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ABSTRACT
Microphone arrays can be used for a number of applications
such as speaker diarization and tracking. For these, it is nec-
essary to calibrate their geometry with good precision. Man-
ual measurement is cumbersome and impractical for ad hoc
configurations as distributed sensor nodes. So an fast auto-
mated calibration method that provides sufficient accuracy is
required. It is even more convenient if data from the target
application itself can be used so that the system can be cal-
ibrated online during its use. In this paper, we propose an
automated geometry calibration method that outperforms ex-
isting state-of-the-art approaches. It does not require speakers
at the nodes and works well in high reverberation. It was eval-
uated with real recordings in a smart room. By simply playing
a white noise signal from a mobile phone at a few positions
around the arrays, a calibration error of below 2 cm and 2◦

was achieved. By identification of speech events at different
positions, the same method can be applied online; Here an
error of 10 cm and 3◦ was achieved.

Index Terms— microphone array, ad hoc, distributed
sensor network, geometry calibration, speaker tracking

1. INTRODUCTION

For applications such as speaker diarization and tracking [1].
multiple distributed microphone arrays are utilized, whose ge-
ometry has to be known. Manual measurements are cumber-
some and hardly practical in applications with many arrays or
ad hoc configurations of acoustic nodes in distributed sensor
networks. It is desirable that the calibration requires little ef-
fort or can be achieved online during the actual application.
High reverberation is found in typical target scenarios such as
smart rooms. Here, existing methods achieve only limited ac-
curacy. Pure acoustic methods provide only means of relative
geometry estimation. The rotation, translation and mirroring
of the geometry has to be aligned for integration with video
data and multi modal tracking.

Most existing methods require a dedicated calibration step
and impose some special constraints that are not required for

This work was supported by the German Research Foundation (DFG)
under contract number Fi 799/5-1.

The authors thank Florian Jacob and the anonymous reviewers for their
helpful suggestions.

the target application. If the sensor nodes are equipped with
an additional speaker, absolute time of arrival (ToA) measure-
ments can be produced by playing calibration sounds at each
sensor node. With given distances of all microphones to a
number of base points, the geometry can be calculated using
multidimensional scaling [2]. This was used with consumer
devices like laptops [3], smartphones [4] and experimental
sensor nodes [5] that all have at least one speaker and at least
one microphone in known relative distance.

When the acoustic sensor nodes are not equipped with
speakers, the geometry has to be inferred from unknown
source positions that are not aligned with the sensors. To
measure time difference of arrival (TDoA) between pairs of
sensors, there has to be strict time synchronization because
otherwise the measurement contains an unknown drift or jit-
ter based offset. If the arrays are not physically connected,
synchronization can be achieved wirelessly by dedicated al-
gorithms [6, 7] otherwise only the time offsets between the
sensors can be estimated [8]. From the TDoA estimates,
the geometry can be inferred. Using a dedicated calibration
step in which signals such as white noise or sweep chirps are
played with a speaker allows reasonably good estimation [9].
Around 10 cm accuracy was achieved with noise in an rever-
berant smart room using data set matching (DSM) [10] or
affine estimation [11].

In passive estimation, only speech events may be used.
Using speech of a single moving person on a random trajec-
tory, the relative geometry of the nodes was computed using
data set matching (DSM) [10] and the random sampling con-
sensus (RANSAC) method [12] with an accuracy of around
25 cm. When using small microphone arrays, the direction
of arrival (DoA) at each node can be computed and a rela-
tive geometry may be inferred. The scaling can be estimated
separately using TDoA information [13]. Recently a multi-
modal approach using visual speaker localization for absolute
position and orientation calibration was proposed [14].

In this paper, a method for relative geometry calibration
of distributed microphone arrays in highly reverberant envi-
ronments is presented. Salient sound events and their DoA at
each acoustic sensor node are estimated by a robust method
[15] that was chosen because it provides reliable localization
and detection of speakers in the targeted indoor environments
with high reverberation by means of neurobiologically in-



spired strategies [16]. The inter-array TDoA is computed by
correlation. The geometry is estimated by hierarchical error
minimization with respect to both measurements. For highest
accuracy, white noise, e.g., played from a mobile phone can
be used in a dedicated calibration session. The method also
works with speech events which allows it to be applied on-
line, e.g., during conference sessions. For online application,
a classification step should be added [17] to exclude sounds
that do not provide reliable acoustic localization like footfall
noise, chair movement, doors, windows etc.

2. METHOD

In the following a set of M > 2 distributed sensor nodes with
small microphone arrays is considered whose geometry is to
be calibrated. The individual array geometries are assumed
known and the sampling is synchronized. TheM arrays are at
unknown 2D positions rm ∈ R2 with unknown orientations
om ∈ [−π, π]. Only the relative geometry can be estimated,
so r0 and o0 are fixed to an arbitrary value. First, the geome-
try of individual arrays m > 0 relative to the array with index
0 is estimated. Then the geometry of all arrays including the
pairs (n,m) with m,n > 0 is estimated jointly.

2.1. Measurement and Target Function

At a set of fixed unknown source positions si, sound is played
or spoken and received by all microphone arrays. A DoA lo-
calization method [15] is used that allows to isolate the events
and compute an angle Θi,m for each of the sound events. The
events themselves are identified automatically as time seg-
ments with low DoA variance. An inter-array TDoA estimate
di,(m,n) is computed for each sound event by correlation.

For each pair m,n of arrays, the position and orientation
have to fulfill the geometric relations with respect to the mea-
sured TDoA and DoA as illustrated in Fig. 1. This is used to
calculate an error for the estimate in the following way: Given
an estimate of the orientations ôm,n and positions r̂m,n, the
measured DoAs Θi,m and Θi,n can be used to compute the
source position ŝi,(m,n) by triangulation

ŝi,(m,n) = r̂m + k̂i,m

(
cos (ôm + Θi,m)
sin (ôm + Θi,m)

)
= r̂n + k̂i,n

(
cos (ôn + Θi,n)
sin (ôn + Θi,n)

)
. (1)

The line intersection provides estimates k̂i,m and k̂i,n of the
distances to the source, cp. Fig. 1, so the relative distance

||ŝi,(m,n) − r̂m|| − ||ŝi,(m,n) − r̂n|| = k̂i,m − k̂i,n (2)

allows to compute the error with respect to the measured
TDoA di,(n,m) multiplied by the speed of sound c as

εi,(n,m) = (3)
||ŝi,(m,n) − r̂m|| − ||ŝi,(m,n) − r̂n|| − c · di,(m,n) .
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Fig. 1. Geometry relations of two arrays at rm and rn and a
source at si in relation to the measured DoAs Θi,m, Θi,n and
the TDoA di,(n,m) where || is the Euclidean norm.

By solving (1) and evaluating (3) consecutively, an error for
any estimate for r and o with respect to both DoA and TDoA
measurements is computed.

2.2. Estimation

This is used to estimate the geometry, first for pairs (0,m)
and then jointly for all microphone arrays. The problem is
underdetermined for a single speaker position, so random in-
dex subsets Ω ⊂ {3 . . . T} with size I = |Ω| of all T sound
events are used.

For each array with index m > 0 the fitting of the relative
geometry estimates ô0,m, r̂0,m is evaluated by computing the
squared sum of the errors over all sound events. By minimiz-
ing this, the parameters are estimated:

o∗m(Ω), r∗m(Ω) =
om, rm

argmin
∑
i∈Ω

ε2i,(0,m) . (4)

This is done in two steps. First an estimate is computed by ex-
haustive search on a coarse grid of, e.g., 10 cm and 2◦. Then
the estimate is refined by gradient descent using the Broyden-
Fletcher-Goldfarb-Shanno algorithm [18]. It estimates the
Hessian based on evaluating the function in a local neighbor-
hood, so no explicit derivation is needed.

The estimate based on individual pairs (0,m) is used as
a starting point to search for a joint estimate. First a joint
estimate of the source positions is computed using (1)

ŝi =
2

M(M − 1)

∑
m<n

ŝi,(n,m) , (5)

then the over all error is evaluated using (3)

ε2i =
2

M(M − 1)

∑
m<n

ε2i,(m,n) . (6)

The joint geometry estimate is formulated as stacked vec-
tors of the positions R = (r1 . . . rM )T and orientations



1. Measurement

• Record sound at fixed positions around the arrays.
• Extract I sound events.
• Compute DoAs Θi,· and inter-array TDoA di,(·,·).

2. Estimation using random sets Ω of I sound events

• Compute geometry estimates o∗m(Ω),R∗m(Ω) for each
pair (0,m) of arrays by exhaustive search followed by
gradient descent.

• Compute joint estimates o∗(Ω),R∗(Ω) for all arrays
by gradient descent initialized with the individual esti-
mates.

• Keep the estimate if εΩ < 20 cm. Chose the next Ω
until N such estimates are found.

• Compute weighted mean o∗,R∗ of all estimates.

Fig. 2. Proposed geometry calibration procedure.

o = (o1 . . . oM )T . It is computed by gradient descent for
a set Ω of source positions

o∗(Ω),R∗(Ω) =
o,R

argmin

(
εΩ

2 =
1

|Ω|
∑
i∈Ω

ε2i

)
. (7)

The procedure is repeated to improve the estimation and
remove bias that can be the result of an individual error in
measurement or the choice of source positions. To remove
outliers, only estimates with an error εΩ < 20 cm are kept.
New Ω are chosen until we have several such estimates, e.g.
N = 40. The positions R∗ and orientations o∗ are computed
as average weighted by 1/εΩ:

R∗ =1/

(∑
Ω

1/εΩ

)(∑
Ω

R∗(Ω)

εΩ

)
(8)

o∗ =1/

(∑
Ω

1/εΩ

)(∑
Ω

o∗(Ω)

εΩ

)
. (9)

3. RESULTS

In order to test the real-world performance, recordings were
made in a highly reverberant 3.7 × 6.8 × 2.6 m3 conference
room of a smart house installation at our university. Three
circular microphone arrays with 5 microphones in a 5 cm ra-
dius were embedded in a table. Each array was captured by
a separate sound card at 48 kHz. The sound cards were syn-
chronized, recordings of coherent white noise showed a re-
maining jitter of 22 µs between them. A reverberation time
of 670 ± 89 ms over the microphone signals was calculated
using a blind estimation algorithm [19]. Experiments where
done with human speech and white noise. In both experi-
ments, the identical 10 positions around the table shown in
Fig. 3 were used.
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Fig. 3. Positions of the microphone arrays (colored cicles)
and the calibration sounds (numbered circles, the dotted cir-
cles mark sitting, the solid a standing human speaker).
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Fig. 4. Calibration error and its standard deviation of pairwise
and joint estimation using N = 60 sets of I = 6 positions
over ten experiments.

3.1. White noise

In the first experiment, a 20 s white noise sample was played
from a mobile phone at all 10 positions slightly above table
height. The DoAs were computed using [1] and had an RMS
around 5◦ compared to the ground truth. The TDoA estimates
were computed using unweighted crosscorrelation with win-
dows of 217 samples. The corresponding distance estimates
had an RMS of 3 cm compared to the ground truth. Both es-
timates showed very little variance over the 20 s period, so
much shorter times may be used. If distortions by ambient
sounds are expected, outliers should be removed by median
filtering.

3.2. Human speaker

In the second experiment, a human speaker spoke one sen-
tence at all 10 positions. The speech was localized using [1].
Time segments with little angular variance were grouped to
detect the utterances. The DoA estimates had an RMS around
5◦ compared to the ground truth. The TDoA estimates were
computed using SRP PHAT with windows of 216 samples;
The corresponding distance estimates had an RMS of 8 cm
compared to the ground truth.

3.3. Calibration

The method was applied 10 times using N = 60 and I = 6.
In Fig. 4, the translation and rotation calibration errors εr, εo
for different steps are plotted for both speech and noise. Using
noise, the mean of the joint estimates shows an impressively



method microphones signal T60 [s] er [cm] eo[◦]
ToA [4] 5 x 1 + speaker chirps node positions 0.60 (real) 6.8 ?
ToA [5] 4 x 4 + speaker MLS node positions 0.26 (real) 1.5 ?
TDoA [10] 4 x 4 circ. noise random walk 60 s 0.60 (real) 9.3 ?
TDoA [10] 4 x 4 circ. speech random walk 30 s 0.60 (real) 11.0 ?
TDoA [12] 3 x 5 circ. speech random walk 360 s 0.50 (sim.) 25.0 4.0
TDoA [∗] 3 x 5 circ. noise 10 positions 300 s 0.67 (real) 1.2 1.3
TDoA [∗] 3 x 5 circ. speech 10 positions 80 s 0.67 (real) 9.5 2.8
DoA+V [14] 3 x 5 circ. + 5 cameras speech 10 positions 80 s 0.67 (real) 6.6 1.9

Table 1. Comparison of different geometry calibration approaches with the proposed method [∗]
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Fig. 5. Calibration error and its standard deviation for increas-
ing number N of sets of I = 6 positions.

# calibration εa [◦] εl [cm] P [%] R [%]
1 measurement 3.50 17.3 100.0 94.1

auto. noise [∗] 3.40 17.0 100.0 94.1
auto. speech [∗] 3.86 29.9 98.7 93.6

2 measurement 4.87 19.8 100.0 94.3
auto. noise [∗] 4.71 16.6 100.0 94.6
auto. speech [∗] 4.99 26.8 100.0 94.6

Table 2. Acoustic speaker tracking results for manual mea-
surement and calibration using the proposed method [∗] for
the calibration sequence (#1) and a subsequent recording (#2).

low 1.2±0.6 cm and 1.3±0.7◦. For speech, the joint mean has
an error of 9.5±0.7 cm and 2.8±1.3◦. In Fig. 5, the results for
different numbersN of sets are shown. When using twenty or
more sets, the accuracy is already close to its minimum error.

3.4. Application to speaker tracking

To test the applicability of the proposed method, the calibra-
tion results were used as the basis for tracking a speaker using
[1]. Both the calibration recording and a separate recording
of a speaker taking up 1 positions were tested. The track-
ing performance using the measurement and calibration using
white noise and speech is shown in table 2. The angular and
metric tracking errors εa,l are given. The angular tracking
error is similar for measurement and calibration with noise,
(even slightly less for the latter) and slightly increased for
the speech based calibration. The Euclidean errors behave
similar. For the speech based calibration, the tracking RMS
increases by about 10 cm corresponding to the estimation er-
ror. A distance of 0.5 m is used as margin Euclidean error for
precision and recall to reflect what error may be tolerable for

practical applications. The results for noise based calibration
and measurement are similar, using the speech based calibra-
tion the precision (P) and recall (R) decrease only slightly.

3.5. Comparison to other methods

Table 1 compares the proposed method to others. Notably
only a ToA method using a speaker mounted at the four
microphone arrays and maximum length sequence signals
(MLS) [5] achieves a translation error close to the proposed
method using noise. Using speech, [10] comes close to the ac-
curacy achieved by the proposed method. Experiments with
noise are better with about 9.3 cm but still not close to the
1.2 cm of the proposed approach. In their experiments the
microphone arrays were mounted on the ceiling resulting in
a larger distance from the sound source. The accuracy of our
recent approach using visual speaker localization [14] lies be-
tween speech and noise results.

4. CONCLUSION

A fully automated geometry calibration procedure for sen-
sor nodes with small microphone arrays distributed in an ad
hoc fashion was developed. It uses a set of sound events
from positions around the arrays; These can be natural speech
or artificial noise played form a handheld device. No prior
knowledge of the positions or timing of the sound events
is required. The method was tested with real world indoor
recordings, showing its robustness against reverberation. The
speech based calibration is slightly worse, most likely due to
less accurate TDoA estimates. The calibration is very precise
and outperforms existing state-of-the-art TDoA approaches.
It is also more precise that ToA approaches using an addi-
tional speaker mounted at each of the arrays. When apply-
ing the results in speaker tracking, the noise based calibration
leads to identical results as calibration by measurement. The
speech based calibration produces slightly inferior results that
are well within boundaries for practical use. The method is a
true alternative to cumbersome manual measurement. In a
conference scenario, speech events at fixed positions occur
naturally. This allows the proposed method to be used online.
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