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Abstract. In the document analysis community, intermediate represen-
tations based on binary attributes are used to perform retrieval tasks or
recognize unseen categories. These visual attributes representing high-
level semantics continually achieve state-of-the-art results, especially for
the task of word spotting. While spotting tasks are mainly performed
on Latin or Arabic scripts, the cuneiform writing system is still a less
well-known domain for the document analysis community. In contrast
to the Latin alphabet, the cuneiform writing system consists of many
different signs written by pressing a wedge stylus into moist clay tablets.
Cuneiform signs are defined by different constellations and relative po-
sitions of wedge impressions, which can be exploited to define sign rep-
resentations based on visual attributes. A promising approach of repre-
senting cuneiform sign using visual attributes is based on the so-called
Gottstein-System. Here, cuneiform signs are described by counting the
wedge types from a holistic perspective without any spatial information
for wedge positions within a sign. We extend this holistic representation
by a spatial pyramid approach with a more fine-grained description of
cuneiform signs. In this way, the proposed representation is capable of
describing a single sign in a more detailed way and represent a more
extensive set of sign categories.

Keywords: Cuneiform Script · Retrieval · Visual Attributes.

1 Introduction

Besides Egyptian hieroglyphs, the cuneiform script is one of the earliest attested
writing systems in history. Developed in Mesopotamia at the end of the 4th
millennium BCE, it was used until the 1st century CE across the Near East.
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Cuneiform is a 3D script written primarily on clay tablets. It was written by
pressing a stylus into moist clay surfaces in order to create signs composed of
wedge-shaped impressions, henceforth to be called wedges. Figure 1 shows an

Fig. 1. The left side shows a whole tablet reassembled from several fragments. The right
side shows an enlarged section from the tablet. This photograph has been provided [11].

example of a cuneiform tablet. The image on the left-hand side shows a typ-
ical tablet that has been reassembled by philologists by joining fragments in
an attempt to restore heavy damage through the millennia. Displayed on the
right side of Figure 1 is a section of the left image where one can see the wedge
impressions on the clay surface. A sign can be identified by the reader accord-
ing to wedge direction, number, and positioning within the sign. As cuneiform
signs may have syllabic or logographic values, the writing system contains a
significantly greater number of signs than in an alphabet, with an approximate
maximum of 900 signs. As this writing system was used over three millennia, it
was distributed across a wide geographical range, adapted to over 10 languages.
Hence, the inventory of regular signs and the variations observed within a sin-
gle sign class, henceforth to be called sign variants, used in different local areas
are heterogeneous. A single variant may differ from other variants in a variety of
sign characteristics, namely the direction, number, and positioning of wedges. As
presented in [16], a system proposed by Gottstein [5] for representing cuneiform
signs based on four different wedge types and their corresponding counts fit well
for a novel retrieval scenario called Query-by-eXpression (QbX). However, the
binary attribute vectors derived from the Gottstein-System have a limited repre-
sentational power in terms of inventory size. In this work, we derive a represen-
tation based on the Gottstein-System enriched with spatial information, which
encodes the presence of wedge types and counts and their approximate position
within a cuneiform sign. In this way, the signs are projected into a subspace
capable of representing a more extensive inventory size. We evaluate the sign
representations using annotated texts written in Hittite cuneiform script in a
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segmentation-based Query-by-Example (QbE) and Query-by-eXpression (QbX)
scenario and show the superiority of a Gottstein representation enriched with
spatial information. This work is organized as follows. In the next section, re-
lated work is reviewed, followed by a brief introduction to the Gottstein-System
in section 3.1. The resulting attribute representation based on a pyramidal de-
composition of cuneiform signs is explained in section 3.2. The experiments are
discussed in Section 4. Finally, a conclusion is drawn.

2 Related Work

In this section, related work in terms of cuneiform analysis and word embeddings
is discussed. At first, we review the current publications in cuneiform character
recognition and retrieval. Afterward, we discuss recently proposed word embed-
dings for word spotting.

2.1 Cuneiform Character Retrieval

Although the cuneiform writing system is still a less known domain in the doc-
ument analysis community, several approaches based on graph representations
and bag-of-features for cuneiform sign retrieval have been presented. In 2012, a
method [12] for extracting 2D vector drawings from 3D cuneiform scans was pro-
posed. Afterward, the resulting spline graphs were converted in order to compare
the similarity between two cuneiform characters based on graph representations
[3] or retrieve them using pattern matching on structural features [2]. With a
similar goal, Massa et al. [13] described an approach to extract wedge-shaped
impressions from hand-drawn cuneiform tablets. In [4] the inkball model [9] was
adapted by Bogacz et al. to treat different wedge features as individual parts ar-
ranged in a tree structure in order to perform segmentation-free cuneiform char-
acter spotting. Next to the graph-based feature representations, Rothacker et al.
[14] proposed an approach based on Bag-of-Features in combination with Hidden
Markov Models integrated into a patch-based framework for segmentation-free
cuneiform sign spotting.

2.2 Word Embeddings

All the approaches mentioned above require a visual example of a query and can
only perform in a retrieval scenario called Query-by-Example (QbE). Sudholt et
al. [19] noted that this approach poses certain limitations in practical applica-
tions. A user has to identify a visual example of a query from a whole document
collection which can be very tedious, especially for infrequent queries. The field
of word spotting is dominated by mainly two types of spotting scenarios, namely
Query-by-Example (QbE) and Query-by-String (QbS). The QbS scenario is de-
fined by queries given as word strings. Here, the word image representations and
the textual representations are projected into a common subspace. The major
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advantage of QbS is that the user is not required to search for a visual exam-
ple of a word in the document collection to define a query. On the other hand,
a word spotting system must learn a mapping from a textual to a visual rep-
resentation first. Therefore, annotated training samples are required. Almazan
et al. [1] proposed an approach for a word string embedding called Pyramidal
Histogram of Characters (PHOC). The authors presented a method to map a
word string to a binary attribute vector representing the presence or absence of
characters. Furthermore, information about character positions within a word is
included by splitting the word string in a pyramidal way. Inspired by the PHOC
representation, Sudholt et al. [19] proposed a CNN model based on the VGGNet
[17] named PHOCNet. This model is capable of estimating a certain PHOC rep-
resentation in an end-to-end fashion using binary logistic regression (also called
sigmoid logistic regression) in combination with a binary cross-entropy (BCE)
loss.

3 Cuneiform Sign Expressions

This section describes our approach of extending the representation of cuneiform
signs following the Gottstein-System by including spatial information. After a
brief introduction of the Gottstein-System in 3.1, the structure of spatial infor-
mation encoded in our pyramidal representation is introduced in 3.2. Afterward,
we explain how the sign expressions enriched with spatial information are mod-
eled as binary attribute vectors.

3.1 Gottstein System

The Gottstein-System [5] was introduced following the idea of a unified cuneiform
sign description based on commonly occur wedge types. This representation
should be usable in databases without existing knowledge of cuneiform sign cat-
egories, especially in a retrieval scenario. In order to simplify the search process,
Gottstein [5] proposed a system where an alphanumeric encoding represents a
cuneiform sign. The Gottstein-System decompose a cuneiform sign into four

Fig. 2. Four hand drawn examples of wedge types from the Gottstein-System and their
corresponding alphanumeric encodings gs = {a, b, c, d}

different wedge types gs = {a, b, c, d}, where gs denotes the set of Gottstein
wedge types. Figure 2 shows four examples of hand-drawn wedge types from the
Gottstein-System. For every item from gs the count of each wedge type is given.



Embedded Attributes for Cuneiform Sign Spotting 5

The type a represents a vertical wedge tending from top to bottom and vice-
versa. b represents a horizontal wedge type, tending from left to right. Here, the
variant right to left does not exist. Type c represents three different variants of a
wedge type, the so-called Winkelhaken and an oblique wedge tending diagonally
from the upper left to the lower right as well as from lower right to the upper
left. Finally, d represents a perpendicular wedge type to c tending from the lower
left to the upper right direction and vice-versa. Figure 3 shows three cuneiform

a1-b1 a2-b2-c1 a10-b2-c4

Fig. 3. Three examples of hand drawn cuneiform signs and their corresponding
Gottstein representations, showing a simple sign on the left side and a more complex
sign on the right side.

signs and their corresponding Gottstein representations. On the far left side, a
simple sign consisting of 2 wedge types is shown. The sign in the middle shows
three different wedge types and 2 + 2 + 1 = 5 wedges in total. The far-right side
shows a more complex sign with 3 different wedge types and 10 + 2 + 4 = 16
wedges in total.

3.2 Gottstein with Spatial Information

Although the Gottstein system provides a holistic representation to express a
particular cuneiform sign, this simplified description exhibits some shortcomings.
For example, distinguishing between different sign categories consisting of the
same wedge types, additional information for the relative position of a wedge is
missing. Figure 4 shows the shortcoming of a holistic Gottstein representation.

NA TI PI

Fig. 4. Three examples of different cuneiform signs consist of the same wedge types
described by the same Gottstein representation a1-b1-c2-d0.

Here, three different cuneiform signs are described by the same Gottstein repre-
sentation. The three signs, from three different categories having different visual
appearances, are mapped to the same alphanumeric encoding. In order to over-
come this ambiguous mapping, we decompose the signs in a pyramidal fashion.
This way, a higher diversity in the mapping between categories and encodings is
achieved.
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Pyramidal Partitioning Intuitively, writing systems are partitioned according
to their reading directions like left to right in Latin scripts. The common reading
direction for cuneiform texts tends from left to right and less common from top
to bottom. Due to the physical process of writing cuneiform signs by pressing
a wedge stylus into moist clay, a typical sequential arrangement of wedge types
and positions, similar to Latin scripts, is missing. Therefore, we split the signs
based on their main visual variant in a pyramidal fashion to get a Gottstein
representation containing spatial information that represents cuneiform signs in
a more detailed way. As the reading direction tends from left to right, horizontal
partitioning is performed. We apply the splitting at level 2 and 3 which results
in 2 left-right and 3 left-middle-right splits, respectively. Additional to the hor-
izontal direction, vertical partitioning on levels 2 and 3 are applied. Figure 5

Level 1
Cuneiform

a1 b1 c2 d0

Pyramidal Gottstein

a1 b1 c2 d0

a0 b1 c0 d0 a0 b0 c2 d0 a1 b0 c1 d0

Level 2

a0 b1 c1 d0 a1 b0 c2 d0

Level 3

a1 b1 c2 d0 a0 b0 c0 d0

a0 b1 c2 d0 a0 b0 c0 d0

Fig. 5. Visualization of splitting the sign NA in the horizontal and the vertical direction
for levels 2 and 3, respectively.

shows the proposed way of splitting the cuneiform sign NA in a pyramidal fash-
ion. Assigning annotations to splits based on the visual appearance entails an
issue. While most of the wedges can be assigned distinctively to a certain split,
some wedge constellations lie between partitions without a visually clear assign-
ment to a certain split. We relax the assignment between wedges and splits by
defining the head of a wedge as the main orientation point. Here, a wedge-head
intersecting the boundary between two splits is assigned to both splits.
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Combining Horizontal and Vertical Splits Next to the pyramidal partition-
ing discussed before, a more fine-grained splitting can be achieved by combining
the horizontal and vertical partitioning. Figure 6 shows three examples of pos-
sible combinations. For level 2 the horizontal and vertical partitioning can be
combined into 2×2 = 4 splits. While combining the horizontal and vertical parts
of level 3 results in 3× 3 = 9 splits. Next to the combinations within a pyramid
level, it is also possible to combine between different pyramid levels as shown in
figure 6. In contrast to a manual partitioning process, as described in Sec. 3.2,
where wedge types and counts are assigned to certain splits by a human expert,
we achieve the combinations by automatically compare annotations from two
overlapping splits and take the minimum count for corresponding wedge types.

Level 2

Level 3

+

+

Level 2 + 3

+

Fig. 6. Three examples of possible combinations between horizontal and vertical par-
titions, for level 2, 3, and a combination of 2 and 3.

Modeling Binary Attributes In order to transfer the Gottstein-System into
a binary attribute vector, we first count the minimum and the maximum number
of wedges for each type. For the database (see Sec4.1) we use in this work, the
minimum count of each wedge type denoted by a, b, c, and d is 0. For the wedge
type a and b the maximum count is 10. The wedge type c has a maximum count
of 12 and d have a maximum count of 2. Except for the count of 0 all counts
are modeled as single attributes, respectively. The absence of a wedge type is
modeled as a zero-vector. In this way, the representation results in a 10 + 10 +
12+2 = 34 dimensional binary attribute vector. In the end, all attribute vectors
from each split are concatenated to form the final Gottstein representation as
a 34 × Nsplits dimensional vector, where Nsplits denotes the total number of
splits. For example, the partitioning from Figure 5 will be concatenated to a
34× (1 + 2 + 2 + 3 + 3) = 374 dimensional vector.
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4 Evaluation

In this section, the evaluation of our approach is described. At first, our cuneiform
database and the data partitioning into training and test sets are shown. After-
ward, the model architecture and our decisions for different modifications are
explained. In the Sections 4.3, 4.6, and 4.5 the training setup for the model,
the similarity metric, the evaluation protocol, and the evaluation metric are
described. Finally, the results are presented in Section 4.7.

4.1 Database

In this work, we use a set of annotated cuneiform tablets collected from a total
of 232 photographs, with annotated 95 040 samples of cuneiform signs, provided
by [11]. These samples represent an inventory of 300 different cuneiform signs
effectively. The sign images have considerable variability in size, ranging from a
minimum of 11 pixel height to a maximum of 520 pixel in width, as shown in
Table 1. Figure 7 shows examples of cuneiform signs. On the far left, the sign
class, and next to it, the Gottstein encoding is given. In the middle of Figure 7
hand-drawn examples and corresponding sign crops from the tablet photographs
are shown. As one can see, the visual variability and quality in terms of wedge
impression, image resolution, and surface damage can be tremendous.

Table 1. Statistics about image sizes given in pixel.

max min mean std

height 319 11 85.55 ±31.50
width 520 16 106.09 ±46.31

Data Partitions As the data presented above does not have an official parti-
tioning into training and test sets, we split the data into four equal parts. This
way, we can perform four-fold cross-validation similar to [16]. First, all samples
are sorted according to their category. Afterward, every fourth sample from a
category is assigned to one validation set in an interleaving fashion. This assign-
ment results in four validation sets containing approximately the same number
of samples with the same distribution over sign categories. Table 2 shows the
number of samples for each of the four cross-validation splits.

4.2 Model Architecture

Similar to [16] we used the successful ResNet [8] architecture. From the different
versions proposed for the ResNet model, we adapted the one with 34 layers
and version B, as the preliminary experiments revealed the ResNet-34B to have
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a1 b1 c2 d0NA

a1 b1 c2 d0TI

a1 b1 c2 d0PI

a1 b1 c0 d0MASZ

a2 b2 c1 d0ISZ

a10 b2 c4 d0TIR

Fig. 7. Examples of six different cuneiform signs are shown. On the far right side,
the sign names and the Gottstein representations are given. Next to them, the corre-
sponding hand-drawn examples are shown. And on the right side, cropped snippets of
cuneiform signs from tablet photographs are visualized.

Table 2. Number of samples for each cross-validation split.

Split1 Split2 Split3 Split4 Total

# Samples 23 878 23 799 23 717 23 646 95 040

the best trade-off between retrieval performance, number of parameters, and
computation time. We apply some modifications to our model in order to achieve
higher retrieval performance. While the original ResNet architectures perform
five times downsampling, we discard the last three downsamplings and only kept
the first two. One in the first convolutional layer and the second one in the first
Pooling layer. In this way, all Residual-Blocks are computing on equally sized
feature maps, while spatial information is preserved. After the last convolutional
layer, a Temporal Pyramid Pooling (TPP) [18], in analogy to the pyramid levels
presented in Sec 3.2, with the levels (1, 2, 3) is applied. We also experimented
with the original Global Average Pooling (GAP) and the Spatial Average Pooling
(SPP) introduced in [6], but the TPP achieved the best results in preliminary
experiments. The output of the TPP layer effectively results in a 512×(1+2+3) =
3072 dimensional feature vector, which is mapped to the attribute representation
using a fully connected layer. As in [16], we do not rescale the images to uniform
image sizes.

4.3 Training Setup

The model is trained using the binary cross-entropy (BCE) loss and the Adaptive
Momentum Estimation (Adam) [10] optimizer. For the momentum mean and
variance values β1 and β2 are set to 0.9 and 0.999 respectively, while the variance
flooring value is set to 10−8 as recommended in [10]. The batch size is technically
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set to 1 while accumulating the gradients over 10 iterations, which results in an
effective batch size of 10. We set the initial learning rate to 10−4 and divide
the learning rate by 10 after 100 000 and another division by 10 after 150 000
iterations, respectively. All models are trained for 200 000 iterations in every
training run. As parameter initialization, we use the strategy proposed in [7].
The weights are sampled from a zero-mean normal distribution with a variance of
2
nl

, where nl is the total number of trainable weights in layer l. In order to extend
the number of training samples sampled from the database, we use some common
augmentation techniques. At first, we balance the training data by sampling the
sign categories from a uniform distribution, followed by augmentation techniques
like perspective transformation, shearing, rotation, translation, scaling, lightness
changing, and image noise generation.

4.4 Similarity Metric

For the segmentation-based scenario, retrieval is performed by computing a cer-
tain similarity between a given query and all test samples, excluding the query
itself. In this work, we make use of a similarity measurement called Probabilistic
Retrieval Model proposed in [15]. Here, the assumption is made that the binary
attribute representation is a collection of d independent Bernoulli distributed
variables, each having their probabilities p, which evaluates to 1. Equation 1
shows the definition of the probabilistic retrieval model.

pprm(q|a) =

D∏
i=1

aqii · (1− ai)
1−qi (1)

Here, q denotes the query vector, and a represents the estimated attribute rep-
resentation. As the evaluation of the PRM from Eq. 1 requires to compute a
product of many probabilities, we evaluate the PRM scores in the logarithmic
domain in order to improve the numerical stability:

log pprm(q|a) =

D∑
i=1

qi log ai + (1− qi) log(1− ai) (2)

4.5 Evaluation Protocol

We follow the evaluation protocol from [16] and evaluate our approach in a
segmentation-based QbE and QbX scenario on the cuneiform database shown
above (Sec. 4.1). As the given data is partitioned into four separate validation
folds, three folds are used to train a single model, and the remaining fold is
considered the test partition to perform the retrieval evaluation. For the QbE
scenario, all images of cuneiform signs from a test fold, which occur at least
twice, are considered as queries. Retrieval is performed by estimating the at-
tribute representations for all sign images from a test fold given the estimated
attributes from a certain image query. Afterward, the retrieval lists are obtained
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by evaluating the PRM scores between the list items and a given query estimate
and sort them in ascending order with respect to the highest probabilities. For
QbX, retrieval is performed equivalently to QbE except that a sign category is
only considered once as a query. It is important to note that the relevance cat-
egory determines the relevance of an item within the retrieval list. We perform
retrieval based on models either trained in a one-hot encoding fashion using
the sign categories as targets or in a multi-class encoding using the Gottstein
attribute representations as targets.

4.6 Evaluation Metrics

To evaluate the performance of our approach, we decided to use the interpolated
Average Precision (AP) as this metric is commonly used in the spotting literature
[18]. The AP is defined as follows:

AP =

∑N
n=1 P (n) ·R(n)

t
(3)

P (n) denotes the precision if we cut off the retrieval list after the i-th element.
R(n) is the indicator function, which evaluates to 1 if the i-th position of the
retrieval list is relevant with respect to the query and 0 otherwise. N represents
the length of the retrieval list, and t is the total amount of relevant elements.
Similar to segmentation-based word spotting tasks, the retrieval list contains all
cuneiform sign images from the respective test set. Afterward, the overall per-
formance is obtained by computing the mean Average Precision (mAP) overall
queries, where Q denotes the total amount of queries:

mAPqry =
1

Q

Q∑
q=1

AP (q) (4)

We denote the standard mean Average Precision with the subscript qry, as the
mean is computed across all average precision values obtained from all queries.
As proposed in [16], we additionally evaluate a separate mean Average Precision
for every sign category by computing the mean of all mAPqry values with respect
to the category:

mAPcat =
1

C

C∑
c=1

mAPqry(c) (5)

Where C denotes the set of sign categories and mAPqry(c) evaluates to the mAP
value of the sign category c. In this way, the mAPcat ensures a more balanced
performance evaluation across all sign categories contained in our database.

4.7 Results and Discussion

Table 3, 4 and 5 list the results for the QbX and QbE experiments, given in
mAP percentage. All results are averaged over four cross-validations folds. The
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Table 3. QbX and QbE experiments using a one-hot encoding as sign category repre-
sentation in combination with the cross-entropy (CE) and binary cross-entropy (BCE)
loss function, respectively. Sign categories are used as relevance categories. Results are
shown in mAP [%].

Loss Nreps
QbX QbE

mAPcat mAPqry mAPcat

CE 300 90.19 86.46 79.68

BCE 300 84.10 75.34 68.50

first results are shown in Table 3, evaluated for a sign encoding in a one-hot fash-
ion. Here, all sign categories are represented by a 300 dimensional output vector
where every element of this vector represents a certain category. The column
Nreps denotes the number of unique representations if all 300 sign categories
are mapped to a certain representation. Here, Nreps = 300 shows that 300 sign
categories are mapped to 300 unique representations (i.e. one-hot encodings).
We evaluate two different loss functions, namely cross-entropy (CE) and binary
cross-entropy (BCE). For the CE configuration, the Softmax-Function is applied
to the output of the model. For a model trained with the BCE loss, we apply a
Sigmoid-Function after the model output. Table 3 shows distinct differences in
retrieval performance depending on the loss and output function used. For QbX,
the CE configuration outperforms the BCE by about 6%, while for QbE the
performance difference is about 11%. Table 4 shows the results for a Gottstein
representation combined with different partitioning strategies. The column sign
representation denotes the configuration of an attribute representation. Here, GR
means Gottstein-Representation, and GR+LE means Gottstein-Representation
combined with the Last Element as shown in [16]. The configuration for pyra-
midal splits is described by Hl for horizontal and Vl for vertical splitting, while l
denotes the pyramid level in the respective direction. For example, the notation
GR+H2+V2 means a Gottstein Representation combined with a horizontal and
vertical splitting on level 2. Retrieval is performed by evaluating the retrieved
items with respect to the sign representation itself. The representation estimated
by the model defines the relevance of retrieved items. As in Table 3, the num-
ber of unique representations is denoted by Nreps. For example, GR maps all
300 sign categories to 177 unique attribute representations, which means 1.69
signs are mapped to the same representation, on average. Table 4 shows that
the model can learn an arbitrary representation based on binary attributes. All
representations show approximately the same performance. In Table 5, the rel-
evance of the items in a retrieval list is defined by the sign categories. Here, the
retrieval performance is correlating with the number of unique representations.
The mAP values increase for higher Nreps numbers, which is not surprising. On
the one hand, a Gottstein Representation can distinguish between 177 out of
300 different categories. Thus, appropriate retrieval performance is not possible.
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Table 4. QbX and QbE experiments using different attribute encodings as sign cate-
gory representation with the binary cross-entropy (BCE) loss function. The relevance
category is defined by the sign representation itself, respectively. Results are shown in
mAP [%].

Representation Nreps
QbX QbE

mAPqry mAPcat mAPqry mAPcat

GR 177 90.32 88.78 80.28 75.52

GR+LE 267 89.27 88.72 81.66 76.93

GR+H2 263 90.02 89.51 81.51 77.27

GR+H2+V2 287 89.12 89.01 80.77 77.30

GR+H2+H3 291 88.94 88.90 80.84 76.78

GR+H3+V3 297 89.85 89.79 80.89 76.78

GR+H2+V2+H3+V3 300 88.76 88.76 80.62 76.85

GR+H2 × V2 287 88.49 88.37 78.81 74.71

GR+H3 × V3 297 86.95 86.89 77.25 72.30

GR+H2×V2+H3×V3 300 87.40 87.40 77.02 73.02

On the other hand, exploiting the position of wedges within a sign and defining
a Gottstein Representation based on a spatial pyramid splitting increases the
performance by 32.95% for QbX (comparing GR and GR-H3-V3) and 20.47%
respectively 16.70% for QbE (comparing GR and GR-H2-V2-H3-V3).

5 Conclusion

In this work, we enhanced the Gottstein Representation by applying a pyra-
midal partitioning of cuneiform signs. This way, the signs can be expressed by
wedge types and their respective counts, and the approximate positions of their
wedges. We evaluate our approach on a cuneiform database consisting of 232 pho-
tographs in two segmentation-based scenarios: Query-by-Example and Query-
by-eXpression. The experiments show that a Gottstein Representation enhanced
with spatial information achieves better results than the Gottstein Representa-
tion proposed in [16] using item relevancy based on sign categories. Although a
representation enhanced with spatial information can be superior compared to
one without, this spatial information entails the problem of ambiguity, as shown
in Sec 3.2. Hence, the users’ representation should be intuitively interpretable
and robust against ”incomplete” or noisy query definitions. Therefore, further
investigations need to be made to define a cuneiform sign representation with
fewer (or even without) ambiguities and an intuitive interpretation for human
experts. Nevertheless, we would like to derive the conclusion that an appropriate
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Table 5. QbX and QbE experiments using different attribute encodings as sign cate-
gory representation with the binary cross-entropy (BCE) loss function. The sign cate-
gories are used as the relevance categories. Results are shown in mAP [%].

Representation Nreps
QbX QbE

mAPqry mAPcat mAPqry mAPcat

GR 177 55.87 55.87 60.15 60.15

GR-LE 267 80.54 80.54 77.15 71.20

GR-H2 263 79.19 79.19 74.03 71.05

GR-H2-V2 287 85.93 85.93 78.34 75.00

GR-H2-H3 291 86.69 86.69 78.72 74.84

GR-H3-V3 297 88.82 88.82 80.31 75.91

GR-H2-V2-H3-V3 300 88.76 88.76 80.62 76.85

GR-H2 × V2 287 85.31 85.31 76.51 72.53

GR-H3 × V3 297 85.93 85.93 76.75 71.50

GR+H2×V2+H3×V3 300 87.40 87.40 77.72 73.02

representation based on binary attributes which encode spatial information fits
well a cuneiform sign description in order to define retrieval queries.
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