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ABSTRACT
Cuneiform tablets are an invaluable documentation of early
human history. Efforts are being made in digitizing large
tablet collections for preserving their content and making
them available to a global research community. However,
there are hardly any automated computer aided methods
for supporting philologists in their analysis. In this paper we
present an approach for automatically retrieving cuneiform
wedge constellations from digitized cuneiform tablet collec-
tions. Compelling results could be achieved in our qualita-
tive and quantitative evaluation on a challenging benchmark
consisting of 3D-scanned cuneiform tablets.

CCS Concepts
•Applied computing→Digital libraries and archives;
Document analysis; Document searching;

Keywords
word spotting, cuneiform analysis

1. INTRODUCTION
Cuneiform script is the oldest writing system besides Egyp-

tian hieroglyphs and was developed in the second half of the
4th millennium BC, most likely by the Sumerians in south-
ern Mesopotamia. It was in use over more than three mil-
lennia until it was finally replaced by alphabet-based writing
systems which were easier to learn. Cuneiform texts were
written on all kinds of materials but preferably on tablets
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made of clay which was readily available almost everywhere.
Traditionally a stylus from reed served as writing tool which
was impressed into moist clay (cf. [5]). In retrospect a big
advantage of clay tablets over papyrus and other perish-
able writing materials was that it can survive over millen-
nia once it comes to rest under the surface and is thereby
protected from erosive effects. As a result of their durabil-
ity, cuneiform tablets are the most important source for our
knowledge of the earlier political and intellectual history of
mankind. Far more than 500.000 cuneiform documents have
been unearthed so far, most of which are still waiting to be
studied by philologists. This clarifies the need for efficient
methods to search and process the huge amount of cuneiform
manuscripts, which until now has been mainly done by man-
ual examination and comparison of the artifacts.

In order to understand the special challenges in process-
ing cuneiform script, basic knowledge about its visual and
philological properties are required. Unlike Latin script,
cuneiform writing started as pictographic script. Over time
the sign inventory was reduced from more than 1500 signs
in the early stage to about 600 signs and the shapes became
more and more abstract. This resulted in a simultaneous re-
duction of the visual core components to only vertical, hori-
zontal, diagonal and so-called winkelhaken wedge types. The
individual wedges resemble tetrahedron shaped holes in the
clay surface which introduces a high degree of local self sim-
ilarity on wedge level and cuneiform sign level. Therefore,
small parts of cuneiform signs often can not be identified
correctly without knowledge of their geometric context.

Additional challenges of processing cuneiform script can
be found on the semantic level. To mention only a few as-
pects, cuneiform signs are polyvalent and can usually be
read in several ways and used in various functions. They
have a logographic value, sometimes denote various words
and possess one or more syllabic values (cf. [1]). Further-
more signs and groups of wedges can be combined to express
a new meaning or incorporated into other signs as elements.
As in other writing systems, an individual grapheme may be
represented in a wide variety of distinct ways, all represent-



ing the ”same” grapheme (allographs of a grapheme). The
allograph choice may be influenced by the writing instru-
ment, the style of the scribe, neighboring graphemes in the
text, the writing speed, the intended target audience, and
even unconscious features of individual handwriting, all of
which can not be easily handled by established automated
transcription methods (cf. [3]).

The script properties described above induce philological
text analysis methods that rely on searching occurrences
of groups of wedges in cuneiform manuscripts as a starting
point. Beyond that, the recent availability of 3D-scans al-
lows a quantitative study of individual writing for the first
time. This brings up the need for automatically retrieving
particular cuneiform structures like signs, sign groups and
words, including assessing and comparing them. Being able
to perform a fast and accurate search for groups of wedges in
a large number of different cuneiform manuscripts is, there-
fore, an essential desideratum in philological research.

For over a century, cuneiform tablets were published al-
most exclusively as autographies. These hand-copies present
a readable text in a printable form. The production of pho-
tographic images for the ten-thousands of excavated tablets
were unaffordable. With the turn of the millennium, dig-
ital imaging and the internet made an increasing number
of pictures easily accessible. Large collections of cuneiform
2D image databases include the Hethitologie Portal Mainz
[14] and the British Museum Collection [6]. Hitherto these
pictures are in the best case linked to some descriptive data
or a transliteration and translation of the text and may be
consulted with it for collation. The digital availability of
the documents opens up new paths for computer assisted
analysis, especially in the field of pattern recognition. Yet,
promising solutions for optical character recognition (OCR)
on cuneiform manuscripts are still unavailable.

The main contribution of this paper is an approach for
searching cuneiform structures in collections of cuneiform
tablets. The search is implemented as a special image re-
trieval problem that is referred to as query-by-example word
spotting (cf. [10]). The philologist selects an exemplary oc-
currence of a group of wedges in a cuneiform tablet image
as query. With our approach it is possible to retrieve occur-
rences of similar wedge groups in a collection of cuneiform
images. The result can be visualized by highlighting de-
tections and listing them ranked according to similarity to
the query. This poses two major challenges: As traditional
photographic 2D representations of cuneiform script exhibit
large variations regarding the shot modalities, they are usu-
ally not suitable for direct application of comparative image
retrieval methods on a large number of data sets. Therefore,
we convert 3D-scans of cuneiform tablet fragments into a
more suitable 2D image representation. Secondly, the vari-
ability in the visual appearance of cuneiform script is ex-
tremely high, especially across tablets, due to different writ-
ing styles and writing materials. This is addressed by mod-
eling cuneiform queries with BoF-HMMs (Bag-of-Features
Hidden Markov Models). These statistical sequence models
have successfully been applied for spotting different scripts
like Roman or Bangla [18], and are very flexible and ad-
justable with respect to their modeling capabilities [20].

The remainder of the paper is organized as follows. Sec-
tion 2 reviews related work with respect to word spotting
and computer aided cuneiform tablet analysis. In section 3
we describe how BoF-HMMs are applied to cuneiform struc-

ture retrieval in rasterized 2D cuneiform images. How this
method is applied in a typical philological use case is pre-
sented in section 4. In section 5 we show qualitative and
quantitative results on a dataset of cuneiform tablets. Fi-
nally, a conclusion is given in section 6.

2. RELATED WORK
Word spotting methods are very popular for the analysis

of historical documents. This is due to their ad-hoc appli-
cability. The use of a recognizer in order to perform a full
transcription is usually impossible because of special char-
acteristics of historic documents. Often their script is very
particular which requires annotated training material from
the same document collection. Additionally, document im-
ages suffer from degenerations due to storage, fading ink or
ink bleed through, requiring specialized preprocessing meth-
ods. In contrast, query-by-example word spotting methods
assume relatively uniform appearance of the script and di-
rectly match an exemplary instance of a query word with
document image regions. These regions are ranked accord-
ing to similarity with the query and are presented to the
user. Word spotting is therefore robust with respect to
recognition errors. As long as the relevant detections are
among the top results, the method still aids the user.

A prominent method for word spotting in historic docu-
ment collections was presented by Rath et al. [17]. They re-
lied on a given segmentation of document images into words.
These word images were encoded with specialized features,
like projection profiles and ink background transitions. Sim-
ilarity between their feature representations was computed
with Dynamic Time Warping. Recently, methods in word
spotting became influenced by advances in Computer Vi-
sion. These techniques are typically able to be adapted au-
tomatically to the problem domain. One of the first meth-
ods in this regard was presented in [22]. Rusiñol et al. used
BoF (Bag-of-Features) representations for segmentation-free
word spotting. BoF represent local document image regions
as orderless collections of image features. This approach
has mainly two advantages. BoF are estimated from sample
data in an unsupervised manner. Thus, no manual effort is
required for designing features. As the scripts’ appearance
varies largely across historic document collections this is a
useful property. Furthermore, BoF representations can be
applied in a segmentation-free manner as no prior assump-
tions about the spatial location of script is required. Es-
pecially, with respect to analysing historic documents this
is desirable. Heuristic segmentations on word level are of-
ten hard to obtain because of dense writing, inhomogeneous
spacings and document degenerations (cf. [23]).

In our previous work (cf. [20]), we presented an integra-
tion of statistical sequence models and BoF, so-called BoF-
HMMs, for segmentation-free word spotting in historic doc-
uments. HMMs serve for modeling the horizontal variabili-
ties of script, while BoF representations make the matching
process robust with respect to vertical displacements of the
script in our segmentation-free framework.

Digital extraction and processing of cuneiform script is
covered by only few recent publications which are focused
almost entirely on the processing of digitized 3D cuneiform
datasets. In [12] Mara et al. describe a method to extract
a 2D spline representation of 3D cuneiform characters using
integral invariant filtering and a skeletonization approach.
The integral invariants are used to compute robust curvature



metrics and to detect relevant features on the outline of local
connected wedge components for the construction of skele-
ton branches. However, the method requires a perfect mesh
which implies that 2-manifoldness has to be ensured through
various mesh repair methods in advance. In [3] Bogacz et
al. convert the spline representation from [12] into a graph
representation and extend it with triangulation information
to evaluate a graph similarity based metric for cuneiform
characters. Bogacz et al. conclude that the structural infor-
mation of cuneiform characters can be captured well using
a graph representation and claim that conventional OCR
methods are not suitable for handling cuneiform script.

As we demonstrated in [7] a model based cuneiform wedge
extraction approach using a modified watershed algorithm
for wedge separation yields robust extraction results even on
incompletely scanned cuneiform tablets and non 2-manifold
meshes without the prerequisite of mesh repair operations.
We used the extracted wedges and wedge components from
[7] successfully in [8] and [4] to analyze statistical low-level
script properties. These were employed for identifying sim-
ilar script types originating from different scribal traditions
in order to join candidate identification of cuneiform tablet
fragments. The statistical wedge features were evaluated on
a non-semantic level as semantics in cuneiform script require
the analysis of wedge constellations. In [15] we evaluated a
spatial database-centered approach for statistical analysis
of syntactic and semantic cuneiform features by extending
the data from [8] with local spatial connectivity data. Thus,
specific wedge constellations could be retrieved from prepro-
cessed 3D data sets stored in a spatial database.

Unlike our segmentation-free method presented here, ap-
proaches in [3] and [15] require a reliable prior segmentation
of individual cuneiform wedges. This is difficult to compute
due to the properties of cuneiform tablets described above.

3. METHOD
Automatically searching for cuneiform structures is a chal-

lenging task. Suitable digital cuneiform tablet representa-
tions are hard to obtain, the writing variability is large and
cuneiform structures are written closely next to each other,
thus no reliable a-priori segmentation can be obtained. Fur-
thermore, cuneiform characters consist of few reappearing
wedge types what makes them hard to discriminate. There-
fore, we propose a method that approaches these challenges
on multiple levels. In order to avoid unwanted variabilities
found in photographic reproductions of cuneiform tablets,
we obtain our image representations from 3D scans (section
3.1). Images are then represented in terms of quantized local
features that can be combined to BoF histograms (section
3.2). Cuneiform queries can then be modeled with BoF-
HMMs. These allow for a dynamic probabilistic modeling of
the cuneiforms spatial sequential structure and have already
been successfully applied for modeling Roman, Bangla and
Arabic script [20, 18, 21] in word spotting and handwriting
recognition (section 3.3). Using this model the query is spot-
ted in cuneiform tablet images in a patch-based segmentation-
free framework (section 3.4).

3.1 Image generation
As discussed in section 1, traditional photographic 2D

representations of cuneiform script are usually not suitable
for direct application of comparative pattern recognition ap-
proaches on a large number of data sets. This is not only

Figure 1: Representative sample section of a tradi-
tional photographic reproduction of the cuneiform
fragment 44/a, with multiple disadvantageous shot
modalities. (Source: Hethitologie Portal Mainz [14])

Figure 2: Unified 2D representation generated from
a 3D scan of the cuneiform fragment 44/a.

due to large variations in the shot modalities between in-
dividual images, but also due to large variations in each
individual shot. Figure 1 shows a typical example of a tra-
ditional photographic documentation that exhibits multiple
disadvantageous shot modalities. Problematic image prop-
erties resulting from inappropriate lighting conditions may
include low overall contrast, low contrast in wedge shadows,
inappropriate exposures and large variations in local lighting
conditions. On the other hand, there may also be material
induced discolorations on the tablet surface and projective
distortions. In order to address this, we use high resolu-
tion 3D-scans of cuneiform tablet fragments taken with a
Breuckmann optoTOP structured light scanner (AICON 3D
Systems, http://www.aicon3d.de) with a maximum resolu-
tion of 30µm to generate unified 2D representations suitable
for processing by our word spotting system. We ensure the
2D representations contain a sufficient amount of data to be
able to identify cuneiform signs and constellations by target-
ing a similar appearance like the Y-shaped stylized wedge
representations used in traditional cuneiform transcriptions
(see [9] for details) like shown in figure 6. As these Y-shaped
wedge representations are characterized by the concave three
inner edges of a wedge, we optically enhance these features
using a differential operator from [13] to approximate the
maximum curvature on the triangle meshes of the digitized
tablet fragments. The resulting curvature values are mor-
phologically filtered to remove noise and the effects of geo-
metric artifacts and then color mapped to produce a high
contrast, sketch like appearance.

The final rasterized 2D output image for processing by the
word spotting system is then generated by constructing an
orthographic projection matrix from an approximated nor-
mal of the cuneiform tablet surface using Principle Compo-
nent Analysis and a global estimate of the writing direction.
This ensures, that the 2D representation of the cuneiform
text contains minimal projective distortions and the writ-
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Figure 3: (a) Section from a traditional photographic reproduction of a cuneiform fragment (Source: Hethi-
tologie Portal Mainz [14]), (b) corresponding 3D-scan and (c) computed stylized 2D representation.

ing direction is aligned horizontally as expected by the word
spotting system. As 3D-scans are usually saved using real
world units, maintaining a consistent scale for all images
requires no additional efforts. At this point it is essential
to account for holes of various sizes in the mesh which may
result from the scanning process either by coloring the back-
ground white or tag it with a transparency attribute. The
word spotting method may yield wrong recognition results,
otherwise. Figure 2 shows an example of a respectively pro-
cessed cuneiform tablet fragment matching the photographic
reproduction in figure 1. As can be seen, the parts of the
tablet containing cuneiform writing now exhibit a uniform
and yet distinctive rendering of the cuneiform wedges. A de-
tailed side by side comparison of a photographic reproduc-
tion, a corresponding 3D-scan and the generated represen-
tation at wedge scale is shown in figure 3. This emphasizes
the beneficial properties of our 2D representation compared
to the original photographic reproduction.

3.2 Image representation
The 2D image representation of the cuneiform tablet from

section 3.1 has to be converted to quantized local image fea-
tures that can be used within BoF-HMMs for word spotting.
In order to accomplish this, we extract a dense grid of local
image descriptors. This is done using SIFT [11] descriptors
that are capturing wedge orientations and their local ar-
rangements. The descriptor size is manually adapted to the
typical cuneiform character height and the dense grid en-
sures that all image regions are represented uniformly and
no relevant areas are accidentally omitted. Figure 4a ex-
emplarily shows a dense grid of SIFT descriptors that are
indicated by blue patches. It has to be noted that, unlike
shown in figure 4a, descriptors exhibit a high amount of
overlap in practice.

For obtaining quantized local image features, the descrip-
tors are associated with their most similar representative
from a visual vocabulary, containing 4096 visual words. This
vocabulary is estimated in an unsupervised prior training
step. Figure 4b shows an example of these quantized im-
age features visualized as colored points. Even in the coarse
grid depicted here, a correlation between similar color pat-
terns and similar cuneiform structures can be seen. For this
specific application to cuneiform script we use descriptors of
size 32× 32 pixels in a dense grid of 2× 2 pixels.

3.3 Cuneiform query modeling
In our query-by-example scenario, queries are specified

by tight bounding boxes containing cuneiform structures.

Based on these regions, the quantized local image features
are modeled with a BoF-HMM. For this purpose a sequence
of BoF representations is obtained in a sliding window man-
ner. At each window position the respective feature rep-
resentatives are accumulated in a BoF histogram. By us-
ing the Baum-Welch algorithm (cf. [16]) the HMM is esti-
mated such that the likelihood of generating the sequence
is maximal. It is worth noting, that only a single instance
of the query cuneiform structure is required in this regard.
In the estimation step, a probability for observing a local
feature representative within each HMM state is obtained.
This probability relates to observing the respective features
in the corresponding section of the query. An example of
the query modeling process is given in figure 4c where the
query image (c1) is represented by the grid of quantized
features (c2). Like in figure 4b the quantized features are
again shown as colored points. Below, the estimated BoF-
HMM is shown (c3). In this example, the blue feature has
a rather high occurrence frequency in the beginning and in
the middle of the query where, for example, the yellow fea-
ture is rather frequent in the end. This is also reflected in
the feature probabilities in the HMM states (c3). For this
reason the number of states is important for the specificity
of the model. Since few types of cuneiform wedges appear in
different cuneiform structures, mostly their order is the dis-
criminating property. This is encoded using a relatively high
number of states with respect to the length of the sequence
of BoF representations, when compared to the numbers of
states that have been chosen for other scripts, like Roman
or Bangla (cf. [19, 18]).

3.4 Cuneiform query spotting
For spotting a query in the cuneiform tablet image, we

compute a similarity measure between its model and image
regions in a segmentation-free approach. As shown in figure
4d a patch is slid through the image. For each patch po-
sition a sequence of BoF representations is computed from
the underlying grid of feature representatives. The likeli-
hood of generating a sequence with the query BoF-HMM
is obtained through probabilistic inference with the Viterbi
algorithm (cf. [16]).

The final result of the word spotting system is obtained
by extracting regions-of-interest for patches with the highest
scores in their respective local neighborhood. These regions
are ranked by similarity and presented to the user. An ex-
emplary result is visualized in figure 5. Similarity scores
are shown in a heat map next to the retrieval list of ranked
regions-of-interest.
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Figure 4: (a) grid of SIFT-Operators, (b) corresponding quantized image features, (c1) search query, (c2)
BoF sequence, (c3) BoF-HMM and (d) patch-based model decoding process.

4. SOFTWARE DEMONSTRATOR
In this section we present the visual front-end of our seg-

mentation-free word spotting software demonstrator. This
word spotting front-end allows for a seamless integration of
our method with a typical philological use case, where text
passages of similar content in different manuscripts are com-
pared. For this purpose we show the front-end in figure 5.
It consists of three main parts. The left side contains a
list based cuneiform fragment explorer that shows small size
previews of available cuneiform fragments in the database
for easy navigation. The fragments can be selected for sim-
ple exploration or visualization of potential query results.
The center area of the front-end contains a zoomable and
moveable visualization of the currently selected cuneiform
fragment with three possible visualization modes. Figure 5
shows these visualization modes next to each other from left
to right, framed in green, red and blue. The first mode on
the left side displays the generated 2D representation of the
plain fragment. This view can be used for fragment explo-
ration and for selecting queries. The second view shows de-
tected regions-of-interest colored by similarity to the query,
where blue corresponds to least and red to most similar. The
last mode on the right side displays an intuitive heat map
visualizing the similarity scores for a query on the entire
fragment, with blue to red colors where blue corresponds to
least and red to most similar patches, again. Aside from
fragment visualization the center area of the front-end can
also be used for specifying search queries. In order to define
a query, a cuneiform structure can be selected by drawing a
tight bounding-box around it. Finally, the right hand side
of the front-end contains a compact list based visualization
of extracted individual query results. It contains thumbnails
of all detected regions for a query across all fragments in the
database. While this list allows a quick and easy visual in-
spection of the query results by a philologist, the small color
bar on the left hand side of the thumbnails refers to the sim-
ilarity to the query. This corresponds to the colors shown
in the regions-of-interest visualization on the fragment. The
entries of the retrieval list can also be used to directly navi-
gate to the respective locations on the cuneiform fragments
for further examination of their context.

5. EVALUATION
In this section we will evaluate our approach based on

a sample set of cuneiform fragments and cuneiform sign
queries. First, we will define a philologically motivated bench-
mark in order to evaluate the performance of the approach
in section 5.1. Subsequently, in section 5.2 the benchmark

results are discussed quantitatively and qualitatively and are
put into the philological context.

5.1 Benchmark
In order to evaluate our word spotting method’s perfor-

mance when searching for cuneiform structures, we consider
a sample set of cuneiform tablet fragments matching a typ-
ical philological use case. Based on the 2D rasterized im-
age representations we created ground truth annotations
on the fragments that can be used as a benchmark. The
ground truth consists of bounding boxes of selected relevant
cuneiform wedge constellations. This is combined with a
benchmark protocol that is already established for segmen-
tation-free word spotting and has first been presented in
[22]. Afterwards, it has been applied, for example in [19,
18, 23]. In this protocol every ground truth annotation is
used as a query and the method’s ability to retrieve relevant
occurrences of the query is measured.

The cuneiform tablets examined in this paper originate
from the ancient city of Hattusa, capital of the Hittites, dat-
ing to the second half of the second mill. BC. About 30.000
fragments of tablets are documented in almost 70.000 im-
ages and two thousand 3D-scans. This vast amount of data
is so far not searchable. However, the text on the tablets
has to be examined for collation. As big tablets often have
to be recorded on multiple images or 3D-scans, the spotting
of sought text passages gets even more time consuming.

For the benchmark we use 3D-scans of 11 cuneiform tablet
fragments from the data pool described above. Close to
a typical philological use case, the fragments were chosen
to cover a variety of different writing styles from different
scribes, but also to each contain a sufficient amount of text.
As we were interested in how the performance is affected
by the visual quality of the input images, we also payed
attention to include samples with damage or noise related
deficiencies in tablet surface quality. In order to compile
a suitable set of queries, we chose 4 wedge constellations
of different complexity that represent the real hittite signs
an, na, ti and zi as shown in figure 6. The signs consist of

Figure 6: Stylized drawings of the hittite signs an,
na, ti and zi rendered using the hittite unicode font
Ullikummi A.



Figure 5: Software Demonstrator. (Left: fragment list, Green: fragment view, Red: retrieval regions-of-
interest, Blue: retrieval heat map, Right: retrieval list)

3(an), 4(na, ti) and 7(zi) wedges and share a high frequency
of occurrence as well as a comparatively high distinctiveness,
the last of which is important to minimize occurrences of the
queries as parts of other signs. The complete sample set of
11 tablet fragments contains 500 query instances.

5.2 Results
In the considered philological use case, a philologist de-

fines a query on a cuneiform tablet fragment in order to
retrieve all similar regions on the same tablet fragment or
on all tablet fragments in the database. As mentioned in
section 3.4, we visualize the retrieval results in form of a list
of tablet image regions that are ranked according to their
similarity with the query (cf. figure 5). In this context it
is important for the philologist that the most relevant re-
gions are listed first and that the list contains all relevant
instances. Both criteria can be evaluated by computing the
average precision that refers to the area below the precision-
recall curve. While the precision describes the fraction of
retrieved results that are relevant to the query, the recall re-
flects the fraction of relevant retrieved results and relevant
results that can be retrieved for the query at all. Since the
precision-recall curve expresses the precision at different re-
call levels, the area under the curve reflects how well the list
is sorted. For a perfect retrieval result, listing all relevant
detections first, the precision is maximal for all recall levels.
In order to express the second criterion individually, we ex-
amine recall separately from average precision. The overall
results are obtained from the scores of all queries and are
reported as mean average precision (mAP) and mean re-

Table 1: Quantitative results

Tablets Fragments Queries mAP(%) mR(%)

all tablets © 11 500 41.6 65.9
avg. per tablet 4 79.9 94.3

126-p 3 126 85.2 95.1
133-r 1 36 91.6 99.6
44-a 1 50 78.2 98.6
Bo220 plus 2 73 73.0 92.5
Bo2515 1 12 78.0 97.2
Bo604 1 64 60.8 83.2
Bo49 2 139 85.4 96.6

call (mR), cf. [2]. Regarding the segmentation-free scenario
considered, it is essential to define a notion of relevance.
Therefore, we consider a detection as relevant if it overlaps
with an occurrence of the query in the ground truth by 50%
or more. It has to be noted that the query itself is also
retrieved and is typically the first result in the retrieval list.

In the remainder of this section we will discuss the specific
results obtained. First we present our quantitative evalua-
tion followed by a presentation of qualitative results. The
qualitative analysis gives an intuitive impression of typical
difficulties and achievements encountered in practice while
the quantitative analysis allows for an interpretation of re-
sults over all queries. For a more detailed understanding
of the word spotting method’s parameters, we refer to our
previous work, especially [19] and [20].

Results of the quantitative evaluation are shown in ta-
ble 1. One major challenge in spotting cuneiform struc-
tures is the high variability resulting from different writing
styles and degenerations of the tablets. As these properties
are expected to vary mainly between tablets, our evaluation
contains results from performing queries on all tablet frag-
ments as well as results obtained only from single tablets.
The results show clearly that the variability of cuneiform
structures within a single tablet is typically low, while a sig-
nificant negative influence in the evaluation over all tablets
can be observed.

The first result in table 1 shows the evaluation on all
tablets. Due to the high variability, the mean recall is rel-
atively low. Instances of the same query that differ largely
in appearance and size will not be retrieved at all in the
segmentation-free query-by-example scenario. In addition
to that, also the mean average precision is affected. With
increasing variability it becomes more and more difficult
to rank relevant instances of a query first. This is con-
firmed in the per tablet evaluation. The average perfor-
mance, weighted according to the number of queries per
tablet, improves considerably in mean average precision and
mean recall, where the mean average precision is almost two
times as high. The noticeably lower values for the fragment
Bo604 originate from a high level of physical damage on the
tablet surface and an increased variability in writing style.

The interpolated precision-recall curve (cf. [2]) for the
evaluation over all tablets and per tablet is shown in figure
7. Precision is obtained at 11 recall levels by maximum in-
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terpolation and averaged over all queries. The curves shows
that spotting performance is typically very high in the top
ranks but continuously decreases from there. The decrease
is more rapid when retrieving from all tablets than retrieving
only from single tablets. In the former case, for hardly any
query all relevant results could be retrieved. Based on the
results from table 1 it is reasonable to assume that mostly
the detections from the same tablet result in good precision
at lower recall levels, while high variabilities across tablets
result in worse precision at higher recall levels.

In the qualitative evaluation some interesting properties
can be observed with respect to the results typically achieved
in the top ranks of the retrieval list. Figure 8 shows examples
for all four cuneiform signs that have been considered in the
benchmark. On the left we show queries with overall good
retrieval performance. In the middle we show queries with
overall medium performance and on right queries that can
be considered as failure cases.

The first thing that can be observed in all cases is that
the top results presented to the philologist are visually very
similar to the query. This refers to the texture as well as
to the size and aspect ratio of the detections. Consequently,
relevant occurrences differing from the query in this regard
will not be spotted well. This is due to the query-by-example
scenario. From a single exemplary instance of the query
cuneiform structure it is hard to generalize and cope with
the variability found in the cuneiform tablets.

Further challenges can be seen in the top ranks of queries
with medium and poor performance. Cuneiform tablet de-
generations, that are part of the selected query, are modeled
in the same way as cuneiform wedges. They can have heavy
influence on the detections. In figure 8 this can especially
be observed for the medium performance query of an and
the low performance queries of ti and zi.

It is worth mentioning that cuneiform structures for dif-
ferent signs can be very similar and only be distinguishable
by single wedges. Due to their overall high similarity with
the query, these cuneiform structures will be retrieved in the
top ranks, especially if the count of differing wedges is low
compared to the total number of wedges contained in the
cuneiform sign. In figure 8 this especially applies to the low
performance query of sign an and the medium performance
query of sign zi.

Regarding possible philological use cases, our method is
able to provide a significant speed-up for searching cuneiform
structures. While manual and correct identification of all oc-
currences of a single cuneiform sign on a single tablet frag-
ment took at least several minutes, the same task with the
additional availability of a heat map could be performed
much faster. The list based query results are especially use-
ful when searching for signs with specific writing charac-

teristics across larger collections of fragments, because the
possibility of direct visual comparison in many cases elim-
inates the time consuming need to switch back and forth
between photographic documentations or hand-copies. In
addition, the generated stylized 2D representation can help
with deciphering cuneiform manuscripts. It enhances subtle
details, is easily printable and resembles the traditional style
of handwritten transliterations.

6. CONCLUSION
In this paper we presented a novel approach for segmenta-

tion-free query-by-example retrieval of cuneiform structures.
Suitable 2D rasterized image representations were generated
from 3D-scan data allowing us to substantially reduce un-
wanted variabilities that can be found in photographic doc-
umentations of cuneiform tablets. We presented a software
demonstrator that integrates seamlessly with typical philo-
logical research methods. In our benchmark evaluation we
achieved remarkable results when retrieving cuneiform signs
from single tablets. Due to the high variability observed
across different tablets, retrieval performance decreased as
expected for queries executed on the complete benchmark
data set. In the future we will cope with these challenges by
increasing the generalization capabilities of our method.
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[22] M. Rusiñol, D. Aldavert, R. Toledo, and J. Lladós.
Browsing heterogeneous document collections by a
segmentation-free word spotting method. In Proc. of
the Int. Conf. on Document Analysis and Recognition,
2011.
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