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Abstract—Bag-of-Features HMMs have been successfully
applied to handwriting recognition and word spotting. In this
paper we extend our previous work and present methods for
modeling sequences of Bag-of-Features representations with
Hidden Markov Models. We will discuss our previous approach
that uses a pseudo-discrete model. Afterwards, we present
a novel semi-continuous integration. The method is effective
for probabilistic text clustering and is suitable for statistically
modeling the characteristics of Bag-of-Features representations
extracted from document images. Furthermore, its statistical
expectation-maximization estimation can directly be integrated
in Baum-Welch HMM training. In our experiments we present
competitive results on the IfN/ENIT word recognition bench-
mark and state-of-the-art results for word spotting on the
George Washington benchmark. Our evaluation gives insights
into the properties of the models from the perspectives of
modern as well as historic document analysis.
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I. INTRODUCTION

Bag-of-Features (BoF) have successfully been applied
for representing natural scene images, cf. [1], as well as
document images, cf. [2]. Their ability to automatically
adapt themselves to the problem domain in an unsupervised
manner is very powerful and leads to very high recognition
rates in relation to the simplicity of the model [3]. Especially
with respect to historic document images, the application of
BoF representations leads to considerable advances. As the
characteristics of historic documents change rapidly from
document collection to document collection, an automatic
adaptation is very desirable [4]. By modeling sequences of
BoF representations with Hidden Markov Models (HMMs),
we combine these positive properties with the advantages of
modeling the sequential structure of handwritten script for
word recognition [5] and word spotting [6].

The main idea for BoF is derived from machine-readable
text categorization and retrieval where texts are represented
as histograms of term frequencies, so called Bag-of-Words
(BoW). In this model terms are words that are typical for
the problem domain. Since all texts are represented by the
same set of terms, it is referred to as vocabulary. BoF can
be defined in analogy by replacing the words from the text
domain with a suitable feature from the target domain. For

images, the SIFT descriptor [7], also cf. [1], has been most
successful. In order to find descriptors that are typical for the
problem domain, clustering is applied. In analogy to BoW,
the cluster representatives are called visual words in a visual
vocabulary. In practice, BoW and BoF representations are
very high dimensional and sparse.

Since BoF representations are a direct generalization of
BoW, most of the related text processing methodology is
directly applicable to BoF as well. For image retrieval,
images from databases and respective image queries can
be represented as BoF and processed with common text
retrieval methods [8]. Statistical models for BoW repre-
sentations, also in conjunction with low-dimensional vector
space embeddings, so-called topic models, have been studied
extensively for text and image processing, cf. e.g., [9], [10].

In order to represent BoF in HMMs, they have to be
modeled as observations in the statistical HMM process.
However, due to their discrete and very high dimensional
nature, standard approaches, like continuous and also semi-
continuous Gaussian mixture model (GMM) integrations, are
not directly applicable. Reducing the dimensionality of the
features would be required first, cf. [11] Chap. 9.

The main contribution of this paper is a discussion and
evaluation of two different output modeling techniques for
BoF representations in HMMs. We give insights to our pre-
vious approach [5] and we present a novel HMM integration
that to the best of our knowledge has not been considered be-
fore. This model is adapted to the special data characteristics
and, therefore, allows for a robust and integrated estimation
in Baum-Welch HMM training. No separate dimensionality
reduction model is required. Avoiding separate dimension-
ality reduction is an advantage, also because it has shown
inferior handwriting recognition performance compared to
our more direct integration in [5].

In Section II we will discuss related statistical models and
HMM integrations. Afterwards, we will present BoF-HMMs
for an application in handwriting recognition (Section III).
In this regard, we will explain the statistical properties of
our BoF representations along with two different output
models. Our discussion will be supported by an experimental
evaluation in Section IV before summarizing our results in
Section V.



II. RELATED WORK

HMMs model the generation of observation sequences in
a two stage stochastic process, cf. [11] Chap. 5. In the first
stage the probabilistic transitions over a finite state space
are modeled. In the second stage observations are generated
for each point in time within the process. For recognition,
states are associated with classes and the state sequence that
generated the observation sequence most likely, is decoded.
In our case the generation of observations is of special
interest. The probability / density for an observation xt in
state j at time t is given as

bj(xt) = p(xt|St = j). (1)

The observations xt = (xt1, · · · , xtD)> are D-dimensional
feature vectors and the function bj refers to a suitable
discrete probability mass function or continuous probability
density function. For applications of HMMs in handwriting
recognition and word spotting, bj is often defined as a GMM.

Rodrı́guez-Serrano and Perronnin [12] model handwritten
word images with semi-continuous Gaussian mixture HMMs
for word spotting. Since in the semi-continuous case the
Gaussian densities are shared among all states, the authors
have an interesting interpretation related to BoF represen-
tations. They consider the shared codebook as a visual
vocabulary and the probabilistic assignment of a feature
vector to density components in the mixture model as a soft
BoF representation.

In our case, however, we extract the BoF representations
directly from word images. For this reason, GMMs cannot be
estimated easily due to the very high dimensionality of BoF
vectors. Furthermore, they do not fit well with their statistic
properties. In the following we will present statistical models
that have been specifically chosen in this regard.

Giménez et al. [13] apply Bernoulli HMMs to handwriting
recognition. Due to its application domain and usage of
a specific output model it is highly related to our work.
For recognition they binarize word images and extract se-
quences of binary vectors in a sliding window manner. These
are considered as observations. Their HMMs model these
observations xt ∈ {0, 1}D with M mixtures of Bernoulli
distributions weighted by mixture coefficients cjk:

bj(xt) =

M∑
k=1

cjk

D∏
d=1

pxtd

jkd(1− pjkd)
1−xtd . (2)

The mixture components are defined as the product of D
independent Bernoulli probability functions. The parameters
pjkd indicate the probability of generating a black pen
stroke pixel for feature component d in mixture component
k for state j. Therefore, the distribution fits well with
the characteristics of the feature vectors. Different mixture
components allow for modeling different character shapes
in the same model. Please note that mixture models re-
quire a convex linear combination of mixture components.

Parameter estimates can be computed in an expectation-
maximization (EM) fashion which is integrated in Baum-
Welch HMM training.

Frasconi et al. [14] present a method for multi-page text
categorization with HMMs. Individual pages are represented
as BoW which makes their HMM integration highly related
to our work. Using the HMM they are able to exploit internal
document structure, like preface, table of contents, main text
or index. This structure can either be hand-crafted or inferred
automatically by state clustering. In order to model BoW
representations as output of the HMM, they use multinomial
distributions. Observations xt ∈ NV0 are therefore count
vectors of term occurrences in page t. V indicates the size of
the vocabulary, i.e., the number of terms wv . For modeling
the document structure, the probability mass functions are
not state, but class-dependent, i.e., state j is associated with
class Cκ which is indicated by φ:

bj(xt) =

V∏
v=1

p(wv|St = j, φ(j) = Cκ)xtv . (3)

In the multinomial distribution, p(wv|St = j, φ(j) = Cκ)
is the probability for term wv in class Cκ. By weighting
these probabilities in the exponent, the overall product is
influenced by the class-specific term probabilities according
to their occurrence in the page. It is to be noted that Equation
3 does not contain the multinomial coefficient, e.g., as
defined in [15]. In practice, both variants of the multinomial
distribution can be found. Parameters are estimated by
computing the ratio of occurrences of a specific term in a
given class and the number of occurrences of all terms in
that class, where N(wv, Cκ) is the number of occurrences
of term wv in class Cκ:

p(wv|Cκ) =
1 +N(wv, Cκ)

V +
∑V
r=1N(wr, Cκ)

. (4)

It is important to note that neither of the term probabilities
should be zero. This would be the case if a specific term does
not occur in a specific class. Therefore, Laplacian smoothing
is applied for regularization in Equation 4.

For our approach of extracting sequences of BoF repre-
sentations from text images, this last aspect is particularly
important. Laplacian smoothing works well if terms occur
within all classes most of the time. Typically this is the case
for densely populated Bag-of representations. For example,
in [14] BoW representations are extracted on class level
rather then document or page level for parameter estima-
tion, i.e., the multinomials are class- and not HMM state-
dependent. However, in our case BoF representations are
extremely sparse.

Comparable scenarios with BoW representations can be
found for short text clustering, e.g., twitter message anal-
ysis [16]. In the text processing literature these are ap-
proached, for example, with advanced multinomial mod-
els [16], [17].



III. OUTPUT MODELING IN BAG-OF-FEATURES HMMS

BoF-HMMs model BoF sequences that are typical for
characters or words. Figure 1 shows the overall process for
recognizing word images. In Section III-A we will outline
how BoF sequences are extracted. Section III-B describes
two different approaches for BoF output modeling.

A. Bag-of-Features Sequences

In order to represent document images with BoF, SIFT
descriptors [7] are computed in a dense grid. For word
recognition we choose a descriptor cell structure of 4 rows
and 2 columns instead of the 4×4 standard. This rectangular
shape is better suited when using character models as less
horizontal context is captured. The dense grid resolution
depends on the resolution and size of the descriptors. Here,
we extract descriptors in a 5×5 grid. An interesting aspect
is the pruning of descriptors that do not contain any relevant
information. A simple heuristic is to discard descriptors in
low contrast regions, as image regions containing pen strokes
have high contrast. We use descriptor pruning in order to
demonstrate robustness of our output models in Section IV.
An example for descriptor pruning is also shown in Figure 1.

In the next step, descriptors are quantized with respect
to a pre-computed visual vocabulary. The visual vocabulary
is obtained by clustering descriptors from a training set
with Lloyd’s algorithm, cf. [11] Sec. 4.3.1. For handwriting
recognition and word spotting large vocabularies of a few
thousand visual words give good results, cf. [5], [4]. The
sequence of BoF representations is then obtained by sliding
a window over the grid columns in writing direction.

B. Output Modeling

For modeling the generation of BoF representations in
the HMM we present two different approaches. The first
approach has been presented for Arabic handwriting recog-
nition [5] and has also been applied to word spotting,
cf. [6]. It directly models visual word probabilities within
HMM states (Section III-B1). The second approach is a
novel HMM output model integration which is inspired by
probabilistic short text clustering. The model was presented
in [17] and can directly be integrated in a semi-continuous
HMM (Section III-B2).

1) Pseudo-Discrete Model: This BoF output model can
be interpreted as a soft extension of a discrete model. For
that reason we referred to it as pseudo-discrete, cf. [5].
It allows for modeling the observation of multiple visual
words at a point in time. For relative visual word frequencies
xt ∈ QV≥0 we obtain the probability for generating a BoF
representation at time t in state j:

bj(xt) =

V∑
v=1

p(wv|St = j)xtv ,
V∑
v=1

xtv = 1. (5)

Given training data O = (x1, · · · ,xT ) and the current
model λ, parameters are estimated using the probability

p(Wt = wv|O, λ) of observing visual word wv at time t
and probability p(St = j|O, λ) of state j being active at
time t:

p(wv|St = j) =

∑T
t=1 p(Wt = wv, St = j|O, λ)∑T

t=1 p(St = j|O, λ)
. (6)

The major difference to the multinomial model, cf. Equation
3, is that it does not model a specific configuration of inde-
pendent observations but any configuration of independent
observations. This is due to the visual word mixture model,
defined in Equation 5, where relative visual word frequencies
are interpreted as visual word observation probabilities.
Thus, it can be considered as a soft visual word observation
model. For this reason the specificity of the pseudo-discrete
HMM depends on the number of different visual words that
are observed within an HMM state.

On the one hand, this has advantages for generalizing
to unseen data. For example, in query-by-example word
spotting where only a single exemplary instance of the
query is given. Furthermore, no smoothing is required for
parameter estimation, cf. Equation 4 and Equation 6.

On the other hand, this can lead to degenerated cases.
When too many different visual words are observed within
a certain state, the unimodal distribution looses its ability to
discriminate different visual word configurations.

Another problem arises if non-discriminative, i.e., irrele-
vant, visual words keep reoccurring in different states and
models. They tend to dominate the output probability due
to the scalar product of HMM visual word probabilities and
observed visual word frequencies in Equation 5.

2) Exp. Dirichlet Compound Multinomial Model: Partic-
ularly the last problem mentioned in the previous section
(III-B1) has also been studied extensively for text analysis,
cf. [15]. Non-discriminative terms occurring at higher fre-
quencies have substantial influence in the models, e.g., in the
multinomial distribution. Common heuristics for handling
this are stop-word filtering or term weighting [15]. A more
general approach, however, was found in the Dirichlet com-
pound multinomial (DCM) distribution [15], [17]. This gen-
erative model consists of two stages where the parameters
for the multinomial distribution are drawn from a Dirichlet
distribution in the first stage and the BoW representation
is finally drawn from the multinomial distribution in the
second stage. This way the DCM has an additional degree
of freedom that allows for modeling the concentration of
visual words. Therefore, the model is not “surprised” [17]
if words occur in bursts. Figure 1 shows a DCM probability
mass function in a BoF probability simplex. The probability
mass is mainly concentrated on the edges of the simplex,
which indicates that high frequencies of few visual words
are expected. Further details can be found in the caption of
Figure 1.

Since the DCM is hard to estimate in large scale scenarios,
Elkan [17] presented an exponential-family DCM approxi-
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Figure 1. Word recognition with BoF-HMMs. From left to right, the feature extraction and modeling is shown examplarily. SIFT descriptors are computed
in a word image. A few descriptors are visualized by blue patches. Afterwards, descriptors are quantized. For this purpose, descriptors are associated with
their most similar visual word from a visual vocabulary. For visualizing the quantization result, colored descriptor center points are shown. The color
encodes the index of the associated visual word. Visually similar pen strokes are covered with similar color patterns. In the next step, the BoF sequence
is obtained by sliding a window over the word image in writing direction. This sequence is finally modeled within the HMM. The probabilistic model is
shown examplarily as a function for three visual words over a probability simplex. In the simplex visualization each corner refers to a visual word and
BoF can be represented as points within the simplex. The higher the (relative) frequency for a visual word in the BoF representation, the closer is the
point to the respective corner. The BoF shown as a star, has high frequencies for the blue and pink visual words and low frequency for the green visual
word. The probability mass function is indicated within the simplex with blue to red colors. Blue indicates low and red indicates high probability.

mation (EDCM) that is suitable for short text clustering.
The model is also very suitable for our scenario. As in
short text clustering, our feature representations are very
high dimensional and extremely sparse.

Here, we integrate this model in a semi-continuous HMM
where the observations xt ∈ NV0 are absolute visual word
frequencies. βkv ∈ R≥0 are visual word specific concentra-
tion parameters for mixture component k and Γ denotes the
gamma function:

bj(xt) =

M∑
k=1

cjk

nt! Γ(sk)

Γ(sk + nt)

∏
v:xtv≥1

βkv
xtv


with nt =

V∑
v=1

xtv and sk =

V∑
v=1

βkv .

(7)

It is interesting to note that the parameters βkv only have to
be real positive numbers, while the parameters for the multi-
nomial distribution (see Equation 3) are probabilities. This is
the additional degree of freedom in the EDCM distribution,
allowing for the modeling of visual word concentrations, i.e.,
visual word burstiness.

Further details regarding Equation 7 and EDCM mixture
model parameter estimation can be found in [17]. Their
model estimation can be directly integrated in Baum-Welch
training by replacing the posterior probability of a mixture
component with the posterior probability of selecting a
mixture component at a given time in a given state.

In contrast to the unimodal pseudo-discrete HMM, the
semi-continuous EDCM integration is better suited for rep-

resenting many different writing styles in the same model.
This can be an advantage for handwriting recognition.

IV. EVALUATION

We evaluate the two output models on a word recognition
benchmark and on a segmentation-free query-by-example
word spotting benchmark. This allows us to explore different
properties of the models, as both tasks have very different
requirements. We compare our results with the state-of-the-
art on both benchmarks.

A. Word Recognition

Word recognition is evaluated on the IfN/ENIT dataset
of handwritten Tunisian town and village names [18]. It
consists of subsets a - f, s and we use the common training
- validation configuration abc-d and configurations abcd-
e, abcde-f and abcde-s for testing. The dataset contains
word images that exhibit great variations in writing style.
Performance is measured by word error rate (WER). In our
experiments we will investigate the robustness of the models
with different feature configurations.

For recognition we extract sequences of BoF represen-
tations as described in Section III-A. A SIFT descriptor
cell size of 13×13 pixels and a visual vocabulary of 4096
visual words performed best in the validation. The effect
of different cell configurations (Desc. cells) and descriptor
pruning (Desc. pruning) can be found in Table I. We estimate
178 context-dependent HMM character models with a Bakis
topology. In case of BoF-HMMs with an EDCM output
model, we estimate a mixture model with 1024 mixture



Table I
FEATURE ROBUSTNESS ON IFN/ENIT BENCHMARK (SET abc – d)

BoF-HMM Desc. cells Desc. pruning WER (in %)
(rows×columns)

P.-Discrete 4×4 no 26.5
P.-Discrete 4×4 yes 3.1

P.-Discrete 4×2 no 38.5
P.-Discrete 4×2 yes 2.4

EDCM 4×2 no 3.1
EDCM 4×2 yes 3.0

Table II
STATE-OF-THE-ART RESULTS ON THE IFN/ENIT BENCHMARK

Method abc–d abcd–e abcde–f abcde–s
± 0.5% ± 0.6% ± 0.6% ± 2.0%

Bernoulli-HMM [13] 4.8 6.1 7.8 15.4
Multi-Stage HMM [19] 1.9 5.1 7.7 15.4

BoF-HMM (p.-discrete) 2.4 6.6 8.5 18.3
BoF-HMM (EDCM) 3.0 5.8 8.7 18.2

components according to the EM training scheme described
in [17]. In Baum-Welch HMM training, only the state-
dependent mixture weights are updated in order to avoid
overfitting. The number of mixture components has experi-
mentally been optimized on the validation set abc-d. WER
converges with higher numbers of mixture components. This
behavior is very similar to what we observed for EDCM
model estimation in word spotting.

The robustness test is presented in Table I. It shows
the effect of different feature configurations that mainly
influence the specificity of the descriptors. As discussed
in Section III-B1, the pseudo-discrete (p.-discrete) BoF-
HMM degenerates if the same visual words keep reoccurring
in many different states. We analyse the descriptor cell
configuration and, most importantly, the descriptor pruning.

The standard setup for the SIFT descriptor is 4×4 cells [7].
However, for estimating character models it is advantageous
if the horizontal context is limited. Results in Table I show
that for the pseudo-discrete BoF-HMM vertical descriptor
shapes only have a positive effect if unspecific descriptors
are pruned. Otherwise, the model degenerates according to
the specificity of the descriptors. Our most important result
in Table I is that the EDCM model is completely robust in
this regard. This is especially an advantage if heuristics for
suppressing unspecific descriptors are hard to define.

Table II shows an overview of recent state-of-the-art
results on the IfN/ENIT benchmark for validation / test sets
d, e, f and s. The method presented by Ahmad et al. [19]
achieves very good results by modeling the properties of
Arabic script. Our method is, however, completely language
and script independent and can be automatically adapted, cf.
e.g., [4]. In comparison to the Bernoulli HMMs presented
by Giménez et al. [13], our method achieves similar results

Table III
SIZE OF THE EDCM MIXTURE MODEL FOR WORD WORDSPOTTING

Mixture components mAP (in %)

256 60.2
512 62.2
1024 62.4

Table IV
SEGMENTATION-FREE QUERY-BY-EXAMPLE WORD SPOTTING ON THE

GEORGE WASHINGTON BENCHMARK

Method mAP (in %)

Exemplar SVM + Reranking [20] 59.1%
BoF- Spatial Pyramid [4] 61.4 %

BoF-HMM (p.-discrete) 67.2%
BoF-HMM (EDCM) 62.4%

on sets d and e while the Bernoulli HMMs generalize better
in case of higher variability in writing style in sets f and s.
This is most likely due to their less specific features.

B. Word Spotting

Word spotting is evaluated on the George Washington
benchmark, cf. [4], [6]. We consider a segmentation-free
query-by-example scenario where the query is given as an
exemplary occurrence of the query word. The query has to be
retrieved without any prior information about word locations
in the document images. The writing style in the handwritten
documents is overall similar. Performance is measured by
mean average precision (mAP), cf. [2]. In the segmentation-
free evaluation scenario a detection is considered as relevant,
if it overlaps with a corresponding annotation by more than
50%. In our experiments we show the effect of different
numbers of mixture components of the EDCM model.

For representing document images, we extract standard
SIFT descriptors with a cell size of 12×12 pixels and
quantize them with respect to a visual vocabulary of 6144
visual words. Query word images can then be modeled
with BoF-HMMs. For the pseudo-discrete output model, we
directly estimate state specific visual word probabilities from
the given sample. In case of the EDCM output model we
initially estimate the mixture model with BoF sequences
sampled from document images at typical line heights.
At query time only the mixture weights are adapted. For
detection we slide a patch through the document image and
compute the probabilty that the underlying BoF sequence
has been generated with the query model, cf. [6].

Table III shows results for different EDCM mixture model
sizes. It can be noted that the performance converges fast
and that the model achieves good performance with a few
hundred mixture components. This is positive as it shows
that the model is very robust with respect to this parameter.
Furthermore, this behavior was observed analogously for
word recognition.



When comparing the performance of the EDCM model
with the performance of the pseudo-discrete model in Ta-
ble IV, the EDCM model is clearly outperformed. This is
due to the characteristics of the historic document images
that perfectly fit with the prerequisites of the pseudo-discrete
model. The pseudo-discrete model has extremely high capa-
bilities of generalizing to unseen data from a single sample.
With respect to retrieval performance the state-of-the-art is
clearly outperformed on the George Washington benchmark.

V. CONCLUSION

In this paper we presented a study of different statistical
models for BoF representations in handwriting recognition
and word spotting. In order to model BoF sequences with
HMMs in these scenarios, the special data characteristics
have to be taken into account. Both, our pseudo-discrete
BoF-HMM and the EDCM BoF-HMM are very well suited
for high dimensional and sparse data. In our evaluation we
showed that the EDCM model is very robust and performs
well for word recognition and word spotting. The EDCM
output model integration has to the best of our knowledge
not been considered, before.

For the pseudo-discrete BoF-HMM we showed that de-
scriptor pruning is required in the word recognition task.
This is due to the data considered in this benchmark. Since
the images are almost binary, the background is uniform.
This results in visual words that are reoccurring in almost all
states of the BoF-HMMs. In contrast, the document image
background in the word spotting benchmark is textured and,
therefore, represented with many different visual words. As
the prerequisites for the pseudo-discrete BoF-HMM are met
in this scenario, it reaches its full potential. We clearly out-
perform state-of-the-art retrieval accuracy for segmentation-
free word spotting on the George Washington dataset.
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