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Abstract—This paper addresses the automatic transcription
of handwritten documents with a regular tabular structure. A
method for extracting machine printed tables from images is
proposed, using very little prior knowledge about the document
layout. The detected table serves as query for retrieving and
fitting a structural template, which is then used to extract hand-
written text fields. A semi-supervised learning approach is applied
to this fields, aiming at minimizing the human labeling effort for
recognizer training. The effectiveness of the proposed approach
is demonstrated experimentally on a set of historical weather
reports. Compared to using all labels, competitive recognition
performance is achieved by labeling only a small fraction of the
data, keeping the required human effort very low.

I. INTRODUCTION

In archives and museums, huge collections of handwritten
documents exist that are of great value for historians and
scientists. However, accessing the information contained therein
involves browsing through printed catalogues, or searching
through piles of documents by hand. In many cases, direct
access is not possible at all because the documents may be
irreparably damaged in the process. Consequently, there is much
effort in digitizing such collections. But scanning documents
to images is not sufficient when searching for some specific
information, in which case the documents should be indexed
or transcribed. This is still mostly done manually by expert
annotators, a very time-consuming and tiresome work, and only
comparatively small amounts of documents can be recorded this
way. Thus, considerable effort has been dedicated to automate
the process, which is a challenging problem.

Old document scans often are of bad quality and exhibit
artifacts and disturbances that are rarely encountered in modern
documents (cf. e.g. [13]). Additionally, opposed to printed
characters, handwriting recognition depends heavily on the
script style, and thus on the writer. Consequently, recognizers
typically have to be trained specifically for a given writer
or writing style, and cannot be easily reused or adapted for
a different one. This requires frequent re-training and huge
amounts of labeling effort. In order to make this process more
efficient, the involved manual effort has to be reduced. This is
where this work seeks to contribute.

In the following, a specific document collection is considered
(cf. Figure 1), namely weather reports recorded between the
years 1877 and 1999, provided by the German Weather Service
(”Deutscher Wetterdienst”, DWD). They contain daily reports

Fig. 1. Examples for the documents considered in this work.

on the weather conditions at a given time and location, written
into the fields of a printed table by an observer using a well-
defined syntax and vocabulary, and are of great interest for
creating statistics and analyzing long-term weather fluctuations.

In order to reduce the labeling effort, firstly a method
for automatically extracting tabular structures from document
images is developed. The structure may be arbitrary, but it
is assumed that all table fields are delineated by graphical
lines. Errors are corrected by fitting document templates, using
the extracted structure as query. From the retrieved table, text
fields are extracted. It is demonstrated how a recognizer can
be trained on these by labeling only a small fraction of the
data. First experiments on a realistic data set are presented,
showing promising results for the proposed approach.

II. RELATED WORK

In order to achieve automatic transcription of documents,
the contents have to be analyzed in detail. Opposed to retrieval
(cf. e.g. [6], [23]) or indexing approaches (cf. e.g. [17]), where
only a subset of relevant keywords needs to be recognized,
full text recognition is required. Since, ideally, a complete
electronic representation is generated, transcribing documents
enables, e.g., full text or contextual search, efficient storage
and transmission, and automatic content analysis.

Typically, the transcription process consists of several
processing steps. After preprocessing, the logical structure
of the document has to be analyzed. This includes separating
text from figures, identifying titles, sections, etc., and is referred
to as layout analysis (cf. e.g. [3]). Afterwards, text areas have
to be split into individual lines. For free-form text, this is



typically achieved by explicitly detecting text lines [13]. For
official documents and forms that often have a known structure,
text extraction can be achieved by searching for the expected
structure with some template, and then using the information
from the template to extract the text fields (cf. e.g. [14]).
However, this generally requires additional effort in creating
the templates and fitting them to the documents.

After the extraction of text lines, the text has to be transcribed.
Since single characters are hard to segment in handwritten
script, recognition is either performed at word level (cf. e.g. [8])
or based on time-series analysis of oversegmented connected
components (cf. e.g. [2]). Successful methods that have been
used for this purpose are, e.g., Hidden Markov Models [16],
[22] or connectionist approaches [11], [20].

The goal of the presented work is similar to [2], in the
sense that it also aims at analyzing official documents with
a known structure. It is also closely related to recent work
on table structure detection and graphic lines extraction (e.g.
[14]). For recognition, this paper focuses on isolated digits and
characters, leaving recognition of handwritten words for future
work. The main goal is to demonstrate that, firstly, complex
tabular structures can be extracted with high accuracy, and
secondly, high recognition rates can be achieved by manually
annotating only a small fraction of the data. For this purpose,
methods from the fields of semi-supervised learning [1], [21]
and classifier ensembles [10] are adopted. The ultimate goal
is the development of an interactive content analysis system,
where the automatic recognition modules support a human
expert, and incrementally learn to improve their predictions
based on the given feedback, similar to [19].

III. SEMI-SUPERVISED RECOGNITION APPROACH

The proposed approach to document analysis consists of
three steps: Table extraction, template fitting, and recognition
of extracted text fields using semi-supervised learning. In the
following, each step will be explained in detail.

A. Table structure detection

The table extraction process starts with a binarization of
the image by applying Otsu’s method [15]. For the data set
considered here, this efficient global method was sufficient.

Next, the Hough parameter space H(r, φ) [7] is calculated
from the binary document image. In this representation, local
maxima correspond to line-like image structures. Since the
expected tabular structure can be quite complex (cf. Fig. 1),
with considerable variations in line length and spacing, applying
a global threshold on the Hough accumulator values will not
yield satisfactory results. Therefore, a locally adaptive peak
search is applied in a sliding window scheme.

Given a sliding window of size (w, h), strong local max-
ima are extracted as peak-over-average locations (r̂i, φ̂i) :
H(r̂, φ̂) > µw,h+γσw,h, where r̂, φ̂ are the coordinates of the
window’s center bin, and µw,h, σw,h are the mean and standard
deviation of bin values inside the window, respectively. The
parameter γ controls the sensitivity of the peak detection and
was set to γ = 2.5 in all reported experiments. Additionally,
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Fig. 2. Example of the grid extraction (best viewed in color). From top left
to bottom right: Pair-wise line intersection points. Grid points after clustering
and snapping to local image distortions. Lineness scores (green: High lineness,
red: Low lineness). Grid structure after thresholding the lineness scores.

non-maximum suppression is applied, keeping only peaks that
are the global maximum within their local neighborhood. This
results in a list of line hypotheses y = (r̂i − x cos φ̂i)/ sin φ̂i.

Adjusting γ such that most table lines are extracted will
typically yield some false positives. Most of them can be
reliably discarded using a simple criterion: Assuming a
rectangular tabular grid, the pairwise inclination angles between
valid line hypotheses should be approximately 0 or π

2 . Thus,
for each line, a histogram of these angles is calculated. A
hypothesis is discarded if its maximum bin does not correspond
to the expected values. The histogram bin size specifies the
tolerance of the procedure.

One reason for choosing the Hough Transform for table
line extraction, as opposed to, e.g., profiles (cf. e.g. [14]), is
that this procedure does not require an upright, rotation- or
skew-corrected image. In-plane rotations of the document can
be corrected at this stage by analyzing the distribution of angle
parameters of the extracted lines.

Let α be the in-plane rotation angle of the document.
Assuming that most line hypotheses actually correspond to grid
lines, the values of φ̂ will cluster around either −α, π2 − α or
π − α, depending on the direction of the rotation and whether
the respective line is horizontal or vertical. By calculating

αmini = min(|φ̂i|, |φ̂i −
π

2
|, |φ̂i − π|) · smini

for each line, where smini is the sign of the respective minimum
element before taking the absolute value, a histogram in the
range [−π2 ,

π
2 ] is formed. This yields a prominent peak around

the histogram bin corresponding to the true rotation angle.
Thus, α is calculated as weighted average over the bin center
values that contribute to this peak.

Next, the line segments that correspond to actual lines in the
document have to be determined. For this purpose, all pairwise
intersection points between the line hypotheses are calculated.
These are then merged and arranged in a rectangular axis-
parallel grid by applying Mean Shift clustering [4] separately
to the x and y coordinates of extracted points. Note that Mean
Shift clustering does not require the number of clusters to be
known, so no assumption about the document is made here.

The cluster centers are then snapped to the local image
structure as follows. A subimage is extracted around each



center’s position, the size of which determines the maximum
snapping distance. The horizontal and vertical projection pro-
files of this subimage are then calculated. Elongated foreground
structures parallel to the summation direction will generate
peaks in the profiles. A Gaussian weighting function N (µ, σ)
is applied, with 4σ corresponding to the size of the profile in
the respective direction, penalizing large displacements. The
locations of the maximum peaks in the weighted profiles give
the snapping position. This procedure thus fits the grid nodes
to local distortions of the table structure (Fig. 2 top right).

For each line segment connecting neighboring nodes, a
lineness score sL is then computed as follows: The subwindow
defined by the extremal coordinates of adjacent nodes is
extracted. A minimum size of the subwindow is enforced,
in order to be robust against small localization errors. Then,
the horizontal or vertical profile is calculated, depending on
whether the grid points are neighbored horizontally or vertically.
For an ideal line with no noise and distortions, the profile should
be perfectly flat. If the image structure in the subwindow is
not a line (e.g. text or broken lines), it will deviate from this
ideal shape. Consequently, the normalized profile is treated as
a discrete probability distribution p = (pi, i = 1...l), and a
robust measure for comparing discrete distributions is adopted,
the Bhattacharyya distance, originally proposed in [5]:

sL(p,q) = 1−
√

1−
∑
i

√
pi · qi. (1)

Thus, sL(p,q) measures the similarity between p and a
uniform distribution q (i.e. qi = 1

l ). Since sL(p,q) is
normalized to the range [0, 1], it yields a comparable measure
for how closely the underlying image structure resembles a
line. Using Otsu’s method again, an adaptive threshold on the
lineness scores is defined to reject false positive line segments.
Finally, isolated lines are found and removed, yielding the final
table hypothesis (Fig. 2 bottom right).

B. Template retrieval and field extraction

The extracted table structure will typically exhibit errors,
such as false positive and missing line segments. Therefore, it
is used as a query to find the best match in a template database.
The template fitting is based on profiles, similar to [14].

Given an extracted grid and a template, the task is to find
the translation τ and scale ρ optimizing their alignment. Let
PE be a profile (horizontal or vertical) calculated from the
extracted grid by summing up distances between adjacent
nodes and normalizing with the image size, and PT (τ, ρ)
the corresponding transformed profile of the template. The
objective function is given by f(τ, ρ) = d(PE ,PT (τ, ρ)),
where d(...) is the Euclidean distance, and is minimized using
a Simplex algorithm. Because of the symmetric grid structure,
f(τ, ρ) has many local minima. Consequently, the profiles
are smoothed with a Gaussian, yielding a smoother objective
function. A good value range for ρ can be determined based
on statistics of table cell sizes, and τ is initially selected by
aligning dominant profile peaks. This way, the optimization is
seeded with a small set of reasonable starting points.

The above procedure is carried out for horizontal and vertical
profiles independently, and the best template is selected by
minimizing the combined score. After applying the optimal
transformation, the template is finally fitted to local image
structures using the snapping algorithm described in Section
III-A. Text fields can then easily be extracted from the fitted
grid. In order to discard enclosing grid lines, the local snapping
procedure is applied again to the field’s corner nodes, but this
time fitting them to the background instead of the foreground,
and restricting the snapping direction to the field’s interior.

C. Semi-supervised sample labeling

After extracting the text fields, their contents have to be
analyzed. The proposed recognition approach keeps the required
human effort low while maintaining high recognition rates.
Since the manual labeling of training data is a laborious and
costly procedure, a labeling method involving minimal human
effort was proposed in our previous work [21]. The idea behind
the method is simple: Label as few samples as possible and
infer the labels for other samples automatically.

The labeling process consists of three major steps. First,
the data samples should be represented differently in order
to exploit their separability in different feature spaces. Conse-
quently, an ensemble of r feature representations Rj , j = 1...r
is created. Then, each representation is clustered into kj clusters,
where kj may differ for each representation. Instead of labeling
all the samples, only the centroids of the clusters are labeled,
and the rest of the samples in the cluster inherit the label. This
implies

∑
j kj manual labeling operations. However, inheriting

the labels from the cluster centroids will yield some incorrectly
labeled samples, since, generally, the clusters will not be pure.

Thus, the final step of the labeling procedure is to robustly
infer reliable labels for the remaining data. For each data point,
r labels are assigned based on the clustering. Applying a voting
procedure results in an ensemble decision for a specific class
label. Opposed to conventional multiview learning, the labels
are not assigned blindly, but the ensemble decision is used
to select only those samples for subsequent classifier training
where the class membership is determined with high confidence.
In the unanimity voting scenario [10] used here, samples will
only be selected for training if all their labels agree.

IV. EXPERIMENTS

In the following, experimental results on realistic data are
presented. The target document collection contains thousands
of pages, but unfortunately, only a limited amount of scanned
data was available for the experiments reported here.

A. Data description

The data set consists of 58 scanned pages written by
three different writers. They contain wind directions and
strengths, written in the fields of a printed table. There are five
different types of documents, with different table structures
and arrangement. The documents suffer from scanning artifacts
and moderate fainting, as well as considerable yellowing.



Total Correct Missing False Pos.
Nodes 19,805 19,417 (98.0%) 388 (2.0%) 492 (2.5%)
Lines 34,418 33,748 (98.1%) 670 (1.9%) 868 (2.5%)

TABLE I
RESULTS OF THE TABLE EXTRACTION APPROACH.

Ground truth for the text recognition was obtained by
manually correcting and labeling connected components. Then,
samples were created with the proposed approach by extracting
connected components from the text fields. Labels were
assigned by finding the best matching annotation in terms
of bounding box overlap. In total, the data consists of 7, 860
samples in 17 classes (digits 0–9, characters N, S, W, O, E,
T, I, L). Note that ’0’ and ’O’ are treated as one class, since
they are indistinguishable even for a human. The data set is
unbalanced, since the classes 9, E, T, I, and L occur very rarely.

B. Features

For the semi-supervised labeling, r = 4 different data
representations were considered: The raw image, normalized
and centered similarly to the MNIST handwritten digit dataset
[11], a Principal Component Analysis (PCA) representation,
dimensionality reduction based on an autoencoder (AE) network
[9], and a representation obtained by non-negative matrix
factorization (NNMF, [12]). The raw image was selected for
its high capabilities of separation [11], while the PCA discards
low variance components and decorrelates the feature values.
NNMF is reported to decompose objects into meaningful parts.
Finally, the AE is a feature learning method based on neural
network training. For the PCA, the first 80 principal components
were used. Similarly, the AE bottleneck size and NNMF data
dimensionality were also set to 80. This is a heuristic choice,
motivated by the approaches in [11], [20].

C. Automatic table structure extraction

In order to evaluate the table detection, the extraction algo-
rithm was applied to all documents using identical parameters.
The extracted grid structures were then visualized on top of the
respective images, and errors were counted manually. There are
four types of errors: Missing grid nodes, missing line segments,
false positive nodes and false positive segments. A fifth type
would refer to correct nodes not located reasonably on the grid.
However, this error never occurred.

The evaluation results are given in Table I. For nodes and
lines, a correct detection rate of around 98% is achieved, with
a moderate false positive rate of 2.5%. Most of the latter
come from five documents where an enclosing rectangle was
detected around the circumference of the image due to artifacts
from scanning and rotation correction. Overall, only 13 grid
lines were missed completely. These results clearly show the
effectiveness of the table extraction approach. In the subsequent
template retrieval, the correct template was selected in all
cases. In 4 out of 58 cases, the localization had to be corrected
manually, mainly due to missing lines on the table boundary.

Class. # Labels Raw PCA AE NNMF
3-NN 6,550 84.1±0.8 86.9±0.8 81.0±0.9 82.0±0.9
3-NN 200 85.6±0.8 86.9±0.8 81.9±0.9 83.2±0.8
RVM 200 n/a 82.7±0.9 74.4±0.9 80.7±0.9
MLP 200 n/a 82.2±0.9 78.4±0.9 82.4±0.9
3-NN 6,550 87.1±0.8 88.9±0.7 84.0±0.8 85.4±0.8
3-NN 200 87.9±0.7 89.0±0.7 83.7±0.8 86.9±0.8
RVM 200 n/a 85.3±0.8 80.0±0.9 84.9±0.8
MLP 200 n/a 85.9±0.8 83.0±0.9 86.3±0.8

TABLE II
OVERVIEW OF HANDWRITING RECOGNITION RESULTS. TOP HALF: RESULTS
WITHOUT FIELD TYPE CONTEXT. BOTTOM HALF: RESULTS UTILIZING FIELD

TYPE KNOWLEDGE FROM THE TEMPLATE. ALL VALUES ARE IN %.
CONFIDENCE INTERVALS ARE GIVEN FOR A CONFIDENCE LEVEL OF 0.95.

D. Semi-automatic labeling and recognition

In the following, the different data representations were
clustered to kj = 50 clusters, respectively, using the k-means
algorithm. All experiments were performed in a 6-fold cross
validation scheme using ten (eight for set six) documents for
testing and the rest for training. Thus, all documents were
considered once in the overall test set. A K nearest neighbors
(K-NN, K = 3) classifier, a Relevance Vector Machine (RVM,
[18]) with a Gaussian kernel and a multi-layer perceptron (MLP,
cf. e.g. [20]) were investigated as classifiers. For multi-class
classification with the RVM, a 1-vs-1 majority voting setup
was used. The concensus sample set and labels obtained by
unanimity voting were used for training.

Table II gives an overview of the results. For comparison, the
scores obtained by using all ground truth labels for training are
also presented. All four feature representations were considered
for classifier training. The best overall result was obtained with
the PCA data, yielding 86.9% correct classifications. With the
proposed semi-supervised labeling approach, also 86.9% were
achieved. It should be noted that, due to the cluster-based
labeling, the effective number of classes tends to decrease.
Samples belonging to very rare classes do not form individual
clusters, but are assigned randomly and eliminated during the
voting process. This occurs more often the smaller the number
of clusters gets. The effective number of classes, averaged
over cross validation sets, was 12.17 for the semi-supervised
experiment, and 16.83 when using all ground truth labels.
Hence, the scores are not directly comparable.

Nevertheless, the experiment shows that competitive perfor-
mance can be achieved by labeling only a small fraction of the
data using the proposed approach. Instead of labeling 6, 550
samples on average per cross validation set, only 200 manual
labeling operations (3.1%) were necessary. The best results
were consistently achieved using the 3-NN classifier with the
PCA data, while results for the RVM classifier were always
significantly worse. Note that only a very rough parameter
optimization was carried out for the RVM.

In a second experiment, it was assumed that context informa-
tion about the field type (numeric or character) was available
(e.g. from the document template). Two separate sets of
classifiers were trained using only samples of the corresponding
type, and test samples were assigned based on their context.



Fig. 3. Recognition rates (PCA, 3-NN) when varying the number of clusters.
Red horizontal lines: Confidence interval using all ground truth labels (88.9±
0.7%). Confidence intervals for the measurements are indicated by vertical
bars. Dashed curve: Amount of samples selected by the unanimity vote.

Not surprisingly, this led to a significant improvement in
performance (Table II, lower half). The best result is again
obtained with PCA data and the 3-NN classifier, yielding 89.0%
correct classifications. For comparison, a different clustering
approach using a 2D self-organizing map (SOM) with 7× 7
nodes was investigated. The results were generally significantly
worse than those presented above, and therefore are not shown
in detail. Here, the best performance was achieved with PCA
data and the 3-NN classifier at 84.1 ± 0.8% without and
86.4± 0.8% with context, respectively.

Finally, Figure 3 shows the recognition rates when varying
the number of clusters from 30 to 200 (1.8% to 12.2% of
manual labels, respectively) using PCA data, 3-NN and field
type context. The variations are insignificant when the number
of clusters is increased beyond 50. Most results are also within
the confidence interval of the optimal result obtained by using
all ground truth labels. This clearly shows the effectiveness of
the proposed semi-supervised sample selection procedure. The
relative amount of training samples selected by the unanimity
vote is given by the dashed curve. As expected, it increases
with the number of clusters, since the granularity gets finer.
Consequently, the average effective number of classes increased
from 11.67 (kj = 30) to 13.33 (kj = 200). However, this does
not have a positive effect on the performance. Apparently, a
sufficient subset of ”good” training samples can already be
obtained with relatively few clusters.

V. CONCLUSION

This paper considered the problem of recognizing handwrit-
ten fields in tabular historical weather reports with minimum
human effort. To this purpose, an approach for automatically
detecting delineated tabular structures was presented. These
were then used to retrieve matching document templates from a
database. Relevant fields were extracted automatically from the
fitted tables. Furthermore, a semi-supervised labeling approach
based on an ensemble decision was presented that requires
only very few manual labeling operations. The proposed
approach was evaluated on a set of real documents, and very
promising results were achieved for both the table extraction
and semi-supervised recognition. Specifically, it was shown

that competitive recognition rates can be achieved by manually
labeling only small fractions of the available data.
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