each person performed several pointing sequences, with
varying numbers and types of objects present in the scene.



Fig. 5. Some objects with their database matches.

We neither restricted the body posture of the subjects in
which pointing gestures had to be performed, nor did we
define fixed positions for the objects and persons. The only
restriction imposed was that the subjects were instructed to
point with their arms extruded, so that pointing gestures
would comply with the line-of-sight model employed. In
order to evaluate the ability of the iterative shift of attention
to focus the correct object in the presence of distractors, we
occasionally arranged clusters of objects so that the object
reference would be ambiguous. The data set accordingly
contains a wide variety of pointing references (see Fig. 4).
Since we do not specifically evaluate the pointing detector
(cf. [40]), we discard cases with erroneous pointing gesture
detections. Thus, in total, our evaluation set contains 220
object references.

In order to evaluate the saliency-based identification of
referred-to objects, we calculate the amount of true (True
Ref.), false (False Ref.), and missed object references (Missed
Ref.). In addition, to evaluate the iterative shift of attention,
we calculate 10 shifts of the FoA. Thus, we are able to
identify several object reference hypotheses for each pointing
gesture, sorted by the selection order. As evaluation measure,
we calculate the cumulative percentage of correctly identified
object references after N attentional shifts (Nth FoA Shift).
We report these measures separately for the two chosen
environments (Conference, Office) and for the object-based
(obj-b.) and space-based (spc-b.) saliency models.

To assess the performance of the object foveation for
recognition and learning, we use the foveated object views
(which were acquired with the object-based saliency model)
to build a SIFT database for each sequence. We then
match the acquired images of each sequence with the SIFT
databases of all other sequences, and report the percentage
of true, false, and missed object matches. However, we do
not perform an in-depth evaluation of the SIFT-based object
recognition, because it has already been reported to work
well in various systems (cf. Sec. II).

C. Results

Tab. I summarizes the results of the identification of
pointed-at objects. In both environments, the space-based
saliency model yields superior results (overall 83.2% ac-
curacy compared to 78.6%). Interestingly, the accuracy of
the space-based saliency is considerably higher compared to
the object-based saliency in the office (84.5% to 76.7%),
which stands in contrast to the only slight advantage in the
conference room (81.7% to 80.8%). This can be explained
by the fact that the office environment is more challenging

Conference Office Overall
obj-b. spc-b. obj-b. spc-b. obj-b. spc-b.

True Ref. 80.8 81.7 76.7 84.5 78.6 83.2
False Ref. 16.4 18.3 19.8 13.4 18.2 15.9
Missed Ref. 2.9 0.0 3.5 1.7 3.2 0.9

1st FoA Shift 95.2 93.3 90.5 94.8 92.7 94.1
2nd FoA Shift 95.2 97.1 93.1 97.4 94.1 97.3
3rd FoA Shift 95.2 98.1 94.0 97.4 94.6 97.7

TABLE I
DETECTION RESULTS OF REFERRED-TO OBJECTS (IN %).

due to a higher amount of background clutter. Accordingly,
the increased complexity of the scene has a considerable
influence on the phase-based saliency and the segmentation,
which are both fundamental for the object-based saliency.
Nevertheless, in all scenarios most errors result from false
references, i.e. wrong objects being selected first. In many
cases, this happens because of ambiguous references due to
closely neighbored objects and/or the missing depth infor-
mation of the monocular camera. In fact, many of these
ambiguities are hard to resolve from the images even by
human observers. Consequently, we performed a comple-
mentary experiment to assess the influence of ambiguous
references. Therefore, we asked several humans to identify
the referred-to object in the recorded images. Interestingly,
the participants were only able to identify the correct object
for about 87% of the images.

In human-human interaction, such ambiguities are mostly
resolved using the feedback of the interaction partner to adapt
and shift the FoA. In absence of this feedback, we have
to rely on the implemented inhibition-of-return mechanisms
to focus the referred-to object. On average, 0.22 shifts
for the object-based saliency, and 0.14 for the space-based
saliency, were needed until the correct object was selected.
The cumulative number of correct references for up to three
attentional shifts are shown in Tab. I. Accordingly, the correct
object was almost always among the first two candidates.
Furthermore, using more than three shifts did not improve
the results anymore, but already yielded 94.6% and 97.7%
correct detections, respectively. These results are promising
for unsupervised learning tasks, because the probability that
the addressed object is contained in a limited set of attended
objects is very high.

The pairwise matching of the SIFT databases yielded an
overall percentage of 93.1% correct matches. For 5.5% of
the images, no matching object was found, and 1.3% of
the object matches were false matches. These misses are
mainly caused by inappropriate viewing angles and glossy
object surfaces in combination with bad lighting. Since the
acquired model views are detailed and usually contain a low
amount of background clutter (cf. Fig. 5), the object recog-
nition is robust and reliable. Furthermore, we also performed
informal experiments to assess the recognition rates of the
learned objects without foveation and, as expected, achieved
considerably inferior recognition rates.



VI. CONCLUSION

In this contribution we introduced a saliency-based model
to focus the attention on referred-to objects using non-verbal
cues only. As consequence of the saliency-based approach,
no prior knowledge about the referred-to object is required
and thus we are able to identify unspecified or even unknown
objects. In order to identify the referred-to objects, we
combine the top-down information of a pointing gesture with
bottom-up saliency. Therefore, we apply a space-based as
well as an object-based saliency model based on spectral
whitening. Furthermore, we foveate the identified object by
exploiting the pan-tilt-zoom capabilities of our monocular
camera setup. In doing so, we obtain detailed model views
and are able to build up a high-quality SIFT object database
for object recognition.

Experiments in different real-world environments and with
multiple people pointing and various objects to be referenced
firstly demonstrate the feasibility of the overall approach.
Additionally, the accuracy achieved in detecting the correct
referred-to objects and the quality of the learned recognition
models show that our approach can be successfully applied
to the challenging problem of identifying and learning pre-
viously unknown objects on the basis of bottom-up saliency
and gesture information alone.
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