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ABSTRACT
Recognition rates of distant talking speech recognition ap-
plications substantially decrease if the acoustic environment
contains reverberation. Although standard approaches for
compensating such distortions, e.g. cepstral mean subtrac-
tion (CMS), are quite effective, they are not appropriate for
dynamic human machine interaction. When only short por-
tions of speech are uttered by speakers at different positions,
compensation methods fail that require several seconds of
speech. For this kind of applications we present a derever-
beration approach utilizing empirically determined impulse
responses. Prior to speaking users are asked to produce some
impulse-like signal (clapping their hands, or snipping the
fingers) which is used for compensation. By means of an
experimental evaluation on the German Verbmobil corpus we
demonstrate the promising potential of the approach.

Index Terms— De-reverberation, distant talking speech
recognition, impulse responses, cepstral mean subtraction

1. INTRODUCTION

For intuitive human-machine interaction (HMI) applications
speech represents an indispensable modality which allows for
truly natural communication with technical systems. Auto-
matic speech recognition (ASR) for HMI applications often
needs to deal with speech recorded by distant microphones.
In contrast to the (rather intrusive, hence inappropriate) use of
head-sets, in this setting the quality of the recorded utterances
is limited. Reasons for this are additionally recorded noise
and distortions of the speech signal caused by the recording
environment (reverberations).

Due to such distortions signal enhancement represents a
pre-requisite for distant talking ASR. In fact, numerous tech-
niques for the enhancement of acoustic conditions have been
described. These techniques are either directly related to the
actual ASR process (e.g. speech enhancement by room effect
compensation at the level of feature extraction), or to acous-
tic signal processing in general. The majority of related ap-
proaches address de-reverberation by exploiting filtering tech-
niques based on linear systems theory. By the analysis of im-
pulse responses effective compensation can be realized.

Most filtering based speech enhancement techniques rely
on the detection and analysis of ideal impulse responses. Fur-
thermore, often rather large portions of speech data uttered
by a speaker at a certain (fixed) position are required for the
successful compensation of acoustic distortions. Consider-
ing non-artifical settings for dynamic HMI applications it be-
comes clear that techniques of this kind are likely to fail at the
desired compensation of room effects or noise. In such sce-
narios speakers are usually wandering around while uttering
short statements, which violates the pre-requisites.

In our research we focus on practical solutions to the
aforementioned problem. We are aiming at the improvement
of a distant talking ASR system used for voice control of the
electrical installation (lights, sun-blinds etc.) of a smart house
– the FINCA [1]. One of the fundamental challenges in this
setting is the existence of long-term reverberations severely
distorting acoustic signals. We empirically determined a re-
verberation time T60 = 519ms which clearly indicates the
highly reverberant character of the acoustic environment our
ASR system needs to deal with.

Within this context we investigated the use of empirically
determined impulse responses for the enhancement of short
spoken instructions, which is described in this paper. In the
next section the relevant related work is briefly reviewed. Our
novel approach for improving distant talking speech recogni-
tion is described in section 3. The results obtained in an ex-
perimental evaluation based on the German Verbmobil corpus
are presented in section 4 and the advantages and limitations
of the approach are discussed.

2. RELATED WORK

Especially addressing the compensation of reverberations in
acoustic environments numerous approaches have been deve-
loped. Basically, (blind) deconvolution techniques can be ap-
plied (cf. e.g. [2]), which, technically, corresponds to filtering
based on linear systems theory.

State-of-the-art speech recognition systems, however, use
an approximation of the aforementioned deconvolution tech-
nique, namely cepstral mean subtraction (CMS) (cf. e.g. [3,
ch. 10]) as an integral part of the feature extraction stage.
The goal is to compensate for convolutive speech distortions



caused by different recording equipments. However, as CMS
is employed within the analysis windows used for feature ex-
traction (usually 10 to 20ms long) distortions caused by re-
verberations that operate on substantially longer time-scales
can hardly be compensated.

Therefore, in [4] and later in [5, 6] the use of long-term
log-spectral mean subtraction (LLSMS) was proposed to
counteract the effects of reverberation on speech recorded in
distant talking settings. The method principally works like
CMS. The most notable difference is that the short-term log-
spectral estimate is computed over windows of 1 to 4s length
and averaged over up to 12s of speech. Additionally, after
normalization speech is re-synthesized by an overlap-add
technique and normal feature extraction is applied after-
wards (as for clean speech). Though speech normalized such
exhibits substantial audible distortions considerable improve-
ments in recognition quality are reported for data recorded
with a distant microphone in a meeting room.

As the transfer function in a distant talking scenario also
varies with the speaker’s position, in [7] (and certain related
publications of its authors) the position dependent normaliza-
tion of speech by applying CMS was proposed. The setting
described is comparable to the one investigated in our work.
Especially for the enhancement of short utterances its capa-
bilities seem, however, rather limited. Furthermore, it is not
clear to what extent the experimental setup really suffers from
reverberation since the particular ambient reverberation time
has not been given.

3. EMPIRICALLY DETERMINED IMPULSE
RESPONSES FOR DISTANT TALKING ASR

In order to allow for an effective improvement of the dis-
tant talking speech recognition system in the highly reverber-
ant environment of the FINCA we use the aforementioned
LLSMS approach (cf. previous section) as the basis for our
developments. The original approach relies on long speech
durations (optimal estimation window 12s) which is, unfortu-
nately, not feasible for our and related Ambient Intelligence
scenarios. Since the speech interaction with the smart house
is reduced to certain control commands uttered on (almost)
constantly changing locations it is unrealistic to rely on spo-
ken utterances of this length.

Therefore, we perform log-spectral mean subtraction
(LSMS) by using a “spontaneous” estimate of the log-spectral
density. Ideally, this estimate would reflect the transfer func-
tion of the room observed in the distant talking setting. A
rather good estimate of the desired log-spectral density can
be obtained by passing an appropriate test signal (usually
a sine sweep) through the acoustic pipeline. The estimate
could, however, also be approximated by signals that exhibit
impulse like characteristics (most importantly an approxi-
mately flat frequency distribution) while still being “natural”
in the setting of HMI.

In these premises, we derive coarse approximations of
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Fig. 1. Empirically estimated impulse responses for improved
distant talking ASR – system overview

log-spectral estimates of the ideal impulse response from
sounds of hand clapping or snipping the fingers. Obviously,
these sounds differ largely from an ideal impulse and, there-
fore, compensations based on these estimates are still suffer-
ing from severe distortions. Consequently, the recognition
quality can not be expected to reach the same level as in the
case of compensating with a log-spectrum based on the mea-
sured response. Since it is, however, impracticable to rely
on ideal impulses for the desired ASR improvement in HMI
applications the use of such coarse approximations seems
more promising compared to no compensation at all.

In figure 1 an overview of the system for distant talking
ASR improvement based on empirically determined impulse
responses is given. Prior to some spoken command the par-
ticular speaker produces some impulse like signal – he claps
his hands or snips with his fingers (upper part of the figure) –
at the position where he, afterwards, utters the command. By
means of the impulse response estimated on the “initiation”
signal deconvolution, i.e. alleviation of room reverberations,
is performed (lower, right part) and the improved signal is
passed to distant talking ASR.

In order to more formally describe our approach let us first
look at the principle idea behind LLSMS. As in our approach
this technique assumes that clean speech s is passed through
an acoustic channel c which causes convolutive distortions re-
sulting in an observed signal s̃ = s ∗ c. Additive noise is
not taken into account in this model. When transforming this
relation into the log-spectral domain – and considering the
power-spectral density only for simplicity – the convolutive
distortion c becomes an additive one:

log |S̃| = log |S| + log |C|

Computing the long-term average, i.e. the expectation of
log |S̃|, which is in fact the conditional expectation given the



excitation signal s, one obtains:

E{log |S̃|}|s = E{log |S|}|s + E{log |C|}|s = LLSM

The resulting estimate of the long-term log-spectral mean
(LLSM) consists of a portion accounting for the channel,
which, however, depends on the speech data itself, and the
average log-spectrum of speech.

For every analysis window a normalized speech spectrum
can then be obtained from the normalized power spectrum
|Ŝ| = exp(log |S|−LLSM) combined with the original phase
information. The complete normalized signal then results
from overlap-adding the contributions of all the analysis win-
dows.

In our LSMS approach we use a compensation term that
represents a channel estimate only. It is computed indepen-
dently from any speech data that need to be normalized on the
basis of a suitable excitation signal e – e.g. the clapping of
hands – which is passed through the acoustic channel. From
the distorted version ẽ of this excitation an estimate of the
LSM normalization term

E{log |Ẽ|}|e = E{log |E|}|e + E{log |C|}|e = LSM

can be derived. It represents a reasonable estimate of the
channel distortion if the excitation used has an approximately
flat spectrum.

4. EXPERIMENTAL EVALUATION

Since the (spontaneous) interaction of humans with a smart
house is difficult to evaluate in a quantitative and objective
manner we decided to conduct recognition experiments based
on a standard speech recognition corpus. Together with im-
pulse like signals (sweep, clapping, snipping) it was replayed
through a loudspeaker within the FINCA. The effectiveness
of ASR improvement based on exploiting empirically deter-
mined impulse responses is measured by the changes in word
error rates (WER).

4.1. Baseline Recognition System

As the baseline system for our experiments we used a rec-
ognizer designed for the 5k spontaneous speech recognition
task defined by the 1996 evaluation of the German Verbmobil
project. The system was trained on over 27 hours of sponta-
neously spoken dialogs that were elicited from more than 600
speakers in a fictitious appointment scheduling scenario.

In the feature extraction stage 12 mel-frequency cep-
stral coefficients and a normalized energy term together with
delta and delta-delta coefficients are computed. In order to
reduce short term channel distortions we apply causal cep-
stral mean normalization. The acoustic model is based on
semi-continuous Hidden-Markov Models (HMMs) with a
shared codebook of 1k Gaussians, linear topology, and a
data dependent number of states. On the basis of triphone

models, acoustic units that can be trained robustly are built
by applying state clustering after the first Baum-Welch re-
estimation step. Afterwards, another 9 re-estimation steps are
applied. During decoding a bi-gram language model with a
test-set perplexity of 64.2 is used by a recognizer that uses
time-based search-tree copies and operates in a strictly time-
synchronous manner. All recognition systems described in
this paper were built using the tools and methods provided by
the ESMERALDA development environment [8]. As can be
seen in table 1 the baseline clean speech recognition system
achieves a word error rate of 28.1% on this challenging task.

4.2. Results

For the recognition experiments in the reverberant environ-
ment (T60 = 519 ms) of the FINCA we replayed the data of
the 1996 Verbmobil test set through a loudspeaker (Behringer
TRUTH B2030A) and recorded the reverberant signals by a
artificial-head microphone (Sennheiser KU 100) positioned
at a distance of approximately 1.5 meters. All acoustic sig-
nals were sampled at 16 kHz and only the left channel of the
recorded stereo-data was used.

On the reverberant data the recognizer trained on clean
speech achieves only a quite unsatisfactory performance with
a word error rate of almost 72%.

As a kind of baseline method for compensating the effects
of reverberation we first applied LLSMS1 to both the clean
training and the reverberated test data using different analy-
sis window lengths (1.024s and 4.096s). Both normalization
techniques significantly increase the error rate when applied
to clean speech data as shown in table 1. Note that the relative
increases in error rate are roughly consistent with the results
published in [5] for the much easier task of recognizing digit
strings where the clean speech baseline achieved a word error
rate as low as 1%. Furthermore, also in our experiments the
configuration with the longer window size outperforms the 1s
version when applied to the reverberant data though both win-
dow lengths are longer then the observed reverberation time
T60 of 519 ms.

Second, we used the recording of a so-called sweep, i.e.
a sine signal of 10.4 s length with logarithmically increasing
frequency and uniform energy distribution, for rather accu-
rately estimating the log-spectral density of the true transfer
function. In fact this sweep-based estimate represents the op-
timal impulse response that can be achieved in this setting.
As both LLSMS and LSMS cause quite noticeable acoustic
distortions regardless of the normalization applied, we used
the system trained on 1s LLSMS data for decoding on the
test normalized by the sweep-based log-spectral estimate. In
this configuration a rather mediocre performance with an er-
ror rate of more than 68% is achieved.

1We used the implementation of the LLSMS method supplied
by Gelbart & Morgan on the web page accompanying their pa-
per [5] http://www.icsi.berkeley.edu/Speech/papers/
asru01-meansub-corr.html.



condition train / test window WER ∆ WER
length [%] [%]

baseline clean / clean – 28.1 –
LLSMS clean / clean 1s 32.5 15.7

4s 37.1 32.0
baseline clean / reverb. – 71.7 155.2
LLSMS clean / reverb. 1s 65.1 131.7

4s 60.3 114.6

Table 1. Results of baseline recognizer without any compen-
sation and LLSMS approach (deviations of more than 1.2%
are significant at a level of 95%)

LSMS length of smoothing WER ∆ WER
estimate excitation [%] [%]
sweep 10.4 – 68.4 13.4

median 65.1 8.0
snipping 3.2 median 62.1 3.0
clapping 4.1 median 61.7 2.3

Table 2. Results for the proposed LSMS approach with dif-
ferent normalization of the reverberant test data (training con-
dition: LLSMS, 1 s window, ∆ WER wrt. LLSMS, 4 s)

Finally, we derived coarse estimates of the true impulse’s
log-spectral density from sounds of hand clapping and finger
snipping. When using those raw estimates directly for LSMS
the resulting speech data is too heavily distorted to be useful.
Therefore, we smoothed the raw log-spectral estimates by ap-
plying a median filter with a window size of 60 frequency
bins. The results obtained are shown in the lower part of ta-
ble 2. For purposes of comparison we also applied the same
smoothing to the sweep-based estimate, which resulted in a
significant reduction of the word error rate. Interestingly, the
best results – given the complexity of the task – with error
rates around 62% are achieved when using the smoothed LMS
estimates of hand clapping and finger snipping. With respect
to the best-performing LLSMS approach this corresponds to
a relative increase in word error rate of less than 3%.

5. SUMMARY

In this first study on using spontaneous estimates of impulse
responses for compensating effects of reverberation in distant
talking speech we successfully proved the principal effective-
ness of the proposed approach. Not requiring several seconds
of speech signals for the compensation allows for rapid de-
reverberation. In fact no speech at all is required for the esti-
mation of the room transfer function since we could demon-
strate that the use of impulse-like signals like a clap of the
hands or a snip with the fingers is sufficient.

The proposed approach is especially relevant for the appli-
cation domain of dynamic human machine interaction where
short statements are uttered by speakers with varying posi-
tions. In order to improve distant talking ASR users are sim-

ply asked to perform certain impulse-like signals prior to talk-
ing. In an experimental evaluation based on replaying (via
loudspeaker) the test set of the German Verbmobil corpus in
our heavily reverberant smart house the effectiveness of the
approach could be demonstrated.

So far we did not yet investigate systematically the effect
of varying speaker positions on the process. In informal ex-
periments we found, however, that in our setting the reverber-
ation characteristics varies slowly with speakers’ positions.
Therefore, a rather coarse sampling of the interaction space
will probably be sufficient which can then be integrated with
the automatic tracking of speech sources. In future work we
will also focus on the improvement of the absolute recogni-
tion rates e.g. by applying acoustic adaptation techniques. In
fact in this paper we concentrated on the general proof-of-
concept of the proposed approach and did not focus on more
sophisticated speech recognition issues.
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