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Abstract

Currently, Profile Hidden Markov Models (Profile HMMs) are the methodology of choice

for probabilistic protein family modeling. Unfortunately, despite substantial progress the

general problem of remote homology analysis is still far from being solved. In this article

we propose new approaches for robust protein family modeling by consequently exploit-

ing general pattern recognition techniques. A new feature based representation of amino

acid sequences serves as the basis for semi-continuous protein family HMMs. Due to this

paradigm shift in processing biological sequences the complexity of family models can

be reduced substantially resulting in less parameters which need to be trained. This is es-

pecially favorable when only little training data is available as in most current tasks of

molecular biology research. In various experiments we prove the superior performance of

advanced stochastic protein family modeling for remote homology analysis which is espe-

cially relevant for e.g. drug discovery applications.

Key words: Protein Sequence Analysis, Probabilistic Protein Family Modeling, HMM

∗ To whom correspondence should be addressed.

Preprint submitted to Elsevier Science 13 September 2005



1 Introduction

One fundamental goal of research in molecular biology is the determination of proteins’

functions. This is especially relevant for almost all variants of life sciences research, e.g.

within the so-called drug discovery pipeline. Principally, the genomic data is exploited for

the development of new therapies against severe illnesses like e.g. cancer.

The biological function of proteins is determined by their three-dimensional structure

which depends on biochemical properties of the particular residues. One foundation of

molecular biology states that similar functions of proteins are caused by similar struc-

tures. Furthermore, the three-dimensional structure of proteins is mainly determined by

biochemical properties of the underlying primary structure, i.e. the linear sequence of

amino acids. Thus, once the function of a particular protein could have been solved, re-

lated proteins can be obtained by sequence comparison which stands for one principle of

molecular biology research. Since protein sequences are usually considered as strings of

an alphabet consisting of the 20 standard amino acids,computationalsequence compari-

son methods are predestinated for protein analysis at the beginning of the drug discovery

process, namely target identification and target verification.

Currently, one very promising approach for protein family related analysis of amino acid

sequences is the application of so-called Profile Hidden Markov Models (Profile HMMs)

as probabilistic target family models. Given a training set of protein data, discrete HMMs

are estimated. These models are then evaluated for unknown query sequences which are

aligned to the explicit protein family models. Such explicit target family models are fa-

vorable for sequence analysis since family specific data is incorporated into the analysis.

Despite the substantial progress for remote homology analysis when applying Profile

HMMs as described above, the general problem is, unfortunately, still far from being
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solved. Although smart model regularization techniques have been developed, the robust-

ness of protein family models is rather insufficient especially when only small training

sets are available. For further breakthroughs in molecular biology research for both fun-

damental research and for commercial issues with respect to the pharmaceutical industry,

improved methods for the basic step of protein sequence analysis are required. Since con-

ventional methods including the application of even the most sophisticated discrete Profile

HMMs apparently have reached their limits, new concepts are required.

In order to generally improve the computational analysis of protein sequences, in this ar-

ticle we present new concepts for HMM-based protein family modeling approaches. Due

to the interpretation of protein sequence analysis as a pattern recognition problem, the

general application of HMMs for bioinformatics purposes has become possible. Conse-

quently, in our new approaches presented here, we generalize this idea by treating amino

acid sequences assignalsin their original meaning, i.e. representing some kind of bio-

chemical measures depending on the particular position within sequences.

Based on this new protein sequence representation powerful features are extracted serving

as the basis for all further processing. By means of these features, advanced protein fam-

ily models become possible. We developed semi-continuous feature based Profile HMMs

as direct replacements of the abovementioned discrete Profile HMMs. Due to the explicit

consideration of the particular residues’ biochemical properties, covered by the new fea-

ture representation, and robust model estimation and evaluation techniques applying gen-

eral pattern recognition methods, the new semi-continuous Profile HMMs significantly

outperform their discrete counterparts. Using the new feature representation protein fam-

ily HMMs with reduced model complexity become possible. We developed the so-called

Bounded Left-RightHMM model architecture containing a substantially smaller number

of parameters that need to be trained for robust modeling which is especially relevant

when only little training data is available.
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Based on the general HMM framework ESMERALDA [1], the new techniques were in-

tegrated into a ready-to-use protein sequence analysis system which will be applied in the

context of industrial molecular biology research. The focus of this article is on the presen-

tation of the complete system as an innovative integrated framework for protein sequence

analysis. We applied it for the experimental evaluation of the proposed concepts. There-

fore, different corpora were defined exploiting the SUPERFAMILY hierarchy [2] of the

SCOP database [3] at the level of superfamilies. It turned out that the new, more general

pattern recognition oriented approaches for feature based protein sequence analysis us-

ing HMMs substantially outperform state-of-the-art techniques. The superior results are

very promising for related tasks within e.g. the field of drug discovery indicating that the

proposed techniques are favorable for generally improved remote homology analysis.

In the subsequent section we briefly review the state-of-the-art in probabilistic protein

sequence analysis, namely Profile HMMs. Following this, section 3 in detail discusses

the proposed advanced protein family modeling approaches using HMMs. As already

mentioned before, an evaluation using considerable amounts of practical experiments was

performed in order to judge the relevance of the new techniques. In section 4 the corre-

sponding results are presented and discussed. Finally, we will give a summary.

2 State-of-the-art in Probabilistic Sequence Analysis using HMMs

Proteins can be interpreted as words over an alphabet with fixed lexicon, namely the set

of amino acids. Consequently, most sequence analysis techniques are based on some kind

of string processing algorithms. Usually, dynamic programming techniques are applied

creating sequence alignments by matching or substituting, inserting, or deleting residues

including the calculation of appropriate alignment scores which can be used for classifi-

cation. Very popular implementations of traditional alignment techniques are e.g. BLAST
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[4], or FASTA [5]. Basically the foundations of such so-called pairwise sequence compar-

ison techniques remain the same, namely the direct sequence-to-sequence alignment.

Especially for the analysis of remote homologies the abovementioned pairwise alignment

techniques are usually outperformed by explicit stochastic models of the protein families

the sequences are belonging to. Here, remote homologies designate protein sequences

which although sharing a common biological function contain only weak sequential sim-

ilarities. The statistical properties of multiple protein family members are covered by a

probabilistic model and query sequences are aligned to such models. Due to the explicit

consideration of proteinfamily information, such techniques are usually superior com-

pared to the pairwise techniques mentioned above.

Currently, Profile HMMs are the most promising kind of stochastic protein family models.

Originally introduced by Haussler and colleagues [6], Krogh et al. [7], and Baldi and

coworkers [8], they are interpreted as probabilistic representation of a multiple alignment

of sequences belonging to the same family. Usually, Profile HMMs are estimated for a

particular protein family using training sequences for which the family affiliation is known

in advance. Database search is performed by aligning query sequences to the model and

calculating the appropriate score which is the base for family affiliation classification.

In this section we will briefly review the state-of-the-art in protein sequence analysis tech-

niques using Profile HMMs In 2.1 the formal definition of (general) HMMs is summarized

whereas the focus of sub-section 2.2 is on specific HMMs for bioinformatics purposes.

2.1 Definition of General Hidden Markov Models

Currently, Hidden Markov Models represent the predominating concept for the classifica-

tion of general signals evolving in time covering both length and content variance. They
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are used in various application fields, e.g. the automatic recognition of speech or handwrit-

ten script. The foundations of Hidden Markov Models are shortly but clearly presented in

[9] and in more detail described in e.g. [10, chap.8].

Formally an HMM describes a two stage stochastic process. According to the so-called

Markov Property in the first stage one statest of a finite set of statesS = {S1, S2, . . . , SN}

is chosen depending only on a limited number of predecessors. For the most relevant first

order models, the memory is bounded to the immediate predecessorst−1. Transitions

between states are modelled with the probabilityP (st|st−1) and subsumed in a matrix

A = [aij] = [P (st = Sj|st−1 = Si)],
∑
j

aij = 1, 1 ≤ i, j ≤ N.

The initialization of the stochastic process is defined by the vector of initial probabilities

π := [πi] = [P (s1 = Si)]. Depending onst in the second stage an observation symbolot

is produced with probabilityP (ot|st). For bioinformatics applications these symbols are

usually modeled as discrete emissions. Analogous to the transition matrix the emission

probabilities can be summarized in a matrix

B = [bi(ol)] = [P (ot = Ol|st = Si)], 1 ≤ i ≤ N, 1 ≤ l ≤ M.

A linear sequence of emission symbolso represents the data to be handled. Formally a

Hidden Markov Model is defined as a tupleλ = (π,A,B).

Pattern classification with HMMs requires the robust estimation of their parameters, namely

the transition and emission probabilities as well as the model structure. Using represen-

tative samples the parameter values are usually estimated by means of variants of the

well-known EM algorithm [11], most notably Baum-Welch, and Viterbi training.

Once HMMs are established serving as statistical models for distinct pattern families they

have to be evaluated when classifying sequences of observations. Using the Forward al-

gorithm the general probabilityP (o |λk) of an HMM λk producing the given sequenceo
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can be calculated. More common is the deployment of the Viterbi algorithm which addi-

tionally decodes the most probable state-sequence chosen producing the observations:

P (s |o, λ) =
P (o, s |λ)

P (o |λ)
⇒ P (o, s ∗|λ) = max

s∈ST
P (o, s |λ).

By means of the techniques discussed above, Hidden Markov Models can be estimated

and evaluated very efficiently for various applications in different domains.

2.2 Profile Hidden Markov Models for Remote Homology Analysis

By abstraction from time HMMs have also been proven to be very effective for alternative

domains. For bioinformatics purposes time dependency is substituted with residues’ loca-

tions. In the following the foundations of current protein family HMMs are summarized.

Pairwise sequence comparison is often not suitable for the analysis of remote homo-

logue protein sequences. Contrary to this, when exploiting multiple sequence alignments

(MSAs), more information about the targetfamilyof interest is incorporated into sequence

analysis. During alignment, for every column of a particular MSA probability distribu-

tions of amino acids are considered instead of single residues as for the pairwise case.

A good overview of general sequence alignment algorithms is given in e.g. [12]. Usually

the abovementioned position specific amino acid probability distributions are subsumed

in so-calledProfiles[13]. The generalization of Profile analysis refers to Profile Hidden

Markov Models whose typical architecture is shown in figure 1.

The conserved parts of a multiple alignment of the sequences belonging to a target fam-

ily are modeled by a linear sequence of match statesMi. A position in the alignment is

considered conserved if some residue is present for the majority of sequences. In order

to capture variations in sequence length insertions and deletions of residues are described
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by additional insertIi and delete statesDi. There are some extensions to the basic archi-

tecture with increased flexibility, e.g. in HMMERs Plan7 [14]. An excellent treatment of

Profile HMMs can be found in [15].

Currently, the emissions of Profile HMMs are modeled by discrete probability distribu-

tions over the set of 20 amino acids. Transition and emission probabilities are estimated

using standard Baum-Welch or Viterbi training. For classification of sequence data the

models are evaluated by computing the Forward or Viterbi scores, respectively.

For detection tasks the scores generated by aligning query sequences to the appropriate

family models are evaluated regarding a threshold. Since these scores are depending on the

length of the sequences, usually, they are considered with respect to the scores generated

by some background or null model. The resulting ratio of both scores is called the log-odds

score and target hits are assumed for statistically significant values. The actual choice of

the appropriate background model is rather crucial for the overall detection performance

and target specific background models are widely used [16].

Especially for remote homology detection tasks the number of training samples for esti-

mating the target specific Profile HMM is usually rather small which is disadvantageous

for robustestimation. Thus, several model regularization techniques were proposed which

try to tackle this so-called sparse data problem (cf. e.g. [17]). The currently most promis-

ing technique for obtaining statistically more “stable” amino acid distributions is based

on the incorporation of prior knowledge using carefully designed Dirichlet distributions.

3 Advanced Stochastic Protein Sequence Analysis

Common practical experience of molecular biologists, especially in the research field of

drug discovery, leads to the conclusion that even the most sophisticated probabilistic pro-
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tein family modeling techniques (cf. the previous section) have reached their limits. There-

fore, in this article we present new, and more general approaches representing some kind

of paradigm shift. Currently, the development of the most promising approaches is very

goal oriented, which means that several concepts are almost exclusively influenced by

the actual biological task (cf. the Profile HMM architecture directly reflecting the match-

ing/substitution, deletion, and insertion of amino acid residues).

Protein sequence analysis can generally be understood as a pattern recognition problem

where more or less modified occurrences of patterns need to be assigned to the correct

classes. Consequently, our approaches address the advanced incorporation and adoption

of general pattern recognition techniques into the bioinformatics domain. Due to a more

abstract view at the protein sequence analysis task , enhanced probabilistic models for

protein families become possible which are described in this section. We will first discuss

the central idea of feature based protein sequence analysis using semi-continuous Profile

HMMs including robust model estimation and application schemes (sections 3.1 - 3.3,

cf. also [18]). When using the proposed rich sequence representation the complex Profile

HMM architecture is no longer needed. Thus, model topologies with reduced complexity

can be used which is favorable for the robust estimation of protein family HMMs when

only little training data is available. In section 3.4 the generalization to feature based

protein family HMMs with a Bounded Left-Right topology is presented. An overview of

the complete system for advanced stochastic protein sequence analysis is given in 3.5.

3.1 Feature Extraction from Protein Sequences

State-of-the-art HMM-based protein sequence analysis approaches are applied directly to

symbolic primary structure sequence data. This data which is the more or less direct re-

sult of sequencing (after gene prediction, transcription, and translation) seems to be the
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“natural” choice for most appropriate practical applications. The reason for this is that any

further higher-level information about e.g. the three-dimensional structure of proteins is

usually not available. However, according to the foundations of molecular biology pro-

teins’ functions are determined by their spatial conformation which directly depends on

the biochemical properties of the underlying residues. The sequence of amino acid sym-

bols represents some kind of summary of these properties only. In order to improve the

capabilities of protein family HMMs we developed a richer protein sequence representa-

tion explicitly covering the abovementioned biochemical properties.

Once alternative representations for biological sequences are available the huge amount of

powerful signal processing techniques already existing can be applied to the bioinformat-

ics domain. Applications using protein family HMMs can thus benefit from uncovering

possibly hidden characteristics of protein data. Explicitly exploiting such information can

especially increase the performance of remote homology analysis approaches.

Currently, in the field of sequence analysis only little research is devoted to signal based

representations. The most common approaches either use a mapping to some vector space

[19,20], or to biochemical properties which is the basis for spectral analysis [21]. The most

promising signal representations rely on biochemical sequence properties. Kawashima et

al. compiled a huge amount of so-called amino acid indices [22]. Every index defines a

mapping of amino acids to numerical values depending on biochemical properties.

In our new feature based representation of protein sequence data we are aiming at the

explicit consideration of residues’ relevant biochemical properties. Especially the local

neighborhood of amino acids determines the spatial conformation of proteins and, there-

fore, its biological function. Basically, we follow the idea of mapping residues to numer-

ical values as defined by amino acid indices. However, limiting the representation to an

arbitrary but single index implies neglecting putative higher level relationships of residu-
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als. Furthermore, there is hardly anyexhaustiveprior knowledge, which property causes

remote homologue sequences to belong to a distinct protein family – usually it cannot be

specified exclusively. Therefore, we do not want to restrict the representation to a single

biochemical property but carefully selected 35 indices out of the pool of indices available

for a multi-channel signal representation (cf. also [23]). The indices actually selected are

listed in table 1 and [24, p. 203], respectively. The combination of multiple biochemical

properties provides a rich characterization of protein sequences.

In order to respectlocal signal characteristics for HMM states’ emissions, in our feature

extraction procedure consecutive samples of the 35 channel signals are analyzed using a

sliding window approach (extractingframes). Starting from the first residue of a distinct

sequence for each of the 35 channels 16 samples are used for short time signal analysis.

The window is moved along the whole sequence using single residue steps resulting in

stepwise overlaps of 15 samples for each channel.

Basically, for remote homology analysis the signal analysis should produce features en-

abling a more abstract view on the actual sequences representing the coarse shape and

neglecting detail. In order to extract such features independently of the actual signal type,

usually, a spectral analysis is performed. Transforming signals into a frequency based rep-

resentation offers direct access to the desired shape approximation. In our approach we

use the Discrete Wavelet Transform (DWT) for the analysis of the coarse temporal signal

structure (cf. e.g. [25]). For every channel of the signal representation of a particular pro-

tein sequence the Wavelet coefficients are determined using standard Daubechies filters of

length 4. For the analysis of remote homologies we skip the upper five coefficients con-

taining detail information, resulting in 11-dimensional feature vectors per channel which

are concatenated to 385-dimensional vectors.

After combining the DWT coefficients of all channels into a single feature vector, poten-
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tially redundant information needs to be removed. Thus, we finally perform a Principle

Component Analysis (PCA) for the feature vectors of every frame whose components are

normalized to the interval of[−1 . . . 1]. The PCA-matrix itself was estimated beforehand

using large amounts of general protein data (approximately 90K SWISSPROT sequences).

Inspecting the eigenvalue spectrum of the data, it becomes clear, that a compact represen-

tation in a 99-dimensional subspace is sufficient for more than 95% reconstruction.

Figure 2 schematically summarizes the feature extraction method described in this article.

3.2 Robust Estimation of Feature Based Profile HMMs

Compared to the 20 discrete amino acid symbols, the new feature representation of pro-

tein data corresponds to a 99-D feature space. When processing feature vectors, generally

discrete HMMs are not suitable for modeling. Instead, continuous modeling is usually

the methodology of choice where the feature space is represented by state-specific mix-

tures. However, pure continuous HMMs seem problematic especially for remote homol-

ogy analysis tasks since often only little training data is available. The smaller the amount

of training data, the smaller the number of Gaussians which can be estimated robustly.

For effective exploitation of training data, in [26] semi-continuous HMMs were proposed

where all states share a common set of mixture densities weighted state-specifically. Com-

pared to continuous models only one global set of component densities needs to be esti-

mated which is advantageous for small training sets. This shared set of densities can be

considered as a general mixture representation of the feature space. For a feature vector

x corresponding to a frame of residuesa = (a1, . . . , a16), the emissionsbj(x) of HMM

statesj are defined as mixtures ofK GaussiansN (x|µk,Ck) with mean vectorsµk and

covariance matricesCk used for all HMM states but individually weighted bycjk:
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bj(x) =
K∑

k=1

cjkN (x|µk,Ck) =
K∑

k=1

cjkgk(x). (1)

By analyzing equation 1 it becomes clear that the model estimation can principally be di-

vided into two separate steps. The model independent feature space representation can be

obtained using general feature data. Subsequently, the model itself is optimized based on

the resulting component densities and model specific training samples. We found that the

separation of the estimation of a general feature space representation from position spe-

cific modeling is the basic advantage of semi-continuous modeling. This can be exploited

for robust estimation of protein family HMMs using small family specific sample sets.

The parameters of the general mixture density based feature space representation are ob-

tained by applying a modifiedk-means procedure to general protein data which is com-

parable to the Expectation-Maximization (EM) approach. The base for the unsupervised

and completely data driven estimation of mixture densities is a huge pool of general pro-

tein data, i.e. sequences not explicitly assigned to the target protein family of interest. We

used all sequences (approximately 90K) from the SWISSPROT database [27] allowing

the estimation of a sufficient feature space representation, namely 1 024 Gaussians.

In our first approach addressing improved protein family modeling we developed semi-

continuous Profile HMMs. This means that the discrete emissions of state-of-the-art pro-

tein family HMMs are replaced by the abovementioned semi-continuous emissions while

keeping the original model topology as illustrated in figure 1. Given the Profile structure,

standard Viterbi training is performed using the component densities of the general feature

space representation and small amounts of family specific data.

The mixture density representation of the feature space obtained from SWISSPROT cap-

tures the global properties of general protein data. In order to focus the representation to

specific properties of proteins belonging to a particular target family, data driven mixture
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adaptation techniques are applied. Using such transformations of the mixture parame-

ters, i.e. mean vectorsµk and (not necessarily) covariance matricesCk, the coverage of

general protein properties is optimized towards more family specific characteristics. Note

that the model structure, the transition probabilitiesaij as well as the state specific mixture

weightscjk remain unchanged during adaptation. Only the underlying mixture component

densities are changed during adaptation.

We investigated two different adaptation techniques which are described in the following

where the number of family specific training samples, i.e. the amount of adaptation data

which is usually very small, is denoted byT .

Maximum A-Posteriori (MAP) Adaptation: The simplest case of target family based

specialization of the feature space representation is the re-estimation of mixture parame-

ters. Therefore, a maximum likelihood (ML) optimization, i.e. EM up to convergence, is

performed applying the small family specific set of adaptation data. Since the parameters

of all densities are re-estimated by ML, unfortunately, rather large sample sets are required

for robust adaptation. Contrary to the ML approach, MAP adaptation of the component

densities is performed with respect to optimization of the posterior probability of the mix-

ture parameters for the adaptation samples. Generally, prior parameter estimatesµ̂k and

Ĉk weighted byτ are combined with the re-estimation based on the family specific data:

µ̂m+1
k =

τ µ̂m
k +

∑T
t=1 ξm

t (k)xt

τ +
∑T

t=1 ξm
t (k)

(2)

Ĉm+1
k =

τ(Ĉm
k + µ̂m

k (µ̂m
k )T ) +

∑T

t=1
ξm
t (k)xtxT

t∑T

t=1
ξm
t (k)

τ +
∑T

t=1 ξm
t (k)

− µ̂m+1
k (µ̂m+1

k )T (3)

p̂m+1
k =

1

T

T∑
t=1

ξm
t (k) (4)

with ξm
t (k) = P (gt = k|xt, p̂

m
k , µ̂m

k , Ĉm
k ).
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Hereξm
t (k) designates the probability of selecting a particular Gaussian for a given sam-

ple, andp̂k represents the prior probability of thek-th Gaussian. Initial parameter es-

timates are obtained by applying a (modified)k-means algorithm [28] to SWISSPROT

data. The advantage of MAP adaptation is the balanced incorporation of prior informa-

tion extracted from the larger set of unlabeled sequences depending on the actual amount

of adaptation data. The more adaptation samples available, the stronger the influence of

them and vice versa, the smaller the amount of target specific data, the higher the influ-

ence of the background estimation. We adjustedτ to the number of samples assigned to

the mixtures as accumulated during the previous estimation steps which allows robust

mixture adaptation even for small training sets.

Maximum Likelihood Linear Regression (MLLR): For the second kind of adapta-

tion, deterministic assignments of feature vectorsxt to mixtures are assumed. Originally

developed for speaker adaptation of automatic speech recognition systems, in [29] the

modification of the mixtures’ mean vectors only using affine transformationsWk was

proposed. These transformations represent rotations and translations of the feature space

estimated on small adaptation sets. They can be defined with respect to augmentedD+1-

dimensional mean vectors̃µk = (1, µk1 , . . . , µkD
)T , whereD in our case is 99:

µ̂k = Wkµ̃k. (5)

The transformations are generalized to groups of Gaussians including densities not cov-

ered by the adaptation set via linear regression. Fischer and Stahl developed a simplified

procedure by using asingleregression class. This implies a global transformation matrix

W which is defined as follows [30]:

W =

{
T∑

t=1

xtµ̃
T
t

} {
T∑

t=1

µ̃tµ̃
T
t

}−1

. (6)

15



Contrary to MAP adaptation, here instead of statistically re-estimating the mixtures’ pa-

rameters, the densities themselves are transformed. The transformation itself which is

estimated for mixtures actually covered by a small adaptation set is generalized to the

complete feature space. Since only the single transformation matrixW needs to be esti-

mated which requires considerably smaller amounts of target family specific data, MLLR

is especially attractive for remote homology analysis.

3.3 Robust Remote Homology Detection

In order to perform remote homologydetectionnormally log-odds scores are used for a

threshold based decision regarding target hit or miss. For the feature-based protein family

HMMs we use a null model based on the prior probabilities of the mixture components

estimated during model building.

We enhanced this procedure by furthermore applying a technique principally known from

general detection tasks. Additionally, a non-target model which explicitly covers all data

notbelonging to the protein family of interest is competitively evaluated to a target model.

According to [31] such a model, which was originally proposed for the task of automatic

speaker detection, is calledUniversal Background Model (UBM). As an enhancement of

the general UBM approach, our definition of the background model used for Profile mod-

els optionally captures structural information using a standard left-right topology (other-

wise we use the original single-state definition of UBMs). This UBM itself, consisting of

LU = 30 states, was estimated on the set of general SWISSPROT data by Baum-Welch

training. The actual model length was determined heuristically in informal experiments.

In figure 3 our approach for estimating semi-continuous Profile HMMs and an explicit

UBM for robust remote homology detection is summarized. Based on the new feature rep-

resentation of general protein data a mixture representation of the general feature space is
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estimated usingk-means (upper-left). By means of standard discrete modelsλD estimated

on family specific training samples (upper-right), and the general feature space represen-

tation, semi-continuous Profile HMMsλG are obtained via Viterbi training (middle-right).

Then, the mixture representation is optimized for the target families by applying adapta-

tion techniques resulting in family specific modelsλS (lower-right). Finally, on SWIS-

SPROT data the UBM is estimated (lower-left).

3.4 Protein Family HMMs with Reduced Complexity

The state-of-the-art in probabilistic protein sequence analysis techniques refers to stochas-

tic representations of multiple sequence alignments. Therefore, Profile HMMs were de-

veloped explicitly respecting the dynamic programming “roots” of sequence alignment

techniques for model creation. The topology of Profile HMMs is based on three different

kinds of states, namely match, insert, and delete which correspond to the standard opera-

tions of dynamic programming techniques. Consequently, current protein family HMMs

require a rather complex topology (figure 1). However, the basic drawback of such mod-

eling techniques is the enormous amount of model parameters which need to be estimated

thus requiring large training sets. Since usually only little training data is available often

model regularization techniques need to be applied which is, however, problematic. Even

with the most sophisticated model regularization techniquesrobustdata-driven model es-

timation can hardly be realized. Data-driven techniques are especially favorable for re-

mote homology analysis since putatively biased model regularization seems critical for

detecting really new protein family members.

Based on the new feature based sequence processing we now focus on the reduction of

the models’ complexity in order to reduce the number of parameters which need to be

trained while keeping the flexibility of the particular protein family models. Compared to
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the feature based Profile HMMs which consist of substantially more parameters explicitly

trained, especially for small training sets the new models with reduced complexity are fa-

vorable. According to the literature, currently there is only little research dedicated to the

explicit reduction of the number of model parameters. Grundy and colleagues proposed

the MEME system which heuristically combines rather simple motif HMMs to protein

family models [32]. In [33] we presented feature based protein family modeling tech-

niques using so-called sub-protein units (SPUs) which are obtained in a data-driven and

un-supervised manner. However, for global protein family models state-of-the-art Profile

HMMs currently still outperform SPU-based models.

When using the previously described feature representation, emissions of protein family

HMMs are now based on a mixture density representation of the new feature space. The

resulting continuous emission probability distributions are much broader than the discrete

amino acid distributions of current Profile HMMs while keeping the specificity necessary

for sequence classification. If features properly match the emission probability distribu-

tions of a particular state, the resulting contribution to the overall classification score is

rather high which corresponds to the match case of dynamic programming. Contrary to

this, if the features do not match the states’ probability distribution, the local score will be

small which corresponds to an insertion. Thus, theexplicit discrimination between insert

and match states is not needed any longer because it is implicitly performed already on

the emission level. Furthermore, explicit deletes are only conceptual and can be replaced

by jumps skipping direct neighbors which results in standard left-right topologies where

every state is connected to all states adjacent to the right.

However, if arbitrary jumps within a protein family model are allowed, as defined for plain

left-right topologies, especially for models covering larger protein families the number of

parameters to be trained is still rather high. The number of transition probabilitiesNt for

a model containingL states is defined as follows:
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Nt =
L∑

i=1

i + 1 =
L

2
(L + 1) + 1.

For an exemplary protein family model consisting of 100 states, the number of transition

probabilities is approximately 5 000.

Even for extremely diverging sequences belonging to a particular protein family it is rather

unrealistic to assumearbitrary alignment paths through the appropriate protein family

model which are allowed when using the plain left-right topology. Thus, a variant of

standard left-right models is developed for protein family modeling – so-calledbounded

left-right (BLR)models. State transitions are restricted to the local context of a particular

state resulting in substantially less transition parameters to be trained. The number of

state transitions depends on the length of the underlying protein family model and it is

defined by the ratio of the median of the training sequences’ length to their minimum

length. Using this heuristic, it is guaranteed that all training sequences can be aligned to

the model when initializing it’s length to the median of the length of the training data.

For local alignments optionally every state can serve as model entrance and exit. The

corresponding transition probabilities are fixed by assuming uniform distributions which

is reasonable according to [15, p. 113ff]. The length of BLR models is determined as

the median of the lengths of the training data and the semi-continuous BLR models are

initialized and trained using standard HMM algorithms. In figure 4 the BLR architecture

of protein family models is illustrated.

Compared to the approximately 5 000 transitions for the complete left-right model ar-

chitecture of the exemplary protein family given above, the number of parameters to be

trained for the BLR topology is decreased to approximately 500 when assuming a median

length of 100 and a minimum length of 20. For a corresponding three-state Profile HMM

architecture the number oftransitionparameters for the given example is approximately
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2 700. Additionally, the number of emitting states in BLR models is halved compared

to standard three-state Profile HMMs. Note that due to respecting local amino acid con-

texts already at the level of emissions, usually feature based BLR models are significantly

shorter than Profile HMMs.

3.5 System Overview

The focus of this article is on the development of a complete system for advanced stochas-

tic protein sequence analysis which can be used for supporting molecular biology research

at a larger scale. Based on the ESMERALDA framework for arbitrary HMM recognizers

[1] the new techniques were implemented. In addition to the new approaches presented

in this article, the system consists of powerful tools for both robust estimation and effi-

cient evaluation of mixture densities, semi-continuous HMMs, Markov chains etc. Using

this framework, high-throughput sequence analysis pipelines can be realized allowing for

advanced and efficient analysis of remote homologue protein sequences.

The general application scheme of the described system is graphically summarized for

the exemplary use of a BLR target model in figure 5. In the first frame (block 1), the

general preprocessing steps necessary for the application of the new models are illustrated.

These are the estimation of the general mixture density feature space representation, UBM

training, and feature extraction for the sequences contained in the database which will

be searched for remote homologues. These time-consuming steps are necessary to be

performed only once. The target model estimation procedure is shown in frame 2. Based

on the features extracted from a small sample set, a general semi-continuous feature based

protein family HMM is estimated which is further specialized using either MAP, or MLLR

adaptation. The resulting target model is competitively evaluated to the UBM. The actual

remote homology detection process is illustrated in the third block.
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4 Experimental Evaluation

The basic motivation for the developments of the approaches presented in this article is

the improvement of remote homology analysis as usually performed in large scale for e.g.

drug discovery tasks. We emphasized advanced stochastic techniques which aregenerally

applicable to the task of protein sequence analysis. In order to judge their capabilities we

performed an experimental evaluation thereby avoiding putative biases to particular pro-

tein families using public data of high quality. Since the major application of probabilistic

protein family models within the drug discovery pipeline refers to target identification we

concentrated ondetectionof remote homologue sequences of certain protein families by

database screening. Query sequences are aligned to target models and depending on the

scores generated the classification regarding hit or miss is performed.

Usually, the capabilities of detection techniques are measured as a function of the num-

ber of false negative predictions vs. the number of false positives which is summarized

in ROC-curves [34]. Furthermore, especially for industrial use certain working points

within the particular ROC-curves are relevant. Therefore, the percentage of allowed e.g.

false negative predictions is fixed at 5% and the corresponding percentage of, here, false

positive predictions is considered for judgment.

We compared the new techniques (referred to as SCFB – semi-continuous feature based

– models) to discrete Profile HMMs estimated using the state-of-the-art SAM package

v3.3.1 [35]. These models were created and evaluated using default parameters which e.g.

implies Dirichlet model regularization. SCFB protein family HMMs were obtained as

described in section 3 using our own general HMM framework ESMERALDA [1]. In this

article the performance of the basic procedure is evaluated, i.e. iterative model estimation

approaches, which are not addressed here, can also benefit from our new approaches.
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4.1 Datasets

Generally, it is rather difficult to assess the power of protein family HMMs by means of

unknown data. The actual family affiliation of the data processed needs to be known in

advance. We, therefore, used the SUPERFAMILY [2] based hierarchy of the manually

annotated, high-quality SCOP database [3] – v1.63 – at the superfamily level where se-

quences belonging to a distinct family must not have similarity values larger than 95%.

The data for every family covers almost uniformly the whole range of possible similari-

ties, i.e. the performance forremotehomology analysis can actually be evaluated.

First we evaluated the general detection capabilities of feature based Profile HMMs in

comparison to their discrete counterparts, i.e. the state-of-the-art. Therefore, “sufficient”

amounts of training samples were assumed. Additionally, (annotated) samples not used for

training were available for performance assessment. Within the database used 16 SCOP

superfamilies fulfill these constraints and were thus selected for evaluation. Every super-

family contains at least 66 sequences and two thirds of the appropriate material was ran-

domly chosen for estimating the Profile HMMs (on average 70 training samples for every

superfamily). The detection experiments were then performed based on the approximately

8 000 sequences of the abovementioned database which among others contains the par-

ticular sequences. For further argumentation the corpus consisting of the corresponding

training and test sets is referred to asSCOPSUPER9566.

In the second set of experiments we evaluated remote homology detection using protein

family HMM variants estimated when only smaller training sets were available. Therefore,

the amount of sample sequences was successively reduced beginning from 44 samples

which results in 44 sub-corpora. Note that for every sub-corpus the number of training

sequences is equal for all superfamilies. Due to the enormous number of permutations

possible, the (statistically correct) evaluation using leave-N out tests forN = 1, . . . , 43 is
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computationally not feasible. However, since we selected the particular sequences which

were removed from the original training setsrandomly, in fact reliable conclusions can be

drawn when performing single detection experiments for every sub-corpus. The data sets

used for the second kind of experiments are referred to asSCOPSUPER9544f.

Due to space limitations a quantitative description of the corpora used is skippedhere.

In the following the results of the particular experimental evaluations are summarized.

Exhaustive descriptions of the corpora and detailed evaluation results can be found on our

website (www.techfak.uni-bielefeld.de/ags/ai/projects/GRASSP) or in [24], respectively.

4.2 Results

The results of the general evaluation of the capabilities of feature based protein family

HMMs are presented in figure 6. The numbers of false negatives (x-axis) are compared to

the corresponding numbers of false positives (y-axis). In addition to the complete ROC-

curves, a “working area” is highlighted containing those parts of the curves which are

most important for molecular biology research because the number of false positive pre-

dictions is reasonably limited. Analyzing the plots it becomes clear that both variants of

feature based protein family HMMs substantially outperform state-of-the-art discrete Pro-

file HMMs. It can be seen that the number of false negative predictions can generally be

decreased while reducing the number of false positives. The ROC-curves corresponding to

SCFB models lie significantly below the reference curve of discrete models for the whole

diagram. The effectiveness of the competitive evaluation of UBM and target models can

be assessed by the maximum number of false positive predictions (which are especially

critical since they usually correspond to subsequent irrelevant but expensive wet-lab in-

vestigations). Due to our explicit rejection model this number is dramatically reduced by

almost 66 percent for all superfamilies (cf. the particular maxima on the y-axis). Note that
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the sensitivity of the UBM is not perfect resulting in a small amount of false rejections.

Since hard decisions are delivered by the abovementioned competitive model evaluation,

some ROC-curves of SCFB models do not cross the y-axis (marked with ’+’). In table

2 the characteristic values for the 5% working points within the ROC-curves are given

proving the superior performance of SCFB HMMs.

The second sets of experiments was directed to the assessment of the capabilities of pro-

tein family HMMs obtained when only little training data is available which is critical

for robust estimation even when using sophisticated model regularization techniques. For

an overview of the models’ detection capabilities evaluated for the SCOPSUPER9544f

corpus, in figures 7 and 8 the ROC-curves corresponding to three exemplary sub-corpora

are presented. In the first figure detection results for models estimated using 44 sequences

per superfamily (upper diagram), and when using 30 samples each are shown (lower di-

agram). Figure 8 contains the results for models estimated using only 20 sequences per

target. Analyzing the particular ROC-curves it can be seen that the new feature based

protein family HMMs also substantially outperform state-of-the-art when the number of

training samples is reduced. It becomes obvious that the smaller the training sets, the more

favorable are especially the SCFB models with reduced complexity (BLR). The substan-

tially reduced amount of model parameters can be robustly estimated even when only very

little training data is available. Nevertheless, the flexibility of the models is sufficient for

remote homology analysis.

In table 3 the corresponding characteristic values are given again proving the substantial

progress for remote homology analysis when using the new approaches. In some of the

experiments the characteristic values were not met. For prematurely ending ROC-curves

(caused by UBM’s false rejections) resulting in unreached working points in table 3 the

appropriate global maxima at the endpoints of the ROC-curves are given in parentheses.
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5 Summary

Due to the progress of genome sequencing projects providing huge amounts of biological

data, the computational analysis of protein sequences has become more and more impor-

tant for molecular biology research. Especially probabilistic models of protein families,

namely Profile HMMs, are very promising for the classification of unknown data. Unfor-

tunately, the general problem ofremotehomology analysis is still far from being solved,

even when applying the most sophisticated probabilistic techniques.

We developed advanced probabilistic protein family models which represent a paradigm

shift in protein sequence analysis addressing generally improved remote homology de-

tection. Therefore, the bioinformatics problem was treated from a consequent pattern

recognition point of view. By means of a rich feature based sequence representation

semi-continuous protein family HMMs were developed, consisting of either Profile or

a less-complex Bounded Left-Right (BLR) model architecture. The underlying general

feature space representation is estimated using non-target specific sample sequences from

SWISSPROT. For further model specialization mixture density adaptation techniques are

applied, namely MAP or MLLR. Especially BLR models containing substantially smaller

amounts of parameters are favorable for robust model estimation when only little training

data is available. In combination with explicit background models their superior perfor-

mance was demonstrated in various experiments based on the SCOP database at the level

of superfamilies. The newly developed techniques were integrated into a ready-to-use se-

quence analysis system which can be used for remote homology analysis at a larger scale.

To conclude, the new approaches proposed in this article represent major improvements

for remote homology analysis tasks. Furthermore, they can serve as the foundation for

further developments which is very promising for general molecular biology research.
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Fig. 1. State-of-the-art discrete Profile HMM architecture.
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Fig. 2. Overview of the feature extraction method for protein sequences (cf. [23]).
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Channel Index Description

0 Average flexibility indices
1 Residue volume
2 Transfer free energy to surface
3 Steric parameter
4 Polarizability parameter
5 A parameter of charge transfer capability
6 A parameter of charge transfer donor capability
7 Normalized average hydrophobicity scales
8 Size
9 Relative mutability
10 Solvation free energy
11 Molecular weight
12 Melting point
13 pK-N
14 pK-C
15 Graph shape index
16 Normalized van der Waals volume
17 Positive charge
18 Negative charge
19 pK-a (RCOOH)
20 Hydrophilicity value
21 Average accessible surface area
22 Average number of surrounding residues
23 Mean polarity
24 Side chain hydropathy, corrected for solvation
25 Bitterness
26 Bulkiness
27 Isoelectric point
28 Composition of amino-acids in extracellular proteins
29 Composition of amino-acids in anchored proteins
30 Composition of amino-acids in membrane proteins
31 Composition of amino-acids in intracellular proteins
32 Composition of amino-acids in nuclear proteins
33 Amphiphilicity index
34 Electron-ion interaction potential values

Table 1
Biochemical properties selected for sequence representation.
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Fig. 6. ROC-curves for the experimental evaluation using the SCOPSUPER9566 corpus.

HMM Variant False Negative Predictions False Positive Predictions

[%] for 5 % False Positives [%] for 5 % False Negatives

Discrete Profile 26.1 57.6

SCFB Profile (MAP) 7.9 16.0

SCFB Profile (MLLR) 5.1 5.5

SCFB BLR (MAP) 8.9 11.9

SCFB BLR (MLLR) 4.9 4.7

Table 2

Characteristic values for SCOPSUPER9566 detection experiments.
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diagram: 44 training sequences / lower diagram: 30 training sequences.
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Fig. 8. Summary of detection results for SCOPSUPER9544f (20 training sequences).

# Training HMM Variant False Negative Predictions False Positive Predictions

Samples [%] for 5 % False Positives [%] for 5 % False Negatives

44 Discrete Profile 27.8 68.7

SCFB Profile (MAP) 15.1 31.4

SCFB Profile (MLLR) 12.9 26.6

SCFB BLR (MAP) 16.6 0.0 (11.1)

SCFB BLR (MLLR) 9.3 0.0 (6.1)

30 Discrete Profile 31.6 78.2

SCFB Profile (MAP) 20.9 45.0

SCFB Profile (MLLR) 19.0 0.0 (25.9)

SCFB BLR (MAP) 0.0 (19.8) 0.0 (1.7)

SCFB BLR (MLLR) 0.0 (19.9) 0.0 (0.9)

20 Discrete Profile 36.3 80.2

SCFB Profile (MAP) 34.5 62.2

SCFB Profile (MLLR) 33.1 0.0 (13.6)

SCFB BLR (MAP) 0.0 (41.4) 0.0 (0.2)

SCFB BLR (MLLR) 0.0 (51.3) 0.0 (0.6)
Table 3
Characteristic values for SCOPSUPER9544f experiments (44/30/20 training sequences).
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