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Abstract. In human-machine interaction, gestures play an important role as input modality for natural and intuitive interfaces.
While the usage of sign languages or crafted command gestures typically requires special user training, the class of gestural
actions called ”emblems” represents more intuitive yet expressive signs that seem well suited for the task. Following this, an
approach for the visual recognition of 3D emblematic arm gestures in a realistic smart room scenario is presented. Hand and
head positions are extracted in multiple unsynchronized monocular camera streams, combined to spatiotemporal 3D gesture
trajectories and classified in an Hidden Markov Model (HMM) classification and detection framework. The contributions within
this article are threefold: Firstly, a solution for the 3D combination of trajectories obtained from unsynchronized cameras and
with varying frame rates is proposed. Secondly, the suitability of different alternative feature representations derived from a hand
trajectory is assessed, and it is shown that intuitive gestures can be represented by projection on their principal plane of motion.
Thirdly, it is demonstrated that a rejection model for gesture spotting and segmentation can be constructed using out-of-domain
data. The approach is evaluated on a challenging realistic data set.
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1. Introduction

The development of alternative input modalities for
Human-Machine-Interaction (HMI) and smart envi-
ronments has seen considerable advancement in recent
years, driven by the ever growing complexity of de-
vices and the functionalities they offer. This also im-
plies a growing complexity of operation, pushing con-
ventional input devices towards the limits of their ca-
pabilities, and accordingly raising a need for new types
of interfaces.

Currently, two major developments can be ob-
served: The first aims at overcoming the need for phys-
ical devices both for input and information display,
leading to the development of ubiquitous or ambi-
ent touch screens (cf. e.g. [47]). However, they often
rely on conventional WIMP (Windows, Icons, Menus,
Pointers) interfaces, leading to interaction scenarios
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that are considerably less constrained, but sometimes
not very intuitive in their usage. The second major cur-
rent aims at improving the intuitiveness of device op-
eration by analyzing the behavior of the users and in-
corporating natural and intuitive modes of human in-
teraction. It is in the latter field where this article seeks
to contribute. However, combining the best of both
worlds should be the ultimate goal.

Natural inter-human communication is clearly multi-
modal, including facets like speech and gesture as well
as gaze, facial expression and body language. While
some of these modalities may be very subtle and sub-
ject to considerable variations between users, speech
and gestures are much more explicit. Thus, they have
been studied extensively as cues interpreting user in-
tents and building human-centered interfaces.

This work focuses on the automatic visual recogni-
tion of dynamic arm gestures in a smart room scenario.
The vision of smart environments also encompasses
the absence of dedicated devices, like displays or key-
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boards, replacing them with ubiquitous computational
services that can be accessed from anywhere at any
time. Consequently, the user should not be constrained
to a certain position or setting when interacting with
the environment. Hence, for gestural interfaces, this
implies that view- and position-invariant recognition is
needed. To achieve this, this work aims at recogniz-
ing gestures in 3D space using a (potentially arbitrary)
multi-camera setup.

Since the term gesture has been used in very differ-
ent – and, sometimes, misleading – meanings (ranging
from 2D fingertip motions to full-body actions), some
clarification is needed.

In linguistics and semiotics, a variety of gesture tax-
onomies exist (cf. eg. [13]). According to Kendon [23],
three major classes of gestures can be identified: On
one end of the spectrum, there is what is generally
called gesticulation. It is the most intuitive type of
gestural action, and is typically accompanying other
modalities such as speech. Thus, gesticulation is in-
herently multi-modal [12], and the mutual interactions
between subconscious processes in generating speech
and accompanying gesticulation are complicated and
subtle. Therefore, automatically analyzing gesticula-
tion is a very challenging task due to its subjective and
unconscious nature.

At the other end of the spectrum are artificially cre-
ated “alphabetic” gestures, like sign languages and
crafted command gestures. They exhibit a well-defined
structure and meaning and are therefore well-suited for
automatic interpretation, but typically lack intuitive-
ness and require extensive user training in order to be
used fluently.

In between resides a class of gestures that is often
called ”emblems”. These are gestural actions that are
well-defined and convey a certain meaning on their
own within a certain cultural region. Therefore, their
meaning and usage can be learned very easily or may
even be understood intuitively. Thus, emblems seem
especially suited for natural HMI.

Although directly transferring these concepts – orig-
inally related to natural fluent interaction between hu-
mans – to HMI is difficult, we adopt the term ”em-
blem” in the following to denote simple iconic gestures
that either closely resemble ”natural” emblems or can
convey an easily understandable meaning.

This article focuses on recognizing one-armed dy-
namic emblems performed by cooperative users. Within
this field, the contribution is threefold: Firstly, tech-
niques for the combination of results from unsyn-
chronized camera streams are developed. This is chal-

lenging because hypotheses generally do not coincide
temporally and may arrive with different and varying
frame rates, rendering straightforward 3D reconstruc-
tion techniques ineffective in the case of moving scene
objects.

Secondly, a variety of feature representations de-
rived from the 3D trajectory of a moving hand is an-
alyzed, assessing their suitability for the task. This
includes feature types that go beyond normalized or
user-centered point coordinates, which is the predom-
inant approach in the literature. Additionally, moti-
vated by the observation that most emblematic ges-
tures have a simple structure and exhibit an inherent
planar nature, a simple scheme for estimating their
principal plane of motion is presented. It is shown that
this plane, hereafter referred to as a gesture’s ”action
plane”, can be used to calculate a virtual view of the
trajectory suitable for normalization and classification.

Thirdly, it is demonstrated experimentally that a
meaningful rejection model can be learned using out-
of-domain data.

2. Related Work

The relevance of gestures for natural HMI – either
as exclusive cue or as part of multi-modal systems
(cf. e.g. [40]) – is undisputed. Accordingly, there is an
abundance of related publications, and it is impossible
to give an exhaustive overview in this section. Most re-
cent work in the field focuses either on the recognition
of specially crafted artificial gesture alphabets and sign
language in somehow restricted settings [30,45] or on
the interpretation of full-body movements from video
or inertial sensor data [49], generally referred to as ac-
tion recognition (cf. e.g. [33,43] for recent surveys of
the field).

While the shortcomings of artificial gesture alpha-
bets for the purposes of general MMI have already
been mentioned, full-body action recognition is related
closely to emblematic gesture analysis, but typically
operates on a higher level of abstraction. Instead of cre-
ating an input modality for HMI, it rather aims at ana-
lyzing human behavior in surveillance settings, or for
scene understanding. Approaches from the field may,
however, also be suitable for gestural interfaces.

Dynamic arm gestures can be defined by subsequent
movements of a few prominent points (e.g. joint posi-
tions) relative to the body. Thus, given a spatiotempo-
ral track of these points, recognition is a problem of
time-series or trajectory analysis. Measurements like
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in [3] indicate that, for simple stroke-like arm move-
ments, the trajectories of the joints and hand are qual-
itatively very similar. This suggests that the problem
can be reduced to the classification of the hand’s tra-
jectory only. Indeed, good results have been published
using this approach (cf. e.g. [14,15,29]), indicating its
validity. In [41], bimanual movements are classified
by combining the trajectory with a shape descriptor
of the hand, whereas [1] use the centroid positions
of hand candidates and their mean optical flow. In
[7], the spatiotemporal trajectory is mapped to discrete
symbols with a Self-Organizing Map. These are then
augmented with optical flow features. Combinations
of 2D hand trajectories and associated inertial sensor
data have also been used [5,34]. Some authors propose
the usage of joint trajectories obtained from full body
model tracking [46,48].

Trajectory recognition generally requires the accu-
rate localization of certain points on the body. This
is a hard and error-prone task, and some approaches
therefore avoid the usage of point trajectories. Gaus-
sian density features extracted at visual interest points
are applied in [25], and gestures are classified using a
protocol learning strategy. In [28], histograms of local
optical flow are used, while a representation based on
spatiotemporal contours is proposed in [27]. Silhouette
images are utilized in [24], whereas [22] extract local
motion signatures by tracking Histograms of oriented
Gradients (HoG) descriptors.

Regarding classification, (Hidden) Markov Models
((H)MM) have been used extensively to model the spa-
tiotemporal characteristics of dynamic gestures [5,6,
7,14,15,24,28,29,41]. Other classification approaches
that have been proposed include Dynamic Time Warp-
ing [27], Dynamic Bayesian Networks [34] and vari-
ants of Conditional Random Fields [14,46].

Interestingly, only few approaches exist that aim at
view-invariant recognition of 3D arm gestures. Some
authors proposed the usage of short-baseline stereo
cameras to incorporate 3D information [6,29,46].
Short baseline settings can provide some invariance
against out-of-plane rotation, but cannot cope well
with occlusion and therefore still require the user to
approximately face the camera. In [24], eight dif-
ferent gestures for controlling certain functions of a
smart room are recognized by learning a mapping
from silhouettes of multiple viewpoints to key pos-
tures, whereas [48] utilize a multi-camera setting for
tracking the 3D pose of a body model. In the latter, the
intention to use the inferred model postures for gesture
recognition is mentioned, but not carried out. In [8], a

multi-camera setup is utilized to infer 3D pointing di-
rections, but the method relies on strong assumptions
and includes no explicit gesture recognition.

In this work, several of the approaches mentioned
above are brought together in a way that, to the au-
thors’ best knowledge, has not been done before. The
goal is the view-invariant recognition of emblematic
arm gestures in a potentially arbitrary multi-camera
setup using 3D trajectory information. The position of
the user within the environment – and in relation to
the cameras – should be as unrestricted as possible,
and the gesture analysis should be done markerless and
without tracking devices, i.e. based only on visual ev-
idence. Recognition as well as detection is achieved
within an HMM framework. In the following, the com-
ponents of the system are explained briefly, starting
with the 2D image processing pipeline followed by
the 3D integration phase. Afterwards, the recognition
framework is presented and evaluated in detail on a re-
alistic hand gesture dataset.

3. Visual Recognition of 3D Emblematic Gestures

Intuitive usability of a gesture-based man-machine
interface (MMI) implies that the interaction space
should not be subject to artificial constraints. For ex-
ample, restricting the interaction space to a predefined
area, camera setup or specific user pose requires the
user to be instructed about those restrictions. In a smart
environment, however, the user ideally should not even
be aware of where the sensors are. Furthermore, re-
quiring the user to wear markers or specialized track-
ing gear would impose severe limitations on the gen-
eral applicability of such a system, and its acceptance.

Therefore, the goal is a 3D recognition framework
based on contactless visual cues utilizing off-the-shelf
cameras in a principally arbitrary multi-camera setup.
The only assumptions that are made are that there is
only one person visible at a given time, that the user’s
upper body and gesturing hand are visible in at least
two cameras, and that he/she is aware of the possibil-
ity of gestural interaction and willing to use it. Figure
1 shows an overview of the proposed approach. The
individual components will be described shortly in the
following, without going into too much detail, since
the concrete acquisition of the trajectories is not the
main focus of this article. A more detailed overview of
an earlier version of the image processing pipeline is
given in [36].
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Fig. 1. Overview of the proposed approach.

The key assumption is that arm gestures may be an-
alyzed using the trajectory of the active hand alone,
which means that no expensive full-body model track-
ing is required. While this seems like a strong assump-
tion, its validity – for the type of gestures considered
here – is indicated by the good results reported in the
related literature. The first step is the extraction of 2D
spatiotemporal hand and head trajectories in the in-
dividual camera image streams. These are then com-
bined into a 3D trajectory, which is normalized to a
common reference frame afterwards. For normaliza-
tion, the projection of a gesture on its action plane
is proposed and assessed, additionally to conventional
normalization approaches for the 3D trajectory. The
obtained normalized representation is then classified in
an HMM framework.

3.1. 2D Trajectory Acquisition

In order to extract gesture trajectories, persons and
their gesturing hands have to be detected first. Here, a
sliding window detector based on Histograms of ori-
ented Gradients (HoG) [11] and a Multi-Layer Percep-
tron (MLP) classifier is utilized. The detector does not
rely on skin color or face structure, but uses the shape
of the head-shoulder line instead. Therefore, it is able
to detect persons under a large variety of poses and
viewing angles. Real-time performance is achieved by
restricting the search window using adaptive back-
ground subtraction. Additionally, once the user has
been detected reliably, his upper body is tracked us-
ing a Mean Shift histogram tracker [9] with an adap-
tive color model. The tracking result is used to further
constrain the search space and also helps to eliminate
false detection hypotheses, whereas the detection re-
sults can be used to detect tracking failure. By com-
bining tracking and detection in this way, we achieve a

reliable person localization with a very low number of
false positives.

The centers of the head-shoulder detection rectangle
in subsequent frames form the head trajectory. Hand
candidates are found combining motion detection with
a skin color model. Since the head-shoulder detection
gives an estimate of the position of the person’s head,
it can be used to train a personalized adaptive color
model online. Therefore, pixels are extracted in an el-
liptic area around the detection center, assuming that
some skin should be visible most of the time. From
these, a histogram model is computed using a Gaussian
spatial weighting function. More details can be found
in [36].

The resulting series of spatial image coordinates for
head and hands are aggregated into 2D spatiotemporal
trajectories. A simple greedy aggregation algorithm is
used to identify valid assignments. It calculates tem-
poral and spatial distances between hypotheses and
existing trajectories, assigning to each trajectory the
best-fitting hypothesis, creating new trajectories from
points that were not assigned, and deleting trajectories
that did not receive an assignment for a longer period.
For the somewhat idealized data used here (cf. Sec.
4.1), this is sufficient. However, further work is still re-
quired on this part in order to be able to reliably deal
with multiple hypotheses and false detections.

The trajectories are then postprocessed using Gaus-
sian smoothing to eliminate detection jitter, and short
tracks of duplicate points are removed. Longer tracks
are kept because they indicate an idle phase of the ges-
ticulating hand.

3.2. 3D Combination

Given spatiotemporal trajectories from at least two
cameras, the original 3D gesture trajectory can be re-
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constructed. At this point, it should again be pointed
out that the cameras used in the data recording were
not synchronized, and the obtained frame rates were
not stable due to variations in the 2D processing dura-
tion. Thus, hypotheses from different cameras gener-
ally have been recorded at differing points in time. The
implication of this is that the 3D reconstruction cannot
be assumed to be exact (specifically, it makes a volu-
metric reconstruction based on silhouettes infeasible),
and the individual 2D trajectories have to be aligned
prior to combination. It also implies that the recon-
structed 3D trajectories may be affected by consider-
able noise and inaccuracies, which makes the recogni-
tion task challenging.

The alignment algorithm starts by identifying the
longest overlapping subsequence of two trajectories
from different cameras, given their timestamps. Cur-
rently, a segmentation of continuous trajectories into
gesture instances is assumed. This can be easily
achieved by, e.g., searching for idle phases of a hand,
but obviously poses a limitation to the applicability in
an unconstrained scenario. The start and end points of
alignment candidates do not have to be aligned, since
only the temporally overlapping parts are considered.
Note that, in a multi-camera setting, a view selection
algorithm can be applied for choosing the two “best”
views, which would considerably reduce the num-
ber of possible combinations. In [37], it was demon-
strated that a reasonable ranking of camera views can
be achieved based on simple bottom-up features.

Then, both trajectories are interpolated bilinearly at
the points in time given by the data points of the re-
spective other trajectory. The resulting interpolated tra-
jectories have an equal number of points with pairwise
matching timestamps that are then projected to 3D by
ray casting.

Because of the temporal interpolation, detection in-
accuracies and the discretization of the image plane,
the rays will generally be skewed. Thus, there is no
exact reconstruction point. An approximative projec-
tion is calculated as follows: Given two aligned points
pi(t) = (pxi(t), pyi(t)), qj(t) = (pxj(t), pyj(t))
from cameras i and j at time t (we omit these indices in
the following for readability), their corresponding 3D
rays rp = ci +γp′ and rq are obtained by backprojec-
tion using the respective camera calibration matrices
Ψi and Ψj :

p′ = Ψ̂−1i p. (1)

Here, ci is the projection center of camera i, p′ is the
ray’s directional vector, Ψ̂i is the left 3×3 submatrix of
Ψi, and similar for rq . The two directional vectors p′

and q′ along with ci define a plane P : nTx− λ = 0,
with the plane normal n = p′×q′ and the location pa-
rameter λ = nT ci. P contains rp and is parallel to rq .
Thus, translating rq by d = nT cj − λ along n moves
rq into the plane, and the intersection point v of the
transformed rays can be calculated. The reconstructed
3D point u is then given by linear interpolation

u = (1− αi

αi + αj
)·v+(1− αj

αi + αj
)·(v+dn), (2)

where αi and αj are confidence measures for the point
positions in the individual images. This way, proba-
bilities for individual hypotheses, e.g. obtained during
the detection stage or assigned based on whether a tra-
jectory point is an interpolated point or real observa-
tion, can be incorporated in the combination. Setting
them to equal values yields the mean point along the
direction of n where the two rays are closest. Also, hy-
pothesis selection or rejection can be done based on
d, assuming that, as d gets larger, the likelihood that
p and q are corresponding points yielding a valid re-
construction gets smaller. This way, outliers or trajec-
tory points stemming from false detections can be dis-
carded. Also, a complete alignment hypothesis can be
discarded if the overall reconstruction error or the ratio
of discarded points is too high.

The resulting 3D trajectory T = {uk, k = 1...n}
finally is resampled and smoothed using impulse re-
sampling [18]. The general idea is to incorporate a mo-
mentum term related to the orientation v(t− 1) of the
last resampled trajectory segment

v(t) = α
ul − û(t− 1)

‖ul − û(t− 1)‖
+ (1− α)v(t− 1),

(3)

û(t) = û(t) + v(t),

where û(t) is the resampled trajectory point at time t
and ul is the next original trajectory point that has not
yet been reached. Resolution control can be achieved
by only adding every mth resampled point to the new
trajectory. Since the resampling depends only on the
current and last trajectory segment, the algorithm can
easily be applied incrementally to online data.
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3.3. The Action Plane

Trajectories consisting of absolute spatial coordi-
nates are not suited well for the recognition task be-
cause they would directly depend on the user’s global
pose in the environment. Thus, the interaction setup
and the amount of variation allowed in the gestures
would have to be seriously constrained to achieve re-
liable results. Normalization to some common refer-
ence frame and abstraction from the absolute positions
is necessary.

A simple approach to achieve this are user-centered
coordinate systems, or the usage of derivative or delta
features that do not encode the absolute values of tra-
jectory points, but rather their consecutive changes (cf.
e.g. [6,29]). However, these still depend on the choice
of coordinate system and the global alignment of the
trajectory in 3D space.

Another possibility that is investigated here arises
from the observation that typical emblematic gestures
consist of relatively simple movements, where mostly
one joint angle is modified at a time, the others remain-
ing approximately constant. Consequently, the 3D tra-
jectory exhibits an inherent planar characteristic. This
suggests that the gesture trajectories may be repre-
sented without too much loss of information by pro-
jecting them on an appropriate plane. A similar as-
sumption has been made in [34] to compensate for
camera pan and tilt. Opposed to them, however, in the
presented setup the plane may be oriented arbitrarily
in space, and will only rarely coincide with any of the
image planes. This concept will in the following be re-
ferred to as the ”action plane”, and it will be shown
how an estimation of such a plane can be derived and
used as a common reference frame for normalization.

Given a 3D trajectory T = {t1...tm} with m points
ti = (txi, tyi, tzi), a plane P : nTx− λ = 0 is sought
that best approximates T. This can be formulated as
a least-squares regression problem with the objective
function

f(n) =

m∑
i=1

(nxtxi + nytyi + nztzi − λ)2 → Min,

(4)

assuming that n is normalized to unit length. This is
a well-known problem, and the plane’s normal n is
given by the Eigenvector corresponding to the smallest
Eigenvalue of Ψ = MTM, M = (tx,i − t̄x, ty,i −
t̄y, tz,i − t̄z), with the data mean t̄ = 1

m

∑m
i=1 ti.

Calculating a regression plane in this way may re-
sult in a solution strongly influenced by outlier points.
Therefore, the above procedure is carried out on the
consensus set obtained from RANSAC [19]. Since n
and −n correspond to the same global orientation of
the plane and the sign depends on the choice of points,
n is forced to always point towards the mean of head
detections. When the above procedure is applied in-
crementally to online data, a smoothness constraint
should be applied to the orientation of n to avoid
abrupt changes. One possibility is adding a penalty
term taking into account the angle between two con-
secutive plane normals in the model selection phase of
RANSAC.

Furthermore, the procedure is problematic if T con-
sists predominantly of a linear motion. In this case, the
orientation of the plane is not well defined, since all
planes containing the predominant line will get sim-
ilar model scores. To cope with such cases, a simple
heuristic is applied: Assuming that each command ges-
ture is addressing an interaction partner – even a virtual
one, e.g. some visible sensor representing the monitor-
ing system – it will be conducted intuitively such that
it can be seen and interpreted by the interaction part-
ner. Consequently, gestures with an action plane that
is oriented towards the floor or ceiling are less likely
to occur. Thus, instead of selecting from RANSAC the
single best model, all models Pj that have a score sim-
ilar to the best one (within a reasonable threshold) are
analyzed. Among these, the action plane P̃ is selected
according to the angle between the plane normal and
the vertical axis z:

P̃ = Pk : k = arg min
j

njz. (5)

Projecting T onto P̃ requires an 2D orthonormal co-
ordinate system in P̃ . An obvious choice would be the
Eigenvector corresponding to the largest Eigenvalue of
M as first axis. The second axis is then given by its
cross product with n. This results also in a normaliza-
tion of the global gesture orientation, which may not
always be intended (e.g. horizontal and vertical ges-
tures of the same type will no longer be separable) and
would make the orientation of the coordinate axes de-
pendent on the part of the trajectory that is currently
analyzed. Indeed, previous experiments [35] showed
that this is not a good choice for the considered data.

Thus, a different solution is presented here, where
the global coordinate system is rotated into the plane
such that the original x-axis is always parallel to the
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Fig. 2. Examples of action plane projections. Original images with overlaid hand trajectories and their 2D representations for “circle” (left) and
“horizontal wave” (right).

ground plane and the original y-axis is parallel to the
plane normal. The plane coordinate system is then
formed by the x and z axes of the transformed coor-
dinate system. The mean of projected trajectory points
t̄ is chosen as coordinate origin. Figure 2 shows some
projection results. The whole procedure can be inter-
preted as estimating a virtual camera with an opti-
mal view of the gesture, followed by a coordinate nor-
malization. It will be shown later that this projection
indeed captures the properties of the trajectory suffi-
ciently well.

3.4. Detection and Classification with Hidden
Markov Models

HMMs are a popular tool for time-series analysis
because of their ability to model temporal relationships
between samples in a sound probabilistic framework.
Furthermore, they provide an integrated approach for
segmentation and classification. Their properties are
well understood and efficient algorithms exist for train-
ing and inference. Therefore, they have been widely
used, and their discriminative power has been demon-
strated on a wide variety of tasks. In the following,
the general model structure used in this work will be
presented. For details on the theoretical background of
HMM, please refer to e.g. [16].

An HMM is a probabilistic graphical sequence
model that represents a two-stage stochastic process
with hidden states and observable output. The first
stage is a discrete stochastic process that can be viewed
as a probabilistic finite state machine, i.e. state transi-
tions occur according to transition probabilities. Each
state can generate outputs according to some proba-
bility distribution. If this distribution is a continuous
function that is modeled individually for each state, the
model is called a continuous HMM, which represents
the predominant modeling approach in the literature.

Typically, the output probability densities are mod-
eled with Gaussian Mixture Models (GMM). In this
work, so-called semi-continuous HMM are applied,
which use a single codebook of Gaussians that is
shared among all model states. This is advantageous
when the amount of available training data is small,
since the number of free parameters in the model is
decreased. Discrete HMM are not considered here be-
cause the data is continuous, and a discretization to a
set of symbols would result in a loss of information.

In the following, each gesture is modeled by an indi-
vidual semi-continuous HMM, considering linear and
Bakis model topologies (Fig. 3). The number of states
in each model is initialized automatically according to
the minimum observation length of the respective ges-
ture class. The GMM is modeled with diagonal co-
variances, and parameter training is performed using
the standard Baum-Welch algorithm. In the recogni-
tion phase, all individual gesture models are decoded
in parallel (cf. Fig. 3) using Viterbi Beam Search.

Additionally, for continuous detection and recog-
nition, a rejection criterion is needed. Here, a so-
called garbage model (also called background or Null
model) is adopted. This approach, which was origi-
nally developed for continuous speech recognition (cf.
e.g. [2]), uses an additional HMM that is trained on
non-gesture data and competes with the gesture mod-
els during decoding. All subsequences in the decoded
state sequence that correspond to the garbage model
are treated as rejections. An open source HMM tool-
box [17] is used for the implementation of the recog-
nition framework.

3.5. Trajectory Features

Early work on view-invariance for trajectory-based
gesture recognition was done by Campbell et al. [6],
who analyzed several alternative trajectory represen-
tations. Their findings still dominate the way trajecto-
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Gesture n

Gesture 1

Gesture n

Gesture 1

linear
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Fig. 3. HMM model structure. Left: Linear (top) and Bakis (bottom) topology. A Bakis model can skip states. Center: Model structure used for
recognition: All gesture models are decoded in parallel. Right: Model structure used for segmentation/detection: A garbage model is added that
is also decoded in parallel. In order to detect multiple occurrences, a backward edge has to be introduced, linking the terminal states to the start
states of the models.

ries are represented in current approaches. Usually the
trajectory is transformed into some common reference
coordinate system and represented as Euclidean or po-
lar normalized coordinates, sometimes along with ve-
locity information. Similar problems – analyzing the
spatiotemporal trajectory of a point or set of points –
exist in other fields of research.

One example is online handwriting recognition (cf.
[31] for an overview of the field). Interestingly, very
different types of features have been developed there,
although the classification methods used are very sim-
ilar: State of the art handwriting recognizers are typi-
cally either also based on HMM [38] or on connection-
ist approaches [20]. But the features used to describe
time-series of points are much more diverse. Exam-
ples include velocity and curvature along with shape-
describing features of short trajectory segments [20]
or Hu moments [10]. In [18] and [38], pen pressure,
vicinity, curliness and features relating the trajectory
to the baseline are used. Appearance-based descriptors
and higher-level structural features, like ascenders, de-
scenders and crossings, are also frequently combined
with online trajectory features (e.g. in [20][38]).

Some of these lack a straightforward resemblance
for the task of gesture recognition. E.g., pen pressure is
not available, and features referring to a baseline (like
ascenders and descenders) are difficult to apply, since,
opposed to handwriting, it is not clear what the base-
line of a gesture should be. Still, a multitude of in-
teresting features for trajectory representation remain,
and impressive results have been published in the field.
To the best of the authors’ knowledge, many of these
features have not been applied to 3D dynamic arm ges-
ture recognition before. One contribution of this ar-

ticle is to analyze the suitability of some of those,
more specifically, curvature information and vicinity
features, and compare their performance to common
trajectory representations.

The features used for representing gesture trajecto-
ries are mostly motivated by [20]. Some changes are
made to adapt them to the different characteristics of
the data. In order to increase robustness against noise
and detection errors, the features are calculated in a
sliding window scheme.

Let Oi = {oi, ...,oi+w−1} be the trajectory points
in the ith sliding window with sizew and median point
om
i . Then, the features are calculated as follows:

Raw trajectory: Mean point of the window:
Ōi = 1

w

∑
k ok, k = i...i+ w − 1

Normalized trajectory:
Ôi = (Ōi − H̄i)/h̄, where H̄i is the mean 3D
head position for the trajectory in the 3D case,
and the coordinate origin in the 2D case (thus, the
normalization of the 2D trajectory comprises only
scaling, since the position is already normalized
by the plane projection). h̄ is the average height
of the person calculated from the head positions.
The goal here is to obtain a normalization of the
overall gesture reach by assuming that it is rela-
tive to the person’s height.

Normalized polar trajectory:
Pi = {|ri|, φi}. For the 3D case,

ri = (Ōi−H̄i)/h̄, φi = arctan(
√
r2xi + r2yi/rzi),

i.e. the radius between mean trajectory and mean
head point inside the window normalized by
the person’s height and the elevation angle of
their connecting line. Note that the azimuth angle
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would correspond to the global orientation of the
person, so it is not included. For 2D, |ri| and φi
are polar coordinates in the plane relative to the
coordinate origin.

Velocity: The mean velocity of data points in the win-
dow, i.e.
vi = 1

w

∑i+w−1
k=i+1 (ok−ok−1)/(tk− tk−1) where

tk is the time associated with ok. The mean mag-
nitude of the velocity vectors is also included.
Again, recall that the trajectory points may be ob-
served with a varying frame rate. Thus, the ve-
locity feature is different from the trajectory delta
feature.

Curvature: Curvature is defined as the cosine and
sine of the angle between the vectors from om

i to
oi and oi+w−1.

Vicinity: These features are intended to describe the
general shape of a feature window. Let di =
oi+w−1−oi be the vector connecting the window
boundaries. The vicinity features comprise the
vicinity aspect α = (|dyi| − |dxi|)/(|dyi|+ |dxi|)
for 2D data and three values with permutations
of the vector components for 3D data, the cosine
and sine of the angle between di and the x-axis
or ground plane, respectively, the ratio between
the length of the connecting line and the trajec-
tory length li = |di|/

∑i+w−1
k=i+1 |ok − ok−1| and

the average sum of squared distances between tra-
jectory points and di.

Orientation change: For two subsequent windows
Oi and Oj , the orientation change is calculated
as the cosine and sine of the angle between di and
dj .

Head distance: The mean distance between points in
Oi and the mean head position H̄i, normalized
by h̄. This feature encodes some very weak repre-
sentation of the spatial relation between gesturing
hand and head.

All features together yield 20 and 25-dimensional
feature vectors for 2D and 3D points, respectively, and
twice the size including delta features.

4. Experiments

In the following, detailed evaluation results on a re-
alistic gesture dataset will be presented. First, the fea-
sibility of the different feature representations is as-
sessed in a classification setting using manually seg-
mented and annotated data. Afterwards, results ob-
tained in a segmentation scenario are presented.

4.1. Experimental Setup and Data

The evaluation took place in a realistic setup inside
a smart conference room (cf. e.g. [26]) equipped with
several Sony EVI D70P pan-tilt-zoom cameras. The
cameras are mounted on the ceiling and are calibrated
intrinsically and extrinsically. Throughout the experi-
ments, the same pair of cameras was used. In neutral
position, their principal axes form an angle of approxi-
mately 90◦, but their orientations were changed several
times during data recording.

A set of nine emblematic command gestures was
chosen such that they either resemble natural gestures
that are commonly used, or their meaning can be un-
derstood intuitively. Some examples are shown in Fig.
4. The gestures are:

horizontal wave: Raise forearm to approximately
head height, then perform several repetitions of a
horizontal waving motion.

vertical wave: Wave hand vertically parallel to the
body.

up: Raise forearm towards shoulder with the open
hand pointing upwards, then push hand upwards
above head level.

down: Raise forearm towards shoulder with the open
hand pointing downwards, then push hand down-
wards below waist level.

circle: Perform a repetitive circular motion at approx-
imately shoulder height.

comehere: Extend arm towards addressee, then move
hand in a wide bowing motion towards shoulder.
Can be repetitive.

goaway: Starting at waist level, move hand back a bit,
then perform a fast, wide bowing motion forward
and upwards towards the addressee.

stop: Starting from relaxed position, move hand at
head height by flexing the elbow joint, hold it
there for a short period.

point: Starting from relaxed position, point with ex-
truded arm. This gesture is special in two as-
pects. Firstly, it is not purely emblematic, since
it defines a reference to the surroundings and can
only be evaluated taking into account the envi-
ronmental context. Secondly, while all other ges-
tures are performed in a similar position relative
to the body, no pointing targets were specified and
the subjects could point to wherever they wanted,
leading to very large variations in the global tra-
jectory orientation.
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Fig. 4. Selected (cropped) examples of the gesture set with original trajectories overlaid. Gestures marked with (R) are repetitive, (r) indicates a
gesture that may or may not be repetitive. From left to right: “circle”(r), “come here”(r), “down”, “go away”(r), “point”, “stop”, “up”, “horizontal
wave”(R) and “vertical wave”(R).

The potential meanings conveyed by these gestures
can be used in a variety of scenarios, e.g. directing a
mobile robot, steering computational attention, or con-
trolling services of the smart room. The set contains
short one-stroke as well as more complicated repetitive
gestures, and gestures that can be both.

Short sequences of still images were recorded from
17 different people each performing one to three in-
stances of each gesture with their right as well as their
left arm. The sequences were captured with a resolu-
tion of 378 by 278 pixels at a nominal frame rate of 20
Hz. Since the recording infrastructure was built in a de-
centralized and unsynchronized way in order to mimic
the structure of the processing pipeline, the frame rate
actually varies, and typically is considerably less than
20 Hz. No instructions on gesture speed, absolute or
relative position, etc., were given. The subjects were
allowed to move freely inside the cameras’ fields of
view, including their orientation with respect to the
cameras. Thus, the dataset is quite challenging since
it contains multiple viewpoints as well as considerable
variations in gesture appearance, speed and trajectory
diameter. In total, it contains 51,217 images and 800
gesture instances.

The positions of hands and heads were annotated
semi-automatically. First, the 2D head and hand detec-
tion algorithm described in chapter 3.1 was applied.
The generated hypotheses were then inspected man-
ually. Missing detections were added and erroneous
hypotheses were corrected. In general, if a hypothesis
from the detector was remotely correct, it was kept.
The reason for this is that the goal of this evaluation is
the assessment of the trajectory aggregation, 3D pro-
jection and classification stages, so we assume a rea-
sonable detection of point hypotheses. Furthermore,
the gesture instances were segmented manually, with
considerable variations in starting and end points as
well as number of repetitions. From the 2D trajecto-
ries obtained in this way, the 3D projections were com-
puted using the described algorithm. The resampled

trajectory lengths vary between 16 (“comehere”) and
364 (“vertical wave”) data points.

4.2. Classification experiment

The first experiment is carried out using the pre-
segmented gestures. One HMM model is trained for
each gesture type (left and right handed gestures are
not distinguished) using 14 persons of the dataset. The
models are then evaluated on the remaining 3 persons.
This is repeated in a 5-fold cross validation scheme ,
where the respective training and validation sets are
composed differently for each run. Thus, the reported
results are person-independent and evaluated on 15 out
of the 17 persons contained in the dataset.

Two different types of HMM topologies (see Fig. 3)
were considered and trained with different parameter
sets. In particular, the number of mixture components
in the GMM and the model length were varied. The
latter was determined by multiplying the shortest ob-
served sequence for each gesture by a constant factor.
Suitable values for those parameters were selected on
a very coarse grid (150, 200 and 250 mixture compo-
nents, length scaling of 0.5, 0.75 and 1.0) based on ex-
perience with HMM from other fields and previous ex-
perimental results [35]. For feature extraction, sliding
window sizes of 5, 7 and 9 were applied, with 50%
window overlap.

First, the different features are evaluated indepen-
dently. In the following, the best results over all pa-
rameter combinations will be reported along with the
corresponding parameters, if not stated otherwise. Ta-
ble 1 summarizes the results for 3D trajectory and 2D
projection features.

For the 3D case, using the delta of the raw trajec-
tory yields a classification accuracy of 84.0 +/-2.7%
(all confidence intervals reported in this chapter re-
fer to a significance level of 95%), obtained with a
Bakis model, a window size of 5, a codebook con-
taining 150 densities and a model length scaling fac-
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Table 1
Classification accuracy in % for single features (left) and respective
derivative (∆) features (right). The best results for each trajectory
type are highlighted. Confidence intervals (+/-) are given in brackets

Feature 3D 2D ∆3D ∆2D

Raw traj. 56.1 (3.7) 76.2 (3.2) 84.0 (2.7) 78.0 (3.1)
Norm. traj. 78.5 (3.1) 79.8 (3.0) 49.0 (3.7) 76.2 (3.2)
N. polar 80.3 (3.0) 76.7 (3.1) 77.5 (3.1) 81.3 (2.9)
Curvature 39.6 (3.6) 39.8 (3.6) 43.2 (3.7) 42.7 (3.7)
Headdist. 59.7 (3.6) 61.2 (3.6) 27.7 (3.3) 25.9 (3.3)
Orientation 42.5 (3.7) 40.5 (3.6) 45.5 (3.7) 46.1 (3.7)
Velocity 80.8 (2.9) 71.3 (3.4) 75.5 (3.2) 68.7 (3.4)
Vicinity 71.6 (3.3) 66.7 (3.5) 67.2 (3.5) 56.8 (3.7)

tor of 0.75. The number of states in the best mod-
els for the different gestures, averaged over the cross
validation runs, are shown in Tab. 2. With the corre-
sponding 2D features and the same model topology
and feature extraction window, 78.0 +/-3.1% accuracy
is achieved. The best result for the 2D features is 81.3
+/-2.9%, obtained using the delta normalized polar tra-
jectory with a linear model and window size of 9. This
model has a codebook of size 200 and a scaling fac-
tor of 0.75. The number of states for the gesture mod-
els is considerably smaller (Tab.2). This is due to the
model type (Bakis models generally are initialized at
twice the size of similar linear models in order to cor-
rectly model the skipping of states) and the larger fea-
ture extraction window, which results in shorter tra-
jectories. Apart from the normalized trajectory repre-
sentations, reasonable results are also achieved using
the gesture’s velocity profile and the vicinity features
for both 2D and 3D. Interestingly, even the very sim-
ple one-dimensional head distance feature can encode
some gesture characteristics, indicating that even weak
relative positional information can contribute to the
task. Similar findings are reported in [4], where british
sign language gestures are classified using simple lin-
guistic features encoding relative positions.

While some loss of information for the 2D features
is expected due to the projection, the results show that
this loss is small. This represents a substantial im-
provement compared to previous experiments [35]. It
appears that the choice of the coordinate system is crit-
ical for the action plane, and was not appropriate be-
fore. Hence, the assumption about the inherent planar
nature of the gestures used here seems valid. This is
also backed up by the small average reconstruction er-

Table 2
Average model lengths (number of model states) for best reported
results and average reconstruction errors (in mm) per trajectory point
for projected 2D gesture trajectories

Gesture #States 3D #States 2D RError

h. wave 27 7 21.8
v. wave 54 14 29.7
up 11 3 8.0
down 18 5 14.8
circle 37 10 17.1
comehere 12 3 13.4
goaway 12 3 10.6
stop 16 4 8.0
point 19 5 8.7

rors given in Tab. 2. Looking at the raw trajectories,
for the 2D case, the accuracy of 76.2% is close to the
best results, indicating that the proposed action plane
is indeed suitable to obtain abstraction from global
world coordinates. The importance of this abstraction
becomes obvious when looking at the best result for
the raw 3D trajectory, which is significantly worse at
56.1%. However, this accuracy is still a lot better than
expected, indicating some bias in the dataset towards
certain global positions. Specifically, there definitely is
a strong bias in global orientation, since the delta of
the raw trajectory, which yields the best result in 3D,
is not invariant against this.

Revisiting the data revealed that indeed many of
the subjects tended to position themselves such that
they approximately faced one of the cameras frontally,
without being told so. Thinking about it, this is hardly
surprising: The cameras incorporate the addressee or
interaction partner, and it is normal and intuitive hu-
man behavior to face the addressee during interac-
tion. Consequently, the problem of view-invariance –
at least against large out-of-plane rotations – probably
is not as grave as could be expected, provided that the
user is aware of the whereabouts of the system’s sen-
sory equipment (or, putting it differently, the sensors
can be perceived as some kind of avatar or interface
agent of the system).

Considering combinations of the above feature
types, previous experiments indicated that no signifi-
cant improvement can be expected [35]. Since all fea-
tures are calculated from the same trajectory points, it
can be assumed that they are strongly correlated. Ad-
ditionally, increasing the feature dimensionality also



204 J. Richarz and G. A. Fink / Visual recognition of 3D emblematic gestures in an HMM framework

Table 3
Best Classification accuracy for PCA features in %. Confidence intervals for the highlighted results are provided in the text

No. of PC 1 2 3 4 5 6 7 8 9 10 12 15

3D 56.1 75.9 81.6 85.3 86.3 88.3 87.8 87.2 86.7 86.0 86.7 86.7
2D 45.7 70.6 82.0 86.0 85.6 86.6 84.6 85.0 85.3 85.6 84.6 84.4
2D+3D 55.2 76.7 81.7 86.2 86.6 87.8 89.8 89.2 88.6 88.5 88.2 86.5

Table 4
Explained variance for Principal Components (in %), averaged over cross validation sets and feature window sizes. The maximum standard
deviation of values is less than 0.08, indicating that the variations in feature extraction and cross validation composition have only minor influence

No. of PC 1 2 3 4 5 6 7 8 9 10 12 15

3D 12.5 22.6 31.6 39.3 46.0 51.2 56.1 60.5 64.3 68.0 73.5 80.7
2D 12.8 23.1 32.8 41.5 47.7 53.7 58.6 62.7 66.7 70.5 76.6 84.0
2D+3D 12.0 21.9 30.7 37.2 42.4 46.9 50.9 54.5 57.5 60.5 66.0 73.4

leads to an increased model complexity with a larger
number of free parameters. One drawback of HMM
models is that they need large amounts of training data
in order to reliably capture the data statistics. Given
the relatively small number of training examples in the
database, this property becomes critical if the feature
dimension is increased beyond a certain point.

So, instead of combining several of the above fea-
tures by simply concatenating them, Principal Com-
ponent Analysis (PCA) is applied to achieve decorre-
lation. Using the same cross-validation scheme as be-
fore, the complete feature representation (all feature
types + derivatives) of the respective training set is first
normalized to zero mean and unit variance to account
for different feature dynamics. Afterwards, the Prin-
cipal Components (PC) are calculated, and the result-
ing transformations are also applied to the validation
set. Finally, classifiers are trained using different num-
bers of Principal Components. Table 3 summarizes the
results. Additionally, the (average) percentage of data
variance explained by a certain number of PC is given
in Tab. 4.

Using PCA features indeed results in an improve-
ment in classification accuracy. Interestingly, the influ-
ence of both the feature extraction window size and the
model parameters appears to be minor. The only ex-
ception is the length scaling parameter, where a value
of 1.0 (i.e. setting the number of states in the HMM
equal to the length of the shortest observation sequence
in the respective class) considerably degrades perfor-

mance. This may be due to the larger number of free
parameters in combination with the relatively small
amount of training data. Apart from this, similar results
(around 88 to 89%) were achieved throughout most pa-
rameter combinations (not shown in the table). Specifi-
cally, the best reported classification accuracy (89.8 +/-
2.3%) was given by two substantially different mod-
els: Bakis with a codebook size of 250 and a scaling
of 0.75, and Linear with 150/0.5, both with a window
size of 9 and using the first 7 PC (i.e. approx. 51% of
the feature variance) of the combined feature set. This
improvement is significant.

Using 3D and 2D features only yields a slightly
worse accuracy at 88.3 +/-2.4% and 86.6 +/-2.5%, re-
spectively (with explained variances around 51 and
54%). Although these improvements – compared to
the single feature results – are not significant, the over-
all results indicate that the classification can bene-
fit from the incorporation of different alternative fea-
tures. Interestingly, good results are already obtained
using only few Principal Components. For all cases,
adding more than four PCs does not lead to signifi-
cant improvements anymore. This is beneficial, since
the model complexity can be kept small. When more
PCs are added, the accuracy starts to drop at a certain
point, indicating that the amount of data may not be
sufficient anymore for estimating reliable statistics.

Confusion matrices for both best models are pro-
vided in Fig. 5, showing high accuracy for most ges-
ture types. The worst gestures are ”pointing” and
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Fig. 5. Confusion matrices showing per-gesture results (in %) for best PCA models. Left: Linear model, 150 mixture components, scaling 0.5.
Right: Bakis model, 250 mixture components, scaling 0.75. Note that the general confusion patterns are very similar.

”comehere”. As mentioned before, pointing is the ges-
ture with the greatest amount of variability in its global
trajectory orientation. The comehere gesture may be
single-stroke or repetitive, and exhibits large variations
in terms of execution speed, trajectory length and num-
ber of repetitions. Thus, it is also challenging. The
confusion patterns are very similar for both models.
Most of the substitutions make sense, occurring be-
tween classes that show similar motion characteris-
tics, or for short gestures that may be subgestures of a
longer gesture.

4.3. Segmentation experiment

In a second experiment, the segmentation perfor-
mance on longer sequences containing multiple ges-
tures is assessed. Thus, the task becomes to segment
the sequence and assign a gesture label to the seg-
ments. This requires a rejection criterion besides the
gesture models. Rejection in the presented recognition
framework is based on a garbage model (cf. Sec. 3.4).

4.3.1. Garbage modeling with out-of-domain data
In order to work reliably, a garbage model needs

large amounts of representative non-gesture data that is
not always available. Thus, the possibility of training a
garbage model with out-of-domain data is investigated
here. However, care has to be taken in order to obtain
valid results. Firstly, the data that is used should obvi-

ously exhibit similar characteristics than the data that
will be presented to the model at run-time. This means
that, in the case considered here, it should resemble
common spatiotemporal motions of body joints. Sec-
ondly, all data should exhibit a similar initial frame rate
and be subject to the same preprocessing. Thirdly, the
absolute global coordinates of trajectory points cannot
be used because they encode the global coordinate sys-
tem of the data domain, which can be quite different.

The data used for garbage modeling in the follow-
ing experiments comes from the freely available Hu-
manEVA dataset [42]. It consists of spatiotemporal
marker trajectories captured with a commercial motion
capturing system at high frame rates, along with the
associated video data. Only the motion capture data is
used. The dataset contains four subjects that perform
several actions with three trials for each action. For
more details, please refer to [42]. Only those mark-
ers that exhibit considerable motion in most trials are
considered, namely the markers corresponding to the
wrists, elbows and feet.

The respective joint trajectories are extracted, sub-
sampled to 20 fps to approximately match the ges-
ture data acquisition rate, and represented in a user-
centered coordinate system by subtracting the trajec-
tory of the head marker. They then undergo the same
preprocessing – Gaussian smoothing and impulse re-
sampling – and the same sliding window feature ex-
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Table 5
Best classification accuracy for PCA features without global position in %. First value: Linear model, 150 mixture components, scaling 0.5.
Second value: Bakis model, 250 mixture components, scaling 0.75. Confidence intervals are given in brackets

No. of PC 5 6 7 8 9

3D 85.7 (2.6)/85.6 (2.6) 88.0 (2.4)/86.9 (2.5) 87.9 (2.4)/87.8 (2.4) 86.9 (2.5)/85.7 (2.6) 87.5 (2.5)/85.9 (2.6)
2D 86.3 (2.6)/83.0 (2.8) 85.5 (2.6)/83.6 (2.8) 84.3 (2.7)/82.6 (2.8) 85.7 (2.6)/83.7 (2.7) 85.9 (2.6)/81.8 (2.9)
2D+3D 85.0 (2.7)/84.7 (2.7) 87.3 (2.5)/87.6 (2.5) 89.8 (2.3)/87.5 (2.5) 88.3 (2.4)/87.5 (2.5) 88.9 (2.3)/87.3 (2.5)

traction as the gesture data. The global position is ex-
cluded from the feature set, for the reason mentioned
above. This results in a different PCA feature repre-
sentation. Hence, the corresponding classification ex-
periment for the gesture trajectories was repeated with
the two best model configurations from above and a
window size of 9 to assess the impact of this change. It
turns out that the classification accuracy is not affected
(cf. Tab. 5), the results are almost identical. Again, this
is not surprising because the different trajectory repre-
sentations contained in the feature set can be expected
to be highly redundant.

Using the motion capture trajectories, the garbage
model is trained in the same way as the gesture models,
with one difference: An automatic initialization of the
model size relative to the sequence length is not suit-
able for long unsegmented sequences. Therefore, the
model size is manually set to a small value, the choice
of which will be evaluated. The same cross validation
setup as above is used, where two of the available Hu-
manEVA subjects are assigned to each training set, and
the remaining third is used for constructing the valida-
tion set (subject four is intended for testing only, and
no motion capture data is available).

4.3.2. Constructing validation sequences
For the detection experiment, longer sequences con-

taining gesture and garbage instances are required.
They are constructed as follows: Firstly, for each ges-
ture instance in the respective validation set, possible
continuations in the garbage data are searched. The
transitions should be smooth. Otherwise changes be-
tween gesture and garbage instances would be marked
by abrupt changes in feature values, which would
make the segmentation task trivial. Thus, only cases
where the Euclidean distance between the gesture and
garbage trajectory points are smaller than the mean
sample distance of the gesture plus one standard devi-
ation are considered. Then, one gesture instance is se-
lected randomly as starting point. The sequence is then

Table 6
Number of gesture instances in the validation sequences

pointing 402 h. wave 479 v. wave 525
comehere 505 goaway 500 up 424
down 531 circle 524 stop 481

grown in both directions by selecting gesture instances
with matching continuations, and inserting them with
the corresponding subsequence of the garbage data in
between. During selection, gesture classes that were
selected rarely (less than average) are favored. This
way, it is ensured that the distribution of gesture class
appearances in the validation sequences is approxi-
mately uniform (cf. Tab. 6).

Hence, the result is a randomized sequence of ges-
ture instances separated by garbage segments of vary-
ing lengths and with smooth transitions. During ges-
ture selection, it is ensured that the same instance is not
included multiple times in one sequence. Finally, the
process is aborted when a specified maximum length
(in terms of gesture instances) is reached or no valid
continuation is found, and the timestamps associated
with the trajectory points are shifted and interpolated
at the junctions to be smooth and chronological. Due to
the randomized nature, however, it cannot be ensured
that all instances from the validation set will be con-
tained in the final sequences. 122 out of 694 gesture
instances and 50 out of 196 garbage trajectories did
not yield any valid continuations and therefore were
never selected. The cross validation sets contain a to-
tal of 1,000 sequences with 4,371 gesture occurrences.
The average sample count per sequence is 220 before
and 548 after resampling. Gesture instances are always
separated by a garbage segment of varying length. Se-
quences can begin and end with an instance of any
class, including garbage.
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4.3.3. Results
The segmentation experiment was performed using

the following meta parameters: Since the amount of
training data is now considerably larger due to the
garbage data, a larger codebook size can be used,
which can generally be expected to improve the model
quality given a sufficient number of samples. The
codebook size thus was set to 1,024. For model initial-
ization, the scaling factor from the best model in the
previous experiment (0.5) was kept. The feature ex-
traction window size is a critical parameter for the seg-
mentation task because large windows can merge to-
gether samples from different instances and the total
instance length is influenced. Therefore, all three pre-
viously used window sizes are investigated. The fea-
tures used are the first 7 PC of the 3D feature set.

Additionally, the choice of garbage model size is not
intuitively clear, and several sizes are evaluated. The
choice was guided by the following considerations: It
was assumed that, in order to be flexible enough, the
garbage model should not be much longer than the
gesture models. Therefore, the maximum length was
set to the average linear gesture model length corre-
sponding to the respective window size. The minimum
length was one in all cases, and two additional lengths
distributed approximately equally between the bound-
aries were chosen. This leads to model lengths of 1, 3,
6 and 8 states for window size 5, 1, 2, 3 and 5 for size
7, and 1, 2, 3 and 4 for size 9.

Segmentation and classification was again done us-
ing Viterbi Beam Search and free model competition,
i.e. all gesture models and the garbage model were de-
coded in parallel without using any prior knowledge
about the sample structure. Afterwards, all garbage in-
stances were discarded from the hypothesis. Further-
more, a rejection threshold was applied to gesture hy-
potheses following the log-odd scores approach [32].
The general idea is to normalize the length-normalized
word-based alignment scores to some reasonable back-
ground distribution. Here, the prior probabilities of the
codebook densities are used. This results in compara-
ble normalized scores that can serve as a confidence
measure for rejection.

For quality assessment, the number of detections,
substitutions, insertions and deletions are reported, a
measure periodically used in spotting and segmenta-
tion experiments (cf. e.g. [14,21,39]). A gesture hy-
pothesis and annotation are treated as coincident if
their overlapping length is at least 50% of the annota-
tion’s total length. A coinciding hypothesis is correct
(C) if it has the same label as the annotation, otherwise

it is counted as substitution (S). A hypothesis that does
not coincide with any annotation is an insertion (I),
whereas annotations without any coinciding hypoth-
esis are counted as deletions (D). In order to have a
single-valued selection criterion, the F1 score [44] is
calculated, which is the harmonic mean of recall and
precision:

F1 = 2
Precision ·Recall
Precision+Recall

. (6)

Recall is defined as the number of correct detec-
tions (C) divided by the total number of annotations
(C+S+D), whereas precision is the number of correct
detections divided by the total number of hypotheses
(C+S+I).

Figure 6 shows the resulting curves for the best con-
figuration, chosen according to the highest F1 score
of 67.4 (precision 64.5 +/-1.4%, recall 70.5 +/-1.4%).
The corresponding model has Bakis topology, the fea-
ture window size is 5 and the garbage model has 3
states. As can be seen from the C/S/I/D plot, the most
common errors are insertions, i.e. false positive ges-
ture hypotheses. It should be noted that the data used in
this experiment is very challenging because it contains
smooth temporal and spatial transitions between ges-
ture and non-gesture instances. Furthermore, the ges-
tures do not start or end in defined idle positions and
the garbage data contains trajectories that also come
from hand movements, and, in some cases, can be
quite similar to some of the gestures used here (cf e.g.
the data from the ”Gestures” action of the HumanEVA
data). Thus, a large number of false positives could be
expected. The best overall recall rate achieved with this
model was 78.5 +/-1.2% (precision 50.1 +/-1.2%).

Regarding the influence of the number of states in
the garbage model, no clear tendency becomes visible
from the experiments. A short garbage model gener-
ally leads to a slightly larger number of insertions and,
hence, to a reduced precision, but the differences are
negligible and mostly canceled by a reasonable choice
of the rejection threshold. Also, the differences be-
tween results from linear and Bakis model topologies
are not significant.

There is, however, a significant negative impact of
large feature extraction windows. With a window of
size 9, the same model parameters, and a garbage
model length of 2 (which, in terms of relative length,
roughly corresponds to the 3-state model from above),
the F1 score drops to 62.4 (P 60.1 +/-1.4%, R 64.8 +/-
1.4%) and the best achievable recall rate to 70.1 +/-
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Fig. 6. Segmentation experiment: Precision-Recall curve (left) and C/S/I/D plot (right) for the best model obtained by varying the rejection
threshold on the normalized alignment scores (note that these are negative log-scores, so smaller scores are better). The point corresponding to
the reported F1 score is highlighted in the left plot.

1.4%. Experiments with different parameter sets which
are not presented here in detail confirmed that, on av-
erage, the scores are considerably worse. One possible
reason is that, given the larger window and therefore
shorter sequences, the data again is not sufficient for
the increased amount of parameters in the model due
to the larger codebook. Indeed, repeating the experi-
ment with the same parameters as before, but a code-
book size of 500 yielded better results (F1 score 66.4
(P 65.8 +/-1.4%, R 67 +/-1.4%), maximum recall 74.5
+/-1.3%). The improvement is significant, but the re-
call rates still remain significantly worse compared to
the ones obtained for the smaller window.

An interesting question is whether the results can
be improved by incorporating prior knowledge con-
cerning the sequence structure. In order to assess this,
two HMM with a more constrained topology were con-
structed (cf. Fig. 7) using the parameter set of the
best unconstrained model: The first (CHMM1) im-
poses weak constraints by specifying that each se-
quence contains an optional garbage instance at the be-
ginning and end and has alternating sequences of one
gesture instance followed by one or several garbage in-
stances in between. This actually resembles the exact
structure of the test sequences. The second (CHMM2)
enforces that a single gesture instance always be en-
closed between at least one garbage instance at both
sides (which is not always the case in the data used
here, so this model overconstrains the problem).

Using the model CHMM1 had no influence on the
segmentation results, all scores remained almost iden-
tical. Due to the very flexible structure of the model
– which practically allows any combination of ges-

ture and garbage at any time – and because the HMM
decoding algorithm always finds the optimal align-
ment in a probabilistic sense, this model becomes (al-
most) equivalent to the unconstrained model during
decoding. Imposing stronger constraints on the prob-
lem structure by using model CHMM2, however, leads
to a significant drop in the number of insertions (cf.
Fig. 8) and thus to a higher average precision, but
has a negative impact on the achievable detection rate.
The maximum recall achieved with this model and
the same meta parameters as above drops to 70.6 +/-
1.3% (precision 68.9 +/-1.4%) while the maximum
F1 score increases slightly to 70.0 (precision 69.9 +/-
1.4%, recall 70.0 +/-1.4%). The structural constraint
effectively restricts the possible transitions between
models, which is the reason for the reduced number of
insertions. But it also enforces alignment of the sample
sequence with the garbage model at the beginning and
end of each segmented gesture instance, effectively al-
ways placing two garbage instances between gestures.
This is especially critical for short gesture instances,
which may be skipped.

Indeed, the drawback of reduced detection rates due
to the enforced alignment becomes more severe as the
garbage model length increases. Opposed to the un-
constrained model, where the impact of the garbage
model length was negligible, the scores drop dramati-
cally when more states are added (cf. Tab. 7). Informal
experiments with different parameter sets confirmed
these findings. Thus, although slight improvements in
performance could be observed given the right choice
of parameters, adding strong structural constraints may
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Fig. 7. Model structure of constrained HMM incorporating prior structural knowledge. Left: CHMM1, right: CHMM2.

Fig. 8. Segmentation experiment: Precision-Recall curve (left) and C/S/I/D plot (right) for the constrained model CHMM2.

Table 7
Impact of the garbage model size. Top: Model CHMM2. Bottom: Unconstrained parallel decoding for comparison. All values are in %. Confi-
dence intervals range from 1.3 to 1.8, but are omitted for space and readability reasons

Garbage model states 1 3 6 8

F1 score (Precision, Recall) 68.2 (66.3, 70.2) 70.0 (69.9, 70.0) 60.9 (72.3, 52.7) 52.5 (71.2, 41.6)
max. Recall 74.7 70.6 52.9 42.1

F1 score (Precision, Recall) 65.8 (62.5, 69.4) 67.4 (64.5, 70.5) 64.4 (60.8, 68.5) 65.6 (59.9, 72.4)
max. Recall 76.9 78.5 76.0 76.9

be a pitfall, and generally seems not advisable for the
considered problem.

Overall, the results leave room for improvement, but
are satisfactory given the realistic scenario and chal-
lenging data.

5. Summary

In this article, a system for visual interpretation of
3D arm gesture trajectories in a multi-camera scenario
was presented. The focus was specifically on a type of

gesture that is usually called ”emblem”: A simple sign
used in natural inter-human communication, but with
a well-defined meaning. It was motivated why this
type of gesture is believed to be suited especially well
for usage in gesture-based HMI. An image processing
pipeline was presented, consisting of person detection
and extraction of head and hand positions in monocu-
lar image streams, which are afterwards combined to
form 3D trajectories. In particular, the problem of com-
bining hypotheses from unsynchronized cameras ob-
tained with variable frame rates was addressed.
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Furthermore, a detailed feature study was presented,
introducing trajectory-based features motivated by the
field of online handwriting recognition that, to the au-
thors’ best knowledge, have not been used in gesture
recognition before. It was also demonstrated that typi-
cal 3D emblematic hand gestures have an inherent pla-
nar nature, and therefore can be represented and nor-
malized by projection on their so-called action plane.
The suitability of the presented approach was eval-
uated on a realistic dataset containing nine different
gestures and multiple persons, and satisfactory results
have been achieved. Specifically, it was shown that the
projection on the action plane yields competitive per-
formance, and that the recognition performance can
be improved incorporating different feature types via
PCA for the proposed HMM classification framework.
Additionally, the construction of a rejection model us-
ing out-of-domain motion capture data was demon-
strated, and its suitability was evaluated on a challeng-
ing task.

Comparing the presented results to related work
is difficult, since the authors are not aware of other
existing gesture recognition systems with similar in-
tentions, setting and preconditions. Furthermore, only
very little standard evaluation datasets incorporating
multi-view data of hand trajectories exist. However,
the results presented in this article confirm the validity
and suitability of the proposed approach.
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