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Abstract

Training recognizers for handwritten characters is still a very time consuming task
involving tremendous amounts of manual annotations by experts. In this paper
we present semi-supervised labeling strategies that are able to considerably reduce
the human effort. We propose two different methods to label and later recognize
characters in collections of historical archive documents. The first one is based on
clustering of different feature representations and the second one incorporates a si-
multaneous retrieval on different representations. Hence, both approaches are based
on multi-view learning and later apply a voting procedure for reliably propagating
annotations to unlabeled data. We evaluate our methods on the MNIST database
of handwritten digits and introduce a realistic application in form of a database of
handwritten historical weather reports. The experiments show that our method is
able to significantly reduce the human effort that is required to build a character
recognizer for the data collection considered while still achieving recognition rates
that are close to a supervised classification experiment.
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1 Introduction

After several thousand years of human history and roughly 2,000 years after
the invention of paper, historical archives and museums store tremendous
amounts of handwritten documents. They contain information of great value
for historians and the wide public.
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Accessing this knowledge is typically not an easy task. It is necessary to browse
through either printed or digital copies of these documents, which is a very
tiresome and time consuming process. With digital copies browsing through
those documents became much easier, but it is even more comfortable if they
are indexed or transcribed. However, nowadays the transcription of documents
is still done manually by experts. Much research has been dedicated to the
task of transcribing documents automatically by recognizers, which is a very
difficult problem. Scans of old documents are often of bad quality and show
various artifacts. In addition, handwritten text shows a very high variability
that is dependent on the writer. Typically a recognizer needs to be trained
for different scripts and writers, which again requires a tremendous amount of
training material that has been annotated before.

So far research has not been able to completely remove the process of man-
ually annotating documents, but in the following we will give an overview of
methods for reducing the required manual labeling operations for training a
recognizer. The annotation task is executed in a machine-aided manner. Clus-
tering and retrieval operations are used in order to choose representatives that
are labeled by an expert annotator.

For evaluation we consider the well known MNIST dataset as well as a realistic
set of historical weather reports. In both cases the methods are able to con-
siderably reduce the amount of labeling operations to less than one percent of
the original training data. We will show that it is possible to perform labeling
with high precision, so that high recognition rates can be achieved with data
that has been labeled in a semi-supervised manner.

2 Related Work

The general idea of semi-supervised learning is to reduce the required manual
work by combining labeled and unlabeled data (cf. [34]). Typically, in such
scenarios the vast majority of data is unlabeled. The known labels must be
highly reliable and robustly be propagated to the unknown data.

High reliability of the labels can only be ensured by presenting selected samples
to an expert annotator. Additionally, the labeled subset should be representa-
tive for the remaining data since propagation is typically achieved by analyzing
sample similarity. Consequently, random selection is generally not advisable.
We utilize two different approaches for selecting a representative subset. The
first (cf. sec. 3.1) relies on clustering and selects the cluster centroids as repre-
sentatives that are labeled. The second (cf. sec. 3.2) uses a realization of the
active-learning concept where the system actively selects the data that should
get annotated based on its current knowledge in a feedback loop (cf. [26]).
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For achieving a robust propagation the concept of multiview-learning is adapted
by training an ensemble of learners (cf. [11,23]). Each of these learners has
a different view on the data, e.g., by using different features. Decisions are
made by combining the outputs of different learners. A common concept is
using a majority vote [11]. The advantages of incorporating ensembles in semi-
supervised learning approaches for robust propagation are, for example, dis-
cussed in [33].

The problem of propagating a small set of labels to a large dataset has been
studied in different fields of research. Applications include, for example, the
clusters of text documents [31], image retrieval [3,27] or the active learning
of gesture trajectories [25]. Semi-supervised approaches have also been stud-
ied in the field of character annotation [1,24]. In [1] it has been shown that
the recognition rate of a handwriting recognizer can be improved using self-
learning strategies on unlabeled data. However, in all cases an initial set of
annotations must be provided manually.

For handwritten graphical multi-stroke symbols an annotation assistance is
proposed by Li et al. [13], where the annotation of the symbols is reduced to
finding sub-graphs in a relation graph built from different segments. In the
graph the nodes are the segments and the arcs represent the spatial relation-
ships between them. The authors show that only 58.2% of the strokes need to
be labeled.

With respect to the goal of reducing the manual effort in the transcription
of historical documents, the work introduced by Toselli et al. in [29,30] has a
similar goal than ours. However, the principle differs from our approach. We
propose using a semi-supervised approach to label the data and train a new
recognizer for a given document collection, while they rather refine an existing
recognizer with feedback from the annotator.

Our own contributions to semi-supervised learning strategies for character
labeling have been introduced in [32] for characters of the Lampung script,
written in Indonesia and in [21,22] for Latin characters of the dataset of his-
torical weather reports that is also considered in this paper. In the follow-
ing we present an extended comprehensive overview of our semi-supervised
learning methods for character recognition as well as a detailed evaluation
of the clustering- and retrieval-based methods on two handwritten character
databases.
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3 Semi-supervised labeling approaches

In the upcoming sections we present two different methods that allow labeling
training data on character level with a minimum amount of manual work:
a) clustering-based labeling (CBL), and b) retrieval-based labeling (RBL).
Our main goal is not to achieve the best possible classification scores, hence
not concentrating on the most appropriate classifier selection and tuning, but
rather to show that competitive results can be achieved with semi-supervised
approaches using minimal human effort for the labeling process. To achieve
this goal a high labeling accuracy is crucial since it strongly influences the
subsequent recognition process.

3.1 Clustering-based labeling

In [21,32] we introduced a preliminary version of the clustering based multi-
view labeling algorithm for handwritten characters that requires only minimal
human effort for labeling the unknown data. The method is illustrated in
Figure 1 and can be described by four major steps:

(1) An ensemble of different views of unlabeled data is created using a set of
different feature representations.

(2) In all representations the features are clustered unsupervisedly.
(3) A single label is assigned to each cluster center by the expert annotator.
(4) Unanimity voting among the different views is used for determining the

label for each data point.

In order to implement an ensemble of representations that have a different
view on the data we compute r different setups Ri. A setup is defined as a
combination of a feature representation and a clustering method.

In every setup Ri the clustering is computed independently, creating ki parti-
tions of the data. Note that the number of clusters may vary for each feature
representation. Usually the partitions are generated using a vector quantiza-
tion algorithm, like k-Means clustering [15] or the generalized Lloyd algorithm
[14], but other unsupervised methods like Self Organizing Map [10], Growing
Neural Gas [8] or Affinity Propagation [7] can also be considered to separate
the input space into separate regions.

Once the partitioning is performed, each cluster is labeled manually by an
expert annotator. Only the cluster centroids are labeled, all other samples
belonging to the same cluster will automatically inherit the label from the
centroid. This way, the number of required manual annotations is reduced to∑r
i=1(ki). Hence, it depends only on the total number of clusters for all feature

4



Unlabeled
samples

Feature-
representation 1

Feature-
representation r

...

Clustering

Unanimity
voting

Clustering

Labeling
by

expert 
annotator

Unlabeled Partially-labeled
sample set

Fig. 1. Illustration of the clustering-based labeling approach. Given a set of char-
acters, r different feature representations of the data are computed. Each of those
representations is clustered and then a label is assigned to each of those clusters by
an expert annotator. Finally, a unanimity voting scheme is applied to assign a label
to each character, which results in a partially-labeled sample-set.

representations. Depending on the number of expected classes, large datasets
of several thousand samples can easily be labeled using only a few hundred
manual annotations.

Considering the number of clusters there are two factors that counteract: The
smaller the number of clusters, the less manual work is required, but more
clusters will represent the samples more accurately reducing considerably the
intra-class and inter-class variances.

The clustering and labeling will usually result in some incorrectly labeled
samples due to the limited capacity of the different unsupervised clustering
strategies. Assume that the labels are given as d-dimensional binary vectors
[li,1, . . . , li,d]

T ∈ {0, 1}d, i = 1, . . . r, where li,j = 1 if a sample p is assigned to
class ωj in setup Ri, and 0 otherwise. Applying a majority voting procedure
results in an ensemble decision for a specific class label ωmaxk . A threshold κv
on the ensemble decision is used for selecting only those samples where the
class membership is determined with high agreement:

ωmaxk = max
k

r∑
i=1

li,k ≥ κv. (1)

In the following, we use the so-called unanimity vote and only retain samples
for which all votes agree on the same label (κv = r). This particular voting
scheme will provide labels only for a certain amount of data points available
in the dataset. In order to avoid introducing noise in the newly labeled data,
only those samples will be considered further for training a classifier. The rest
of the samples where no unanimity was observed among the different views
are discarded from the training set.

Considering the number of parameters that have to be selected heuristically,
CBL requires the number of clusters (or some related parameter depending
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on the clustering method used) for each feature representation and, possibly,
the selection threshold in the voting step κv as inputs.

Since the feature representations are evaluated independently of each other it is
also advisable to limit the number of setups r to a small set of discriminative
features. The lower the number of representations and clusters is, the less
annotation work must be performed by the human expert.

3.2 Retrieval-based labeling

In [21] we also introduced a method that allows annotating data based on
interactive retrieval, which is illustrated in Figure 2. The approach is related
to pool-based active learning with relevance feedback (cf. e.g. [28]). In contrast
to classical or ”passive” learning, where a randomly drawn set of annotated
training samples is used for training a classifier in a single training run, the
active learning paradigm iteratively refines a classifier based on user feedback
and steered sample selection. Initialization is done using a small number of
labeled examples. Then, the following steps are iterated until some termination
criterion is met:

(1) Given an unlabeled dataset, a classifier and a sample selection function:
Select a subset of samples from the data and present it to the annotator.

(2) The annotator manually assigns labels to these samples. In a binary sce-
nario, this corresponds to labeling the retrieved samples as relevant or
irrelevant.

(3) Given the newly assigned labels, re-train the classifier.

However, our method differs in a few important aspects from this paradigm.
Most importantly, we want to retrieve labels for all possible classes (quasi-)
simultaneously. Additionally, selecting relevant samples manually from a po-
tentially very large retrieval list and presenting all of them to an expert anno-
tator counteracts the goal of reducing the burden for the annotator, especially
in the case of large multi-class datasets. Consequently, the manual relevance
feedback step is replaced by a simple automatic selection rule on the retrieval
list, propagating the annotation to unlabeled samples.

Since incorrectly assigned labels will occur in this stage, the method also
relies on a multiview voting concept. The intuition is that, if multiple runs for
the same query in several feature representations agree on a subset of samples,
then those belong to the query class with high confidence. If irrelevant samples
are retrieved in one feature representation they will not be relevant in all
perspectives and can be filtered.
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Fig. 2. Illustration of the Retrieval-based labeling approach. A query image is pre-
sented to an expert annotator. Based on different feature representations similar
characters are retrieved and the lists are thresholded. The query itself and the char-
acters that appear in the thresholded lists of all representations are added to the
labeled samples. The procedure is continued until a termination criterion is met and
the remaining characters are added or discarded based on majority voting, which
results in a partially-labeled sample-set.

The method starts with a pool of unlabeled data samples. As for CBL, r dif-
ferent feature representations are calculated. One sample is selected randomly
from the pool and visualized for the annotator, who then decides on the class
this sample represents. If the sample is heavily degraded or not recognizable
the annotator can also manually reject it. The annotator’s decision is treated
as trustworthy and the sample is hence removed from the pool of unlabeled
samples and added to the initially empty pool of labeled samples – or taken
out of the sample pool altogether in the case of a rejection.

In either case, r retrieval runs are carried out on the remaining data samples,
one for each feature representation, using the previously selected sample as
query. This results in r retrieval lists, sorted ascendingly according to the
samples’ distances to the query. The choice of a distance measure that is used
during retrieval can be arbitrary and may be chosen differently for each feature
representation. It is advisable to select a distance measure that is normalized
to facilitate the usage of a fixed threshold. For our experiments, we used the
cosine distance.

All r sorted retrieval lists are truncated at a given distance threshold κd.
Samples with a larger distance are not considered further and put back into
the sample pool. For the remaining samples whose distance to the query is
smaller than κd, the following voting rule is applied: If the respective sample is
present in all r truncated lists, it is treated as belonging to the same class as the
query with high confidence and assigned the query’s label. This is analogous to
the unanimity voting step in CBL described above. These samples are added
to the pool of trusted labeled samples and removed from the pool of unlabeled
samples. Similarly, if the query sample had been rejected by the annotator, all
samples passing this criterion are also rejected and taken out of the process.
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The remaining samples in the truncated lists are assigned a soft vote for the
query class. Assume that a sample Xp is present in Np of the r thresholded
lists. Then, the confidence γp(ωs) of Xp belonging to the query class ωs is given
by:

γp(ωs) =
Np

r
. (2)

Afterwards, the samples are put back into the pool of unlabeled samples and
a new query sample is selected.

For all selection steps but the first, a steered sample selection strategy should
be applied in order to systematically explore the available data. Here, we use a
very simple heuristic that nevertheless proved effective during our experiments.
We keep track of the number of times each sample has been considered in
the voting phase by associating a counter with each sample. The counter is
increased whenever the respective sample receives a (soft) vote. We then find
all samples in the unlabeled pool whose counters are equal to the minimum
value and randomly draw the query sample from those. Effectively, this results
in an exploration of the data set and some balancing of votes because the
selection rule will always select a sample that had a large distance to all
previous queries in all feature representations. Thus, the selected sample comes
from a volume of the feature space not (often) considered previously and
therefore is likely to belong to an unseen or rarely seen class.

The process of sample selection, manual labeling and voting amongst trun-
cated retrieval lists is iterated. However, iterating until all samples are either
labeled or rejected is not suitable because the pool of unlabeled samples tends
to decrease quickly only at the beginning. The ”good” samples whose class
membership can be determined easily are typically indentified and removed
from the pool in early iterations. As the method proceeds, the pool increasingly
consists of samples that are either outliers, considerably degraded or otherwise
”difficult” to assess. The multiview voting approach offers no advantages in
this case and is better aborted by a termination criterion.

Again favoring a simple and effective solution, we use a predefined maximum
number of iterations. A more sophisticated but also potentially very time-
consuming approach could, e.g., consist of re-training a classifier after each
labeling iteration, then analyzing the class regions or decision boundaries of
the classifier and aborting when no significant changes occur any more.

At the end of the procedure there exists a pool of samples with trusted labels
that can be used directly for classifier training. Furthermore, the available set
of class labels Ω = {ωk, k = 1...c} has evolved implicitly based on the labels
assigned by the annotator during the process. However, a significant amount
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of samples will never pass the unanimity voting criterion in the selection phase
and, therefore, remain in the unlabeled pool. Most of those will have shown
up in some of the truncated lists in several iterations, and therefore will have
received a number of soft votes for class labels. Thus, the final step of RBL
consists of processing the unlabeled sample pool again and identifying samples
whose accumulated votes indicate a class membership with sufficiently high
confidence.

For each sample Xi in the unlabeled pool, the accumulated normalized class
confidences σ̃i(ωk) are calculated from the soft votes as follows:

σ̃i(ωk) =
r

(r − 1) · ni
·
∑
t

∑
k

γi,t(ωk)δ(ut − ωk). (3)

In the above equation, r is the number of feature representations, ni is the
counter associated with sample Xi keeping track of how often the sample was
considered, γi,t(ωk) are the individual soft votes from eq. 2 assigned in the
t-th iteration, and ut is the query label of this iteration. The normalization
factor (r−1)·ni

r
constitutes the maximum possible accumulated confidence for

any class. The sample was considered ni times, and each time can receive
a maximum soft vote value of r−1

r
. Thus the accumulated class confidence

is normalized to [0, 1]. Consequently, even if ni may be quite different for
every sample, σ̃i(ωk) constitutes a normalized and comparable measure of
class confidence.

Finally, the final class label yi of Xi is determined as the one having the
maximum accumulated confidence:

yi = argmax
k

(σ̃i(ωk)). (4)

If the associated maximum confidence σ̃i(yi) is above a threshold κs, the sam-
ple is added to the list of labeled training samples. Otherwise, the sample is
rejected because the assigned label would be too unreliable.

Compared to CBL presented in the previous section, the above procedure of-
fers several advantages. No prior knowledge or assumption about the number
of classes is required because they will evolve implicitly based on the labels as-
signed by the annotator. Also, it is possible to manually reject ”bad” samples,
and the required manual effort does not depend on the number of different
representations r since they are evaluated simultaneously. On the other hand,
the impact of errors in the manual annotation can be expected to be higher.
Also, the computational load of the retrieval step depends on both the size of
the sample pool and the number of setups r, and can get very high for large
data sets. This is critical because the retrieval step is integrated in an interac-
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tive feedback loop. Consequently, for large real-world problems, the selection
of a small number of compact feature representations is advisable, limiting the
time required for distance calculation. Additionally, fast approximate search
methods (cf. e.g. [16]) could be utilized to keep the latency low.

As discussed in the previous section CBL requires parameters for the number
of clusters and the voting. RBL requires three heuristical parameters, namely
the sample selection thresholds κd, κs and the termination criterion (here, the
maximum number of manual labeling iterations Im).

4 The DWD-Dataset: A real world application

The proposed semi-supervised methods were developed in the course of a
project aiming at the automatic transcription and subsequent statistical anal-
ysis of official historical weather reports. These reports have been collected
from numerous observatories around the world between 1877 and 1999 and
consist of pre-printed tabular forms manually filled in by an observer (cf. Fig.
4a). The documents used in the following experiments were kindly provided by
the German Weather Service (”Deutscher Wetter Dienst”, DWD). Our dataset
consists of 102 documents 1 that were scanned at approximately 200dpi. The
complete weather report collection of the DWD consists of several 10,000
pages, but is currently not digitized yet. Accessing and automatically analyz-
ing the information contained in all these documents would provide meaningful
insights into long-term weather fluctuations and development over the last 150
years. Because of the pre-printed table structures additional knowledge about
the possible occurences (characters or digits) in each cell can be inferred. This
knowledge will be used for limiting the set of possible class candidates in the
following.

In the context of this paper, this data is interesting for a variety of reasons.
Firstly, the weather entries consist of handwritten characters and digits that
occur either isolated or in short strings from a very restricted vocabulary.
Therefore, a character-level analysis is feasible and sufficient for a complete
automatic transcription of all the relevant information. Secondly, although the
collection contains documents from a number of different writers, it consists
of large clusters of documents written by the same writers. This is because the
observers typically were employed fors several years. Consequently, the data is
promising for semi-supervised methods because they rely on propagating la-
bels from known samples to large clusters of similar unlabeled samples, which

1 The complete DWD-dataset containing the 102 scanned pages, extracted
handwritten characters and annotations is available for scientific research at
http://patrec.cs.tu-dortmund.de/cms/en/home/Resources/

10



Unlabeled
samples

CBL

Partially-labeled
sample set

Pre-processing:
- Table structure
   detection
- Character
   extraction

RBL

Training of
final classifier

Classification

StatisticInput document 
collection

Fig. 3. Overview of the processing steps required for the DWD dataset. First the
table structure is detected and the characters are extracted from the document
collection. Then either CBL or RBL is applied. The partially-labeled sample set is
used for training a classifier. The recognition results can be used for a statistical
analysis of weather observations.

can be safely assumed to exist given the data characteristics. Finally, since
the extracted weather information is to be analyzed statistically afterwards,
a certain transcription error rate is tolerable. An unsupervised propagation of
labels is always error-prone, and each label set acquired by a semi-supervised
method will contain a certain number of wrongly assigned labels. These will
have an impact on the final classification accuracy. Consequently, this ap-
proach is not the best choice for applications in which a very high recognition
accuracy is important. However, it is very well suited for mass-data analy-
sis where a moderate loss of character-level accuracy is acceptable, but the
manual workload associated with conventional supervised learning is not.

In the following, we provide an overview of the automatic analysis and tran-
scription system that was developed for the DWD data set (cf. Fig. 3), explain-
ing how the character and digit samples are acquired. Afterwards, we demon-
strate the applicability of the proposed semi-supervised labeling schemes for
this real world data in our experiments.

4.1 Automatic analysis of tabular documents

In order to extract isolated characters and digits from the tabular weather
documents, the table layout has to be analyzed. Given the layout, table cells
can be extracted and their handwritten contents can be further evaluated.
Matching the table structure with a template allows for identifying relevant
cells (e.g., separating pre-printed text from handwritten information) and in-
ferring knowledge about the expected type of content (characters or digits).
We provide a condensed overview of the analysis system developed for this
purpose. More details are provided in [22].

The process starts with a binarization of the image by applying the Niblack
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method [17]. This is a locally adaptive method that determines a binarization
threshold for each pixel based on gray level statistics of the pixel’s surround-
ings. Next, the Hough parameter space (cf. [6]) is calculated from the binary
document image. Line-like structures in the image correspond to local max-
ima in the Hough representation. Since the expected tabular structure can be
quite complex (cf. Fig. 4a), a locally adaptive peak search is applied instead
of a global threshold. Given a sliding window, only those local maxima are
extracted that are above the mean and a weighted standard deviation of the
surrounding pixels in the Hough representation. Additionally, non-maximum
suppression is applied, keeping only peaks that are the maximum within their
local neighborhood. This results in a list of line hypotheses that will typically
contain some false positives due to long text lines and image noise. Most of
them can be reliably discarded using a simple criterion: Assuming a rectangu-
lar tabular grid, the pairwise inclination angles between valid line hypotheses
should be approximately 0 or π

2
. Thus, for each line, a histogram of these an-

gles is calculated. A line hypothesis is discarded if its maximum bin does not
correspond to the expected values within a small tolerance threshold.

One reason for choosing the Hough Transform for table line extraction, as
opposed to, e.g., profiles (cf. [18]), is that this procedure does not require an
upright, rotation- or skew-corrected image. Thus, it is more robust against
improper scanning. In-plane rotations of the document can be corrected at
this point by analyzing the distribution of angle parameters of the extracted
lines.

Next, the line segments that correspond to actual lines in the document have
to be determined. First, all pairwise intersection points between the remain-
ing line hypotheses are calculated. These are then merged and arranged in a
rectangular axis-parallel grid by applying Mean Shift clustering [4] separately
to the x and y coordinates of extracted points. Note that Mean Shift cluster-
ing does not require the number of clusters to be known, so no assumption
about the document is made here. The cluster centers are then snapped to the
local image structure as follows: a subimage is extracted around each center’s
position, the size of which determines the maximum snapping distance. The
horizontal and vertical projection profiles of this subimage are calculated by
summing up foreground pixels along the image axes and weighting them with
a Gaussian function that penalizes large displacements. Elongated foreground
structures parallel to the summation direction will generate peaks in the pro-
files. The locations of the maximum peaks in the weighted profiles give the
snapping position. This procedure thus fits the grid nodes to local distortions
of the table structure (Fig. 4c).

For each line segment connecting neighboring nodes, a lineness score sL is then
computed as follows: The subwindow defined by the extremal coordinates of
adjacent nodes is extracted. Then, a projection profile is calculated within
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Fig. 4. Example of the table extraction. From top left to bottom right: a) Original
image. b) Line extraction on the binarized image. c) Pair-wise line intersection
points after clustering and snapping to local image distortions. d) Lineness scores
(green: High lineness, red: Low lineness). e) Grid structure after thresholding the
lineness scores. f) Fitted table structure. This graphic is best viewed in color.

this window in the direction perpendicular to the line orientation. For an
ideal line with no noise and distortions, the profile should be perfectly flat.
The less line-like the structure contained in the subwindow is, the more the
profile will deviate from this ideal form. Consequently, the normalized profile
is treated as a discrete probability distribution p = (pi, i = 1...l). In case of
a line this distribution should be uniform. Hence, the Bhattacharyya distance
[5], a normalized and symmetric distance measure for discrete distributions is
used for comparing the profile p with a uniform distribution q:

sL(p,q) = 1−
√

1−
∑
i

√
pi · qi. (5)

The lineness score sL(p,q) is normalized to the range [0, 1] and yields a mea-
sure for how closely the underlying image structure resembles a line (Fig. 4d).
False positive line segments are rejected by calculating an adaptive threshold
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Table 1
Overview of the evaluation datasets.

Dataset Character classes #Samples Training samples Test samples

MNIST 10 70,000 60,000 10,000

DWD 17 12,840 ∼8,560 ∼4,280

on the lineness scores of a document using Otsu’s method [19]. Additionally,
assuming a closed table structure, isolated lines are removed, yielding the final
table hypothesis (Fig. 4e).

However, this structure will still exhibit errors, such as false positive and miss-
ing line segments. Therefore, a template database has been created which is
queried for finding the best match based on profiles, similar to [18]. Given an
extracted grid and a template, the task is to find the translation τ and scale
ρ optimizing their alignment. The objective function is given by f(τ, ρ) =
d(PE,PT (τ, ρ)), where d is a suitable distance function (e.g., Euclidean dis-
tance), PE a horizontal or vertical profile from the extracted table structure
and PT (τ, ρ) the corresponding transformed profile of the template. This ob-
jective function has a large number of very sharp local minima because of
the regular grid structure and the binary nature of line alignment. To facil-
itate minimization, the profiles are smoothed with a Gaussian. A number of
good starting hypotheses for ρ are determined based on statistics of table cell
sizes, and τ is initially selected by aligning dominant profile peaks. The ob-
jective function is then minimized using a Simplex algorithm. This procedure
is carried out for horizontal and vertical profiles independently, and the best
template is selected by minimizing the combined score.

After applying the optimal transformation, the template is finally fitted to the
image using the snapping algorithm described above. Single cells containing
textual information can then easily be extracted from the fitted table.

5 Experiments

We evaluated our approach on two datasets. First we derived suitable param-
eters on the MNIST dataset [12] that contains samples for handwritten digits.
Then we used the set of historical weather reports in order to evaluate our
methods on a realistic task.

An overview of the two evaluation databases is given in Table 1. The MNIST
dataset consists of 28 × 28 pixel images of handwritten digits. The dataset
contains 60,000 examples for training and a test set of 10,000 samples. The
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Fig. 5. Distribution of the handwritten digits and characters in the DWD dataset.
In total there are 12,840 annotated samples in the dataset.

102 documents of the DWD dataset (see section 4) contain in total 12,840
characters and digits in 17 different classes, collected by extracting connected
components from the table cells interiors. The connected component images
were also resized to 28× 28 pixels prior to feature calculation. Ground truth
labels are available for all characters. The distribution of the characters and
digits in the database is shown in Figure 5. All documents are subdivided in a
3-fold cross-validation setup. In each validation set, approximately 2/3 of the
documents constitute the training set and the remaining the test set. Thus,
training and test set are disjoint, but overall, all documents are considered
once for testing.

5.1 Table extraction on the DWD data

As described in section 4.1 the DWD dataset requires a preprocessing step
that analyzes the tabular structure of the documents. This allows to infer
further knowledge about the content of the cells to be either characters or
digits. Hence, the set of candidate characters can be limited for each cell.

The results in Table 2 show that the proposed algorithm solves this task. 98%
of the lines were identified correctly with a small false positive rate of 2.5%.
However, most errors were caused by rectangles enclosing the document that
was matched and are therefore not relevant for the specific cell content in the
recognition step. The template matching step yielded the correct template for
the respective document in all cases.
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Table 2
Results of the table extraction approach on the DWD dataset. The percentage of
false positives is calculated with respect to the total number of detections.

Total Number Correct Missing False Positive

Nodes 19,805 19,417 (98.0%) 388 (2.0%) 492 (2.5%)

Lines 34,418 33,748 (98.1%) 670 (1.9%) 868 (2.5%)

5.2 Setups for the semi-supervised labeling

Both approaches described for labeling data in a semi-supervised manner rely
on a multiview approach of different feature representations. Furthermore,
CBL applies different clustering algorithms to the data.

In the following experiments the character images were normalized to 28 ×
28 pixels. We evaluated the following feature representations: The original
character images as observed in the database (RAW), normalized to 28 × 28
pixels, a PCA of the RAW data using the first 80 components, as well as
structural features based on contour chain codes (CC), skeletons (SKEL) and
character reservoirs (RES) [9,20]. The reservoirs were modified by considering
5 types of reservoirs (top, bottom, left, righ, loop) and using a soft assignment
of the positions of their centers of gravity to image cells. All features except
RAW and PCA were calculated on a 4 by 4 cell subdivision of the character
images by concatenating the individual cells’ representations.

For the Clustering-based annotation we considered three different cluster-
ing algorithms. Namely, the generalized Lloyd algorithm [14], Self Organizing
Maps (SOM) [10] and Growing Neural Gas (GNG) [8].

In a baseline experiment using the complete available ground truth the features
were evaluated in combination with three different classifiers. A k-Nearest
Neighbor approach, a Multi Layer Perceptron (MLP) and a Support Vector
Machine (SVM). In the semi-supervised setups the labeling was simulated by
assigning the correct ground truth label, assuming an error-free annotation.

5.3 Baseline experiments

On both databases we evaluated a baseline experiment using the complete
ground truth that is available. Note that for the MNIST database 60,000
samples are available, while the DWD dataset has only approximately 8,560
samples for 17 different digit classes. We evaluated all combinations of the
proposed classifiers and feature representations.
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Table 3
Overview of handwritten character recognition results (in %) using a 3 Nearest-
Neighbor classifier. Confidence intervals are for a significance level of 95%.

Dataset Method #Labels RAW PCA CC SKEL RES

Ground truth 60, 000 96.55±0.38 97.54±0.32 95.39±0.43 87.34±0.67 86.14±0.69

MNIST CBL 162 90.88±0.58 91.57±0.56 90.49±0.59 85.24±0.71 85.10±0.71

RBL 162 86.58±0.68 87.33±0.67 86.50±0.68 80.84±0.78 78.08±0.82

Ground truth 8,560 95.11±0.39 95.23±0.38 95.63±0.37 92.59±0.47 89.88±0.53

DWD CBL 162 92.52±0.47 92.45±0.47 92.96±0.46 90.68±0.56 88.07±0.57

RBL 162 92.75±0.46 92.96±0.46 93.30±0.45 90.09±0.53 88.04±0.57

Table 3 shows the results of the 3 Nearest-Neighbor classifier, using the Eu-
clidean distance. We also considered different neighboorhood sizes and dis-
tance metrics such as the cosine distance. However, informal experiments
showed that this parameterization of the Nearest-Neighbor classifier works
best for the character recognition tasks considered here.

Table 4 and 5 show the results of the SVM and the MLP. In comparison
with the Nearest-Neighbor approach the recognition rates of these methods
are significantly lower. The reason for this might be the extensive amount of
available ground truth samples. Hence, we considered all three classifiers for
the semi-supervised approaches since the number of labeled samples will be
smaller and more noisy.

With respect to the different feature representations, reducing the dimension
using PCA, as well as the lower dimensional chain code and skeleton features
improve the classification rate in comparison with the raw image pixels. In
contrast, the character reservoirs perform poorly.

Cluster-based labeling

Even though it would be possible to use all features for better discrimination
of the data, for efficiency reasons it is desirable to use a subset only. With the
CBL method the the expert annotator has to manually label the clusters of
each setup. Therefore, choosing too many different setups would counteract
the overall goal of reducing the manual annotation effort.

Hence, we aimed for a small number of clusters. In [22] we demonstrated that
the impact of the number of clusters is negligible if increased beyond a certain
point. Therefore, we used 54 cluster centers for each feature representation
and a combination of three different setups which requires 162 (3 × 54) label-
ing operations. An exhaustive search was performed in order to determine the
best possible combinations of features and clusterings. All different features
extracted from the MNIST training material were clustered using the general-
ized Lloyd algorithm, SOM and GNG. The resulting cluster centers were then
annotated, inferring the labels of the samples from the cluster centers.
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Table 4
Overview of handwritten character recognition results (in %) using a SVM. Confi-
dence intervals are for a significance level of 95%.

Dataset Method #Labels RAW PCA CC SKEL RES

Ground truth 60, 000 92.15±0.54 92.60±0.53 95.30±0.43 85.69±0.70 82.32±0.76

MNIST CBL 162 88.13±0.65 88.64±0.64 91.28±0.57 83.83±0.73 81.58±0.77

RBL 162 84.97±0.71 86.76±0.68 89.50±0.62 81.91±0.77 78.36±0.82

Ground truth 8,560 91.39±0.50 93.44±0.44 95.33±0.38 91.88±0.48 88.03±0.57

DWD CBL 162 89.57±0.54 91.44±0.50 92.98±0.42 90.42±0.52 86.92±0.59

RBL 162 87.86±0.58 92.18±0.48 94.45±0.41 90.93±0.51 88.04±0.57

As quality criteria, the sample recallR (percentage of retained trusted samples
after voting) and label precision P (percentage of correctly labeled retained
samples) obtained on MNIST were used. Ranking the different combinations,
the best setup was: RAW/GNG, CC/GNG, and CC/k-means. Unanimity vote
occured in R = 76.15% of the cases with a precision P = 96.10%. Thus,
45,690 annotations were inferred using only 162 manual labeling operations,
corresponding to a relative manual effort of 0.35%.

In general, GNG and Lloyd outperform SOM clustering. The improvments by
using GNG in our experiments confirm the observations that were, for exam-
ple, reported in [2]. Compared to our results in [32], the sample recall increased
substantially (approx. 21%) while the same labeling accuracy was obtained.
This shows the benefit of incorporating not only different feature representa-
tions, but also different clustering methods. The multi-view approach allows
to have a better, more diverse view on the data.

Retrieval-based labeling

In order to find suitable values for the parameters κd and κv for the retrieval
based approach, a number of experiments was conducted on the MNIST data
set. Im = 500 labeling operations were performed and averaged over 10 runs
with identical parametrization in order to smooth the effects of the random
selection. The goal was to find a range of parameters offering a good balance
between sample recall and label precision.

In accordance with the CBL we also considered 162 labeling operations and
a combination of three different setups. Numerous combinations of different
features were investigated, showing the best results for the combination of CC
+ PCA + RES.

The labeling precision is generally high, except for small values of κv. It also
degrades for small values of κd, because then only few samples will be con-
sidered in each retrieval run, and the small overall number of votes leads to
an unreliable majority decision. In terms of sample recall, the method is more
restrictive than CBL retaining large fractions of the data only for small values
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Table 5
Overview of handwritten character recognition results (in %) using a MLP. Confi-
dence intervals are for a significance level of 95%.

Dataset Method #Labels RAW PCA CC SKEL RES

Ground truth 60, 000 97.50±0.32 91.60±0.56 95.94±0.40 86.43±0.69 84.30±0.73

MNIST CBL 162 88.92±0.63 86.13±0.69 89.46±0.62 81.98±0.77 81.52±0.77

RBL 162 82.54±0.76 82.03±0.76 87.23±0.67 80.11±0.79 76.85±0.83

Ground truth 8,560 94.56±0.41 91.99±0.48 95.33±0.38 90.88±0.48 88.03±0.57

DWD CBL 162 90.74±0.51 89.95±0.53 92.45±0.47 88.42±0.57 85.38±0.62

RBL 162 91.29±0.50 91.12±0.50 94.07±0.42 88.47±0.51 85.04±0.60

of κv. While CBL enforces exactly the same number of votes for all samples it
varies in RBL. Consequently, samples at the boundary of class distributions
may get very few or inconsistent votes and thus are rejected.

In order to determine a suitable parametrization, we calculate the F3 score
F3 = 10RP

9R+P , reflecting the assumption that it is more desirable to have cor-
rectly labeled samples than retaining large portions of the original data. The
maximum score was F3 = 91.54% (R = 82.72%, P = 92.63%) for param-
eter values κd = 0.25, κv = 0.20. However, the method is not too sensitive
against the concrete choice of values (cf. [21] for details). In the following,
again favoring high precision, we will use more restrictive parameter values of
κd = 0.2, κv = 0.30, yielding P = 97.15%, R = 59.02%, F3 = 91.26% for the
above experiment.

5.4 Recognition experiments

The CBL and RBL setups derived in the previous sections are evaluated in a
character recognition experiment on the MNIST and DWD database. Our goal
is to show that both methods perform reliably on different character datasets
and that tuning the parameters to specific problems is not necessary. The later
one is very important, since it will not be possible in real applications.

We use the partially labeled training sets that are created by CBL or RBL in
order to train the classifier and evaluate it on independent test sets. Since in
the proposed methods only a fraction of the original training data is labeled,
the performance of the baseline experiment using the complete ground truth
can be seen as an upper limit on the accuracy that can be achieved.

Applying the proposed labeling schemes to the MNIST data results in a sub-
stantial loss in recognition rates. The reason is that both methods rely on
discovering clusters of similar samples, i.e., from the same writer or written in
the same style. Since the MNIST data is very diverse and contains hundreds
of writers this assumption is violated resulting in a loss of accuracy. RBL per-
forms worse than CBL because propagating the labels based on the retrieval
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lists proceeds considerably slower than labeling the large portions of data con-
tained within a cluster. Our experiments showed that the performance of RBL
keeps increasing until approximately 400–500 manual annotations were per-
formed (still a relative effort of less than 1% of the 60,000 annotations). The
saturated recognition score is then comparable to CBL. Nevertheless, we keep
the number of manual operations equal in both methods to get comparable
results (for further details refer to [21]).

However, for the DWD data, which is much more homogeneous in terms of
writing style, the results obtained with RBL are close to or better than CBL.
As discussed in [22], a drawback of CBL is that it tends to discard rare classes
in the case of highly unbalanced data since they do not form individual clusters
and thus are eliminated by the unanimity voting. While this did not occur for
the balanced MNIST set, only 13 out of 17 classes were recovered on average
on the DWD data. With RBL, all 17 classes were retained. This shows a
major advantage of the RBL approach: Because of the steered sample selection,
under-represented classes are less likely to be discarded.

In addition, both CBL and RBL are close to the baseline experiment. This
clearly shows the potential of semi-supervised methods, provided that large
portions of the data show similar characteristics. Hence, the methods are espe-
cially promising for large single-writer collections, as, for example, in historical
archives. Only very little manual effort was required. Performing the 162 label-
ing operations manually was a matter of a few minutes, which is an impressive
result for robustly recognizing the characters in about 100 documents.

Similar results have been achieved for the annotation of Lampung characters
[32], an Indonesian script. Using the CBL method only 0.48 % of the characters
had been labeled by the manual annotator. The remaining samples inherited
the labels correctly after the majority voting of three views: Raw, PCA and
an encoder network. A recognition rate of 86.2% for 11 different lampung
character classes could be achieved using a partially-labeled sampleset.

Concerning the different classifiers it can be observed that for the more noisy
samples obtained by the semi-supervised labeling the SVM and MLP perform
much better in relation to Nearest-Neighbor than in the supervised case. The
reason for this is probably the influence of incorrectly labeled samples on the
Nearest-Neighbor approach. Even a single incorrectly labeled sample could
influence the prediction of several neighbors in the test set. Hence, for CBL
classification rates of the SVM and Nearest-Neighbor approach are not signif-
icantly different on both datasets. Furthermore, for RBL the best results are
achieved using the SVM.
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6 Conclusion

In this paper we discussed the advantages of semi-supervised labeling strate-
gies involving minimal human effort, proposing two different methods to label
and later recognize characters in large historical archive datasets. Both ap-
proaches are based on multi-view learning, incorporating different feature rep-
resentations, and a voting procedure for reliably propagating labels assigned
by an expert annotator.

Our experiments showed that even with a labeling effort of far less than 1%
reliable results can be achieved. Several thousand labels were inferred by only
162 manual labeling operations, reducing the effort for training a recognizer
to several minutes. We especially demonstrated the effectiveness on large scale
single-writer databases. In this case the recognition rates are remarkably close
to the upper limit defined by a baseline experiment that uses the complete
ground truth. Additionally, we presented a realistic application that is highly
dependent on reducing the human effort in order to make a huge collection of
historical weather reports available for analysis.
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