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Abstract—Intermediate representations based on binary at-
tributes are widely used for image retrieval tasks. Especially for
the task of word spotting, attribute representations continually
achieves state-of-the-art results. In contrast to Latin scripts, the
cuneiform writing system is still a less well-known domain for
the document analysis community. This writing system consists of
wedge impressions, with the constellations and relative positions
of wedges representing sign classes. While for Latin scripts
characters are intuitive modeled as visual attributes, cuneiform
signs do not reveal an evident approach to model visual attributes
for cuneiform signs. However, in this work we introduce an
attribute representation based on the so-called Gottstein-System.
The idea is decompose signs according to wedge typology and
enable a logical expression for sign classes, while sharing these
expressions across visually similar cuneiform signs. We adapt
this idea of describing wedge expressions in order to introduce
to the Query-by-eXpression (QbX) retrieval scenario. Compared
to queries based on sign IDs, our approach is capable of repre-
senting queries for an open-set retrieval scenario. Furthermore,
we extend the Gottstein-System by expressions representing
visual hints like wedge crossings or position relations. This way,
promising results are achieved, as shown in our experiments.

I. INTRODUCTION

Cuneiform is a writing system that was used from the end
of the 4th millennium BCE until the 1st century in the Near
East. It was written by pressing a stylus into moist clay tablets
in order to create wedge-shaped impressions. A cuneiform
sign is composed of one or more of such wedge impressions,
and a sign may then be identified by the reader according
to wedge direction, number, and positioning within the sign,
similar to brush strokes in a Chinese character. A cuneiform
sign may have syllabic or logographic values; as such, the
writing system contains a greater number of signs than in
an alphabet, with a maximum of ca. 900 signs. Due to the
temporal and geographic range in which the writing system
was used, its adaptation to at least 7 languages, as well as the
personal preferences of scribe, both the inventories of regularly
used signs and the form of the signs used, henceforth to be

referred as sign variants, are heterogeneous. A sign variant
may differ from other variants of said sign in all or some of the
aforementioned characteristics, namely the direction, number,
and positioning of the wedges. Since cuneiform studies is a
philological field with a complex writing system, beginners
heavily rely on sign lists, many of which contain a limited
search representation based on a single ’main variant’ of a
sign class, listed according to the wedge shape and order. In
order to simplify the retrieval process, Gottstein [1] proposes
an alphanumeric representation system for cuneiform signs
based on commonly occurring wedge types, represented by
the letters a, b, c and d, and the count of each wedge type
used in a sign.
In this work, we adapt the Gottstein-System and derive an
attribute representation for the embedding of wedge types and
their counts. Furthermore, we extend this system by including
attributes based on visual hints like wedge type intersections
which we named Last Elements. With our attribute based
approach, we introduce a novel retrieval scenario, namely
Query-by-eXpression (QbX). Next to the well known Query-
by-Example (QbE) scenario, our approach enables the retrieval
based on user defined wedge expressions.
This work is organized as follows. In the next section re-
lated work is briefly reviewed. Section III-C introduces the
Gottstein-System, and the resulting attribute representation.
The experiments are discussed in Section IV. And finally, a
conclusion is drawn.

II. RELATED WORK

In this section a two sided related work in terms of
cuneiform analysis and word embeddings is discussed. At first,
we briefly review the related work for cuneiform sign spotting.
Afterwards, we discus recently proposed word embeddings for
word spotting.



A. Cuneiform Sign Spotting

Several approaches have been published for cuneiform sign
recognition and spotting on 2D and 3D representations. In
2012, Mara [2] published an approach to extract 2D vector
drawings from 3D cuneiform scans. Inspired by the part-
structured inkball models proposed by Howe [3], Bogacz et
al. [4] processed these spline graphs from [2] subsequently
to match cuneiform signs using a similarity metric based
on graph representations. Furthermore, in [5] the authors
demonstrated how spline graphs can be applied as structural
features for pattern matching. Massa et al. [6] followed a
similar goal and described a method to extract graph repre-
sentations from 2D cuneiform drawings. In [5] the authors
presented an approach for segmentation-based cuneiform sign
spotting based on part structured models. Besides the graph-
based feature representations, Rothacker et al. [7] proposed
a method using a Bag-of-Features (BoF) approach based on
SIFT-Descriptors. Here, the segmentation-free cuneiform sign
spotting is applied by integrating the Hidden Markov Models
(HMMs) into a patch-based (sliding window) approach.

B. Embeddings for Word Spotting

A word embedding is a well known approach in the docu-
ment analysis community, especially for the task of word spot-
ting. In recent years different approaches have been published,
proposing a certain embedding of word classes. In terms of
handwriting, a user defined query can either be a visual image
containing a handwritten word or a user typed string, which
needs to be retrieved. Based on these query definitions, word
spotting consists of two scenarios, namely Query-by-Example
(QbE) and Query-by-String (QbS).
The main challenge for the QbE scenario is to define a suitable
measure of similarity for word image representations. For
the QbE scenario there is no need to represent the word
images in a human-interpretable fashion, hence, several query
representations based on visual similarity have been proposed
in the literature [8]–[10]. In contrast to the QbE scenario, a
QbS scenario is defined by queries given as word string. The
user is not required to search for a visual example of a word
in the document collection to define a query. A drawback for
the system is the requirement of a mapping from a textual
to a visual (and vice versa) representation. Furthermore, for a
model estimating word string representations, annotated word
images are necessary for obtaining a QbS model.
A very popular approach called Pyramidal Histogram of Char-
acters (PHOC) was presented in [8], which maps the visual
domain into a textual representation. The authors proposed
a word string embedding to project images of handwritten
words into a common space based on a binary attribute
representation using a pyramidal partitioning of a word string
to include spatial information of character positions. In [11]
Sudholt et al. proposed the PHOCNet, a CNN based on
the VGG [12] architecture estimating attributes encoded in a
PHOC representation by using a binary logistic regression in
combination with a binary cross entropy (BCE) loss. Another
evaluated embedding is the Spatial Pyramid of Characters

(SPOC) [13]. In contrast to the PHOC, each split is built on
a Bag-of-Characters (BoC) meaning a histogram of character
counts. Wilkinson et al. [14] proposed an embedding based on
the discrete cosine transformation applied to indicator matrix,
namely Discrete Cosine Transformation of Words (DCToW).
The DCT is applied to each row of the matrix and the three
largest coefficients from each row are than concatenated in
order to form the final DCToW descriptor.

III. ATTRIBUTE-BASED CUNEIFORM SIGN RETRIEVAL

In this section, we describe our approach of modeling
the Gottstein-System as a binary attribute representation and
including additional visual hints which we named Last Ele-
ments. Next to the representation, the database we are using
is introduced.

A. Gottstein Representation

In [1] Gottstein proposed the idea of a unified representation
for cuneiform signs, namely Gottstein-Representation (GR).
The author argues that sign lists and lexica used by researchers
are not feasible to be used in a database, especially in
terms of retrieval. Without existing knowledge of sign classes,
searching through a cuneiform database becomes cumbersome.
In order to simplify the search process, Gottstein [1] proposed

Figure 1. Hand drawn examples of wedge types for the alphanumeric
representations a, b, c and d.

an alphanumeric representation system for cuneiform signs
based on wedge types. The Gottstein-System follows a simple
decomposition of wedge constellations into four different types
denoted with a, b, c and d. For every letter the count of wedges
is given. a and b represent vertical and horizontal wedges,
respectively. The letter c represents a so-called Winkelhaken
and an oblique wedge tending from the upper left to the lower
right within a sign. And finally the letter d represents a wedge
type which tends from the bottom left to the upper right
direction. Figure 1 shows examples of wedge types for the
corresponding alphanumeric representation. In this work, we

Figure 2. Hand drawn cuneiform signs with their corresponding Gottstein-
Representations.

refer to the Gottstein-Representation of Hittite cuneiform signs
provided by Michele Cammarosano from the University of
Würzburg [15]. Figure 2 shows two cuneiform signs with their



corresponding Gottstein-Representations. The letters present
wedge types, while the numbers represent the count of these
types. As one can see, spatial information are missing. Based
on this representation, one cannot derive the position for
example of the wedge type a within the sign.

B. Last Element

Although the Gottstein-Representation provides a simple
representation system to describe cuneiform signs, this sim-
plification exhibits some shortcomings. Spatial information,
which is an important feature in order to differentiate between
different sign classes, is missing. For example if a sign consists
of a horizontal wedge on the left side and a vertical wedge
on the right side, the Gottstein-System is not capable of
differentiating this type of wedge position. Furthermore, no
relations between the wedges such as ”intersecting each other”
or ”touching each other” are encoded in this system. Due to

Figure 3. Hand drawn cuneiform signs and their corresponding last elements
(visual hints).

these shortcomings, we extend the Gottstein-Representation
by additional information based on visual hints, namely Last
Element (LE). When cuneiform signs are read from left to
right, the wedge constellation on the far right represents the
”last” constellation, hence the name last element. Although
these last elements do not directly encode spatial information
such as ”a in the middle” or ”b on the left side”, they give some
additional visual hints about the wedge constellation. Figure 3
shows three examples of additional visual hints. For example
a2 denotes two vertical wedges intertwining with each other.
b2 c2 means two horizontal wedges intertwine with each other
and two Winkelhaken are on top of each other. On the right
side of Figure 3 cxd represents an intersection between c and
d. To avoid confusion, the last elements represent additional
information encoded in seperate attributes as shown in the next
Subsection (III-C).

C. From Gottstein to Attributes

In order to transfer the Gottstein-System into an attribute
representation, we first derived the minimum and maximum
counts of wedge types each. In the database we use in this
work (see next Section III-D), the minimum count of wedge
types represented by the letters a, b and c is 0, and the
maximum count is 10. For the wedge type d, the minimum
count is 0 and the maximum is 2. We model the count numbers
of wedge types as single attributes, respectively. That means
that our Gottstein attribute representation (GR) consists of a
10 + 10 + 10 + 2 = 32 dimensional binary attributes vector
(amax + bmax + cmax + dmax). The last elements (LE) are
encoded in the same way. The number of last elements we

derived in addition to the Gottstein-Representation is 70 in
total. Hence, the LE is modeled as a 70 dimensional binary
attributes vector. Concatenating both, the encoded Gottstein-
Representation (GR) and the last elements (LE) result in a
32 + 70 = 102 dimensional attributes vector (GR + LE).

D. Database

In this work we use a set of annotated cuneiform tablets
collected from a total of 130 photographs, provided by [16].
Figure 4 shows two examples of cuneiform tablets, which
were inscribed by pressing a stylus while the clay was moist.
Due to heavy damage through the millennia, tablets typically

Figure 4. Examples of cuneiform tablets. On the left side, a cuneiform tablet
assembled from partially damaged fragments. On the right side, a image of a
tablet taken from the side view.

have to be reassembled by philologists by joining fragments,
as shown in the image on the left. The image on right-hand
side demonstrates how the writing system typically exploits
the whole surface of a clay tablet. For this collection, 44 910
samples of cuneiform signs were annotated by philologists
[16], representing 291 different sign IDs. The sign images
have a considerable variability in size as shown in Table I.
Figure 5 shows examples of cuneiform signs. On the far left,

Table I
STATISTICS ABOUT IMAGE SIZES GIVEN IN PIXEL.

max min mean std

height 271 17 91 ±30
widht 600 18 112 ±47

the transliteration of a sign is given. Next to it an example of
a hand drawing is shown. Each row shows four real examples
cropped from the photographs. As one can see, the visual
variability and quality in terms of wedge impression, image
resolution and surface damage can be tremendous.

E. Model Architecture

Our model for cuneiform sign spotting is inspired by the
successful ResNet architecture [17]. In the original work [17]
5 different versions were proposed. We adapted the ResNet ar-
chitecture with 34 layers. The original ResNet-34 uses strided
convolutions for down sampling after the blocks 3, 7 and 13
in addition to the down sampling obtained from the pooling
layer. As the cuneiform sign images are comparably small, we



Figure 5. Examples of cuneiform signs with their corresponding transliteration
and hand drawings.

decided to reduce the number of down sampling operations
to preserve spatial information in the convolutional layers.
Thus, we only use a down sampling in the first max pooling
layer and another one after the 3 residual block. After the last
convolution layer global average pooling is performed, which
resizes the feature maps to a size of 1x1. The output after the
global average pooling effectively results in a 512 dimensional
feature vector. At the end, the feature vector is mapped to the
attribute representation using a fully-connected layer. A major
advantage of a global pooling after the last convolution layer
is the capability to process an arbitrarily sized input image.
As shown in Section III-D, the images differ in their sizes
considerably. To avoid strong wedge distortions from rescaling
within a cuneiform sign, we do not scale the images to a
uniform image size. Due to different image sizes, we choose
to delete all batch normalization layers [18]. We compute the
gradient for mini-batches of varying sizes by obtaining the
gradients for each image separately and then averaging them.
Computing gradients in this way requires an effective batch-
size of 1 and updating the weights after performing back-
propagation n times where n is the batch-size. Thus, using a
batch-normalization layer in that cast, a batch-size of 1 would
be presented for determining the mean and variance. Obtaining
feature maps with different sizes from different mini-batches
would skew the computation of a global mean and variance
value.

Table II
NUMBER OF SAMPLE FOR EACH CROSS-VALIDATION SPLIT.

Split1 Split2 Split3 Split4 Total

#Samples 11 321 11 252 11 198 11 139 44 910

IV. EXPERIMENTS

For the experiments we use the database introduced in
Section III-D, and a data partitioning as shown in Section
IV-A. Section IV-B describes the evaluation protocol and
Section IV-C explains the performance metrics. In Section
IV-E we describe the training setup with all hyper-parameter

used for training. Afterwards we discuss the retrieval results
achieved by our approach in Section IV-F.

A. Data Partitions

We evaluate our method on the database described in
Section III-D. As this data set does not have an official
partitioning into training and test sets, we choose to perform
a four-fold cross validation. Here, we sort the data set with
respect to the classes and assign every fourth sample to one
of the cross validation sets. Partitioning the data set in this
way, we ensure that every set contains approximately the same
amount of samples with equal sign IDs sets. Table II shows
the number of samples from each cross validation split.

B. Evaluation Protocol

We evaluate our attribute prediction model for the cuneiform
database in a segmentation-based cuneiform sign retrieval
protocol similar to the word spotting standard protocol used for
the George Washington data set [8]. The data set is partitioned
into four cross-validation folds. Three cross-validation splits
are used to train a single model, while retrieval is performed on
the remaining split. For the Query-by-Example (QbE) scenario
all test images, which occur at least twice in the test set, are
considered as queries. Retrieval is performed by estimating the
attribute representations for all test set sign images given the
estimated attributes from a certain image query. The retrieval
lists are obtained by sorting the distances of the list items
in ascending order with respect to the query. For Query-by-
eXpression (QbX) retrieval is performed equivalently to QbE
except that a sign ID is only considered once as query. It
is important to note that the relevance of an item within
the retrieval list is determined by the relevance category,
as we are performing the retrieval based on models either
trained in a one-hot encoding fashion using sign IDs as targets
or as a multi-class encoding using the Gottstein attributes
representations as targets.

C. Evaluation Metrics

As performance metric, we use the interpolated Average
Precision (AP) for each single query as in [13]:

AP =

∑n
i=1 P (i) ·R(i)

t
(1)

Where P (i) is the precision if we cut off the retrieval list
after the i-th element and R(i) is the indicator function, which
computes to 1 if the i-th position of the retrieval list is relevant
with respect to the query and 0 otherwise. n denotes the length
of the retrieval list. And finally, t is the total amount of relevant
elements. Similar to segmentation-based word spotting tasks,
the retrieval list contains all cuneiform sign images from the
respective test set. Afterwards, the overall performance is
obtained by computing the mean Average Precision (mAP)
over all queries, where Q denotes the total amount of queries:

mAPquery =
1

Q

Q∑
q=1

AP (q) (2)



Table III
RESULTS FOR THE QBX AND QBE EXPERIMENTS IN MAP [%].

Sign IDs QbX QbE

Loss Similarity Training Target Relevance
Category

mAPcategory mAPquery mAPcategory

CE Cosine Sign IDs
Sign IDs 81.30 90.90 71.65
GR + LE 71.21 85.42 72.56

GR 39.14 58.22 64.31

BCE PRM

GR + LE
Sign IDs 62.93 77.85 53.20
GR + LE 79.45 86.10 63.84

GR 51.66 64.69 61.11

GR
Sign IDs 31.66 77.85 53.20
GR + LE 38.10 86.10 63.84

GR 86.23 85.98 64.98

Cosine Cosine

GR + LE
Sign IDs 56.47 79.61 53.71
GR + LE 72.15 88.30 63.99

GR 69.26 78.47 65.43

GR
Sign IDs 30.19 49.58 28.10
GR + LE 36.56 54.22 33.85

GR 82.83 87.14 64.74

In addition to the typical performance metric mAP mostly used
for word segmentation-based spotting tasks, we extend the
evaluation by computing the mAP for every cuneiform sign
ID separately and take the average over all sign IDs (denoted
by C):

mAPcategory =
1

C

C∑
c=1

mAP (c) (3)

As the data set is massively unbalanced, the query list is
dominated by over-represented sign IDs. And as we are
embedding the cuneiform signs into an attribute space mostly
containing these over-represented IDs, the mAPcategory ensures
a more balanced performance evaluation.

D. Similarity Measurement

For the segmentation-based scenario, retrieval is performed
by computing a certain similarity between a given query and
all test samples excluding the query itself. In this work we
make use of two similarity measurements. The first one is the
cosine distance, a well known and broadly used metric for
retrieval tasks [11], [13], [14]. The cosine distance is defined
as:

dcos(q,a) = 1− q · a
‖q‖2‖a‖2

(4)

Here, q denotes the query vector and a represents the esti-
mated representation. This distance ranges between the values
0 and 1, were 0 represents highest similarity and 1 represents
lowest similarity. The second similarity measure we use is
the Probabilistic Retrieval Model presented in [19]. Here, the
assumption is made that the binary attribute representation is
a collection of d independent Bernoulli distributed variables,
each having their own probability p of evaluating to 1.

The probabilistic retrieval model is defined as:

dprm(q,a) = − 1

D

D∑
i=1

qi log ai + (1− qi) log ai (5)

Similar to equation 4, q and a represent the query and the
estimated attributes respectively, and D its dimensionality.

E. Training Setup

For the model training we use a BCE loss and the Adaptive
Momentum Estimation (Adam) [20] optimizer. For the mo-
mentum the mean value β1 is set to 0.9 and for the variance
value β2 is set to 0.999 while the variance flooring value is
set to 10−8 as recommended in [20]. The batch size for all
experiments is set to 10. We set the initial learning rate to
10−4 and divide the learning rate by 10 after 100 000 and
another division by 10 after 150 000 iterations respectively,
while running the training for 200 000 iterations in total. As
parameter initialization, we use the strategy proposed in [21].
The weights are sampled from a zero-mean normal distribution
with a variance of 2

nl
, where nl is the total number of trainable

weights in layer l. Furthermore, we use some augmentation
techniques to extend the samples in the database. At first we
balance the training data by sampling the sign classes from
a uniform distribution, followed by augmentation methods
like perspective transformation, shearing, rotation, translation,
scaling, lightness changing and noise generating techniques.

F. Results and Discussion

Table III lists the results for the QbX and QbE experiments
on our cuneiform benchmark. The listed results are averaged
over four cross-validations. The column with training targets
shows the representation used during the training. For Sign IDs



we use a one-hot encoded vector where each sign ID is repre-
sented by a single vector element. GR and GR + LE denote the
attribute representation for Gottstein and the Gottstein + Last
Element representation respectively. The column which lists
the relevance category shows results for retrieval performed
with respect to a certain item relevance. In equivalence to
the training target column, retrieved items are considered as
relevant based on their mapping to sign IDs, GR, or GR +
LE representations respectively. Every column showing the
results contain three bold numbers which represent the best
performance with respect to the relevance category. For the
QbE scenario a one-hot encoded approach using the cross-
entropy (CE) loss performs best for the relevance category
sign IDs with 71.65% and GR + LE with 72.56% in terms
of mAPcategory, while the performance drops for the relevance
category GR (64.31%). Retrieving with the relevance category
sign IDs, the one-hot encoding outperforms our representations
significantly. This is not surprising, as both GR and GR
+ LE have no information about sign IDs during training.
Looking at the mAPquery results, the one-hot encoding slightly
outperforms the GR (87.14%) and GR + LE (88.30%) attribute
representations with a retrieval performance of 90.90%. Here,
the attribute presentations performs best using the cosine loss.
For the QbX scenario promising results are achieved especially
for the PRM model using the training target and relevance
category GR (86.23%). Even though the results achieved by
the model using one-hot encoding and the relevance category
Sign IDs (81.30%) are not directly comparable, as two differ-
ent relevance categories are used, we would still like to derive
the conclusion that our representation based on wedge types
expression fits well for a QbX scenario.

V. CONCLUSION

In this work, we introduced a novel retrieval scenario based
on cuneiform wedge expressions namely, Query-by-eXpression
(QbX). We adapted the Gottstein-System and encoded it in a
binary attributes representation. Furthermore, we extended this
representation by visual hints, which we named Last Elements.
We evaluated our approach on a database consisting of 130
photographs of cuneiform tablets. The experiments show that
our proposed representation achieves similar and promising
results compared to a one-hot encoded approach based on sign
IDs. Besides the results, using a representation based on wedge
expressions for cuneiform sign retrieval can be beneficial for
experts searching in cuneiform databases for specific wedge
constellations instead of sign IDs. Here, our proposed rep-
resentation takes a first step toward cuneiform sign retrieval
based on expressions. Nevertheless, further investigations need
to be made in terms of a more powerful representation
encoding more combinations of wedge constellations. One
way to achieve such a representation could be the inclusion
of spatial information with respect to the wedge positions or
relations among them.
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Keilschriftanalyse (CuKa)’

REFERENCES

[1] N. Gottstein. (2012) Ein stringentes identifikations- und
suchsystem für keilschriftzeichen. [Online]. Available: http:
//www.materiale-textkulturen.de/mtc blog/2012 005 Gottstein.pdf

[2] H. Mara, “Multi-scale integral invariants for robust character extraction
from irregular polygon mesh data,” Ph.D. dissertation, 10 2012.

[3] N. R. Howe, “Part-structured inkball models for one-shot handwritten
word spotting,” in Proc. of the ICDAR, Aug 2013, pp. 582–586.

[4] B. Bogacz, M. Gertz, and H. Mara, “Cuneiform character similarity
using graph representations,” 2015.

[5] B. Bogacz, N. Howe, and H. Mara, “Segmentation free spotting of
cuneiform using part structured models,” in Proc. of the ICFHR, 2016,
pp. 301 – 306.

[6] J. Massa, B. Bogacz, S. Krömker, and H. Mara, “Cuneiform detection
in vectorized raster images,” in Computer Vision Winter Workshop
(CVWW), 2016.

[7] L. Rothacker, D. Fisseler, G. G. W. Müller, F. Weichert, and G. A. Fink,
“Retrieving cuneiform structures in a segmentation-free word spotting
framework,” in Proc. of the Int. Workshop on Historical Document
Imaging and Processing, ser. HIP ’15. New York, NY, USA: ACM,
2015, pp. 129–136.

[8] J. Almazán, A. Gordo, A. Fornés, and E. Valveny, “Word spotting and
recognition with embedded attributes,” TPAMI, vol. 36, no. 12, pp. 2552–
2566, 2014.

[9] T. Rath and R. Manmatha, “Word spotting for historical documents,”
Int. Journal on Document Analysis and Recognition, vol. 9, no. 2–4,
2007.
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