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The ”intelligence” of an intelligent environment is not only influenced by the func-

tionality it offers, but also largely by the naturalness and intuitiveness of its inter-

action modes. A very important natural interaction mode are gestures, as long as

the environment’s interface poses no strict constraints on how the gestures may be

performed. Since gestures are generally defined by hand/arm poses and motions,

an important prerequisite to the recognition of unconstrained gestures is the robust

detection of hands in video images. However, due to the strongly articulated nature

of hands and the challenges given by a realistic (i.e not strictly controlled) environ-

ment, this is a very challenging task, because it means hands need to be found in

almost arbitrary configurations and under strongly varying lighting conditions. In

this article, we present an approach to hand detection in the context of an intelligent

house using a fusion of structural cues and color information. We first describe our

detection algorithm using scale-invariant salient region features, combined with an

efficient region-based filtering approach to reduce the number of false positives. The

results are fused with the output of a skin color classifier. A detailed experimental

evaluation on realistic data, including different cue fusing schemes, is presented. By

means of an experimental evaluation on a challenging task we demonstrate that,

although each of the two different feature types (image structure and color) has

drawbacks, their combination yields promising results for robust hand detection.
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I. INTRODUCTION

Recent developments of sophisticated pattern recognition techniques nowadays make even

the complex analysis of perception related sensor data manageable. In combination with the

meanwhile (almost) ubiquitous availability of powerful computing hardware, intelligent tech-

nical systems become possible allowing for more intuitive and, thus, natural human-machine

interaction (HMI). It is the focus of such systems to be oriented towards the particular users’

needs and desires instead towards technical limitations.

But what makes humans perceive a related technical system intelligent? An interaction

partner is considered as smart if humans may interact with him in the way they normally

would with other humans, and he shows reasonable reactions to their actions. So, an in-

telligent system is not only defined by the services it offers (however useful they may be),

but also – and more importantly – by the naturalness of interfaces it offers to access these

services. Consequently, human-machine interfaces are sought that resemble natural means

of human-human communication.

The key modalities used by humans during interaction in the abovementioned “natural”

way are speech and gestures. If a person is able to interact with a particular technical system

by talking to it and, especially, articulating supporting gestures, the overall communication

will appear more natural and, consequently, much easier to the human. Gestures are usually

directly connected to acoustic utterances w.r.t. their temporal occurrences. Dynamic ges-

tures are frequently used as some kind of “illustration” of the particular utterances or even

without any special contextual relations to the particular interaction. The most prominent

use of gestures is, however, their application as illustrating pointing signs. In our work we

concentrate on the analysis of gestures belonging to the latter type, e.g. for controlling certain

components of electrical equipment included in typical households (lights or sun-blinds).

Since gestures are mostly defined by hand/arm poses and motions, a fundamental prereq-

uisite to their recognition is the robust detection of hands in images. This paper addresses

this fundamental stage of gesture recognition especially focusing on unconstrained gestures

recorded in (almost) arbitrary environments.

An obvious approach to hand detection corresponds to the detection of skin-color like

regions within images of a scene. Especially in office like environments (with furniture which

often has skin-like coloring) the exclusive exploitation of such a color cue, unfortunately,

results in a (very) large number of false positive predictions.
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We developed an appearance-based approach to hand detection using scale-invariant

salient region features (cf. [1] for an earlier version). Their evaluation appears promising

since a pixel is considered as belonging to a hand only if it resides in a structurally “hand-

like” environment. The approach shows promising results, but still suffers from a rather

large number of false positives. Thus, we furthermore focus on improving the robustness of

this image-structure based approach by integrating the aforementioned skin color informa-

tion. The motivation for this is to take advantage of the fusion of two different image cues.

Additionally, different fusion techniques are evaluated for the combination of both sources

of information for reliable hand detection.

A. The FINCA

As an integration scenario of general pattern recognition techniques for intelligent multi-

modal human-machine interaction in dynamic environments – including gesture recognition

based on the hand detection approach described in this article – we are developing an “Intelli-

gent House” – the so-called FINCA (a F lexible Intelligent eN vironment with Computational

Augmentation) [2]. The house is integrated into our laboratory at the Robotics Research

Institute of Technische Universität Dortmund. Basically, the FINCA integrates two areas

under one roof: a smart conference room and, connected to this, an open and flexible lab-

space. Within both areas various sensors, namely cameras, microphones, infra-red sensors

etc. are integrated. Electro-mechanical sensors (e.g. light switches) and actuators (e.g. light

or sunblind control units) are integrated and connected via an EIB (European Installation

Bus) installation. It is the most intuitive control of these devices we are aiming at, especially

using gesture recognition techniques whose pre-requisites are described in this article.

Ultimately an intelligent, cooperative house environment including service robots, which

supports human users during various activities (conferences, information retrieval, commu-

nication, entertainment etc.), is created. For natural and thus intuitive interaction with the

house, special teaching of human users will not be required. Therefore, the FINCA detects,

locates and tracks communication partners by analyzing visual and acoustic data. The re-

sults are integrated allowing for multimodal scene analysis aiming at a successful automatic

interpretation of the user’s intentions.
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In addition to its role as integration framework for various pattern recognition techniques

developed at the Robotics Research Institute, the FINCA serves as a platform for scientific

cooperations between researchers from different fields as well as between academia and

industry.

Figure 1 gives an overview of the FINCA. On the upper left the house as a whole including

our mobile robot is shown. The second image illustrates a typical (multi-modal) interaction

scenario within FINCA’s smart conference room. All experimental evaluations described in

this article have been performed within the FINCA environment.

[Figure 1 about here.]

B. Structure of the Article

The remainder of this article is organized as follows. In the subsequent section the

related work is briefly reviewed. Descriptions of current techniques for detecting hands in

video images – the pre-requisite for gesture recognition – are given including both structural

and color cues as addressed by this article. In section III the proposed hand detection

approach integrating structural and color cues is discussed in detail. We give overviews

of our techniques for hand detection with SIFT and skin color classification, respectively.

Furthermore, the integration of both cues by sensor fusion is presented. Section IV contains

the description of the experimental evaluation we performed demonstrating the effectiveness

of the proposed approach.

II. RELATED WORK

Many different approaches to hand and limb detection using different kinds of visual cues

have been proposed in recent years. A straightforward and simple approach that is often

utilized (e.g. [3–5]) is to look for skin-colored regions in the image. Often, simple static

color representations by histograms or mixture models (see e.g. [6]) are used. Although

this is practicable and efficient given controlled (or known) lighting conditions, skin color

classification is difficult to handle under changing illumination. Color is directly influenced

by the lighting conditions of the scene and is also dependent on the image acquisition

hardware that is used. Thus, a color model that works fine for a given scenario may fail
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when the conditions change. Also, the choice of color space will normally have an effect

on classification performance [7]. Instinctively, one would argue that a color space that

has some invariance against intensity changes, i.e. that separates the color value from its

brightness, would help to overcome some of the problems mentioned above. However, in [8]

it is shown that this actually has only minor effects on the model quality and does not solve

the general problem.

In order to deal with the difficulties of color classification in dynamic environments several

approaches to model adaptation have been proposed. This means the model parameters are

adapted automatically to the current lighting conditions, as e.g. in [9–11]. To achieve this,

some kind of knowledge of the scene or the current lighting must be inferred from the

images. Generally, the problem of model adaptation is not straightforward (for a recent

related survey, see e.g. [12]).

An obvious drawback of skin color classification is that other objects having skin-like

colors in the chosen representation cannot be differentiated from real skin, and therefore

will yield false detections. So, given mostly unconstrained real-world scenarios, skin-color

detection seems not reliable enough to be used as a stand-alone cue for hand detection.

Another widely used detection approach is to model an object by its shape, boundaries or

general appearance, i.e based on image structure. Well-known examples are the appearance-

based object detector of Viola and Jones [13], or Cootes’ and Taylor’s active appearance

models [14]. However, for strongly articulated objects – like hands – showing a large variety

of shapes, this is not feasible. Describing all possible appearances of a hand as a whole would

either require a very flexible model (which very likely will be too general to be still reliable)

or a huge model database that would be very difficult to handle. To overcome this difficulty

when dealing with hand gestures, the amount of valid gestures is often limited to a rather

small set of predefined poses (e.g. [4, 5]). Effectively, this means reducing the problem of

unconstrained gestural interaction to recognition of a gestural command alphabet or sign

language. In our research, however, we want the gestural interaction to be as unconstrained

and natural as possible, which also implies that untrained users should be able to interact

intuitively. Clearly, this is not the case if a command alphabet is defined, because a user

has to be instructed which gestures are meaningful.

A possible solution to this problem is given by ”part models”, as proposed e.g. by Burl et

al. [15]. This approach seems more promising for the task of structure-based hand detection
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since it models the object as a set of small characteristic parts (or image regions). The key

assumption is that the local appearance of these parts will not change dramatically if the

object is deformed or transformed. Thus, if the object is modeled as an assembly of regions

(and some weak assumptions on spatial relationships are fulfilled), it may still be identified

even under considerable deformations or changes in viewpoint. Another advantage is that

partial occlusions of an object can be handled easily, since not all regions must be present to

detect an object. As long as a sufficient number of parts can be found and several of them

are spatially close, it can be concluded that the particular image area contains the object

with high probability.

This leaves the question how to identify ”characteristic parts” of the object and how

to detect them in an image. A straightforward technique is to use standard appearance-

based detectors (like the ones mentioned above) for the separate model parts and then judge

the outcome (or find the best combination) by applying the shape constraints. The main

drawback of this approach is that it needs to be analyzed in advance which parts of the

object are characteristic and are big and salient enough to be detected reliably. It would

be more feasible to find them automatically, i.e. to apply a salient local feature detection

algorithm.

Several salient feature detectors and local region descriptors (i.e. local features) have been

proposed. To find objects in arbitrary configurations, they should be invariant to changes

in position, scale and rotation of the object they describe. Furthermore, some invariance

against affine distortions and illumination changes is required for realistic scenes. The best-

known approach to this problem is probably the Harris corner detector [16] – which, however,

is not scale invariant. More recent approaches include the salient regions detector of Kadir

and Brady [17], the Speeded Up Robust Features (SURF) proposed by Bay et al. [18], and

Lowe’s Scale Invariant Feature Transform (SIFT) [19].

Given different types of cues, the task is to combine them into an overall classifica-

tion scheme. A simple yet powerful approach is to concatenate the features into a higher-

dimensional feature vector and treat them as one. Another possibility is to determine the

classification results for each feature separately and then use majority voting or fuse the

results on a higher level. For this multi-cue fusion, a great number of general approaches

exist, the most straightforward of which are linear combiners (weighted sum, simple and

weighted average) [20]. These are, however, only applicable if the results that should be
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combined are from the same domain, have the same dimensionality, and are normalized to

the same dynamic range. Also, the weights have to be chosen in advance, which is often not

straightforward.

Therefore, several approaches deal with learning the weights, or with determining them

automatically during run-time. For a comparison of linear combiners vs. common trained

fusion rules, see [21]. A more complex dynamic combination scheme called Democratic

Integration was proposed by Triesch and von der Malsburg [22]. Martin et al. [23] use

Covariance Intersection to fuse detection results from different sensory inputs. Examples

for the combination of different cues for hand detection are given in [24] (color and motion

cues) and [25] (skin color and appearance-based body parts detector).

III. HAND DETECTION USING A COMBINATION OF SIFT AND COLOR

FEATURES

In the following, we first describe the underlying parts of the classification approach,

namely structural detection using SIFT, and skin color based filtering using Gaussian Mix-

ture Models (GMM). Following this, the integration of both parts into a single classifier

system is presented.

A. Hand detection with SIFT

In section II we stated that, while modeling hands as a whole using their appearance is

bound to fail because of their strongly articulated nature, treating them as being composed

from small characteristic parts is a promising approach. The question is now how to identify

and detect such characteristic parts. We choose to use local descriptors that are computed at

automatically determined salient feature points (often referred to as keypoints). In the work

presented here, we use the SIFT approach to extract structural features from the camera

images. This is mainly because the method is well-known and its potential has been shown

in a number of different application fields (e.g. robot self-localization [26], camera calibration

and scene reconstruction [27], and object-class recognition [28]). However, the local feature

extraction routine for our approach may generally be chosen arbitrarily. We will give only

a very brief overview of the SIFT algorithm (for details cf. [19]).
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1. Feature extraction

SIFT is a staged approach, the first stage being the detection of salient keypoints. Key-

point candidates are detected as local extrema of Difference-of-Gaussian (DoG) filters in a

Gaussian Scale Space of the input image. These candidates are then sub-pixel interpolated.

Keypoints showing low contrast or lying on edges are discarded, for they are not stable.

Invariance against scale and rotation is achieved by assigning a scale (according to the

level of the scale space pyramid the keypoint was detected in) and an orientation (according

to the principal orientation of gradients in a region around the keypoint) to each keypoint.

Note that in this step, points may be duplicated with different orientations if the local

orientation histogram has multiple prominent peaks.

Finally, the local image descriptor (i.e. the features) is calculated as a collection of

smoothed histograms of gradient orientations and magnitudes over the local image region.

The size of the feature vector depends on the number of histograms and the number of

bins in each histogram. In Lowe’s original implementation, a 4-by-4 patch of histograms

with 8 bins each is used, yielding a 128-dimensional feature vector. We use a MATLAB/C

implementation of the SIFT algorithm provided by Andrea Vedaldi [29].

2. Matching

Given an image of the scene, we obtain a (typically large) number of SIFT features de-

scribing salient points in the image. In order to detect hands, we build a database containing

descriptors extracted from many images containing hands in different configurations (see sec-

tion IV A for details on the data). We also build a large database of background descriptors

from images taken inside the FINCA. Following Lowe’s proposal for object recognition, we

implement the matching algorithm as follows: Let ki be the keypoint descriptor that should

be classified. Let dfg and dbg be the Euclidean distances to the nearest neighbors (found

by means of a kd-tree [30] search) to ki from the foreground and background databases,

respectively. We decide on the keypoint being fore- or background by thresholding the

classification score sclass, which is the ratio of the two distances dfg and dbg.
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3. Candidate filtering

With the above matching process, we obtain a label for each keypoint in the input image.

To achieve a high number of true positives, we have to choose a classification threshold tclass

on sclass that is larger than 1, i.e. we actually allow for keypoints to be classified as positives

even if a slightly better match has been found in the background database. Obviously, this

results in a large number of false positives, a drawback that has also been reported by Lowe

for matching on keypoint level. This is why Lowe suggests matching groups of features

using a generalized Hough transform followed by a detailed geometric fit [19]. While this

yields excellent results for rigid object detection, it is not applicable to the problem of hand

detection, again due to the strongly articulated nature of hands and because we expect to see

them in arbitrary configurations and viewing angles. We have to apply a weaker constraint

on spatial configuration.

Because SIFT yields a large number of keypoints (around 1 000 for a typical image from

our sample set), we assume that typically we will find multiple keypoints on hands of which

most will be classified as foreground (i.e. we have a low false negative rate) whereas most

false positives will be scattered over the image and thus will be surrounded by numerous

true negatives. In other words, we expect the true positives to form spatial clusters while

false positives will often be isolated, and consequently use this as constraint to eliminate

false positives. This leads to an efficient candidate filtering algorithm by analyzing lists of

keypoints spatially connected to the candidates in question. The outline of the algorithm is

given in figure 2.

[Figure 2 about here.]

The first step is to determine the adjacency list for each (positive) keypoint candidate.

Three different approaches were implemented and evaluated: Circular regions of fixed size

centered around the candidate; circular regions with sizes proportional to the SIFT scale of

the candidate; and taking the n spatially nearest neighbors. We then evaluate points based

on the total number of positive candidates in their respective list (threshold npos,min) and the

ratio between positives and negatives (threshold fmin). If a candidate passes both criteria,

it is accepted as foreground point. If it fails on both criteria, it is rejected. Otherwise, it is

further evaluated in a second step by determining the number of positives m it is connected

to.
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This approach discards a large number of false positives and yields promising results.

Still, however, it cannot handle clusters of false positives and fails to reject them. Figure 3

shows two example results.

[Figure 3 about here.]

B. Skin color classification

Since most approaches relying on a single type of feature exhibit drawbacks in specific

fields or under certain circumstances, it is intuitive to think about the integration of different

features. Provided that the different cues show substantially different characteristics and

behavior, the assumption is that the strengths of one of them can compensate for the

weaknesses of others, and vice versa. Consequently, this should yield a system that shows

better results, reliability and robustness than any of the respective subsystems. In our

scenario, we have a structure-based region classifier for hand detection that typically suffers

from a large number of false positives (cf. section IIIA). Despite the drawbacks of skin color

detection (as discussed in section II), it seems reasonable to utilize a skin-color classifier

because it will reliably reject those false positives that lie on non skin-colored regions. Plus,

a non-adaptive color model may be implemented as a simple look-up table once it has been

trained, and thus adds almost no additional computational costs. However, the answer to

the question how the different features should be combined to achieve the best result is, in

general, not straightforward. In section III C, we will investigate different alternatives.

For the purpose of skin color detection, we utilize a simple approach using Gaussian Mix-

ture Models (GMMs): The training samples are first clustered using the k-means algorithm

and then the clusters are approximated by Gaussian distributions. The final model thus

consists of several multivariate Gaussians representing the sample distribution. Images are

classified pixel-wise by calculating the model scores for the pixel color values and then de-

termining the class of the ”best” mixture. Obviously, as mentioned above, this can be done

by generating a look-up table using a color dummy file.

The models were trained on a small set of training images (see section IVA). Two

mixtures were trained separately for fore- and background, respectively, and then combined

into a single model. We investigated different color spaces and mixture sizes in order to find

the best combination for our data.
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Note that in our scenario, the conditions for skin color detection can be very challenging

since some cameras directly face the windows (glare effects, with most of the objects in front

of the window appearing almost black) and the wood inlay of the furniture has a skin-like

color (cf. figure 5). This results – consistently for all tested color spaces – in a rather large

error rate for skin pixels, since the background set contains many skin-like samples.

C. Data fusion

Given the abovementioned structural and color cues, the task is to combine them into a

single classifier system which can be used for robust hand detection in video images. In this

article we investigated three different fusion approaches.

A straightforward approach is to incorporate the skin color map computed using GMMs

within a pre-processing step. Here, a binary skin map is computed and used to mask the

input image. Subimages enclosing non-zero image regions are extracted, and SIFT based

hand detection is applied to these subimages only (instead of the whole image). Compared

to most other approaches, this has the additional advantage of considerably accelerating

the matching process, since large portions of the input image do not have to be treated.

Alternatively (but principally identically), fusion can be performed as post-processing where

the SIFT keypoints are weighted by their skin color probability.

The second integration approach we considered combines both features in a single (higher-

dimensional) feature vector prior to classification. This is done as follows: First, we calculate

a color histogram over an image region specified by the keypoint scale (meaning we actually

do not use the GMM skin classifiers for this approach). This histogram is then vectorized,

normalized to unit length and attached to the SIFT descriptor. Classification is performed

as described in section IIIA 2 using the compound feature vector. Of course, the database

entries used for NN matching must then be constructed in the same way.

Our third approach incorporates the combination of saliency maps which are calculated

separately for both information cues. Every positive keypoint (either SIFT or skin color

related) serves as origin of a single Gaussian. For the SIFT saliency map, the variance of

the Gaussian is dependent on the particular scale of the SIFT-keypoint. For the skin map,

a fixed variance is used. Figure 4 shows an example. The two saliency maps are then fused.

The resulting combined map is thresholded and all hand candidates having saliency values

below the threshold are rejected.
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[Figure 4 about here.]

IV. EXPERIMENTAL EVALUATION

In order to evaluate the effectiveness of the new approach for the detection of hands in

video images proposed in this article, we conducted various practical experiments. There-

fore, human users of our intelligent house (cf. section IA) were asked to perform certain

gestures in ordinary situations within the smart conference room of the FINCA. By means

of the ceiling-mounted video cameras, still images capturing the gestures were taken and,

subsequently, analyzed using the techniques presented in the previous sections.

In the following the results of the experiments are presented in detail. First the datasets

used are described. After that results for the SIFT-based detection approach as well as for

the combined approach integrating both structural and color cues are given.

A. Datasets

For training and testing, we recorded a dataset of 466 color images with PAL resolution.

The set was recorded inside our intelligent house using two cameras covering different views

of the room over different days and under varying lighting conditions. It contains images of

4 different persons wandering around inside our smart conference room and gesticulating.

Note that we did not constrain the type of poses or gestures performed, that the persons

appeared in different distances to the cameras, and that they were allowed to move around

freely in the camera’s field of view. Figure 5 shows some example images.

These images were segmented into hand and non-hand parts manually, where a small

region around the perimeter of hands is also labeled as belonging to the hand to account

for SIFT descriptors that describe typical hand regions, but lie outside the actual skin area.

From this set, 145 images were randomly selected for testing. The remaining 321 images

were taken for training of our classifier. GMM-training for skin color classification (section

III B) was performed on an alternative set of 46 sample images from the same scenario.

The final database of SIFT descriptors applied for the evaluation of the structural cue

contains approximately 200 000 entries for the background, and 8 700 for the foreground (i.e.

the hands).
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[Figure 5 about here.]

B. SIFT-based Hand Detection

In the first part of the experimental evaluation we concentrated on the effectiveness of

the SIFT-based approach for hand detection in still video images, i.e. the structural cue was

used exclusively (cf. also [1]). We, therefore, applied variants of our detection approach

as described in section III aiming at the evaluation of the approach in general and of the

effectiveness of the proposed rejection criterion, respectively.

Using the database of SIFT descriptors extracted from training images (see previous

section), first, the standard nearest neighbor (NN) matching technique (implemented as kd-

tree search for speedup) as described in [19] is applied to the set of test images. The goal of

this specific evaluation is to investigate whether SIFT descriptors are suitable in general for

the detection of articulated objects like hands in unstructured images originating from real

world scenarios. Note that SIFT has originally been developed for the detection of rigid, i.e.

non-articulated objects in images where those objects known from training samples might

occur as scaled or rotated instances. As mentioned before, in our scenario no constraints

w.r.t. the appearance of the hands to be detected in the images are given.

The ROC curve for NN matching using the full database of training examples is shown in

figure 6, the variational parameter being the threshold tclass on the distance ratio sclass. It

can be seen that, generally, the original SIFT approach for rigid object detection using simple

NN matching already yields satisfactory results. To get a high number of true positives, we

allow for the accepted points to have a distance ratio sclass > 1.0, which means they are in

fact more similar to some of the background examples. The point marked with 90% true

positives1 and 6.8% false positives corresponds to a threshold of 1.7. Due to the large number

of keypoints that are identified by SIFT (typically 800 - 1 600 per image), this results in a

large number of false positives which typically lie on foreground objects (e.g. the person’s

body) not represented in the database. However, a considerable number of these will be

discarded by our filtering algorithm.

[Figure 6 about here.]

1 We assume that, for our application, a true positive rate lower than 85 to 90% will not be sufficient.
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By means of the proposed rejection scheme, i.e. the modification of the original SIFT-

based detection, the abovementioned reduction of false positive classifications is addressed.

As described in section III, this rejection scheme consists of a hyteresis-like approach where

a list of keypoints spatially connected to the candidate in question is determined. Based on

a two-stage filtering technique, the number of false positives is considerably reduced.

In a set of experiments we evaluated the influence of the three parameters npos,min, fmin

and m using different classification thresholds tclass for the NN matching stage and sev-

eral region sizes. Basically, the algorithm (cf. figure 2) contains three different (technical)

definitions of spatial neighborhood resulting in regions

1. defined depending on the particular SIFT scale,

2. of fixed sized, or

3. containing the k nearest neighbors.

By analyzing the particular ROC curves the experimental evaluation turned out that all

three variants reduce the number of false positives successfully. Basically, scale-based and

fixed regions do not differ substantially w.r.t. the reduction rates, which, on the first hand,

seems surprising. Reconsidering the setting of the evaluation, it becomes clear that this

behavior seems to be an artifact of the sample set analyzed. The room the images were

recorded in is quite small, and so the assumption that hand sizes do not vary strongly holds

for most cases. Given a different scenario, a negative effect is very likely when using a fixed

region size. Detailed results for the abovementioned variants of determining the particular

keypoint lists are given in [1].

The third variant for candidate filtering does not use explicit regions, instead we generate

the input list using the k spatially closest keypoints to the candidate. Figure 7 shows

the ROC curves for this approach. Compared to the aforementioned definitions of regions

surrounding a particular keypoint, our filtering technique analyzing the k nearest neighbors

performed best since we do not make assumptions on appropriate region sizes, but evaluate

the same number of neighboring points for each candidate.

[Figure 7 about here.]

Reconsidering the overall algorithm (cf. figure 2) it can be seen that the criteria evalu-

ated so far – the minimum required number of positives npos,min and the minimum ratio of
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positives and negatives fmin – both belong to the first stage and are applied simultaneously.

However, failing one of them is not sufficient to reject a candidate keypoint. Instead, we

only reject keypoints that fail on both conditions, and we only accept those that satisfy both.

The remaining, which pass one criterion, but fail on the other, are further evaluated in a

second stage.

In this second stage of the filtering approach the m spatially closest neighbors of the can-

didate point are considered. A keypoint is only accepted as true positive if all m neighbors

are true positives, which means they must all have passed both conditions in the first stage.

Setting m to a high value will eliminate “isolated” positives, but will also tend to discard

key points at the margins of positive clusters. Figure 8 shows the ROC curves for different

parameter combinations, variating m in a reasonable range (from 0 to 10). The plot has

been scaled for better recognizability. Note that these curves have two fixed ends that are

defined by the outcome of the first filtering stage: The starting point corresponds to the

complete set of candidates that passed one of the two initial conditions, the end point to

the number of candidates that passed both conditions. It can be seen that this is a pretty

strong criterion, since for all values of m > 0, a certain portion of true positives is rejected.

However, the effect on false positives is stronger. Since most false positives are already re-

jected for m = 1, and higher values for m will only discard more true positives, we will only

take into consideration values of 1 and 2 for m for the evaluation of our complete system.

[Figure 8 about here.]

Table I shows the results of a few example runs using parameter sets that seem reasonable

based on the aforementioned evaluation results of the different stages. For almost all pa-

rameter combinations, the filtering approach achieves a substantial reduction of the number

of false positives while retaining true positive rates only slightly lower than in the initial NN

matching stage. The best combinations reduce the number of false positives by one half,

while only dropping around 5% of the true positives. This is an acceptable tradeoff, since

the required rate of approximately 90% true positives can still be achieved in most cases.

[Table 1 about here.]
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C. Detection of Hands using Cue Integration

In the previous sections it was shown that by means of SIFT-descriptors reliable hand

detection in video images of realistic HMI scenarios is possible. We, furthermore, demon-

strated that the rather high number of false positive detections as produced when applying

the original SIFT approach can substantially be reduced using the proposed hysteresis-like

filtering technique.

The basic idea of the hand detection method described in this article is, however, not

limited to the exploitation of the structural cue. Instead, color information is integrated

aiming at a further reduction of the number of false predictions, which is especially necessary

for robust gesture recognition as an intuitive input modality in human-machine interaction

applications. Note that the exclusive use of skin-color classification based approaches is, due

to the complex setting in our intelligent house environment, not suitable for our scenario.

We trained our skin models on 46 image samples in full PAL-resolution (yielding a total

of more than 19.3 Million pixels) recorded within our target scenario . The data was man-

ually labeled with respect to skin color. In summary, the dataset contained 17.7 Million

background pixels and 1.6 Million skin pixels. These were used to separately train mix-

ture models for skin and background which were then combined into a single model. Eight

different color spaces were investigated, and the number of Gaussians in the models was

varied between 5 and 150. We will skip the detailed evaluation results for the whole process

(because this would go beyond the scope of this article) and only report the best results

that were achieved.

We found the classifiers trained in the L*a*b and normalized RG (nRG) color space to

work best. For robust detection of skin colored regions a small number of mixtures (L*a*b:

5 for skin, 16 for background; nRG: 5/2) was found to be sufficient. On a test data set

containing 13 Million pixels, the L*a*b* classifier achieved an overall classification error of

2.8%. While only 0.7% of background pixels were classified incorrectly, the error rate for skin

pixels was 53%. For the nRG classifier, the overall error rate was 10%, which, in comparison,

is rather high. However, this classifier showed the best results for skin pixels (32% error

rate). So, we have two classifiers showing substantially different behavior on the test set:

The L*a*b* classifier is “pessimistic”, striving for a low overall error rate and accepting a

large number of false negatives to achieve this, while the nRG classifier is more “optimistic”
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and trades in a good skin recognition rate for a higher number of false positives.

As discussed in section III C, different schemes for fusing the data from both the SIFT-

based structural cue and the skin-color cue are investigated.

First experiments showed that using binary (morphologically closed) skin maps as pre-

or postprocessing step is not suitable for robust hand detection. This is because many of

the structural descriptors that describe hands lie in fact outside the skin area. Also, since

a skin color segmentation will never be perfect and will still exhibit holes inside skin areas,

some true positives lying on skin will also be discarded. Thus we concentrated on the latter

two integration methods.

In figure 9 the results of the evaluation of enhanced SIFT descriptors are presented. We

evaluated certain variants for descriptor enhancements using different color space models

and granularities of the appropriate histograms, namely HSV (h32 and hs8x8), normalized

RG (n-rg8x8), and LAB ((l)a*b*8x8). The dimensionality of the original descriptor vectors

(128) was enhanced by the particular histogram sizes. It can be seen that, although the

integration technique works in principle, only slight improvements over the SIFT-only de-

tection (denoted as kd-tree where the name originates from the actual implementation of the

matching technique as a kd-tree) can be achieved. In fact, in some cases the performance

got even worse than the reference. The reason for this lies in the missing flexibility of color

histograms w.r.t. illumination changes (which are included in the – realistic – sample-set

used).

[Figure 9 about here.]

The third type of fusing both sources of information is based on the integration of saliency

maps each calculated separately for the SIFT- and the color-cue, respectively. In order to

actually combine the probability maps, basically, different strategies can be used. In our

experiments we focused on the pixel-wise (weighted) summation of saliency values.2 We also

tried multiplying the maps which, however, did not improve the results and when using the

L*a*b color space produced even worse results. This is mainly reasoned by the fact that

in this case multiplying saliency maps suffered from the rather pessimistic behavior of the

particular skin classifiers skipping too many true positives.

2 In the experiments described in this paper the particular saliencies were equally weighted.
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In figure 10, ROC curves for the summation of SIFT-based and n-RG based (top), or

L*a*b based (bottom) skin color saliencies are shown. Again the reference curve represent-

ing the results obtained when evaluating SIFT-descriptors only is denoted as kd-tree (see

explanation in previous section). For the saliency combination three different curves are

given where the SIFT thresholds for NN classification are modified. Analyzing the ROC

curves it can be seen that the integration of structural and color cues by combining related

saliency maps greatly reduces the number of false positive detections while still very high

true positive rates can be achieved.

[Figure 10 about here.]

To summarize in figure 11 we show the best results for both skin classifiers based on nRG

and L*a*b color space, respectively. The variational parameter is the classification threshold

on the combined saliency map as described earlier. We marked two “working points” with a

true positive rate of 90% and 94%. In the first case the false positive rate could be reduced

from 6.3% to 4.2% (a relative reduction by 33%) using the L*a*b colorspace, and to 4.5%

(relative 28%) using nRG. In the latter case the reduction is from 7.5% to 5.0% (33%) and

to 5.4% (28%), respectively.

[Figure 11 about here.]

V. CONCLUSION

The basic motivation for the development of so-called “intelligent systems” for human-

machine interaction (HMI) applications is to allow for most intuitive and, thus, easy usability

of technical systems. Humans usually consider a system as smart if it shows reasonable reac-

tions to their actions related to the services offered. An important aspect for the acceptance

and usefulness of such intelligent systems is the naturalness of interfaces it offers.

The key modalities used by humans for “natural” interaction with technical systems are

speech and gestures. In order to allow for gesture recognition including both dynamic and

static (e.g. pointing) gestures the robust detection of hands in video images is a major pre-

requisite. In this article we presented an approach for robust hand detection in still video

images covering realistic scenarios.
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In our work we, generally, focus on the recognition of unconstrained gestures performed

in (almost) arbitrary environments. Due to their rather limited performance for related

still video images, especially originating from scenarios with different lighting conditions,

standard skin-color classification based approaches for hand detection cannot be used exclu-

sively. Thus, we developed an detection approach which is based on the exploitation of two

different sources of information, namely a structural cue and a skin-color cue.

For the structural cue integrated into our overall detection algorithm, SIFT-descriptors

are used. This initial classification step is based on a database of descriptors which are

trained on sample images containing either hands or background. By means of a hysteresis-

like filtering technique, the number of false positive classifications can be limited reasonably.

In order to further reduce the number of misclassifications, the approach proposed in this

article additionally contains a skin-color classification stage based on Gaussian Mixture

Models. By means of saliency maps derived from both cues data fusion is performed.

We demonstrated the effectiveness of our approach in a detailed experimental evaluation

on a challenging task related to human-machine interaction in our intelligent house, the

FINCA. For different lighting conditions, hands could be detected robustly in images cov-

ering different views of our smart conference room, where different people were wandering

around and gesticulating in an unconstrained manner.

The major outcome of the developments presented in this article and, thus, the main

contribution of our work is the realization of an important initial stage for actual gesture

recognition. Consequently, intelligent human-machine interaction applications exploiting

this intuitive modality in related domains can benefit from the approach presented.
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Figure 1: Overview of the integration scenario – an Intelligent House, the FINCA, developed at
the Robotics Research Institute of Technische Universität Dortmund (see text for description).
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for all keypoints k1...kn labeled as positives do

list = getKeypointList(ki)
count positives npos and negatives nneg in list

if (npos ≥ npos,min)&( npos

nneg
≥ fmin) then

accept ki as true positive.

else if (npos < npos,min)&( npos

nneg
< fmin) then

reject ki

else

find the m keypoints l1...lm closest to ki

if l1...lm are all true positives then

accept ki as true positive

else

reject ki

end if

end if

end for

function getKeypointList(candidate)

a) list = all points in circular region around candidate

with r = σ · c, c = const, σ = candidate scale

b) list = all point in circular region around candidate

with r = c, c = const

c) list = n spatially closest points to candidate

return list

Figure 2: Outline of the candidate filtering algorithm.

c© MAIK Nauka/Interperiodica, distributed exclusively by Springer Science+Business Media LLC.

Personal use of this material is permitted. However, permission to reprint/republish this material for

advertising or promotional purposes or for creating new collective works for resale or redistribution to

servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained

from the publisher.



FIGURES
This is a preprint of the materials accepted for publication in Pattern Recognition and

Image Analysis, 18(3) , 2008.

Figure 3: Examples for SIFT based hand detection results. Sift keypoints are depicted by squares,
white squares represent positives, black squares are negatives. Left: Very good detection, the
hands are identified correctly and almost all false positives are discarded. Right: Here, the filtering
algorithm fails because the false positives form large clusters.
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Figure 4: Examples for saliency maps. From left to right, top to bottom: Original image, SIFT
saliency, skin saliency (L*a*b* classifier), skin saliency (nRG classifier)
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Figure 5: Typical examples of camera images used
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Figure 6: Effectiveness of the exclusive application of the structural cue for hand detection in
still video images: The ROC curve illustrates the results for nearest neighbor matching using the
complete training database of SIFT descriptors.
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Figure 7: ROC curves for candidate filtering in hand detection applying SIFT only using k = 16
nearest neighbors. Top: Variating npos,min. Bottom: Variating fmin.
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Figure 8: ROC curves for candidate filtering in hand detection applying SIFT only variating m

with different parameter sets. NN16: 16 nearest neighbors. R15: fixed region size 15. RS10: region
size 10 · σ.
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Figure 9: ROC curves for hand detection experiments using enhanced SIFT descriptors additionally
integrating color histograms of the particular keypoints’ regions. kd-tree: reference using original
SIFT descriptors; h32: additional incorporation of hue-based color histograms (from HSV color
space) with 32 bins; hs8x8: integrated color histogram is based on hue and saturation (from HSV
color space) and calculated on 8 × 8 bins; n-rg8x8: same as hs8x8 but using normalized RG color
space; (l)a*b*8x8: dito for LAB space.
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Figure 10: ROC curves illustrating the efficiency of the combined hand detection approach using
SIFT and skin color cues integrated by summation of derived saliencies (top: n-RG color space;
bottom: L*a*b color space used)
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Figure 11: Best results for saliency fusion using L*a*b and nRG(B) color space for skin color
classification.
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region tclass n fmin m % TP (∆NN) % FP (∆NN)
1 RS10 2.0 3 1.25 1 85.08 (-10.2) 4.04 (-52.3)
2 RS10 2.5 3 1.00 2 91.55 (-6.2) 6.32 (-40.8)
3 R15 2.0 4 1.25 1 88,18 (-6.9) 4.05 (-52.2)
4 R15 2.5 3 1.00 2 93.07 (-4.6) 6.00 (-43.8)
5 NN16 2.0 4 1.25 1 90.26 (-4.7) 4.34 (-48.8)
6 NN16 2.5 3 1.50 2 91.30 (-6.4) 5.61 (-47.4)

Table I: Some example results using the complete filtering algorithm. npos,min abbreviated to n.
RS10: region size 10 · σ. R15: fixed region size 15. NN16: 16 nearest neighbors. The values in
brackets give the relative drop for the true and false positive rates compared to NN matching with
the same threshold tclass.

c© MAIK Nauka/Interperiodica, distributed exclusively by Springer Science+Business Media LLC.

Personal use of this material is permitted. However, permission to reprint/republish this material for

advertising or promotional purposes or for creating new collective works for resale or redistribution to

servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained

from the publisher.


