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Abstract. While methods based on Vision Transformers (ViT) have
achieved state-of-the-art performance in many domains, they have not
yet been applied successfully in the domain of writer retrieval. The field is
dominated by methods using handcrafted features or features extracted
from Convolutional Neural Networks. In this work, we bridge this gap
and present a novel method that extracts features from a ViT and ag-
gregates them using VLAD encoding. The model is trained in a self-
supervised fashion without any need for labels. We show that extracting
local foreground features is superior to using the ViT’s class token in
the context of writer retrieval. We evaluate our method on two historical
document collections. We set a new state-at-of-art performance on the
Historical-WI dataset (83.1% mAP), and the HisIR19 dataset (95.0%
mAP). Additionally, we demonstrate that our ViT feature extractor can
be directly applied to modern datasets such as the CVL database (98.6%
mAP) without any fine-tuning.

Keywords: Writer Retrieval · Writer Identification · Historical Docu-
ments · Self-Supervised Learning · Vision Transformer

1 Introduction

Writer retrieval involves systematically extracting documents, written by the
same author as a queried document, from a large corpus of handwritten texts
with unidentified authors. Closely related to this, writer identification aims to
identify the writer of a queried document by consulting a corpus of labeled
documents. In historical research, these processes are crucial for categorizing
and examining manuscripts based on authorship, particularly when manuscripts
lack signatures [11]. In the forensic sciences, accurately identifying authors in
handwritten notes or documents is essential in criminal investigations, such as
verifying ransom notes, anonymous threatening letters, or fraudulent documents.

Recently, methods employing Vision Transformers (ViT) [12] have achieved
state-of-the-art performance in various computer vision tasks, including hand-
written text recognition [23]. However, ViTs are prone to overfitting even on
large datasets, making them challenging to train [12]. Self-supervised learning
can help to address this challenge, as no annotations are required for train-
ing and, even when annotations are available, self-supervised training followed



2 T. Raven et al.

f1
f2
f3
f4

f10

f13

f14

f15

f16

ViT Feature Extractor

VLAD

[CLS]

Retrieval

Fig. 1: Illustration of our proposed method. Document images are cut into win-
dows in a regular grid. The windows are again cut into patches and form the
input sequence. To extract local features, a self-supervised Vision Transformer
(ViT) is used. We extract only foreground patch tokens from the ViT output
sequence, i.e., only the patch tokens of input patches with sufficient handwriting.
All foreground tokens of the document are aggregated using a VLAD encoding.
These encodings are used for retrieval and reranking.

by supervised fine-tuning can outperform fully supervised training [16]. Pop-
ular self-supervised learning paradigms include contrastive learning [3, 4], self-
distillation [2], masked image modeling [1,16,36] and similarity maximization [5];
or a combination of these [20,37].

Current writer retrieval and identification methods still rely on local features
extracted from Convolutional Neural Network (CNN) activations [8] or hand-
crafted methods [22]. While there have been efforts to employ ViTs for writer
retrieval [28], the results were not competitive. Motivated by the recent success
of pre-training a ViT for handwritten text recognition using masked image mod-
eling [35] on only IAM [25], we revisit the use of self-supervised ViTs in writer
retrieval.

In this work, we introduce a fully self-supervised approach that employs a
ViT as a feature extractor for writer retrieval and identification (see Fig. 1).
Our method requires no labels and outperforms existing methods in historical
document benchmarks. We train the ViT using a combination of Masked Image
Modeling [16, 36] and self-distillation [2], utilizing a student-teacher network.
The teacher’s self-attention is used to guide the masking process which in turn
the student has to reconstruct in feature space. Contrary to previous attempts
of utilizing a ViT as a feature extractor for writer retrieval [28], we do not use
the class token of the ViT as feature representation. Instead, we extract fore-
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ground patch tokens from the ViT’s output sequence, i.e., tokens corresponding
to input patches with a sufficient amount of foreground pixels. Our evaluation
demonstrates that encoding these features with a Vector of Locally Aggregated
Descriptors (VLAD) [18] to obtain a global page descriptor enhances perfor-
mance notably compared to using the class token with either sum-pooling or
VLAD. However, even when using sum-pooling as encoding, our method sur-
passes previous methods, underscoring the quality of the extracted features.

We make the following contributions:

– We successfully apply a Vision Transformer to the task of writer retrieval
through self-supervised learning.

– We demonstrate that features extracted from our ViT outperform both hand-
crafted and CNN-based features.

– We show that encoding foreground tokens using VLAD is superior to encod-
ing class tokens.

– We show that our method learns robust features directly applicable to his-
torical and modern handwriting without the need for model fine-tuning.

The remainder of this paper is organized as follows. First, we cover related
work in the field of writer retrieval in Section 2. Next, we outline our proposed
method in more detail in Section 3. Then, we introduce the evaluation protocol
for our experiments in Section 4. The conducted experiments are detailed in
Section 5. Finally, we summarize our findings and give an outlook on future
work in Section 6.

2 Related Work

Writer retrieval methods commonly follow the same pipeline of local feature
extraction, page-level aggregation, and distance-based retrieval with optional
reranking.

2.1 Feature Extraction

Local features are generally divided into handcrafted features and deep learning
features. Examples of handcrafted features are SURF [17], Zernike moments [6]
or a combination of SIFT and Pathlet features [22]. In contrast, deep learning
features were first introduced by Fiel and Sablatnig [15], who used a super-
vised CNN as a feature extractor. Christlein et al. [8] propose an unsupervised
method for CNN training for historical documents, in which pseudo labels are
derived from clustering SIFT descriptors. In [28] an ImageNet pre-trained ViT
is fine-tuned for document images in a self-supervised student-teacher approach
operating on differently augmented views, using the ViT’s class tokens as feature
representation. However, the method underperforms considerably compared to
CNN-based or handcrafted methods.
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2.2 Aggregation

Methods to aggregate local features into global page descriptors are gener-
ally categorized into codebook-free and codebook-based methods. Codebook-free
methods include sum-pooling and generalized max-pooling [26]. Codebook-based
methods used in writer retrieval/identification include Fisher Vectors [14], GMM
supervectors [7] and VLAD-based methods [8, 22], where several VLAD encod-
ings are computed and jointly decorrelated using PCA with whitening. The
VLAD encoding is sometimes incorporated into the network architecture using
NetVLAD [30, 31]. As an additional refinement step, Christlein et al. [8] train
exemplar SVMs for each query, using the query as the only positive example and
all training pages as negatives, exploiting the writer-disjointness of training and
test sets. We find that a single VLAD encoding is sufficient with our features.

2.3 Retrieval and Reranking

Retrieval is commonly done using a distance measure, like cosine distance. Other
metrics such as the l1 distance, l2 distance, or the Canberra distance have also
been explored [29]. An optional step that has shown to be beneficial in retrieval
tasks is reranking, which refines the retrieval list by exploiting the information
within it. The authors of [31] use a k reciprocal nearest neighbor Query Ex-
pansion by averaging each descriptor with its k reciprocal nearest neighbors.
The E-SVM approach of Christlein et al. is extended into a Pair/Triple SVM
approach in [19], where similar documents from the test set are included as
additional positive examples. In [30] (Similarity) Graph Reranking is explored.
Here, a parameter-free graph network is constructed and used to obtain updated
global descriptors using message propagation.

3 Method

Our method follows the common framework of local feature extraction, aggrega-
tion, distance-based retrieval and reranking used in previous work [8, 9, 22, 30].
Our method operates on binary images, obtained in a preprocessing step, if nec-
essary. An illustration of the method is given in Figure 1. As the computational
complexity of a ViT grows quadratically with the sequence length, our ViT uses
a fixed input image size of 224×224, and operates on windows extracted from the
document. The ViT is trained in a self-supervised fashion (see Section 3.1) and
used to extract patch tokens corresponding to handwriting (see Section 3.2). The
extracted features are aggregated into a global page descriptor using a VLAD
encoding (see Section 3.3). Finally, the global page descriptors are compared
using cosine distance and optionally reranked (see Section 3.4).

3.1 Self-supervised Training

ViTs feature a large number of trainable parameters and are prone to overfit
[12], requiring extensive amounts of annotated data to train a ViT successfully
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with traditional, supervised methods. Thus, utilizing self-supervised training for
ViTs is a logical conclusion. We chose AttMask [20] for self-supervised training.
The method is an adaptation of iBOT [37], which incorporates Masked Image
Modeling (MIM) into the DINO [2] framework.

DINO [2] employs self-distillation, a special form of knowledge distillation,
i.e., training a student network to reproduce the output of a teacher network. In
self-distillation, the teacher network is defined as an exponential moving average
of the student. Student and teacher receive differently augmented views of the
input, forcing the student to learn an invariance to the applied augmentations.
Additionally, the method samples global and local views. While all views are
shown to the student, only the global views are shown to the teacher, thus
training a local-to-global correspondence and disentangling objects in feature
space.

iBOT [37] integrates the MIM objective into DINO’s framework by masking a
randomized selection of input patches from the student’s view while still showing
them to the teacher. Afterwards, the student has to predict the teacher’s output
for the masked patches.

Finally, AttMask [20] introduces a novel masking strategy that increases the
complexity of feature reconstruction compared to the original iBOT masking,
aiming to generate a more robust feature space. The final self-attention map
generated by the teacher is used to mask the most attended input patches from
the student, forcing the student to develop a deeper understanding of the input
by masking the most important regions.

3.2 Local Feature Extraction

We directly use the self-supervised Vision Transformer (ViT) g as a local feature
extractor without any additional fine-tuning. A document image I is cut into
N windows {w1, ..., wN} in a regular grid. The ViT further cuts each window w
into a sequence of flattened patches {pw1 , ..., pwL}, where each patch pwi is then of
length P 2. A learnable class token [CLS] is prepended, forming the input for the
ViT as x = {[CLS], pw1 , ..., p

w
L}. Thus, the output of the ViT g is given as the

token sequence

g(x) = {fw
[CLS], f

w
1 , ..., fw

L }. (1)

We find that for aggregating local features using VLAD, retaining the local
information of the patch tokens is crucial. However, handwriting images are often
sparse due to the horizontal and vertical spacing between words. As a result,
many ViT patches may only contain background information, contributing little
to the analysis of handwriting characteristics. To address this, we filter out patch
tokens that lack sufficient foreground pixels. The set of foreground tokens FG(I)
is then given as:

FG(I) = {fw
i |

P 2∑
j=1

pwi,j ≥ tfg for i ∈ {1, . . . , L} and w ∈ I}, (2)
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where pwi,j is the j-th pixel in the flattened patch and tfg a threshold on the
number of contained foreground pixels.

3.3 Aggregation

To construct the VLAD codebook Θ, we cut all training documents into win-
dows of size 224 x 224 with stride 224, i.e., non-overlapping, and gather all
foreground tokens from the entire training set. These are jointly clustered using
minibatch k-Means [34] with C centroids, which are used as the VLAD code-
book Θ = {µ1, . . . , µC}. During inference, the test documents are cut into
windows with an adjustable stride of Seval. For each test document d the set
of foreground tokens FG(d) is gathered and encoded by assigning each token
f ∈ FG(d) to the closest centroid and aggregating the residuals between the
centroids and their assigned features. For a centroid µk, this yields

vdk =
∑

{f |NNΘ(f)=µk}

(f − µk), (3)

where NNΘ(f) is the nearest centroid to f in codebook Θ. The resulting VLAD
encoding v̂d of a document d is the concatenation of all such residuals:

v̂d = concat(vd1 , ..., v
d
N ). (4)

We apply power normalization with power 0.5 followed by l2-normalization. Fi-
nally, principal component analysis (PCA) with whitening is used for decorrela-
tion and dimensionality reduction to D dimensions, resulting in the global page
descriptor vd for document d. The parameters of the PCA are fitted on the
training set.

3.4 Retrieval and Reranking

For retrieval, we use the cosine distance measure. A low distance indicates that
documents are similar. The cosine distance dcos between two global page descrip-
tors va and vb extracted from documents a and b is given as

dcos(v
a, vb) = 1− va · vb

||va|| · ||vb||
. (5)

We evaluate different reranking strategies from previous methods [30,31] in con-
junction with our method, i.e., kRNN, Graph reranking and SGR.

4 Evaluation Protocol

In this section, we first introduce the metrics for our evaluation in Section 4.1.
Next, we describe the utilized datasets in Section 4.2. Lastly, we outline the
hyperparameters of our baseline implementation in Section 4.3.
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(a) (b) (c)

Fig. 2: Visualization of sample document images from the Historical-WI dataset:
(a) and (b) show color images, (c) shows a binarized image provided in the
dataset.

Fig. 3: Visualization of sample document images from the HisIR19 dataset.

4.1 Metrics

The evaluation is done in a leave-one-out fashion, i.e., every document in the test
set is used once as a query image. The remaining documents are ranked by their
distance to the query such that the documents with the lowest distance rank
highest. The relevant documents, i.e., documents written by the same author,
should ideally be at the top of this ranking. A common measure to describe the
quality of a retrieval list is the mean average precision (mAP). To assess the
writer identification performance, the Top1 accuracy is commonly considered,
i.e., the percentage of query images for which the highest ranking result is a
relevant document.

4.2 Datasets

We evaluate our method on two benchmark datasets of historical document
images.

Historical-WI The Historical-WI dataset, a collection of historical document
images, was released for the ICDAR 2017 Competition on Historical Document
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Writer Identification [13]. This dataset is available in both binarized and color
image formats. It includes a predefined train-test split: the training set comprises
1,182 document images authored by 394 writers, with each writer contributing
three documents. The test set is more extensive, containing 3,600 document
images from 720 writers, each contributing five documents. Spanning from the
13th to the 20th century, these documents feature texts in German, Latin, and
French. Figure 2 shows three examples of contained document images.

HisIR19 The HisIR19 dataset was released for the ICDAR 2019 Competition
on Image Retrieval for Historical Handwritten Documents [11]. Contrary to the
Historical-WI dataset, there is no predefined training split. The authors of the
challenge suggest using the Historical-WI test dataset for training. Addition-
ally, a validation dataset is included containing 1200 images of 520 writers, with
300 writers contributing a single page, 100 writers contributing three pages,
and 120 writers contributing five pages. The test set is considerably larger than
the Historical-WI dataset and contains a total of 20000 documents authored by
10068 writers. 7500 writers contributed one page each, while the others con-
tributed three to five documents. The dataset contains images from manuscript
books from the European Middle Ages (9th to 15th century), letters from the
17th and 18th centuries, as well as charters and legal documents. Figure 3 shows
two examples of contained document images.

4.3 Implementation Details

We use the following parameters as baseline implementation unless explicitly
stated differently. Our model is a ViT-small/16 [12] with an input image size of
224. For HisIR19 the document images are only available in color format, thus
we binarize them as a preprocessing step using Sauvola Binarization [33] with
a window size of 51. For our evaluations on the HisIR19 dataset, we directly
use the ViT trained on the Historical-WI training set and do not perform any
additional fine-tuning. We use the HisIR19 validation set only to construct the
VLAD codebook.

We generate training data by sampling windows of size 256 in a regular grid
with stride 32 from the Historical-WI training set, resulting in roughly 1.75
million training windows. On these, we train the model for 20 epochs. We apply
a cosine learning rate schedule with a linear warmup during the first two epochs
and a peak learning rate of 0.005. The last layer is frozen during the first epoch.
We use a MultiCrop augmentation [2] with two global crops (size 224, scale
∈ [0.4, 1]) and eight local crops (size 96, scale ∈ [0.05, 0.4]). Since we operate on
binary images, all color-related augmentations are dropped. Instead, following
Peer et al. [28], we apply Dilation and Erosion with random kernels to all crops
independently with 50% probability.

During feature extraction, we extract windows with stride Seval = 224 and
apply a foreground threshold of tfg = 10 pixels for extracting patch tokens. To
save computation, we only use input windows with more than 2.5% foreground
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Table 1: Evaluation of the performance when extracting class tokens ([CLS])
versus foreground tokens (FG) at different foreground thresholds tfg as features.
We evaluate sum-pooling (Sum) and VLAD for aggregation. Results are given
for the Historical-WI and HisIR19 test datasets.

Historical-WI HisIR19

Sum VLAD Sum VLAD
Features tfg mAP Top1 mAP Top1 mAP Top1 mAP Top1

[CLS] - 78.5 90.0 64.3 80.3 92.0 96.9 75.8 87.8
FG 0 75.1 88.3 80.1 90.5 89.8 95.8 90.1 96.0
FG 1 77.1 90.0 81.4 91.1 91.5 96.7 92.9 97.2
FG 10 76.7 89.3 81.1 90.5 92.4 97.1 93.6 97.5
FG 20 76.3 89.1 81.0 90.6 92.5 97.1 93.7 97.6
FG 50 76.0 89.3 80.9 90.5 92.3 97.1 93.5 97.5

pixels during inference and discard the rest. For aggregation, we use C = 100
centroids in the VLAD codebook and reduce the final dimensionality of our
VLAD encodings to D = 384 dimensions.

5 Experiments

We evaluate the different parts of our method separately. First, in Section 5.1, we
investigate the performance of our foreground tokens in conjunction with differ-
ent aggregation methods. Second, in Section 5.2, we compare different training
paradigms to train our ViT feature extractor. Third, in Section 5.3, we evaluate
different reranking algorithms. Fourth, in Section 5.4, we investigate the effect
of the feature extraction and aggregation parameters. Finally, in Section 5.5, we
compare our results with previous work.

5.1 Feature Extraction and Aggregation

In our proposed method, we extract all foreground patch tokens as features for
a given window instead of using the class token. To evaluate this strategy, we
compare the performance when using the class tokens as features versus using
our foreground patch tokens at various threshold values tfg. For aggregating all
local features extracted from a document, we consider sum-pooling and VLAD.

The results given in Table 1 show that using class tokens works well with sum-
pooling, whereas a significant drop in performance is observed with VLAD. In
contrast, when using all patch tokens (tfg = 0) VLAD outperforms sum-pooling.
A likely explanation for this is the low number of class features extracted com-
pared to patch tokens. Filtering empty ViT patches (tfg = 1) improves the
performance of both encodings compared to using all tokens. Again, VLAD
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Table 2: Evaluation of different training paradigms for training the ViT feature
extractor. We evaluated different masking strategies for iBOT and AttMask.

Historical-WI HisIR19

Sum VLAD Sum VLAD
Method Features mAP Top1 mAP Top1 mAP Top1 mAP Top1

Supervised (Writer) [CLS] 52.7 72.1 27.9 40.4 82.2 90.4 53.5 69.3
Supervised (Writer) FG 67.5 84.8 61.5 79.1 87.8 94.6 82.0 91.1
Supervised (Page) [CLS] 58.1 75.9 43.0 60.1 85.5 92.7 61.4 75.8
Supervised (Page) FG 66.4 83.5 66.8 83.4 87.8 94.7 87.0 94.2

DINO FG 74.9 89.0 80.0 90.3 91.7 96.8 92.6 97.3
iBOT (rand) FG 75.9 88.7 80.7 90.3 91.3 96.7 92.7 97.2
iBOT (block) FG 75.5 88.9 81.0 90.4 91.2 96.5 93.2 97.3
AttMask (Hint) FG 75.7 88.6 81.0 90.3 91.8 96.8 93.3 97.3
AttMask (High) FG 76.7 89.3 81.1 90.5 92.4 97.1 93.6 97.5

yields better results than sum-pooling. Importantly, it also yields better results
than sum-pooling of the class tokens on both datasets. While further increas-
ing tfg harms performance on the Historical-WI dataset, we observe a peak at
tfg = 20 on the HisIR19 dataset. This is likely caused by noise in the auto-
mated binarization process which is not present in the curated binarized version
of Historical-WI.

5.2 Vision Transformer Training

For feature extraction, we train a ViT in a self-supervised approach using AttMask.
In this section, we evaluate other self-supervised training approaches, as well as
supervised approaches.

Self-Supervised Training In this section, we evaluate other related self-
supervised training approaches. We compare AttMask [20] to its predecessors,
DINO [2] and iBOT [37], and evaluate different masking strategies. Both iBOT
and AttMask allow to configure the masking process. Choosing rand, the ViT’s
input patches are masked randomly, whereas when choosing block patches for
masking are selected, such that they form consecutive block shapes in the origi-
nal image. In the case of AttMask, we evaluate the masking strategies high and
hint. The masking strategy high masks the most highly attended patches in the
input image, while hint reveals some highly attended patches again. We use the
high masking strategy as default option in the remaining experiments. Table 2
shows that DINO, iBOT and AttMask slightly improve upon each other. For
all methods, the best results are obtained from encoding our foreground tokens
using VLAD, with AttMask achieving slightly higher mAP and Top1 than the
others.
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Table 3: Evaluation of different reranking methods in combination with class
tokens ([CLS]) and foreground tokens (FG), as well as sum-pooling (Sum) and
VLAD to compute a global page descriptor.

Historical-WI HisIR19

Sum VLAD Sum VLAD
Method Features mAP Top1 mAP Top1 mAP Top1 mAP Top1

None [CLS] 78.5 90.0 64.3 80.3 92.1 96.9 79.8 90.7
kRNN [CLS] 80.5 89.0 66.6 78.8 93.1 96.6 83.1 90.3
Graph [CLS] 80.9 89.0 65.6 74.8 93.0 95.2 83.2 88.1
SGR [CLS] 80.2 89.0 65.5 75.1 93.0 96.2 81.1 87.0

None FG 76.7 89.3 81.1 90.5 92.4 97.1 93.6 97.5
kRNN FG 78.7 88.3 82.0 90.1 93.1 96.6 94.2 97.3
Graph FG 78.7 87.3 81.9 89.1 93.1 95.2 93.9 95.6
SGR FG 78.2 87.4 81.7 89.4 92.9 97.1 93.8 96.2

Supervised Training Given the availability of writer identities in our training
dataset, a straightforward training approach for the ViT is to use the writer
identity as the classification target. We also experiment with using the page
id as a classification target. As illustrated in Table 2, both supervised training
strategies underperform when compared to self-supervised methods. Interest-
ingly, contrary to our findings in Section 5.1, the foreground tokens yield better
performance with sum-pooling than the class tokens.

5.3 Reranking

In this section, we evaluate the impact of several reranking methods on the
performance of our baseline implementation. We evaluate the kRNN reranking
used in [31], Graph reranking (Graph) [30], and Similarity Graph Reranking
(SGR) [30]. We evaluate the impact of reranking in combination with both the
class tokens and foreground tokens (tfg = 10), and both sum-pooling and VLAD
as encoding. To save computation, we don’t optimize the reranking hyperpa-
rameters for each combination on the training set but use fixed values which
we found to work well across all combinations. For kRNN we set k = 2. For
Graph-reranking we set k1 = 4, k2 = 2, L = 3 following [30]. For SGR we use
k = 2, γ = 0.1. The γ = 0.4 suggested in [30] heavily reduced our results, likely
due to our higher baseline performance.

Table 3 shows that all reranking methods increase mAP at the cost of Top1
accuracy. On the Historical-WI dataset, sum-pooling of class tokens still pro-
duces better results (80.9% mAP) than foreground tokens (78.7% mAP). On
the HisIR19 dataset, both the class tokens and the foreground tokens achieve
equal mAP of 93.1%, closing the slight gap in the un-reranked results (see Ta-
ble 1). Even with reranking, VLAD computed on the class tokens still heavily
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Fig. 4: Evaluation of Seval,i.e., the stride with which windows are sampled from
the test documents during inference on the Historical-WI dataset. We compare
different combinations of features and aggregating methods. The left plot shows
mAP and the right plot shows Top1 accuracy.

underperforms compared to other combinations. The best results overall are still
achieved with VLAD on the foreground tokens (82.0% on Historical-WI, 94.2%
on HisIR19). While all reranking approaches yield similar mAP results, kRNN
produces slightly better results on both datasets, likely due to retaining the best
Top1 accuracy.

5.4 Parameter Evaluation

In this section, we evaluate the remaining parameters of our pipeline on the
Historical-WI dataset. We do not consider encoding class tokens using VLAD as
the previous experiments have shown this combination to not yield competitive
results.

Evaluation Stride During inference, we sample windows in a regular grid with
stride Seval. In the previous experiments, we used a baseline value of Seval = 224.
Figure 4 shows that reducing the stride enhances performance in all cases. Low-
ering Seval = 224 to 56 improves the performance of VLAD on the foreground
tokens to 82.6% mAP (+1.5%). We did not evaluate smaller strides for compu-
tation reasons as halving the stride produces four times more input windows.

Number of VLAD Cluster Centers Our baseline constructs a codebook of
size C = 100 for the VLAD encoding. Figure 5 shows that both mAP and Top1
are relatively stable regardless of the number of clusters. Even with as few as 10
clusters performance only deteriorates slightly, and still considerably improves
on sum-pooling.
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Fig. 5: Evaluation of parameter C, i.e., the number of cluster centers used to
compute the VLAD codebook Θ. The left plot shows mAP and the right plot
shows Top1 accuracy.
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Fig. 6: Evaluation of the parameter D, i.e. the number of dimensions kept during
principal component analysis. We evaluate different combinations of features and
aggregation methods. The left plot shows the mAP and the right plot shows the
Top1 accuracy.

PCA dimensionality After aggregation, we use principal component analysis
with whitening and dimensionality reduction toD = 384 dimensions. As Figure 6
shows, retrieval performance with VLAD peaks at D = 384 dimensions, whereas
Top1 accuracy peaks at D = 512. With sum-pooling, the dimensionality of the
final page descriptor is equal to the ViT’s embedding dimensionality, in our case
384. As such, larger values can not be evaluated. For both class tokens and
foreground tokens, mAP and Top1 peak around 256 dimensions but still fall
short compared to VLAD.

5.5 Comparison with State-of-the-Art

For our comparison with other methods, we distinguish between the performance
without additional reranking steps and the performance when reranking is ap-
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plied. We use the baseline parameters outlined in Section 4.3, with the exception
of reducing the evaluation stride, i.e., setting Seval = 56. The results are given
in Table 4.

Historical-WI On the Historical-WI dataset, our method surpasses existing
methods considerably in terms of mAP. We achieve 82.6% mAP and 91.9%
Top1 score without reranking, beating the best previous method of Lai et al.
(77.1% mAP, 90.1% mAP) by 5.5% mAP and 0.8% Top1 score. Notably, our
method also exceeds previous methods when using sum-pooling as an encod-
ing in conjunction with the ViTs class token. We achieve 79.4% mAP with this
configuration, beating previous methods by more than 2% mAP. This is espe-
cially noteworthy as methods based on CNN-based features perform much worse
with sum-pooling: Christlein et al. [8] report a drop of over 30% mAP compared
to their mVLAD encoding. When applying additional reranking, our method
still beats previous methods. We achieve 83.1% mAP with reranking, improving
over the method of Peer et al. (80.6% mAP) [30] by 2.5% mAP. Still, even the
sum-pooling of class tokens outperforms previous methods slightly.

HisIR19 On the HisIR19 dataset, our method also outperforms previous meth-
ods considerably. Without reranking, we achieve 94.4% mAP and 97.8% Top1
accuracy, beating the previously best method (92.8% mAP, 97.4% Top1 [22]) by
1.6% mAP and 0.4% Top1 accuracy. When also applying reranking, our method
achieves 95.0% mAP and 97.6% Top1 accuracy, improving over the best pre-
vious method by 1.8% mAP and 0.9% Top1 accuracy. Similar to our findings
for the Historical-WI dataset, the sum-pooled class tokens achieve competitive
performance, with and without reranking.

CVL Additionally, we evaluate our method on the CVL database [21], a dataset
containing modern handwriting. We directly use the ViT feature extractor trained
on the Historical-WI dataset without any fine-tuning and construct the VLAD
codebook from the training set of the CVL dataset. With reranking, we achieve
98.6% mAP and 99.4% Top1 accuracy, matching the results of previous meth-
ods [10,31]. Even without reranking, our method achieve a mAP of 97.1%, high-
lighting the robustness of the extracted features, despite only training on a rel-
atively small set of historical documents.

6 Conclusion

In this work, we presented a novel method using a Vision Transformer as a fea-
ture extractor. The model is trained in an unsupervised fashion. Patch tokens
containing foreground are extracted as local features and subsequently encoded
with VLAD. Retrieval is done using the cosine distance, with optional rerank-
ing. Our method achieved a new state-of-the-art performance on the historical
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Table 4: Comparison of our method with the state of the art on the Historical-
WI, HisIR19 and CVL test datasets. We evaluate two configurations of our
method: aggregating class tokens with sum-pooling and aggregating foreground
tokens with VLAD. For all datasets, we use the same evaluation parameters, i.e.,
D = 384, C = 100, tfg = 10, k = 2, Seval = 56.

Historical-WI HisIR19 CVL
Method Encoding Reranking mAP Top1 mAP Top1 mAP Top1

Peer et al. [30] NetVLAD - 73.4 88.5 91.6 96.1 - -
Christlein et al. [8] mVLAD - 74.8 88.6 - - - -
Lai et al. [22] bVLAD - 77.1 90.1 92.5 97.4 - -
Ours (CLS) Sum - 79.4 90.6 92.8 97.3 94.2 98.9
Ours (FG) VLAD - 82.6 91.9 94.4 97.8 97.1 99.4

Christlein et al. [10] VLAD E-SVM - - - - 98.4 99.5
Rasoulzadeh [31] NetVLAD kRNN - - - - 98.6 99.2
Christlein et al. [8] mVLAD E-SVM 76.2 88.7 91.2 97.0 - -
Christlein et al. [8] mVLAD P/T-SVM [19] 78.2 89.4 - - - -
Peer et al. [30] NetVLAD SGR 80.6 91.1 93.2 96.7 - -
Ours (CLS) Sum kRNN 81.2 90.6 93.2 96.9 97.6 98.8
Ours (FG) VLAD kRNN 83.1 90.9 95.0 97.6 98.6 99.4

benchmark datasets Historical-WI and HisIR19, improving over previous meth-
ods by 2.5% mAP and 1.8% mAP respectively. We additionally showed that our
method is versatile and also works well on modern datasets, achieving 98.6%
mAP on the CVL database without requiring any fine-tuning of the ViT.

Further research could be done to evaluate other SSL methods for model
training and different model architectures. In terms of SSL methods, DINOv2 [27]
introduced several improvements to the iBOT framework which might be inter-
esting for writer retrieval, e.g. the KoLeo regularizer [32]. Regarding architec-
tures, Swin-Transformers [24] have shown promising results in domains with
limited data, which might help to boost performance and training time.

Moreover, we showed that only considering patch tokens containing sufficient
foreground information is beneficial. Here, future research could investigate other
strategies for filtering out patch tokens, for instance by utilizing the self-attention
of the ViT to identify relevant patches.
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