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Abstract—The generation of word hypotheses for
segmentation-free word spotting on document level is
usually subject to heuristic expert design. This involves
strong assumptions about the visual appearance of text in
the document images. In this paper we propose to generate
hypotheses with text detectors. In order to do so, we present
three detectors that are based on SIFT contrast scores, CNN
region classification scores and attribute activation maps. The
uncertainty in the detector scores is modeled with the extremal
regions method. Retrieving word hypotheses is based on PHOC
representations which we compute with the TPP-PHOCNet. We
evaluate our method on the George Washington dataset and the
ICFHR 2016 KWS competition benchmarks. In the evaluation
we show that high word detection rates can be achieved. This is
a prerequisite for high retrieval performance that is competitive
with the state-of-the-art.

I. INTRODUCTION

Word spotting is an efficient method for making document
images searchable. Therefore, it provides an essential function-
ality for working with large document image collections. The
approach is efficient since the search functionality is directly
implemented and not a by-product of a more complex task,
typically transcription. Most commonly, the search query is
either given as a word image in query-by-example scenarios or
as text in query-by-string scenarios. All word spotting methods
need to either explicitly (segmentation-based) or implicitly
(segmentation-free) segment the document collections into
word image hypotheses. State-of-the-art methods project the
word images into an embedded attribute space [1] using
Convolutional Neural Networks (CNN) [2], [3]. In this space,
word spotting can then be accomplished through a simple
nearest neighbor search. For historic documents, automatic
segmentation is especially challenging due to high variability
in writing style, document layout, visual appearance of ink
and paper, as well as aging artifacts.

Segmentation methods that have been successful in modern
document images, such as projection profiles or connected
components, are likely to fail for historic documents. Instead,
these methods have to be manually tuned to the document
collection’s specificities. Interesting segmentation methods
have been presented in [4] and [5]. Within the scale space
approach in [4], some parameters can automatically be derived
from data. The approach in [5] uses a CNN for classify-
ing segmentation hypotheses. The visual word appearance

is, therefore, learned from annotated sample data. However,
methods addressing solely segmentation need to detect words
without recognizing them or, in case of word spotting, without
taking relevance to the query into account. Therefore, these
methods have to rely on discriminative characteristics of the
document collections considered. In the challenging scenario
of historic document images, it remains questionable, if suit-
able characteristics can automatically be extracted. This aspect
can potentially limit the generalization capability.

In order to be more robust with respect to word size
variability, our segmentation-free word spotting method is
inspired by approaches using local text detectors. In many
cases text detectors are solely built on connected components,
e.g. [6]–[8]. This has two important drawbacks. First, the
detectors are dependent on document image binarization.
In historic document images binarization is difficult due to
fading ink, low contrast and inhomogeneous backgrounds.
This makes detections imprecise. Second, it can be difficult
to derive word hypotheses from connected components. Since
connected components can represent parts of words, single
words or multiple words, heuristic strategies for combining
connected components are required.

For these reasons, we propose to generate word hypotheses
based on higher-level feature representations that indicate word
occurrences. First, we predict scores for certain document
image regions. These scores reflect whether the respective
region contains text or not. The uncertainty of these scores is
then explicitely modeled with extremal regions (ERs) [9] that
have been very successful for text detection in natural scene
images, cf. [10]. The ER approach generates hypotheses of
word bounding boxes. For these, PHOCs are predicted using
a TPP-PHOCNet [2]. This is essentially a Region-based CNN
(R-CNN) [11] framework. After predicting the PHOCs, word
spotting can be performed through a nearest neighbor search.

Generating the local text scores is a critical part of our
method. Here, we consider three different approaches: SIFT
contrast scores, local region classification scores generated
with a CNN and local word region scores obtained with an
extension of CNN class activation maps [12].

Sec. II presents segmentation-free word spotting methods
and briefly reviews extremal regions. Our segmentation-free
word spotting approach and its evaluation are presented in
Sec. III and Sec. IV. Finally, conclusions are drawn in Sec. V.



II. RELATED WORK

Word spotting methods that are addressing segmentation and
retrieval jointly are referred to as segmentation-free. In order
to address the segmentation problem at document level, mainly
two different approaches can be identified. Based on local text
detectors, different competing word hypotheses are obtained,
cf. [3], [6]–[8], [13]. In contrast, patch-based approaches
densely sample word hypotheses from the document images,
cf. e.g., [14]–[18]. By searching the full document, patch-
based approaches do not rely on heuristic detectors. However,
they limit the search to a single patch size per query, thus
assuming that the size variability is relatively low. Finally,
in both approaches word hypotheses are ranked according to
similarity with the query and overlapping hypotheses are sup-
pressed if they obtained a non-optimal score. Segmentation-
free methods, therefore derive the segmentation during the
retrieval process and do not rely on a given segmentation that
is assumed to be correct.

Segmentation-free word spotting based on PHOC represen-
tations, cf. [1], has been presented in [18] and [8] for the
first time. Here, the document is divided into a number of
blocks and a PHOC is predicted for each block. For efficient
patch-based retrieval, an integral image over the block-wise
PHOC vectors is computed. In order to improve the results,
a regression is learned which projects PHOCs and predictions
into a common subspace. At query time, the query PHOC
is projected into this subspace. The similarity between the
query and the patches is then determined through a dot
product. While all patches are considered in [18], the approach
presented in [8] adds an indexing stage in order to efficiently
detect regions of interest. In this stage, connected components
in close proximity to each other are combined in order to
obtain word hypotheses. For retrieval, candidate word regions,
obtained from the index, define the document image search
area for the patch-based framework presented in [18]. For
query-by-example [18] the patch size equals to the size of
the query word image and for query-by-string [8] the patch
size is estimated from training word images.

Very recently, a method for proposing regions of interest
and representing them with word string embeddings in an
integrated manner has been presented [3]. The authors train a
Region Proposal Network in order to predict bounding boxes.
Furthermore, the predicted bounding boxes are augmented
with a set of heuristically generated region proposals. A word
string embedding is computed for each region. Regions are
retrieved according to cosine distance with the query.

Related to word segmentation is text detection in natural
scene images. These methods need to cope with large vari-
ability in the visual appearance of text. While this problem
domain may seem to be less constrained compared to word
segmentation, it has to be noted that the reliable detection
of word boundaries in historic document images requires to
correctly recognize the text in the document images first.
In order to avoid recognition in our segmentation-free word
spotting method, we are inspired by extremal regions.

Extremal regions are part of the maximally stable extremal
region (MSER) blob detection method [9]. The key idea is to
derive blobs based on connected components in thresholded
images which are referred to as extremal regions (ER). In
order to avoid the selection of a single threshold, MSERs are
detected within an ER scale space. This scale space is obtained
by thresholding the image at all image intensity values.

Building on the MSER approach, a method for text detection
in natural scene images is presented in [10]. The method
consists of different stages where character candidates are
first detected, grouped into triplets and finally merged into
line regions. For this purpose, ERs are extracted from color
image channels. In contrast to the MSER blob detection [9],
the ER stability is defined on probabilistic character class
scores obtained with a boosted decision tree [10]. The final
decision whether an MSER becomes a character candidate is
determined with an SVM classifier.

In order to avoid the limitations of a basic connected
component-based word detection, cf. e.g., [7], or patch-based
frameworks, cf. e.g., [15], we propose to build ERs on top
of pixel-wise text detector scores. This way, we avoid the
need for classifying ERs into words and non-words which
would require a word recognizer. The main advantage over
a word recognizer is that the detector is applied on the entire
document image and not limited to document image regions
that have been heuristically selected. This way ERs model
different variants for word candidates, particularly in document
image regions where the detector scores are ambiguous. In
order to do so, we carefully adapt the ER selection strategy.
Furthermore, the integration and combination of different text
detection approaches is straight forward.

To the best of our knowledge this is the first time that ERs
are extracted based on detector scores. ERs have not been used
in the context of segmentation-free word spotting in historic
document images, before.

III. METHOD

Our method for segmentation-free word spotting consists
of two components. In the first component word hypotheses
are generated. These hypotheses are ranked with respect to
similarity with the query in the second component. The overall
process is depicted in Fig. 1. Text detectors produce local
detector scores in the document image (Sec. III-A). It is an
important property of our method that these scores are not
binary but encode the uncertainty within the text detection
process. Additionally, scores from multiple detectors can be
combined. Based on the text detection scores, we obtain
word hypotheses. This is achieved with the ER method, see
Sec. III-C. The strategy for selecting word hypotheses among
the ER candidates is chosen such that the most plausible word
occurrences are extracted. In contrast to patch-based word
spotting approaches, our method is much more robust with
respect to word size variability. Finally, PHOC representations
are obtained for all hypotheses through a TPP-PHOCNet [2]
previously trained on segmented training images. No further
adaptation is required for the segmentation-free scenario.
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Figure 1. Word hypotheses for segmentation-free word spotting. Text detector scores indicate document image regions in a soft manner. Scores are shown
with a heatmap visualization in blue to red colors. Based on the scores word hypotheses are extracted using extremal regions. Each hypothesis is represented
with a PHOC and its bounding box. At query time, suitable hypotheses are obtained after aspect ratio filtering. The aspect ratio filter is depicted with a
triangle. Afterwards, the similarity between the query PHOC and word hypothesis PHOCs is computed. The retrieval result is obtained after non-maximum
suppression of the word hypotheses with respect to similarity with the query. The ranking is visualized with blue (dissimilar) to red (similar) colors.

For word spotting the user can provide the query either by
example or by string. In order to narrow down the hypotheses
to candidates that are relevant to the query, we apply a simple
aspect ratio filter that is based on hypothesis sizes. In the
query-by-string scenario the query size is estimated based on
the average character width and height in the training dataset.
Given the query aspect ratio a, the filter only keeps hypotheses
with aspect ratios in the interval [0.2a, 5a].

Afterwards, the PHOC representation of the query is com-
puted. For textual queries the string embedding can directly
be obtained. We use the TPP-PHOCNet if the query is given
by example. In order to retrieve word hypotheses according
to relevancy with the query, cosine similarity between the
query and the hypotheses is computed. Among overlapping
hypotheses the most relevant candidate is selected with non-
maximum suppression.

A. Text Detectors

As a basis for obtaining word hypotheses in the document
images we propose to use different text detector methods.
We aim at finding text detectors that contain word boundary
information. Different detectors can be combined by adding
their predicted scores in order to improve results.

1) Dense SIFT: Text in document images is usually char-
acterized by high contrast. Therefore, we use SIFT contrast
scores in a dense grid of SIFT descriptors as text indicator. In
the SIFT method the contrast scores are used for descriptor
normalization [19]. The score is based on the gradient mag-
nitudes accumulated in the descriptor cells. By using SIFT
descriptors, the local text-score neighborhood can be defined.
For this purpose we use descriptors consisting of 4 cells that
are arranged in a single row. The cell size is 4× 4 pixels. In
historic document images the horizontal cell layout is useful

in order to detect line boundaries. Ascenders and descenders
that are touching adjacent lines obtain lower scores this way.

2) Local Region Classification (LRC): The local region
classification is based on a sliding window, i.e., local regions,
which is fed through a CNN. Each local region contains a
classification area at the center. Based on the content of the
region, the CNN classifies whether the classification area is
located inside, intersects with, or is located outside a word
bounding box. Fig. 2 visualizes the three cases. The input
of the LRC detector are 64 × 64 pixel sized regions (black)
containing 8 × 8 pixel sized classification areas (green), see
Fig. 2. The regions are masked by a cross-shaped filter. This
way, the corners are suppressed (gray) resulting in a detector
for core area, ascenders, and descenders.

The CNN is based on the LeNet-5 network architecture
[20]. We include two convolutional layers and one pooling
layer before the LeNet-5 network and also two convolutional
layers between the last pooling layer and the fully-connected
layers. The output of this network is a softmax layer with three
neurons representing the three classes. Text detection scores
are obtained from the output neuron which is representing the
class inside.

3) Attribute Activation Maps (AAM): The TPP-PHOCNet
in its current form is able to predict a PHOC representation
from a given word image. The question however is, how to
locate regions in the word image that are responsible for
predicting presence of attributes (i.e. characters). In order
to achieve this, we draw inspiration from Class Activation
Maps (CAM) [12]: A minor architectural change in the TPP-
PHOCNet allows for extracting the region which is responsible
for the attribute prediction. This is done by replacing the MLP
at the end of the TPP-PHOCNet with a convolutional layer
with as many filters as there are attributes. Fig. 3 visualizes
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Figure 2. Exemplary input to the LRC detector representing the three classes
inside, intersects, and outside. All parts marked with gray are ignored when
processing the local regions with the CNN. Class membership is determined
by the position of the crosses’ intersection w.r.t. word bounding boxes.

this architectural change. Each filter in this final layer is
responsible for predicting the presence or absence of one
attribute. This is achieved by adding a global average pooling
layer and a binary logistic loss layer to the network, similar
to the CAM-model [12]. Training is still performed in an end-
to-end fashion with a PHOC vector. In the spirit of [12], we
term this approach Attribute Activation Maps (AAM) and the
resulting network architecture AAM-PHOCNet.

The nice trait about the AAM-PHOCNet is that it can be
trained with word images yet at test time an entire document
image can be fed to the CNN. This way, we can inspect
an entire document image with a single forward pass of the
CNN. As each filter is trained to predict the presence of one
attribute of the PHOC, the output of the AAM-PHOCNet
is a 3-dimensional tensor giving a pixel-wise prediction for
each attribute. For predicting character presence, we simply
compute the max activation for each pixel (max over all
filter responses per pixel). This produces a pixel-wise pseudo-
probability. A typical per-pixel max-pooled output of the
AAM-PHOCNet for a document image can be seen in Fig. 1
in the top left part (detector scores).

B. Comparing the Text Detectors

Comparing the three text detection methods from the section
above, we can discriminate them with respect to their used
models and required data. The SIFT-based detector does not
require any training data or model at all but rather detects
text in a heuristic way. In contrast, both LRC and AAM-
PHOCNet require a model to be trained. The required training
data, however, is quite different. The LRC requires a document
image along with a set of corresponding word bounding box
coordinates. A transcription of these word image regions is
not required. On the other hand, the AAM-PHOCNet requires
word images and their transcription but no bounding box
coordinates in the document image.

C. Word Hypotheses with Extremal Regions

Based on text detector scores, we compute extremal regions
(ERs). This allows for obtaining word hypotheses that are most
plausible according to the text detector scores. The method
is inspired by the MSER blob detector [9]. In the same
spirit, we threshold text detector scores at a given number
of thresholds. Within each thresholded image we compute
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Figure 3. AAM-PHOCNet architecture. In contrast to the original TPP-
PHOCNet architecture, the MLP is replaced with a convolution layer featuring
as many filters as there are attributes.

connected components. Connected components computed for
different thresholds are organized in a tree structure. Since text
score values within a connected component are higher than
the score values for surrounding pixels, these are referred to
as ERs. Fig. 4 shows a tree structure of ERs for a document
image section. In order to extract words, we are interested in
ERs that have tree siblings. They are generated whenever local
minima are found in the text scores. These minima typically
represent line spaces as well as inter and intra word spaces. In
order to find all relevant minima a sufficiently large number
of thresholds between the minimum and maximum score must
be considered.

IV. EVALUATION

For our evaluation we are describing benchmark datasets
(Sec. IV-A) and evaluation protocols (Sec. IV-B). A discus-
sion of the retrieval results achieved by our methods and a
comparison with the state-of-the-art can be found in Sec. IV-C.

A. Datasets

We evaluate our method on three publicly available data
sets. The first is the George Washington (GW) data set.
It consists of 20 pages that are containing 4 860 annotated
words. The pages originate from a letterbook and are quite
homogeneous in their visual appearance. However, particularly
for smaller words the annotation is very sloppy. As the GW
data set does not have an official partitioning into training
and test pages, we follow the common approach and perform
a four-fold cross validation. Thus, the data set is split into
batches of five consecutive documents each.

The other two data sets are referred to as Botany and
Konzilsprotokolle. Both data sets were used as benchmark
for the 2016 Handwritten Keyword Spotting competition [21].
For our experiments, we make use of the largest training set
Train III. This training set contains 114 document images
for Botany and 45 document images for Konzilsprotokolle.
The total amount of annotated words in the training set is
16 686 for Botany and 9 102 for Konzilsprotokolle. Both data
sets feature 20 test document images containing 3 318 anno-
tated word regions for Botany and 3 891 for Konzilsprotokolle.



Figure 4. Exemplary word hypotheses using extremal regions. Text detector
scores for a single text line are thresholded at three different values. Connected
components are organized in a tree structure. The tree root is denoted by a
gray circle. Hypotheses are created for tree nodes with siblings, i.e., they
merge into a single parent. These are indicated with red boxes.

B. Protocol

Our protocol follows other segmentation-free word spotting
protocols commonly used in the literature: Each query word
image in QbE or query string in QbS is used to retrieve
a list of regions from the document image collection. At
training time, an annotation is given defining bounding box
and transcriptions at word level. At test time, no information
about word locations in the test set is given.

The retrieval lists for all queries are scored by mean average
precision (mAP) as defined in [21]. In order to better assess the
word hypotheses quality we also report mean recall (mR), i.e.,
recall averaged over all queries, and the word detection rate
(DR). The DR is query-independent and is given as the relative
number of word bounding boxes that have been detected by at
least one word hypothesis. In our segmentation-free scenario
such a detection is considered as relevant if the intersection
over union of a hypothesis and a ground truth region is greater
than a given overlap threshold and the retrieved region contains
a word relevant to the query. The overlap threshold is 50%,
unless noted otherwise, see Tab. II.

For the GW dataset, all words in the respective test split are
used as queries for the QbE experiments. The QbS experiments
use all unique transcriptions from the test set as queries. For
Botany and Konzilsprotokolle we use the list of queries for
both QbE and QbS which are defined by the benchmark.

C. Results & Discussion

The QbE results achieved with our word hypothesis methods
are listed in Tab. I. The DRs for all datasets show that we
obtain very accurate results. High DR is a prerequisite for high
retrieval performance. Given a query, only the hypotheses can
be retrieved that have been detected, beforehand.

An important result is that DR and retrieval performance
can be improved when word hypothesis heights are quantized
to values in [hmin, hmin +5, · · ·hmax]. These parameters are
estimated such that hmax is the maximum word height in
the training set and hmin is set to the typical line height
in the training set. On the GW dataset hmin is set to 70

pixels, to 150 pixels on Konzilsprotokolle and to 120 pixels
on Botany. In Tab. I these experiments are denoted with quant.
The positive effect has mainly three reasons. First, quantization
is required on GW due to the sloppy annotation of smaller
words that are arbitrarily padded with white space, cf. [3].
Accurate word hypotheses will, therefore, not be considered as
relevant. Second, the TPP-PHOCNet tends to favor bounding
boxes that fit the text core areas. Thus, hmin defines a lower
bound for all word hypotheses. Third, retrieval speed can be
improved by suppressing similar hypotheses.

Regarding the text detectors, we evaluate the heuristic SIFT
and the learned LRC and AAM methods. Further, we use linear
combinations of SIFT and LRC or AAM scores, as denoted
with LRC+SIFT and AAM+SIFT in Tab. I. While accurate
results can be achieved with SIFT, detection and retrieval
results can be improved by adding the learning-based methods.
The best DRs are obtained with detectors including LRC. This
is due to the explicit modeling of the visual appearance of
word boundaries. Consequently, this mostly applies to retrieval
performance as well. An exception can be observed on GW
where the training annotations for the LRC-CNN can be
considered as noisy (see above). In contrast, the AAM detector
learns the visual appearance of text. The results for the AAM
detectors show that the TPP-PHOCNet focusses on text core
areas the most. Therefore, word hypothesis bounding boxes
tend to fit closely to the words in the document.

In Tab. II we consider QbE and QbS scenarios with 50% and
25% region overlap for the segmentation-free scenario. With
respect to our best performing text detector configurations,
the trend in retrieval accuracy that we observed for QbE,
can also be confirmed for QbS. A closer look at the results
for 25% region overlap reveals that our word detections are
often tighter than the original bounding box annotations. Word
hypotheses that are ranked high in the retrieval list, have not
been considered as relevant when using 50% region overlap.

To obtain a feasible number of word hypotheses we adjusted
the number of ER-thresholds to 50 for all detectors. In our best
configuration on GW (c.f. Tab. II) around 10 000 hypotheses
per page were computed. After applying the aspect ratio filter
approximately 5 400 regions per query and page are left for
scoring. This low number of filtered hypotheses leads to an
average query time of 60ms per page.

In comparison with the state-of-the-art our results compare
very favourably. We outperform the previous results on Botany
and Konzilsprotokolle by a large margin. On GW only the very
recently presented Region Proposal CNNs [3] achieve better
results. However, the authors use an additional CNN combined
with brute-force hypotheses generation in order to cope with
the inaccurate word annotations.

V. CONCLUSION

We have presented a method for segmentation-free word
spotting which combines a novel ER-framework with a TPP-
PHOCNet in an R-CNN framework. The ER method generates
word hypotheses for which PHOCs are predicted. We proposed
three different detectors in order to predict local text scores.



Table I
COMPARISON OF THE DIFFERENT TEXT DETECTION METHODS FOR THE QUERY-BY-EXAMPLE EXPERIMENTS [%]

Text detector George Washington Botany Konzilsprotokolle
DR mR mAP DR mR mAP DR mR mAP

SIFT 88.5 73.2 64.8 85.5 75.9 66.3 93.8 89.9 86.2
SIFTquant 93.1 88.4 80.7 88.0 77.9 68.9 96.0 91.6 87.1

LRC 92.0 81.8 77.0 90.4 80.5 71.6 89.9 81.6 76.1
LRCquant 92.6 86.3 80.1 91.4 82.2 73.0 93.5 90.1 86.1
LRC+SIFT 92.8 82.9 78.3 91.7 82.5 73.0 96.8 92.6 88.4
LRC+SIFTquant 93.7 88.0 81.0 93.1 84.5 74.5 98.5 95.2 91.1

AAM 51.5 35.4 31.0 73.6 63.6 53.9 91.7 77.8 70.3
AAMquant 75.4 67.8 59.9 77.8 68.2 59.1 95.7 89.5 83.5
AAM+SIFT 88.2 68.7 62.3 87.0 76.9 67.8 96.0 88.6 84.2
AAM+SIFTquant 93.7 89.0 81.6 89.0 78.6 69.4 97.7 93.4 89.6

Table II
STATE OF THE ART COMPARISON (RESULTS ARE GIVEN IN MAP [%] AT DIFFERENT OVERLAP THRESHOLDS)

Method
George Washington Botany Konzilsprotokolle

QbE QbS QbE QbS QbE QbS
50% 25% 50% 25% 50% 25% 50% 25% 50% 25% 50% 25%

SIFT 64.8 71.1 70.7 76.5 66.3 75.2 68.9 79.0 86.2 91.1 84.6 91.5
SIFTquant 80.7 90.6 82.5 89.1 68.9 76.4 72.0 80.2 87.1 94.0 87.4 92.9
LRC+SIFT 78.3 89.3 81.2 88.9 73.0 79.9 76.2 83.6 88.4 94.9 86.6 95.6
LRC+SIFTquant 81.0 92.0 83.6 90.5 74.5 80.4 78.8 85.3 91.1 95.6 89.9 95.3
AAM+SIFT 62.3 69.0 70.0 76.1 67.8 75.4 71.0 80.1 84.2 94.9 81.9 95.2
AAM+SIFTquant 81.6 92.0 84.6 90.6 69.4 75.9 74.0 80.3 89.6 96.2 88.9 96.0

BoF-HMM [16] − − 76.5 80.1 − − − − − − − −
Ctrl-F-Net [3] 90.9 97.0 91.0 95.2 − − − − − − − −
TAU [21] − − − − 37.48 − − − 61.78 − − −
Attribute-SVMs+RR [8] − − 73.7 − − − − − − − − −

This way, we avoid using a patch-based framework as well
generating large amounts of region hypotheses blindly. In the
experimental evaluation we achieve results that are competitive
with the state-of-the-art.
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