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Abstract. In human-machine interaction, gestures play an important
role as input modality for natural and intuitive interfaces. The class of
gestures often called “emblems” is of special interest since they convey a
well-defined meaning in an intuitive way. We present an approach for the
visual recognition of 3D dynamic emblematic gestures in a smart room
scenario using a HMM-based recognition framework. In particular, we
assess the suitability of several feature representations calculated from a
gesture trajectory in a detailed experimental evaluation on realistic data.
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1 Introduction

In building interfaces for Human-Machine-Interaction (HMI), different facets of
natural inter-human interaction should be taken into account to realize intuitive
interfaces. This includes the analysis of speech and gesture, as well as gaze, facial
expression and body language. While some of these modalities may be very
subtle and subject to considerable variations between users, speech and gestures
are much more explicit. Thus, they have been studied extensively as important
cues for interpreting user intents and realizing human-centered interfaces. In
this publication, we focus on the automatic visual recognition of dynamic arm
gestures. For natural interaction, there should be as few constraints as possible
imposed on the user. In particular, users should be able to interact with the
interface from anywhere in the environment, which requires view- and position-
invariant recognition. To achieve this, we aim at recognising gestures in 3D space
using a (potentially arbitrary) multi-camera setup.

Since the term gesture has been used in very different meanings (including
fingertip motion and full-body actions), some clarification is needed. In linguis-
tics and semiotics, a variety of gesture taxonomies exist (cf. eg. [1]). Generally,
three major classes of gestures can be identified, with speech-accompanying sub-
conscious gesticulation at one end of the spectrum, artificial well-defined sign
languages at the other, and emblems in between. The first is inherently multi-
modal [2] and difficult to interpret due to its subconscious nature. Sign language
typically lacks intuitiveness and requires special user training.
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Emblems are gestural actions that are well-defined and convey a certain
meaning on their own, but are understood intuitively since they are established
within a certain cultural region. Therefore, they are especially suited for natural
HMI. We focus on one-armed emblems performed by cooperative users.

Dynamic arm gestures are defined by subsequent movements of a few promi-
nent points (e.g. joint positions) relative to the body. Thus, given a spatio-
temporal track of these points, recognition is a problem of time-series or tra-
jectory analysis. Results from other work on gesture analysis (cf. Sec. 2) sug-
gest that, for emblems, this problem reduces to analysis of the hand trajec-
tory. Indeed, measurements like in [3] indicate that, for simple stroke-like arm
movements the trajectories of the joints and hand are qualitatively similar. Fur-
thermore, analyzing typical emblematic gestures shows that they tend to be
composed of a relatively small set of basic movements. This suggests strong sim-
ilarities to the field of on-line handwriting recognition, where the track of one
point (the pen tip) is recognized based on basic units (characters or strokes) and
some features describing their general spatio-temporal evolution (cf. e.g. [4]).

Accordingly, we exploit findings from this field and investigate whether 3D
emblematic arm gestures can be recognized using approaches inspired by on-line
handwriting recognition. Since the latter is a 2D problem, the concepts must
either be transferred to 3D, or the 3D gesture trajectory has to be projected
to some appropriate 2D frame. We will investigate both possibilities in the fol-
lowing. In particular, we propose representing a gesture by projection on its
principal plane of motion, which we call the action plane. For the acquisition of
gesture trajectories, we build upon our previous work on 3D pointing gesture
recognition [5] and saliency-based view selection in multi-camera setups [6].

2 Related Work

The relevance of gestures for natural HMI – either as exclusive cue or as part
of multi-modal systems – is undisputed. However, most work in the field focuses
either on the recognition of specially crafted artificial gesture alphabets and sign
language [7, 8] or on the interpretation of full-body movements, generally referred
to as action recognition (cf. e.g. [9] for a recent survey, [10, 11]). While the short-
comings of artificial gesture alphabets regarding their intuitiveness have already
been mentioned, full-body action recognition is related closely to emblematic
gesture analysis, but typically operates on a higher level of abstraction: Instead
of creating an input modality for HMI, it rather aims at analysing human be-
havior in surveillance settings, or for scene understanding. Approaches from the
field may, however, also be suitable for gestural interfaces.

Regarding the classification of emblematic dynamic gestures, the dominant
approach is to represent gestures as trajectories in some reference frame and clas-
sify them with probabilistic graphical models encoding temporal relationships. In
particular, (Hidden) Markov Models ((H)MM) have been used extensively. Good
results have been achieved on gestures representing arabic digits [12] using only
trajectory orientation information. In [13], bimanual movements are classified by
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combining the trajectory with a shape descriptor of the hand, whereas [14] use
the centroid positions of hand candidates and their mean optical flow. [15] trans-
form the spatiotemporal trajectory to discrete symbols with a Self-Organizing
Map, and classify the symbol sequence together with optical flow features in a
MM framework. Combinations of 2D hand trajectories and associated inertial
sensor data have also been used [16, 17]. Gaussian density features extracted
at visual interest points are applied in [18], and gestures are classified using a
protocol learning strategy.

In on-line handwriting recognition (cf. [4] for an overview of the field), state
of the art recognizers are typically either also based on HMM [19] or on con-
nectionist approaches [20]. However, the features used to describe time-series of
points are much more diverse. Examples include velocity and curvature along
with shape-describing features of short trajectory segments [20] or Hu moments
[21]. [22] and [19] use pen pressure, vicinity, curliness and features relating the
trajectory to the baseline. Appearance-based descriptors and higher-level struc-
tural features, like ascenders, descenders and crossings, are also frequently com-
bined with online trajectory features (e.g. in [20][19]). Some of these features
lack a straighforward resemblance for the task of gesture recognition. E.g., pen
pressure is not available, and features referring to a baseline (like ascenders and
descenders) are difficult to apply, since, opposed to handwriting, it is not clear
what the baseline of a gesture should be. However, a multitude of interesting
features for trajectory representation remain, and impressive results have been
published in the field. To the best of our knowledge, no previous work exists
applying similar features to 3D dynamic arm gesture recognition, and we will
demonstrate their suitability in this work.

3 Visual Recognition of 3D Emblematic Gestures

As stated before, our goal is the automatic recognition of one-armed dynamic
emblems performed by cooperative, but untrained users. Restricting the interac-
tion space to a predefined area or camera setup, as well as requiring the user to
wear markers or tracking gear, would impose severe limitations on the general
applicability of such a system. Furthermore, the pose or orientation of the user
with respect to the interface should not be restricted. Therefore, we aim at a
3D recognition framework based on visual cues utilizing off-the-shelf cameras
in a principally arbitrary multicamera setup. Figure 1 shows an overview of the
proposed approach. We will describe the individual components in the following.

The key assumption is that emblematic arm gestures may be analysed using
the trajectory of the active hand alone, which means that no expensive full-body
model tracking is required. While this seems like a strong assumption, its validity
is indicated by the good results reported in the related literature. The first step is
the extraction of 2D spatiotemporal hand and head trajectories in the individual
camera images. These are then combined to a 3D trajectory. Also, the estimation
of the action plane from the trajectory points and the representation of projected
trajectories is shown. The main contribution lies in the assessment of different
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Fig. 1. Overview of the proposed approach.

alternate feature representations inspired by on-line handwriting recognition,
which will be done in a detailed experimental evaluation on a realistic data set.
We conclude with a discussion of the results.

3.1 2D Trajectory Acquisition

In order to extract gesture trajectories, persons and their gesturing hands have
to be detected first. We apply a detector based on Histograms of oriented Gradi-
ents (HoG) and a Multi-Layer Perceptron classifier which does not rely on skin
color or face structure, but uses the shape of the head-shoulder line instead.
Therefore, it is able to detect persons under a large variety of poses and viewing
angles. The centers of the detection rectangle in subsequent frames form the
head trajectory. Hand candidates are found combining motion detection with a
personalized skin color model trained on-line [5]. The result is a series of spatial
image coordinates for head and hands, along with temporal information. These
are postprocessed using Gaussian smoothing to eliminate detection jitter, and
short tracks of duplicate points are removed.

3.2 3D Combination

Given spatiotemporal trajectories from at least two cameras, the original 3D
gesture trajectory can be reconstructed. First, the individual trajectories have
to be aligned. We use a simple greedy aggregation algorithm taking into account
temporal differences and reconstruction errors of pairs of data points. For the
somewhat idealised data we use here (cf. Sec. 5.1), this is sufficient. Note that, in
a multi-camera setting, a view selection algorithm can be applied choosing the
two “best” views according to some global criteria [6]. Aligned trajectory points
are then projected to 3D by ray casting.

It should be pointed out that our cameras are not synchronised. Therefore,
and because of detection inaccuracies and the discretization of the image plane,
the rays will generally be skewed. Thus, the projection is calculated as follows:
Given two aligned points pt

i = (pt
xi, p

t
yi), qt

j = (pt
xj , p

t
yj) from cameras i and j at

time t (we omit these indices in the following for readability), their corresponding
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3D rays rp = ci + γp′ and rq are obtained by backprojection using the camera
calibration matrices. Here, ci is the projection center of camera i, p′ is the ray’s
directional vector, and similar for rq. The two directional vectors along with one
of the projection centers define a plane P : nT x − nT ci = 0 with n = p′ × q′.
It contains one of the rays and is parallel to the other with distance d. Let v be
the intersection point calculated after translating both rays into the plane. The
reconstructed 3D point u is then given by linear interpolation

u = (1− αi

αi + αj
) · v + (1− αj

αi + αj
) · (v + dn) (1)

where αi and αj are some confidence measures for the point positions in the
individual images. Setting them to equal values yields the mean point along the
direction of n where the two rays are closest. Candidate selection or rejection
can be done based on d. The resulting 3D trajectory finally is resampled and
smoothed using curvature-aware impulse resampling [22].

3.3 The Action Plane

Classifying gesture trajectories without seriously limiting the amount of allowed
variation according to, e.g., viewpoint, gesturing speed or spatial expansion,
cannot be performed reliably on raw spatial coordinates. Normalization to some
common reference and abstraction from the absolute positions is necessary. A
simple approach to achieve this are derivative features that do not encode the
absolute values of trajectory points, but their consecutive changes. However,
these may still depend on the external alignment of the trajectory in 3D space.

Another possibility we investigate here arises from our observation that, for
most natural emblems, the 3D trajectory exhibits an inherent planar character-
istic. This suggests that 3D emblem trajectories may be represented without too
much loss of information by projecting them on an appropriate plane. A similar
assumption has been made in [16] to compensate for camera pan and tilt. Op-
posed to them, however, in our setup the plane may be oriented arbitrarily in
space, and will only rarely coincide with any of the image planes. We call this
concept the action plane in the following, and show how an estimation of such
a plane can be derived and used as a common reference for normalization.

Suppose we have a 3D trajectory T = [t1...tn] with n points ti = (txi, tyi, tzi).
We seek a plane P : nT x − λ = 0 that best approximates T. This can be
formulated as a least-squares regression problem with the objective function

f(n) =
n∑

i=1

(nxtxi + nytyi + nztzi − λ)2 →Min (2)

assuming that n is normalized to unit length. This is a well-known problem,
and the sought plane normal n is given by the Eigenvector corresponding to the
smallest Eigenvalue of Ψ = MT M, M = {tx,i − t̄x ty,i − t̄y tz,i − t̄z}, with
the data mean t̄ = 1

n

∑n
i=1 ti.
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Fig. 2. Examples of action plane projections. Original images with overlaid hand tra-
jectories and their 2D representations for “circle” (left) and “horizontal wave” (right).

Calculating a regression plane in this way may result in a solution strongly
influenced by outlier points. Therefore, the above procedure is carried out on the
concensus set obtained from RANSAC. Since n and −n correspond to the same
global orientation of the plane and the sign depends on the choice of points, n is
forced to always point towards the mean of head detections. In our experiments,
this yields a good estimate of a gesture’s principal plane of motion. When the
above procedure is applied incrementally to online data, a smoothness constraint
should be applied to the orientation of n to avoid abrupt changes. One possibility
is adding a penalty term taking into account the angle between two consecutive
plane normals in the model selection phase of RANSAC.

Projecting T onto P requires an 2D orthonormal coordinate system in P.
An obvious choice are the remaining two Eigenvectors of M. This results also
in a normalization of the global gesture orientation, which may not always be
intended. Therefore, we also evaluate a solution where one coordinate axis is
forced to be parallel to the ground plane. The trajectory mean t̄ is chosen as
coordinate origin. Figure 2 shows some projection results.

3.4 Classification with Hidden Markov Models

HMMs are a popular tool for time-series analysis because of their ability to
model temporal relationships between samples in a sound probabilistic frame-
work and provide an integrated approach for segmentation and classification.
Their properties are well understood and efficient algorithms exist for training
and decoding. Therefore, they have been widely used, and their discriminative
power has been demonstrated on a wide variety of tasks.

We use an open source HMM toolbox [23] to train one model for each ges-
ture. The number of states in each model is initialised automatically according
to the minimum observation length of the respective gesture class. Emission
probabilities are modelled by Gaussian mixture densities with diagonal covari-
ances. The resulting codebook is shared among models and states, i.e. we have
semi-continuous HMMs. Classification is done according to the maximum path
probability calculated by Viterbi alignment.
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4 Trajectory Features

The features used for representing gesture trajectories are mostly motivated by
[20]. Some changes are made to adapt them to the different characteristics of
the data. In order to increase robustness against noise and detection errors, the
features are calculated in a sliding window scheme. Let w be the window size,
and let Oi = oi, ...,oi+w−1 be the trajectory points in the ith sliding window
and om

i the median point. Then, the features are calculated as follows:

Raw trajectory: Mean point of the window: Ōi = 1
w

∑
k ok, k = i...i+w − 1

Normalized trajectory: Ôi = Ōi/h̄, where h̄ is the average height of the
person calculated from the trajectory of head positions.

Normalized polar trajectory: Pi = {|ri|, φi}. For the 3D case,

ri = (Ōi − H̄i)/h̄, φi = arctan(
√
r2xi + r2yi/rzi), i.e. the radius between

mean trajectory and mean head point inside the window normalized by the
person’s height and the elevation angle of their connecting line. Note that
the azimuth angle would correspond to the global orientation of the person,
so it is not included. For 2D, |ri| and φi are polar coordinates in the plane
relative to the coordinate origin.

Velocity: The mean velocity of data points in the window, i.e.
vi = 1

w

∑i+w−1
k=i+1 (ok − ok−1)/(tk − tk−1) where tk is the time associated with

ok. The mean length of the velocity vectors is also included.
Curvature: Curvature is defined as the cosine and sine of the angle between

the vectors from om
i to oi and oi+w−1.

Vicinity: These features are intended to describe the general shape of a fea-
ture window. Let di = oi+w−1 − oi be the vector connecting the win-
dow boundaries. The vicinity features comprise the vicinity aspect α =
(dyi − dxi)/(dyi + dxi) for 2D data and three values with permutations of
the vector components for 3D data, the cosine and sine of the angle between
di and the x-axis or ground plane, respectively, the normalized trajectory
length li =

∑i+w−1
k=i+1 |ok−ok−1|/|di| and the average sum of squared distances

between trajectory points and di.
Orientation change: For two subsequent windows Oi and Oj , the orientation

change is calculated as the cosine and sine of the angle between di and dj.
Head distance: The mean distance between points in Oi and the mean head

position H̄i, normalized by h̄. This feature encodes some very weak repre-
sentation of the spatial relation between gesturing hand and head.

All features together yield 20 and 25-dimensional feature vectors for 2D and
3D points, respectively, and twice the size including derivative features.

5 Experiments

The main goal of this publication is the investigation of alternative features
regarding their applicability to gesture trajectory recognition, in order to derive
a richer representation and optimize recognition results. To this purpose, we
have conducted a detailed experimental evaluation on a realistic dataset.
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Fig. 3. Selected (cropped) examples of the gesture set with original trajectories over-
laid. Gestures marked with (R) are repetitive, (r) indicates a gesture that may or may
not be repetitive. From left to right: “circle”(r), “come here”(r), “down”, “go away”(r),
“pointing”, “stop”, “up”, “horizontal wave”(R) and “vertical wave”(R).

5.1 Experimental Setup and Data

The evaluation took place in a realistic setup inside a smart conference room
equipped with several Sony EVI D70P pan-tilt-zoom cameras. The cameras are
mounted on the ceiling and are calibrated, but not synchronized. Throughout
the experiments, the same pair of cameras was used. In neutral position, their
principal axes form an angle of approximately 90◦, but their orientations were
changed several times during data recording.

A set of nine emblematic command gestures was chosen such that they ei-
ther represent natural gestures that are commonly used, or their meaning can
be understood intuitively. Some examples are shown in Fig. 3. The potential
meanings they convey can be used in a variety of scenarios, e.g. directing a mo-
bile robot, steering computational attention, or controlling services of the smart
room. The set contains short one-stroke as well as more complicated repetitive
gestures, and gestures that can be both. Note that the pointing gesture is not
purely emblematic, since it can only be interpreted with additional context.

Short sequences of still images were recorded from 17 different people each
performing one to three instances of each gesture with their right as well as
their left arm. The sequences were captured with a resolution of 378 by 278
pixels at 20 Hz. No instructions on gesture speed, absolute or relative position,
etc., were given. The subjects were allowed to move freely inside the cameras’
fields of view, including their orientation with respect to the cameras. Thus,
the dataset is quite challenging since it contains multiple viewpoints as well as
considerable variations in gesture appearance, speed and trajectory diameter. In
total, it contains 51217 images and 799 gesture instances.

The positions of hands and heads were annotated semi-automatically. First,
the 2D head and hand detection algorithm was applied. The generated hypothe-
ses were then inspected manually. Missing detections were added and erroneous
hypotheses were corrected. In general, if a hypothesis from the detector was re-
motely correct, it was kept. The gesture instances were furthermore segmented
manually, with considerable variations in starting and end points as well as num-
ber of repetitions. From the 2D trajectories obtained in this way, the 3D projec-
tions were computed using the described algorithm. The resampled trajectory
lengths vary between 16 and 364 data points.
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Table 1. Classification accuracy in % for single features (left) and respective derivative
(∆) features (right). The best results for each trajectory type are highlighted.

Feature 3D 2D-Ground 2D-PC ∆3D ∆2D-Ground ∆2D-PC

Raw trajectory 59.3 65.0 59.4 85.1 62.7 61.1
Norm. cart. trajectory 80.0 65.8 57.1 44.2 21.3 23.7
Norm. polar trajectory 81.9 61.8 58.8 73.7 66.5 60.6
Curvature 40.3 40.3 39.8 48.6 48.2 47.1
Headdistance 61.3 61.3 61.3 27.0 27.0 24.2
Orientation change 44.6 46.7 45.6 48.6 48.2 49.9
Velocity 83.0 61.5 59.2 76.8 55.9 50.9
Vicinity 74.7 59.7 61.2 71.1 53.2 57.7

5.2 Results

First, each feature type is evaluated separately in order to assess the perfor-
mance of individual features. Two types of HMM topologies (Linear left-right
and Bakis) with different parameter sets were trained and evaluated using 17-
fold cross-validation. In each iteration, 16 persons were used for training, and
the remaining one for testing. Thus, the reported results are user-independent.
For feature extraction, sliding window sizes of 5, 7 and 9 were applied, with 50%
window overlap. Table 1 summarizes the best results for 3D trajectory features
and 2D projection features using both described coordinate system choices (first
coordinate axis parallel to ground plane, denoted as “Ground”, and first axis
chosen according to first principal component, denoted as “PC”).

The best classification results in all cases were achieved using a Bakis model
and a window size of five. For the 3D case, using the derivative of the raw
trajectory yields a classification accuracy of 85.1%. Compared to this, the 2D
features perform poorly, with best results of 66.5% and 61.3%, respectively.
This may indicate that our assumption about the inherent planar nature of
3D emblematic gestures is invalid. On the other hand, this assumption is backed
up by the low average reconstruction error of the projection (Tab. 2). Thus, the
performance loss is more likely to be caused by the loss of positional information
in relation to the body as a result of the projection and normalization. This is
further indicated by the fact that choosing the 2D coordinate system according
to the principal components of the 2D trajectory, thereby normalizing out the
trajectory’s global orientation, further degrades performance. In this case, the
only feature type that encodes some weak relative positional information, the
head distance, performs best.

For the remaining two trajectory types, the best results are achieved with
derivative representations of the hand trajectory. This, on the one hand, con-
firms that classifying gestures based on their trajectory alone is indeed a suitable
approach, on the other hand it shows that some abstraction from the raw tra-
jectory is needed. As mentioned before, using derivatives of the trajectory is a
very simple possibility of abstracting from the absolute spatial positions. Using
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Table 2. Average reconstruction errors for projected 2D gesture trajectories.

Gesture RError (mm) Gesture RError (mm) Gesture RError (mm)

circle 18.8 comehere 15.2 down 15.0
goaway 13.7 pointing 9.6 stop 9.1
up 9.3 hor. wave 22.3 ver. wave 28.6

Table 3. Classification accuracy of feature combinations in %. Feature combinations
are: FC1: ∆ Raw traj. + velocity + vicinity + headdist; FC2: ∆ Raw traj. + vel.; FC3:
∆ Raw traj. + vic.; FC4: ∆ Norm. polar traj. + vel. + vic.; FC5: ∆ Norm. polar traj.
+ vel.; FC6: ∆ Norm. polar traj. + vic.; FC7: vel. + vic.

Features FC1 FC2 FC3 FC4 FC5 FC6 FC7

3D 82.4 84.4 82.2 83.1 85.5 80.4 81.0
2D Ground 64.0 65.6 63.0 64.8 65.6 62.7 65.0
2D 1st PC 63.3 64.2 62.5 63.7 65.0 62.7 63.2

the raw trajectory results in a severe performance loss (59.3% classification accu-
racy) for the 3D case, while in the 2D case, where the “raw” trajectory is already
normalized due to the projection, the results are close to the best. Considering
the alternative feature representations, the velocity profile and vicinity features
also yield promising results on our data, while orientation change and curvature
seem less suited for the task.

Following these findings, combinations of the best-performing trajectory rep-
resentations with velocity and vicinity features were evaluated, along with the
head distance, which seems to be beneficial in the 2D case. The results are sum-
marized in Tab. 3. No improvement in classification accuracy could be achieved,
and the results of most combinations are comparable. This suggests that the
different feature types are highly correlated. Furthermore, the increased dimen-
sionality of the features leads to a higher complexity of the model, and much more
data is needed to accurately estimate the parameters, which may be detrimental
to the classifier’s performance. Indeed, opposed to the previous experiment, the
best results were achieved with Linear models and bigger window sizes (7 for 2D
Ground, 9 for the others), which corresponds to simpler models with less states.

This raises the question whether better performance can be achieved by
decorrelating the features. In order to assess this, a third experiment was car-
ried out. After normalizing the features to zero mean and unit variance in order
to account for the different feature dynamics, Principal Component Analysis
(PCA) was applied to the complete feature representation (all feature types +
derivatives) of the data, and classifiers were trained using different numbers of
Principal Components. Table 4 summarizes the results.

Using PCA features indeed resulted in a substantial improvement in classi-
fication accuracy. The best result was again achieved using the first 10 PC of
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Table 4. Classification accuracy for PCA features in %.

No. of PC 1 2 3 4 5 6 7 8 9 10 12 15

3D 60.3 74.5 79.5 83.4 85.4 86.6 88.7 88.0 89.7 90.4 89.5 88.6
2D 48.7 63.1 69.3 71.5 72.1 73.2 73.1 76.0 76.5 76.7 76.3 78.1
2D+3D 48.1 65.8 76.3 83.0 83.6 83.7 84.4 86.6 86.0 85.6 85.4 87.0

3D features, which yielded 90.4% correct classifications, a relative improvement
of 6.2%. The 2D features still perform substantially worse, with 78.1% accu-
racy (17.4% relative improvement). However, these findings clearly indicate that
emblematic gesture recognition can benefit from the incorporation of alterna-
tive feature representations. Surprisingly, combining 2D and 3D features yielded
worse results compared to 3D only. A possible reason for this is the high dimen-
sionality (90) of the combined feature space. The amount of available data may
not be sufficient for estimating reliable statistics.

6 Summary

We presented an approach to hand-trajectory based 3D emblematic arm gesture
recognition for Human-Machine Interaction in a smart room. In particular, we
evaluated several alternative feature representations inspired by approaches in
on-line handwriting recognition, and demonstrated their suitability for the task
in a detailed experimental evaluation on realistic data. It could be shown that
the incorporation of the additional features indeed improved the recognition
results, and very promising overall results were achieved. The experiments were
conducted with offline data, but all presented concepts and algorithms can be
applied incrementally to online data in a straightforward way. We plan to extend
the recognition approach to a hierarchic system building on strokes or subgesture
units, aiming for a more powerful and flexible recognizer.

Furthermore, we suggested that natural emblematic gestures have an inherent
planar nature, and proposed representing them by projection on an estimate of
this inherent plane. While the recognition results for the projected data were
inferior in our experiments, the estimated plane might serve as a cue for inferring
the addressee of a gesture – a question we will investigate in our future research.
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