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ABSTRACT
This paper considers the problem of multi-modal saliency
and attention. Saliency is a cue that is often used for direct-
ing attention of a computer vision system, e.g., in smart en-
vironments or for robots. Unlike the majority of recent pub-
lications on visual/audio saliency, we aim at a well grounded
integration of several modalities. The proposed framework
is based on fuzzy aggregations and offers a flexible, plausible,
and efficient way for combining multi-modal saliency infor-
mation. Besides incorporating different modalities, we ex-
tend classical 2D saliency maps to multi-camera and multi-
modal 3D saliency spaces. For experimental validation we
realized the proposed system within a smart environment.
The evaluation took place for a demanding setup under real-
life conditions, including focus of attention selection for mul-
tiple subjects and concurrently active modalities.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—Representations, data structures, and transforms;
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis; H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces

General Terms
Design, Algorithms, Experimentation

Keywords
Multi-Modal, Multi-Camera, Spatial Saliency, Attention, Multi-
Camera Control, View Selection, Smart Environment
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1. INTRODUCTION
During the last decade, computational attention models

based on visual and auditory saliency gained increasing in-
terest in theory (e.g. [3, 5, 16, 18, 20, 22, 23]) and applica-
tions (e.g. [6, 17, 26]). Attention is the cognitive process of
focusing the processing of sensory information onto salient,
i.e. potentially relevant and thus interesting data. This pro-
cess can be differentiated into two main mechanisms [27].
Firstly, it comprises overt attention, i.e. the act of direct-
ing the sensors towards salient stimuli to optimize the per-
ception, e.g., to project interesting objects onto the fovea.
The second mechanism corresponds to the act of focusing
the processing of sensory information on the salient stim-
uli, the so-called covert attention. The latter is necessary to
achieve a high reactivity despite limited processing resources
that are unable to process the complete sensory information.
Both mechanisms rely on the focus of attention, i.e. the set
of salient stimuli that currently attract the attention, which
depends on the saliency and temporal behavior.

In different application domains the requirement for focus-
ing the attention onto important aspects is crucial. Espe-
cially for smart environments [8], setting a focus of attention
helps in reducing computational requirements for real-time
applications. In this paper, we formally present a multi-
modal attention system, consisting of a novel spatial saliency
model and a framework for multi-camera overt and covert
attention. This formal presentation is complemented by the
informal discussion of architectural and implementational
aspects in [25]. Addressing the application domain of smart
environments, the presented attention framework provides a
sensor- and modality-independent 3D spatial representation
of saliency information. Multi-modal saliency information is
integrated into a voxel-based saliency model that forms the
base for the attention mechanisms. We generally express the
covert and overt attention as multi-objective optimization
problems, respecting that attention mechanisms are subject
to multiple objectives with varying priorities. The proposed
attention system offers low computational requirements and
real-time responsiveness [25], which is crucial to support in-
tuitive human-machine-interaction (HMI). It will be shown
that the proposed saliency model is mathematically plausi-
ble and general since it is theoretically independent of spe-



cific modalities. The effectiveness of the approach is prac-
tically demonstrated in a smart, multi-modal environment
under difficult experimental setups.

The remainder of this paper is organized as follows. We
first review related work in section 2. Section 3 introduces
our 3D saliency representation and explains the construction
of a multi-modal saliency model incorporating audio and
multi-view video. In section 4, selection of the focus of at-
tention is described, realizing the overt and covert attention.
The effectiveness of the presented system is demonstrated in
section 5. Finally, the results are discussed in section 6.

2. RELATED WORK
While there exists a wide range of uni-modal – especially

visual – computational saliency models (e.g. [14, 16, 18, 22]),
surprisingly the integration of multi-modal sensory informa-
tion for a combined multi-modal saliency model is a so far
mostly unrecognized task. Recently, the ego-sphere was pro-
posed as an ego-centric spherical saliency map that combines
visual and acoustic information [24]. Moreover, in [23] a
framework for integration of audio-visual saliency was pre-
sented. However, these models do not offer an appropriate
spatial model for smart environments.

To the authors’ best knowledge there exists no multi-
modal and multi-camera attention model similar to the pro-
posed approach. Typically, existing work is far more spe-
cialized. The authors of [15] determine the dominant per-
son in a meeting scenario and identify this person visually
using the cameras of a multi-camera setting. In [2] sev-
eral fixed cameras and sound source localization are used to
track multiple occupants by means of a particle filter frame-
work. Complementing speech-based speaker identification,
pan-tilt-zoom cameras are used to smoothly track persons
of interest and to capture facial close-ups for visual identifi-
cation. In [7] the head orientations of the persons inside the
room are estimated and used to determine where the per-
sons’ focus of attention is directed. There is more related
work that focuses on partial aspects of the presented atten-
tion system. For example in [10] cinematographic rules are
applied for automatic viewpoint selection in multi-camera
environments, which is a special case in our interpretation
of multi-view covert attention. Furthermore, vision-based
active control of multiple cameras has been a popular re-
search topic throughout the last years (cf. e.g. [1]) and is
related to the presented overt attention. Additionally, op-
timal sensor placement is also an active research area (cf.
e.g. [21]).

3. SALIENCY
The principal goal of attention is to concentrate processing

resources on specific parts of sensory information. There-
fore, saliency as a measure of importance or interest is cal-
culated for each part of a signal. For example specific acous-
tic frequencies (e.g. [18]) or parts of an image (e.g. [3]) can
be focused. In most computational models of attention –
especially if biologically motivated – saliency can be inter-
preted as the probability that a specific part of the sensory
information attracts the focus of attention (e.g. [23]). More
generally, if the saliency is not modelled as probability dis-
tribution over the complete signal, each part of the signal is
assigned independently with a saliency value that quantifies
how important it is to attend that part of the signal (cf. e.g.

[6]). In this case, an interpretation of the saliency as grade
of membership to a fuzzy set of salient parts of the signal
can be appropriate (cf. [11]).

In the following, we introduce a representation that allows
to fuse information from different sensors and is able to rep-
resent fuzzy as well as probabilistic models (Sec. 3.1). Then
we briefly introduce computational models of visual and au-
ditory saliency, and explain how their respective saliency
information is transferred into the chosen saliency represen-
tation (Sec. 3.2.1 and 3.2.2). Finally, we describe how the
saliency information is combined to create the multi-modal
saliency world model (3.3).

3.1 3D Saliency Representation
To fuse the saliency information of different sensors, a sen-

sor independent reference coordinate system and a common
representation is necessary. Since smart environments have
limited spatial dimensions, an appropriately sized subspace
of the Cartesian vector space is used to represent every point
inside the environment. Tesselation of the subspace into a
regular grid leads to the voxels V = {1, rx}×{1, ry}×{1, rz},
which represent subvolume boxes of the subspace. Using
the voxels any spatial distribution can be approximated as
a function f : V → X with a spatial discretization error
controlled by the grid resolution rx × ry × rz.

The function St
s : V → [0, 1] is the base of the presented

model and represents the saliency of sensor s at timestamp t.
The perception function P t

s : V → {0, 1} represents whether
a voxel is perceived as being salient by a specific sensor. This
sensor-based saliency binarization is able to regard the sen-
sor history and characteristics. In addition, Ot : V → {0, 1}
is used to model prior knowledge whether the volume of
voxels is occupied by known opaque objects, e.g. furniture.

The chosen codomain [0, 1] ⊃ {0, 1} allows probabilistic as
well as fuzzy interpretations (see e.g. [11]). In this paper, we
consider a fuzzy interpretation, which is shown to be appro-
priate for a general model of multi-modal saliency. There-
fore, the functions S, P,O are interpreted as fuzzy sets over
the voxel set V . Among others, the chosen fuzzy interpre-
tation allows for efficient saliency aggregation for the visual
backprojection (Sec. 3.2.1), it enables flexible visual combi-
nation schemes with different capabilities (Sec. 3.3.1), and it
is able to express multiple biologically plausible multi-modal
combination variants (Sec. 3.3.2). Furthermore, the fuzzy
interpretation offers a high task-specific adaptability due to
the flexible choice of aggregations (including s-/t-norms).
When choosing the product as t-norm and algebraic sum
as s-norm, andreflecting the localization uncertainty and/or
the saliency of the audio signal by using a Gaussian weight
in the construction of the audio saliency space, the chosen
fuzzy model can be interpreted as a very simple probabilis-
tic model. However, developing and comparing alternative
probabilistic models is left for future work.

3.2 Modalities

3.2.1 Visual Saliency
The definition of visual saliency determines which parts

of an image attract visual attention. Many different visual
saliency features have been proposed (e.g. [3, 6, 16, 20, 22]),
but reviewing them is beyond the scope of this paper. The
methods described in the following do not depend on the
particularly chosen saliency definition.



Given the saliency map M t
c of image It

c (camera id c ∈
{1 . . . NC} at time t), transfer into the voxel representation
is achieved by backprojecting it via ray casting, respecting
the occupation function Ot. For every voxel v ∈ V the set of
intersecting rays R(v) is calculated. The rays originate from
the camera projection center through the pixel centers and
are associated with the pixel’s saliency. The saliency of each
voxel St

c(v) = a(R′(v)) is calculated using an aggregation
function a over the multiset of ray intensities R′(v).

To avoid storing the intersecting rays for each voxel, the
aggregation function needs to be calculated by iterative ap-
plication of a binary function. Since the resulting saliency
should not depend on the order of the passing rays, the
binary function needs to be commutative and associative.
The number of rays intersecting a voxel using a standard
ray casting algorithm depends on the distance and angle be-
tween the projection center and the voxel, but not on the
saliency itself. Therefore the aggregation function should be
idempotent. The only functions with these properties are
the standard fuzzy s- and t-norm, i.e. max and min, ignor-
ing the iterative calculation of the mean. The majority of
pixels in a saliency map has a very low value, ideally 0. Be-
cause min can suppress small salient objects, max is used
as aggregation function. Furthermore, since 0 is the neutral
element of max, casting rays with a saliency of 0 can be
omitted without introducing an error.

3.2.2 Auditory Saliency
In contrast to visual saliency there are hardly any mod-

els for defining which acoustic signals are considered to be
salient. In both [17] and [18] a computational model sim-
ilar to the one proposed for visual saliency in [16] is used
to detect salient sounds in single-channel audio. In a smart
environment, however, salient sound sources also need to be
associated with a spatial position in order to relate salient
acoustic events with, e.g., the visual perception. Therefore,
a suitable method for localizing sound sources has to be ap-
plied additionally, which implicitly requires the use of multi-
ple microphones. For such microphone arrays many methods
for sound source localization have been proposed in the lit-
erature (cf. [9]). In [24] inter-microphone spectral and time
differences are used in order to localize acoustic sources in
the vicinity of a humanoid robot. Any sufficiently prominent
sound source is considered to be salient.

In contrast to the definition of visual saliency, 3D po-
sition estimates of salient sound sources are computed di-
rectly by the localization method. We thus obtain a stream
(q1, q2, . . .) of location hypotheses for sound sources qi =
(ti, pi, di) ∈ R≥0 × R3 × R≥0 for discrete times ti < ti+1,
at positions pi. Each hypothesis is valid for a duration
di, which depends on the temporal resolution of the sound
source localization method used.

Let t be the current time, then the set of all hypothesized
sources is Qt = {(ti, pi, di) = qi ∈ (q0, q1, . . .) | ti ≥ t− di}.
These are transferred into the current auditory saliency model
St

A. Unfortunately, acoustic signals provide hardly any in-
formation about the spatial extension of the object emitting
the respective sound. Therefore, assumptions have to be
made about its size, e.g., by using prior knowledge or by
applying a Gaussian weighting function, when integrating a
sound source hypothesis into the voxel-based saliency repre-
sentation.

Figure 1: The camera images (top), associated saliency
maps (middle) and the saliency space (bottom). The
saliency space is shown before (left) and after core extraction
and global thresholding (right).

3.3 Combination

3.3.1 Visual
In addition to the pure multi-view fusion of saliency, the

visual combination is used to localize the visually salient
regions in the environment. This is necessary, because in
general (here we do not consider special setups like, e.g.,
stereo vision or time-of-flight cameras), the depth informa-
tion is lost during the projection of the scene onto the image
plane of the camera. Therefore, the principle of volumetric
intersection (cf. [12]) is used to localize salient regions, either
in the combination itself or in an optional core extraction.

We implemented several combination schemes, e.g., in-
spired by the sieve principle exploiting the flexibility of the
fuzzy interpretation. In the remainder of this paper we solely
apply the pairwise intersection followed by a union, i.e.

St
V =

[
i 6=j

St
i ∩ St

j ∀1 ≤ i < j ≤ NC , (1)

because it is intuitive to understand and has desired qual-
ities. It is able to cope with varying scene coverage, view-
dependent saliency, occlusion by non-salient objects, and
sensor failure. Furthermore, it does not depend on addi-
tional information, e.g., whether a voxel is inside the field of
view of a specific camera. A disadvantage is that this scheme
unites the pairwise reconstruction error, i.e. the difference
between the real and reconstructed object shape (cf. [12]).
Usually this leads to decreased model quality with increasing
numbers of cameras that perceive a region as being salient.

This problem is addressed in two ways: the overt atten-
tion actively distributes the cameras in a way that minimizes
the reconstruction error (Sec. 4.2.1). The perception func-
tion P can be used to extract the core, which is perceived
as being salient by most cameras, using the algorithm listed
in Alg. 1. The core extraction algorithm performs a variant
of volumetric intersection based on the accumulated percep-
tion function. The core extraction offers the same qualities
as the pairwise intersection, but it is more sensitive to dis-
turbances. This especially comprises salient regions that are
cut-off at the border of a view or noisy perception functions.
It discards error volumes by retaining only those parts of the



Algorithm 1 The core extraction algorithm.

1. Calculate the accumulated perception function:
PΣ(v) =

PNC
i=1 P

t
i (v)

2. Initialize with the connected components (CC : V →
P(V )) of voxels perceived as being salient by more
than 1 camera:
P 1

Σ = CC({v ∈ V |PΣ(v) > 1}); k = 0

3. Iteratively calculate connected local maxima of PΣ;
k = k + 1;

(a) P k+1
Σ =

S
Ck

i ∈P k
Σ

h`
P k

Σ \ Ck
i

´
∪ CC(Ck′

i )
i

with

Ck′
i = {v ∈ Ck

i |PΣ(v) > min
v′∈Ck

i

PΣ(v′)

∨ PΣ(v) = max
v′∈Ck

i

PΣ(v′)}

(b) repeat until ∀Ck+1
i ∈ P k+1

Σ :
max

v′∈Ck+1
i

PΣ(v′) = min
v′∈Ck+1

i
PΣ(v′)

4. Extract the core by intersecting St
V with the crisp set:

C∗ =
S

Ck+1
i ∈P k+1

Σ
Ck+1

i

saliency volume that most cameras agree on as being salient,
thus effectively reducing the overall reconstruction error (see
Fig. 1). Since the core extraction incorporates the volumet-
ric intersection, combinations that do not respect the princi-
ple of volumetric intersection can also be used, e.g., convex
combinations, if the core extraction is applied afterwards.

3.3.2 Audio-Visual
In [23] three idealized audio-video combination schemes

are described for overt attention. Regression analysis is used
to identify the linear combination scheme as the one presum-
ably used by humans. Nevertheless, variants of all combi-
nation schemes can be expressed as fuzzy aggregations, i.e.
multiplication, convex combination, and maximum.

The combination schemes have different behaviors, de-
pending on whether an object is salient in one or more
modalities. The actual selection of a scheme is driven by
practical considerations. In the work presented here, the
maximum is used, as in [24]:

St
AV = St

A ∪ St
V , i.e. St

AV(v) = max(St
A(v), St

V(v)) . (2)

Consequently, objects that are salient in at least one modal-
ity attract attention and the perception function P can be
used to identify, which sensors and modalities perceive the
object as being salient. This enables the system to re-
act to stimuli that are not perceived as being salient in all
modalities, which would possibly be suppressed if some other
scheme was used.

4. ATTENTION
The multi-modal saliency model as presented in the previ-

ous section is used to determine the focus of attention. This
corresponds to the set of salient regions on which the pro-
cessing is focussed. The selected focus of attention is then
used to realize variants of the overt and covert attention for

a multi-camera environment. In the following section we
will give detailed descriptions of the focus of attention se-
lection process and of the attention mechanisms as they are
implemented within the proposed system.

4.1 Selecting the Focus of Attention
Those salient regions that form the focus of attention

consist of neighboring voxels with high saliency. A global
threshold is applied to classify voxels as being salient or non-
salient. The connected components of salient voxels define
initial hypotheses of salient regions. The final salient regions
are obtained from these hypotheses by applying filter rules
reflecting prior knowledge and expectations, e.g., by merg-
ing nested regions. Note that, in general, we do not restrict
the selection to only a few closely neighbored regions, which
stands in contrast to the biological model.

4.2 Attention Mechanisms

4.2.1 Multi-Camera Overt Attention
The overt attention is the act of actively directing the sen-

sors towards salient stimuli. We realized the multi-camera
overt attention as an active multi-camera control, optimiz-
ing the visual perception of salient objects. Since the active
control of multiple independent cameras is subject to mul-
tiple objectives and constraints, it is formalized as a multi-
objective optimization problem (MOP) with the task to find
the best camera parameters.

Let P be the set of all possible camera parameters p =
[pi, pe], where pi and pe are the intrinsic and extrinsic pa-
rameters, respectively. P ∗ = P(P ) is the set of all possible
camera configurations, i.e. sets of camera parameters rep-
resenting configurations of multiple cameras. The objective
functions f i

X are expressed as f i
X : P ∗ → R, where X is a tu-

ple containing additional information that is not optimized,
e.g., salient regions and camera images. This formulation
has the advantage that the active multi-camera control, the
viewpoint selection (see Sec. 4.2.2), and the task to find op-
timal camera positions (see Sec. 5.1) can be expressed in a
consistent notation.

Although the methods described here are not limited to
this setting, only stationary and passive cameras are con-
sidered. This is expressed by constraining the search space
P ′ ⊂ P ∗ as follows: A stationary camera c has a fixed loca-
tion lc, i.e. ∀x ∈ P ′ : ∃ [pi, pe] = p ∈ x : pc

e = [lc, . . .]. ’Pas-
sive’ means that the camera’s parameters pc are fixed, i.e.
∀x ∈ P ′ : ∃p ∈ x : p = pc. Furthermore the number of cam-
erasNC is fixed by adding the constraint ∀x ∈ P ′ : |x| = NC .

One objective of multi-camera control is to minimize the
reconstruction error (cf. Sec. 3.3.1), which depends on the
unknown object shape and the relative positions of both ob-
ject and cameras (cf. [12]). This is achieved by using an esti-
mation of the reconstruction error of each region as objective
function. To facilitate efficient computation, the problem is
reduced from 3D to 2D by considering only the horizontal
plane, resulting in a reconstruction polygon and an error
area. The object is assumed to have a circular shape, which
is of maximal symmetry and therefore independent of the
object orientation.

The reconstructed polygon representing a particular ob-
ject is spanned by the rays from the projection centers of
the cameras that are tangents of the circular object (cf.
Fig. 2). Thus, the object circle with radius r is the in-
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Figure 2: Illustration of the 2D reconstruction error
estimation for two cameras (an extreme case). The
tangents ti form the reconstructed polygon of the cir-
cular object. The difference between the polygon and
circle area is the reconstruction error Ae. The deltoids
used to determine Ae are formed by the orthogonals
(oi, oi+1) and their corresponding tangents (ti, ti+1).

timal stationary camera positions (see Sec. 5.1) can be
expressed in a consistent notation.

One objective of multi-camera control is to minimize
the reconstruction error, which depends on the un-
known object shape and the relative positions of both
object and cameras [8]. This is achieved by using an
estimation of the reconstruction error of each region as
objective function. To facilitate efficient computation,
the problem is reduced from 3D to 2D by considering
only the horizontal plane, resulting in a reconstruction
polygon and an error area. The object is assumed to
have a circular shape, which is of maximal symmetry
and therefore independent of the object orientation.

The reconstructed polygon representing a particu-
lar object is spanned by the rays from the projection
centers of the cameras that are tangents of the circular
object (cf. Fig. 2). Thus, the object circle with radius
r is the incircle of the polygon and consequently the
area of the polygon can be calculated by rU

2 with the
polygon perimeter U . Using the fact that the polygon
consists of deltoids formed by the neighbored orthogo-
nals (oi, oi+1) passing the center of the circle, and the
corresponding tangents (ti, ti+1), U can be determined.
Regarding a reference line through the center of the cir-

cle, the orthogonals oi can be identified by their angle
ωi. These angles are sorted such that ωi+1 > ωi. The
partial perimeter of the deltoid of each pair of neigh-
bored orthogonals is ui = 2r tan

(
ωi+1−ωi

2

)
. Thus the

error area can be calculated as

Ae = r2

[∑

i

tan
(
ωi+1 − ωi

2

)
− π

]
. (4)

However, this calculation requires the radius r of each
object. The radius can be derived from the spatial
saliency model, iff the saliency definition clearly sepa-
rates the salient object from the background. Anyhow,
the estimation of the radius is error prone, e.g. due
to partially occlusion by non-salient objects, and has
the potentially unwanted effect that bigger objects are
prioritized. Thus, we usually apply a constant radius.

The sum of the estimated reconstruction errors of
all objects yields the estimated reconstruction error of
each camera configuration. Here, only the cameras
that see the respective object are considered. Nor-
mally there exists an infinite amount of configurations
in which the objects are seen by the same cameras,
because the search space is continuous and allows in-
finitesimal variations. To select a specific configura-
tion, the centering of the objects in the camera im-
ages is used as second criterion. This leads to a finite
search space of configurations that can be efficiently
sampled via a sliding window mechanism. Since the
error function can be calculated efficiently, we are able
to determine the global optimum by evaluating all con-
figurations.

The combination of these objectives optimizes the
quality of the visual saliency model and centers the
objects in the views. In addition, the characteristic of
the error function provides at least two views from mul-
tifarious viewing angles while maximizing the number
of cameras in which the objects are seen.

4.2.2 Multi-View Covert Attention

The covert attention is the act of mentally focusing
on some aspects while ignoring others. In addition to
the concentration on salient regions in the views, we
consider the selection of particularly suitable views as
a useful further concentration for many applications.
This view selection mechanism has two main applica-
tion areas: Firstly, supporting human perception of
the scene by providing the single best view, e.g. for
tele-conferencing. Secondly, reducing and at the same
time providing good input for computationally com-
plex tasks, e.g. action recognition or model learning.
However, the view selection is highly application de-
pendent, thus we present the general formulation in
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Figure 2: Illustration of the 2D reconstruction error estima-
tion for two cameras A and B (extreme case). Assuming
a circular object, the reconstruction is given by a polygon
formed by the tangents ti. Thus, the reconstruction error
Ae is the difference between the areas of the polygon and
the circle. The polygon’s area can be efficiently determined
by separating it into several deltoids formed by two adja-
cent tangents (ti, ti+1) and their corresponding orthogonals
through the circle center (oi, oi+1).

circle of the polygon and consequently the area of the poly-
gon is given by rU

2
with the polygon perimeter U . Using

the fact that the polygon consists of deltoids formed by the
neighbored orthogonals (oi, oi+1) through center of the cir-
cle, and the corresponding tangents (ti, ti+1), U can be de-
termined. Regarding a reference line through the circle’s
center, the orthogonals oi can be identified by their angles
ωi. These are sorted such that ωi+1 > ωi. The partial
perimeter of the deltoid of each pair of neighbored orthogo-

nals is ui = 2r tan
“

ωi+1−ωi

2

”
. Thus, the error area becomes

Ae = r2

"X
i

tan
“ωi+1 − ωi

2

”
− π

#
. (3)

However, this calculation requires the radius r of each ob-
ject. r can be derived from the spatial saliency model, if
the saliency definition clearly separates the salient object
from the background. Anyhow, the estimation of r is error
prone, e.g., due to partial occlusion by non-salient objects,
and has the potentially unwanted effect that bigger objects
are prioritized. Thus, we usually apply a constant radius.

The sum of the estimated reconstruction errors of all ob-
jects yields the estimated reconstruction error of each cam-
era configuration. Here, only the cameras that see the re-
spective object are considered. Normally there exists an in-
finite amount of configurations in which the objects are seen
by the same cameras, because the search space is continu-
ous and allows infinitesimal variations. To select a specific
configuration, the centering of the objects in the camera im-
ages is used as second criterion. This leads to a finite search
space of configurations that can be efficiently sampled via
a sliding window mechanism. Since the error function can
be calculated efficiently, we are able to determine the global
optimum by evaluating all configurations.

The combination of these objectives optimizes the quality
of the visual saliency model and centers the objects in the
views. In addition, the characteristic of the error function
provides at least two views from multifarious viewing an-
gles while maximizing the number of cameras in which the
objects are seen.

Figure 3: An example to illustrate the view selection. In
the 1st view (top row; counted from left to right) all per-
sons are visible, but with a high amount of occlusion. One
person can only be seen in detail in the 2nd view. In the
3rd and 4th view the interaction between the two persons at
the whiteboard can be seen best, but the views are highly
redundant. The 1st view was selected automatically using
bottom-up features derived from the saliency model (bot-
tom row; left), e.g. the centering and number of attended
regions (marked with colored bounding boxes) in the views.

4.2.2 Multi-Camera Covert Attention
The covert attention is the act of mentally focusing on

some aspects while ignoring others. In addition to the con-
centration on salient regions in the views, we consider the
selection of particularly suitable views as a useful further
concentration for many applications. This view selection has
two main application areas: Firstly, it supports human per-
ception of the scene by providing the single ”best” view, e.g.
for tele-conferencing. Secondly, it reduces data and at the
same time provides good input for computationally complex
tasks, e.g., action recognition or model learning. However,
the view selection is highly application dependent. Thus, we
present the general formulation in the following, but leave
out a detailed discussion of all imaginable features.

The definition of the ”best” view depends on several appli-
cation-dependent – usually conflicting – criteria (see Fig. 3)
and is therefore again formulated as a MOP (cf. Sec 4.2.1).
Since the camera parameters remain unchanged, the search
space is constrained to the current parameters. Two general
types of features can be distinguished: On the one hand,
bottom-up features reflect relations between cameras and
salient regions, e.g., the number of salient objects visible in
a view. On the other hand, application-dependent top-down
features can be used, e.g., the visibility of human faces.

Since the objectives have different measures and react dif-
ferently to changes in the environment, the method of ma-
jority voting (cf. [19]) is utilized as aggregate function to
automatically select the best compromise solution. Major-
ity voting can be applied because the number of objectives
is usually higher than the number of cameras. Additional
weights are applied to reflect objective priorities.

5. EXPERIMENTS AND ANALYSIS
The properties of the presented system are evaluated in

a smart meeting room. We mainly focus the evaluation on
the multi-modal camera control. In contrast to the view se-
lection, it can be evaluated meaningfully without specifying
application dependent details. Since it is practically impos-
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Figure 4: Expected reconstruction error (logarithmic scale)
of the best camera pair for a region with 200 mm radius cal-
culated at every position in the room. Left to right: Cameras
in the corners, configuration used in the evaluation and, for
comparison, a similar configuration that provides a frontal
view of the whiteboard.

sible to consider all conceivable scenarios, a case-study is
used to demonstrate the applicability. Active camera con-
trol prohibits the use of recorded videos for evaluation and
parameter optimization. Therefore, the scenario is replayed
by human subjects for each considered configuration with a
generic set of parameters that shows useful behavior. Due
to the impossibility of exactly reproducing the same scene
multiple times including timing, lighting, utterances etc., the
recorded sequences are similar, but exhibit some variance.

5.1 Experimental Setup
We considered a typical meeting room scenario as depicted

in Fig. 5. Within this scenario, we are interested in detecting
persons present, and optimize their visibility in the camera
views and the quality of the reconstructed saliency model.
The centers of persons seen in the images were annotated
manually. A person is considered as being seen if a feasible
part of its body is visible.

Our smart room has a pentagonal shape of 6625 by 3760 mm
and a height of 2550 mm (cf. Fig. 1). It contains 4 unsyn-
chronized active pan-tilt-zoom cameras located roughly in
the corners. Note that the presented approach can also be
used to calculate an optimal camera setup that minimizes
the expected reconstruction error. However, requirements of
other applications have to be considered as well, e.g., to pro-
vide better views of the entry area or the whiteboard. The
chosen setup yields an expected error that is 5.3% higher
compared to the optimal configuration (cf. Fig. 4). For au-
dio localization, two circular arrays each containing 8 omni-
directional microphones are used.

The camera viewing directions are updated in saccades,
i.e. simultaneous movement of all cameras with maximum
velocity. During camera movement, the camera parame-
ters cannot be obtained reliably and the images are heavily
blurred. Because processing these images would degrade the
saliency model, they are excluded – resulting in a rough im-
plementation of visual saccadic suppression (cf. [4]).

5.2 Saliency Features
The visual saliency is computed using a combination of

two cues. The first is a neuron-based modulatable response

(a) Initially, the cameras are directed towards the center of
the room.

(b) The 1st persons is visually localized as he enters the room
and therefore gets centered by the cameras.

(c) The 1st person is centered while preparing a figure at the
whiteboard. Note that the door is not seen by any camera.

(d) When the 2nd person knocked on the door, he attracted
the auditory attention. Accordingly the cameras get read-
justed and the entering 2nd person is visible.

(e) The 1st and 2nd person discuss in front of the white-
board. The 3rd person enters the room unnoticed, because
he doesn’t emit sound and is only seen by one camera, pre-
venting acoustic and visual localization.

(f) As the 3rd person replies to the request to switch on the
projector, the 3rd person is acoustically localized and the
cameras are partitioned accordingly.

Figure 5: Camera images at significant points in time of the
active sequence with audio-visual cues.

inspired by [22]. It reflects knowledge about the background
and expected object sizes. Since, according to the given sce-
nario, we are interested in detecting humans, it is tuned to
favor large objects. The second is a feature derived from the
color spatial-distribution [20]. This feature highlights com-
pact clusters of non-background colors, thus favoring glob-
ally salient objects (cf. Fig. 1). The corresponding saliency
maps are combined with a uniform convex combination.

Similarly to [24] we assume that any prominent sound
source can be considered to be salient in the context of
a smart environment. In such a scenario the majority of
sounds will be produced by persons acting in the environ-
ment, e.g., by speaking or closing a door. As all these



events should attract attention, we simply define the au-
ditory saliency based on the energy emitted by the sound
sources. In order to localize sound sources we apply the
SRP-PHAT method [9]. It uses beamforming to steer an
array of microphones to potential sound locations in the en-
vironment, computes the output power for each location,
and searches for local maxima in that energy distribution.
Since no information about the spatial dimensions of sound
sources can be obtained from the acoustic localization, a
Gaussian-weighted cylindrical shape around the sources’ es-
timated positions is used to model a person’s upper body.

The resolution of the saliency maps is 64×48 and the voxel
resolution is 67× 39× 27, leading to a 3D spatial resolution
of roughly 10cm. In conjunction with the voxel resolution,
the saliency map resolution provides optimal backprojection
speed while avoiding possible sub-sampling errors.

5.3 Evaluated Configurations
The presented scenario was replayed for 5 different config-

urations (cf. Tab. 1): Pas1, Pas2 and Pas3 are passive con-
figurations where the camera orientations are not updated.
The remaining two, ActV and ActVA, comprise active cam-
era control, i.e. the presented multi-view overt attention.
ActV uses only the visual saliency, whereas ActVA operates
on the combined visual and auditory saliency.

The passive setups are used to evaluate the performance of
the overt attention mechanism, and differ in the camera con-
figuration. In Pas1, the cameras are oriented towards their
opposite corners visually covering the entire room. The con-
figuration from Pas2 is used as initial setup for the active
cases (Fig. 5a). It does not cover the complete room, but
has a better visibility of important areas, i.e. the white-
board and entry area. The setup in Pas3 was determined
by simulation of the scene and maximizes the average num-
ber of cameras that see a salient region. Thus, it reflects the
optimal case achievable with passive cameras for this par-
ticular scene. Note, that, also by simulation, we can derive
an alternative setup that is optimal in the sense of expected
reconstruction error, which turns out to be very similar.

Each recorded scene takes approx. 60 sec., divided in three
20 sec. phases according to the number of people present.
The scene is challenging, because it contains persons mov-
ing completely outside the cameras’ fields of view or passing
quickly below them, multiple utterances with reverberations
and ambient noise as well as considerable variations in light-
ing, background and persons’ clothing.

5.4 Performance Measures
A good measure to evaluate the performance of an active

camera control is the number of cameras seeing a salient
region, since 3D visual localization requires multiple views.
Furthermore, the time span during which salient objects are
visible should be maximized, to make sure that no salient
events are missed by the system. Finally, centering salient
objects in the views is desirable. Thus, we choose the aver-
age number of cameras per object (cpo), the ratio of visibility
vs. presence of persons (vp), visibility in at least 2 cameras
vs. presence (v2p) and the average angle between the cam-
era viewing axis and the mean of visible region centers for
pan and tilt (ap, at) as evaluation measures.

Due to the finite angular speed of pan/tilt units, the visual
saccadic suppression can lead to a varying number of valid
views. Thus, during evaluation, we excluded points in time

Sequence cpo vp v2p ap at

Pas1 1.5 94.3% 49.0% 12.83◦ 9.2◦

Pas2 2.0 94.7% 65.8% 8.54◦ 5.5◦

ActV 2.3 74.1% 70.3% 4.75◦ 2.0◦

ActVA 2.5 88.1% 79.8% 4.74◦ 2.2◦

Pas3 3.0 98.5% 88.4% 10.13◦ 7.8◦

Table 1: Evaluation results of the overt attention.

where there is only one valid camera image, because visual
localization is impossible in this case.

5.5 Results
The evaluation results are summarized in table 1. It can

be seen that the cpo value is considerably higher and the
objects are far better centered in the views (ap and at are
lower) for both active sequences. Incorporating audio as ad-
ditional cue further enhances the performance. In the scene
considered here, this is mainly because of the third person
entering the room outside the cameras’ fields of view, pre-
venting detection by visual saliency only. We expect the in-
tegration of auditory saliency to enhance performance when
the number of cameras is limited, or visual coverage of the
scene is bad. In particular, consider a case where the only
salient events are concentrated in a limited area of the scene
over some time. When using visual saliency only in an active
setup, the system will likely direct all attention to this lim-
ited area. It may then get stuck there because other salient
events in the vicinity are no longer noticed. The incorpora-
tion of audio (or other additional cues, e.g. force sensors in
the floor) helps to recover from such situations.

The overt attention mechanism of focusing on salient re-
gions trades better visibility of these regions against cover-
age of the scene, which results in a lower vp rate for the
active setups. However, since the objective function favors
configurations where an object is seen by multiple cameras,
the v2p value (which, in fact, is more important since it rep-
resents the percentage of frames where a 3D localization can
be done) is again considerably higher. Note the dramatic
drop from vp to v2p values in the passive setups, because of
their inability to adjust to new situations. Opposed to this,
the dynamic setups succeed in maintaining a high value for
both measures, showing the effectiveness of the presented
overt attention mechanism.

Not surprisingly, the passive configuration Pas3, calcu-
lated as being optimal in terms of cpo and vp for this spe-
cific scene and camera setup, yields superior results, but
can be expected to be far worse for a different scene. The
alternative optimal configuration obtained from minimizing
the expected reconstruction error differed only in a single
camera orientation, and yielded very similar results.

5.6 View selection
In a preliminary study to assess the performance of the

automatic view selection, we analyzed 3 simple scenes with
1-3 persons recorded by 4 static cameras (in a configuration
similar to Fig.4 (right)). 7 human observers were asked to
choose their ”best” view in 1 second sampling steps, and
3 bottom-up features representing ’centering’, ’zoom’ and
’completeness’ were used to automatically select a view. The
weights were chosen manually and applied for all scenes.



We calculated the Fleiss’ Kappas [13] as measure of con-
cordance between the observers. This showed moderate
agreement with values of 0.47, 0.48 and 0.56 (1 being perfect
agreement), reflecting that there is no clearly identifiable
”best” view in many situations and the selection is largely
governed by subjective expectations. On average, the auto-
matically selected view was agreed on by up to 64% of the
observers, indicating that even a view selection based solely
on bottom-up features can achieve reasonable results. How-
ever, in order to analyze the variety of possible features and
deriving an optimal parametrization, more extensive studies
are needed, but this is beyond the scope of this paper.

6. CONCLUSION
In this paper we presented a novel, mathematically plausi-

ble and general framework for the integration of multi-modal
saliency information into an attention model with real-time
responsiveness. The uni-modal and multi-modal combina-
tions are based on fuzzy aggregations of 3D saliency spaces.
The spatial saliency model was used for multi-camera con-
trol (overt attention) and view-selection (covert attention).

The effectiveness of the new framework was experimen-
tally demonstrated in a case-study. Compared to visual-only
multi-camera control, the proposed multi-modal approach
performed superior in a typical scenario where the visual
perception of salient objects is optimized with a highly lim-
ited amount of cameras. The application of the new frame-
work is especially beneficial for smart environments where
attention needs to be directed towards salient regions and,
therefore, a restriction to the visual cue only is not reliable.

Further enhancing the functionality of the proposed at-
tention framework, we consider the following tasks as impor-
tant future work. Firstly and most importantly, developing
an alternative probabilistic model. Secondly, analyzing the
view selection to enhance the human perception of scenes
with multiple views. Finally, developing applications that
further exploit the possibilities of the proposed framework.
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[25] Schauerte, B., Plötz, T., and Fink, G. A. A
multi-modal attention system for smart environments.
In ICVS (2009). To appear.

[26] Setlur, V., Lechner, T., et al. Retargeting images
and video for preserving information saliency. IEEE
Comput. Graph. Appl. 27, 5 (2007), 80–88.

[27] Wright, R. D., and Ward, L. M. Orienting of
Attention. Oxford University Press, 2008.


