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ABSTRACT

A multitude of multi-microphone speech enhancement methods is
available. In this paper, we focus our attention to the well-known
minimum variance distortionless response (MVDR) beamformer,
due to its ability to preserve distortionless response towards the de-
sired speaker while minimizing the output noise power. We explore
two alternatives for constructing the steering vectors towards the de-
sired speech source. One is only using the direct path of the speech
propagation in the form of delay-only filters, while the other is using
the entire room impulse response (RIR). All beamforming methods
requires some control information to be able to accomplish the task
of enhancing a desired speech signal. In this paper, an acoustic event
detection method using biologically-inspired features is employed.
It can interpret the auditory scene by detecting the presence of dif-
ferent auditory objects. This is employed to control the estimation
procedures used by beamformer. The resulting system provides a
blind method of speech enhancement that can improve intelligibility
independently of any additional information. Experiments with real
recordings show the practical applicability of the method. Signifi-
cant gain in fwSNRseg is achieved. Compared to using the direct
path only, the use of the entire RIR proves beneficial.

Index Terms— microphone array, auditory scene analysis,
blind beamformer for speech enhancement

1. INTRODUCTION

For speech enhancement using multiple microphones, a multitude
of beamforming methods exist [1]. They employ a variety of op-
timization criteria. One basic, but yet robust, type is the delay-
and-sum beamformer, that uses only time delays to steer the spa-
tial filter to the source direction [2], [3]. Better enhancement can
be gained by the so-called data-dependent beamformers that apply
some constrained minimization criterion. One such spatial filter is
the minimum variance distortionless response (MVDR) beamformer
that steers a “beam” towards the desired source while minimizing
sounds from all other directions [4]. This can be split in two par-
allel processing paths in the well-established generalized sidelobe
canceler (GSC) implementation [5]: A fixed beamformer (FBF) fo-
cusing on the source and a blocking matrix (BM) that blocks it and
provide noise reference signals to the subsequent adaptive noise can-
celer (ANC), c.f Fig. 1. Similarly, the linearly constrained minimum
variance (LCMV) criterion minimizes the noise power while satisfy-
ing a set of linear constrains on the responses of multiple sources of
interest. For both MVDR and LCMV, the fixed response for the de-
sired source is often a delay-only steering vector, thus only using the
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Fig. 1. Proposed method: A classifier identifies speech or suitable
noise segments that respectively update a FBF and BM or ANC.

direct path. In reverberant enclosures, the room impulse response
(RIR) of the source consists of many reflections. Hence, methods
using an estimate of the entire RIR provide better speech quality [6],
[7]. Another family of beamformers is based on blind source sepa-
ration (BSS) concepts that aims at imposing independence between
the sources [8], [9].

All the above mentioned methods benefit from and sometimes
require a control mechanism that informs them when to estimate the
filters and allows them to distinguish between sources. Speech activ-
ity can be used to adapt the different paths of the GSC [6]. The direc-
tion of the desired source can be utilized in delay-and-sum, MVDR,
and LCMV beamformers [3], [10], [11]. Directional information can
also be incorporated into BSS beamformers [12], [13].

Recently, signal processing based on physiological insights has
become increasingly popular [14]. One of the most influential theo-
ries is the auditory scene analysis (ASA) that describes how the hu-
man listeners is able to segregate speech by interpreting the acoustic
scene as composed of auditory objects [15]. A common concept in
computational ASA (CASA) is the estimation of a time-frequency
mask for each speaker [16], which can be applied to beamforming
in the form of a postfilter [17]. Using CASA frontends has also been
shown to be beneficial in the higher level tasks of speaker localiza-
tion and identification [18]–[20]. A higher-level task is recognition
of types of auditory objects [21]. Classification based approaches
have shown to be more robust than simpler measures for the detec-
tion of speech in noise [22]. The use of CASA-inspired features has
shown potential in [23].

Figure 1 shows the structure of the system proposed in this pa-
per. The single channel bag of features (BoF) classifier introduced
in [23] is used to classify time segments. This is used to estimate the
components of an MVDR beamformer implemented in a GSC struc-
ture [6]. From speech segments, the FBF and BM blocks are up-
dated. Stationary noise segments are used to adapt the ANC. When
nonstationary noise is detected, neither are updated.



2. METHOD

The system consist of an MVDR beamformer and a control unit in
the form of a classifier. A dedicated training procedure allows the
latter to blindly distinguish between speech, noise and nonstationary
noise. The estimation of the beamformer components is guided by
the detection of these categories.

2.1. Beamformer

In the short time Fourier transform (STFT) domain the signal re-
ceived by the M microphones can be written in vector form as
z (t, k) = [z1 (t, k) , . . . , zM (t, k)]T , with t denoting the frame and
k the frequency indexes. This way we can write the signal model as
the sum of the source signal s filtered by the time varying acoustic
transfer function (ATF) a (t, k) = [a1 (t, k) , . . . , aM (t, k)]T plus
noise signals vi (t, k) with their respective ATF bi (t, k):

z (t, k) ≈ a (t, k) s (t, k) +
∑
i

bi (t, k)vi (t, k) . (1)

The method introduced in [6] estimates the relative transfer function
(RTF) by a least squares (LS) fit utilizing speech nonstationarity.
The overall GSC estimation procedure is summarized in algorithm 1.
The operator FIR← stands for the operation of constraining the support
of the filter in time-domain. fs denotes the sampling frequency.

Algorithm 1 GSC estimation
1a. using all speech time segments, estimate RTF

h (t, k) =
a (t, k)

a1 (t, k)
or

1b. estimate DoA based TF

hm (t, k) = exp(−ı2πk/K(τm(θ)− τ1(θ))fs)

2. compute FBF

yF (t, k) =
hH (t, k)z (t, k)

||h||2

3. compute noise reference

u (t, k) = BH(h) (t, k)z (t, k) with

B(h) :=

[
−hH

2:M

IM−1×M−1

]
4. compute output

ŝ (t, k) = yF (t, k)− gH (t, k)u (t, k)

5. update ANC for each noise frame

g̃ (t+ 1, k) = g (t, k) + µ
u (t, k) ŝ∗ (t, k)

p (t, k)

g (t+ 1, k)
FIR← g̃ (t+ 1, k) with

p (t, k) = λp(t− 1, k) + (1− λ)||z (t, k) ||2

estimate h

t

update gupdate g update g

speech speechdS dS dS dS

Fig. 2. Updating strategy from classifier output. The frames clas-
sified as speech are used together to compute the fixed beamformer
coefficients h. The frames classified as noise farther away than a
guard margin dS from speech are used to continuously update the
ANC coefficients g.

2.2. Control

The control information is provided by the soft supervised BoF
acoustic event classification method introduced in [23]. From the
single channel signal at the first microphone, both mel frequency
cepstral coefficients (MFCCs) and gammatone frequency cepstral
coefficients (GFCCs) features and their first derivatives are calcu-
lated. The input is classified by the BoF system in a sliding window
of 1 s. The output is reduced to the decision ‘speech’, ‘noise’, or
‘non-stationary noise’. The input signal is divided into consecutive
time segments of these three types.

2.3. Training

In order to deal with different noise types and speech mixed with
noise, a dedicated training strategy was devised: First, for differ-
ent types of noises, several examples are recorded with the device.
It is distinguished between four types of noise, ordered by increas-
ing nonstationarity: 1) very stationary noises such as white noise or
fan sounds, 2) mechanical noises, 3) speech-like babble noise, and
4) nonstationary noise like keyboard typing. In order to estimate a
good representation for speech, the speech samples are mixed with
samples of each of the different noise types at a high SNR of 18 dB
to train the speech class Ω0. For each of the four noise classes, a
class Ω1 . . .Ω4 is trained individually using its examples. Addition-
ally, for each of them a mixture class Ω′1 . . .Ω

′
4 is trained by mixing

noise types of the same level of stationarity or lower, e.g. Ω′2 is
trained by mixing with different noise types from the categories Ω1

and Ω2.

2.4. Estimation

The time segments classified as speech are used to estimate the FBF
and BM. The noise segments are used to update the ANC. In the
transitions between speech and noise, especially at low SNRs, an
underestimation of speech existence might occur. The updating of
the ANC in speech would lead to a serious deterioration of the per-
formance due to speech distortion. Therefore, a guard boundary of
dS = 0.5 s around the time segments classified as speech is intro-
duced. The ANC is only updated in step 5 in noise segments that are
dS before or after the speech segments as shown in Fig. 2.

There are two versions of the FBF and BM. They employ dif-
ferent methods of estimating h in the first step of algorithm 1. The
first method is estimating the full RTFs. The second method only
uses the direct path. hm is set to a pure phase corresponding to the
time difference of arrivals (TDoAs) for each microphone given the
direction of arrival (DoA) of the speaker. Multiple methods for es-
timating the DoA of the sound source towards the microphones ex-
ist [24]. In line with the ASA approach, a robust neuro-biologically



Fig. 3. Smartphone mockup comprised of four microphone mounts
attachable to a plastic body.
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Fig. 4. Recording scenario: Three speakers are placed around the
mockup at different angles and distances.

inspired method [19] was employed. The mean of DoA present in
time segments classified as speech, but not in time segments classi-
fied as noise, was used.

3. EVALUATION

Recordings were done in the acoustic lab at Bar Ilan University [25].
The room’s T60 was adjusted to 320ms. A smartphone mockup was
used for recordings. The mockup consists of a plastic body and four
microphones mounted near the edges in an 12x8 cm rectangular pat-
tern, cf. Fig 3.

Three speakers were placed around the mockup as illustrated in
Fig. 4. The desired speaker was placed at 1.2 m distance at −30◦ in
position p1. Two interfering speakers were placed at 2.0 m distance
at 45◦ and 135◦, at position p2 and p3 respectively. The record-
ings were executed with 48 kHz sampling rate and 24 bit resolution.
This was used for the classifier. The beamformer was applied to the
signals downsampled to 16 kHz.

The noise samples ‘pink’, ‘babble’, ‘factory1’ and ‘factory2’
were taken from the NOISEX-92 database [26]. From the freesound
database [27], the following were extracted: ‘roaring fan’ – a rather
loud humming fan, ‘ventilation’ – air conditioning noise, ‘keyboard’
– constant keyboard typing, The ‘white’, ‘pink’, ‘roaring fan’, and
‘ventilation’ noises were used for Ω1, ‘factory1’ and ‘factory2’ for
Ω2,‘babble’ for Ω3 and ‘keyboard’ for Ω4.

For testing, two different anechoic speech sequences from the
same speaker were played. In each sequence, there are four speech
segments of 2-4 s. Overall, they were 18.5 s and 16.5 s long, where
speech is present half of the total time. Each noise was added to each

(a) Classification results for different noise types coming from position p2
(upper) and p3 (lower)
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(b) Classification results for two noises coming from positions p2 and p3.
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Fig. 5. Classification results for the first speech sequence.

speech sequence at SNRs of 0,6,12 dB played individually form each
of the noise speaker positions. Additionally, sequences with two
different noises, each of them played from one of the two speakers,
were used.

The classifier was trained with data from a different recording
session using the same mockup placed at a different angle and play-
ing speech or noise from p1, p2. Recordings of a 45 s long anechoic
speech sequence and the different noise samples played for 120 s
were used.

3.1. Classification

Figure 5 shows the classifications for the first speech sequence. Dif-
ferent colors are used to show correct speech detections, speech clas-
sified as noise, noise classified as speech, and the detection of non-
stationary noise. The speech related performance is expressed as
true positive (TP), false positive (FP), and false negative (FN) re-
spectively.

At 0 dB sometimes speech segments are estimated too short or
missed, especially with ’pink’ and ’factory’ noise. The ’fan’ noise
from position 1 is the only case where noise is classified as speech.
Over all sequences, excluding the keyboard, there are 92.8% TP,
14.2% FP, and 7.2% FN relative to the number of speech frames.
The keyboard is detected, but it also deteriorates the speech estima-
tions as a lot of speech frames are also classified as keyboard.

For the mixtures of noises from both positions, the results are
still good with 95.7% TP, 18.6% FP, and 4.3% FN. In the 0 dB SNR
condition, speech is missed again in some cases. In mixtures with
babble noise, there is some miss-classification of noise as speech.
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Fig. 6. Spectrograms of speech ‘two narrow channels’ in speech sequence 2, distorted by ‘factory’ noise p2. Input signal (a), speech part (b),
output of the proposed method (c), and the DoA variant (d). In (d) some speech parts present in (c) are missing or muffled (green ellipses),
both reduce noise similarly.
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Fig. 7. Improvement for different noise scenarios, mean and standard deviation computed over the three SNRs (0,6,12) and both speech
sequences for a fixed DoA, the full RIR estimation using the classifier and the RIR with the oracle annotations of speech.

3.2. System performance

In order to asses the ability to blindly perform speech enhancement
by classification of auditory objects guiding the beamforming, the
combined system was applied to the test recordings. The proposed
method clearly suppresses the noise in all cases while very little dis-
tortion is introduced to the speech signal. Figure 6 shows an exam-
ple application of the method. It can be seen that the noise is greatly
reduced. In case of DoA processing, more speech components, es-
pecially at high frequencies, are suppressed. From listening to the
audio samples1 the speech sounds a bit muffled.

The frequency weighted segmental SNR (fwSNRseg) [28] was
found to be related to subjective listening quality [29]. Therefore, the
relative improvement is computed as the difference in the fwSNRseg
w between the speech signal as received by the first microphone to
the processed output w(s1, ŝ) and the fwSNRseg of the speech to
the mixed input signal w(s1, z1).

∆w = w (s1, ŝ)− w (s1, z1) (2)

For a single noise source, the mean ∆w over all noise types, ex-
cluding the keyboard, is 1.75 ± 0.89 dB. When using an oracle
in the form of ground truth annotations instead of the classifier, it
is only slightly better with 1.87 ± 0.92 dB. The DoA-based pro-
cessing achieved a mean improvement of 0.88 ± 1.49 dB This can
be explained by the fact that the blocking is less effective and u
contains more speech residuals. Although there is some muffling
of the speech signal, the figures for the DoA-based steering vector
are slightly better for the artificial ‘white’ and ‘pink’ noise. In all
other cases, the proposed method achieves higher improvement, cf.

1available at
www.eng.biu.ac.il/gannot/speech-enhancement/sam16

Fig. 7a. For the babble noise, the fwSNRseg decreases when using
the DoA, while the proposed method provides a clear improvement.
In the case of ‘keyboard’ noise, none of the proposed method is able
to consistently improve the fwSNRseg.

When two different noises are coming form different direction,
the task is more difficult as the ANC has to cancel them both. The
improvement in fwSNRseg is 1.09 ± 0.76 dB compared to 1.21 ±
0.74 dB with the oracle. The DoA version performs consistently
worse with 0.32± 1.26 dB, cf. Fig. 7b.

4. CONCLUSIONS

A fully blind system for speech enhancement with multiple micro-
phones in stationary noise was proposed. There is a solid improve-
ment achieved by the proposed method for a single noise source and
for two noise signals from different directions even in 0 dB SNR. It is
beneficial to use the full RIR in the construction of the beamformer
instead of only using the direct path, more so in cases of real noise
samples.

The classifier performs very well in most cases. Speech is de-
tected with around 95% TP, 15% FP and 5% FN, better performance
is achieved in higher SNRs. While the training strategy seems to
generalize well, the robustness to other noise types and room con-
figurations should be investigated further. The performance could
be enhanced using multiple microphone information [30], [31]. The
system performance comes very close to the performance using the
ground truth instead of the classifier. This shows that the classifier is
integrated in a practically applicable way.

In the case of non-stationary noise, there is little improvement
by the proposed method. Since the classifier detects this situation,
the ANC adaptation can be switched off.
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