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ABSTRACT

Tracking multiple speakers with microphone arrays is used
for practical applications such as video conferencing. An
important task is the integration of multiple arrays with cor-
rect associations of multiple concurrent speakers. A single-
array tracking approach based on CASA is extended here to
probabilistic tracking with multiple arrays in order to han-
dle a varying number of moving speakers over time and as-
sign the concurrent localizations of multiple sensors to the
speakers. Tracking is done simultaneously in angular and Eu-
clidean space. The effectiveness of the method is shown with
recordings of real speakers in a reverberant conference room
by evaluation on the publicly available AV16.3 corpus.

Index Terms— microphone array, auditory scene analy-
sis, multi-sensor, speaker tracking

1. INTRODUCTION

The influential “Auditory Scene Analysis” (ASA) theory of
human hearing is based on psychoacoustic experiments as
well as biological and neurological research. Successful com-
putational (CASA) models were developed, cf. [1]. These use
only up to two sensors of an artificial human head [2], while
technical tracking and beamforming approaches employ mi-
crophone arrays with eight or more sensors [3]. Hybrid meth-
ods applying neurobiologically inspired processing to micro-
phone arrays were introduced recently [4].

Tracking human speakers with microphone arrays is an
important task for many practical applications such as speech
separation and enhancement as well as camera control for on-
line lectures and smart conferencing. For unconstraintly mov-
ing speakers in a larger room and multi-modal integration,
tracking in Euclidean space using distributed microphone ar-
rays is appropriate. The major challenge beyond the rever-
beration and the natural sparsity of the speech signals is the
handling and correct association of concurrent speakers over
all microphone arrays.
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Fig. 1. Processing structure (f.l.t.r.): mic. arrays, filter bank,
spike generation, correlation, backprojection, combination,
PoA, clustering and tracking with multi-array integration.

Common tracking strategies for a single microphone ar-
ray are the clustering of localizations, e.g. with a maximum
likelihood approach [5] or particle filtering [6]. The fact that
not only the location, but also the spectra of the speakers are
different is used in source separation techniques [3]. CASA
models of both monaural and binaural human hearing use
similarities of multiple cues such as location, spectrum, and
pitch for grouping and separation of speakers [7,8].

An existing hybrid method [9] applies a model of the in-
ner ear and auditory midbrain to signals from a single micro-
phone array. It computes time-difference-of-arrival (TDOA)
based spatial information in several frequency bands sepa-
rately and uses the spatial and spectral information for clus-
tering localizations. Distinctly localized “glimpses” in rever-
berant and noisy environments are integrated to continuous
speaker tracks. The density based clustering requires multiple
thresholds and discards inherent probabilistic information.

This paper presents an extension of that method over-
coming these shortcomings in a new simultaneous integration
step. It applies maximum likelihood clustering while intro-
ducing a methodical sound estimation of the number of speak-
ers. In a new sequential and model based integration, the
probabilistic information is used in computing a consensus
over multiple microphone arrays, which increases the robust-
ness. The ambiguity of multiple simultaneous detections is
resolved using spectral similarity. At the same time, speaker
tracks in angular and Euclidean coordinates are calculated
with the angular localizations from individual arrays.

2. METHOD

The processing steps of the speaker tracking are illustrated in
Figure 1 and described consecutively in this section.



2.1. Cochlear and Midbrain Model

The cochlear and midbrain model described in [9] is used.
It filters the microphones’ signals with a gammatone fil-
terbank composed of B bands. The peak-over-average-
position (PoAP) cochlear model applies onset dominance and
glimpses events with high modulation. Correlations are cal-
culated in short time frames as TDOA estimates. These are
backprojected to spherical far field source positions and com-
bined for all microphone pairs using a fuzzy t-norm. For
the fuzzy operation the signals have to be adjusted into the
range [0, 1]. Rather than presetting the required gain manu-
ally as done in [9], the gain is automatically determined with
a short-term histogram of the spike amplitude. A short mov-
ing average over 0.3 s is calculated over all data points with a
shift of 0.075 s to accommodate for very fast moving speak-
ers. Speakers can be separated by azimuth in most practi-
cal scenarios, so the maximum value over all elevations is
used. A peak-over-average (PoA) filtering step in analogy to
the difference-of-Gaussian processing found in human per-
ception is applied by subtracting an 45◦ average from an 5◦

average and using only positive values.
For each frame index k the resulting sparse spatial like-

lihood values ek,θ,b are collected over all bands b for each
azimuth θ, yielding an estimate

s = (ek,θ,0, ek,θ,1, . . . , ek,θ,B−1)
T (1)

of the spectral distribution. The spectral energy summed over
all bands is a measure of the correlation strength. It reflects
the source probability and position accuracy and is interpreted
as likelihood

l
(
(θ, s)

)
=
∑
b

ek,θ,b (2)

for a source at the given angle. Detections with less than B/4
nonzero spectral components or a likelihood l below εs are
excluded as non-speech sounds. The tuples in the remaining
set

Dk =
{
x = (θ, s)

∣∣ l(x) > εs ∧ ||{b|ek,θ,b > 0}|| ≥ B/4
}
(3)

of combined azimuth-spectrum tuples for each time frame k
are considered speech energy detections. The resulting spatial
likelihood is less susceptible to reverberation and noise than
the SRP-PHAT as is illustrated in Figure 2a,b.

2.2. Simultaneous Grouping

According to the ASA theory location as well as spectral cues
are used for grouping the auditory information coming from
a certain source. The process of “simultaneous grouping” is
modeled by clustering over azimuth and spectral similarity.

Since reverberant speech is found to produce Gaussian
distributed peaks over time [10], the spatial likelihood is mod-
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Fig. 2. Localizations for sequence 01 of the AV16.3 corpus.
(a) Results from SRP-PHAT argmax processing for 0.3 s time
windows for comparison, (b) PoA, (c) grouping and (d) track-
ing. Note that the noise at about 100◦ apparent in the SRP-
PHAT localization is excluded by the preprocessing.

eled as mixture of Gaussians (MoG) [5]. The probability den-
sity for a detection x = (θ, s) ∈ Dk can be calculated as

pa(x|Θ, σ) =
1√
2πσ

exp

(
−0.5

d(θ,Θ)
2

σ2

)
(4)

with the average angle Θ and standard deviation σ using the
angular distance

d(α, β) = min{360− |α− β|, |α− β|} . (5)

Due to the nature of human speech production, spec-
tral magnitudes are dependent across frequency for natural
speech, which is still apparent in reverberant conditions. The
spectra from different speech sources are dissimilar with a
high probability in most practical scenarios. Noise and time
domain aliasing artifacts are assumed independent across fre-
quency. The spectral similarity of a detection x = (θ, s) to a
model spectrum t is calculated as normalized scalar product

ps(x|t) =

〈
s

||s||
,

t

||t||

〉
=

∑
b sbtb√∑
b s

2
b

∑
b t

2
b

. (6)

The probability of x to originate from Ψi = (Θi, σi, ti) with
average angle Θi, standard deviation σi and spectrum ti is

p(x|Ψi) = ps(x|ti)pa(x|θi, σi) . (7)
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Fig. 3. Split (left) and join (right) within the EM estima-
tion. Mixture components are plotted in color and the mix-
ture as contour line for each iteration. The spatial likelihood
histogram

∑
x=(θ,s) l(x) for the angles θ to be estimated is

shown in gray at the back. Iteration 0 displays the estimate
from the previous time frame.

Sources Ψi are estimate by the EM-algorithm with the
maximum likelihood estimate for all N detections in the cur-
rent and adjacent time frames x ∈ Dk−1 ∪Dk ∪Dk+1 as

p (Ψi|x) =
cip(x|Ψi)∑
i′ ci′p (x|Ψi′)

(8)

using mixture weights ci. The maximization step is give by

γi(x) =
p(Ψi|x)l(x)∑
x′ p(Ψi|x′)l(x′)

(9)

Θ̂i =
∑

x=(θ,s)

γi(x)θ (10)

σ̂i
2 =

∑
x=(θ,s)

γi(x)d(θ, Θ̂i)
2 (11)

t̂i =
∑

x=(θ,s)

γi(x)s (12)

ĉi =
1

N

∑
x

p (Ψi|x) , (13)

where the weighted average of angles in (10) has to be calcu-
lated on the circle. (Note that the weighting γi(x) takes the
spatial sum likelihood into account. In relation to the original
unweighted EM-implementation, l(x = (θ, s)) can be inter-
preted as the number of measurements at position θ so that
the maximization step equals the original one for a discrete
number of measurements.)

The number of sources can be estimated by observing the
typical variance of speaker localizations. When two estimates
get closer than a threshold d(θi, θj) < Γjoin = 8◦, the sources
i, j are merged. If σi > Γsplit = 12◦, the source i is split into
two sources with θi,j = θi ± σi, see Figure 3.

The estimation loop is terminated when the likelihood
does no longer change significantly. This typically happens
after two to ten iterations, allowing for real-time calcula-
tion. After this step, there are clustered source estimates
Ek = {Ψi} for each time frame.

2.3. Sequential / Model based Integration

By calculating the intersection of the lines of length h(1,2)

from each array originating at position m(1,2) with the cluster
angle θ(1,2) the 2D position

z = m(1) +h(1)
(

cos θ(1)

sin θ(1)

)
= m(2) +h(2)

(
cos θ(2)

sin θ(2)

)
(14)

of the speaker can be derived. The arrays have to be syn-
chronous up to around one frame shift (75 ms). With only
two arrays, the expected error is high for a small intersection
angle. A combined tracking state Ωj = (Ψ

(1)
j ,Ψ

(2)
j , zj)

T rep-
resents the states of the track with label j. The probability of
a new detection Ψi to belong to a track j given the cluster an-
gles for one microphone array is calculated with the average
deviation and (4) as

pa (Ψj |Ψi) = pa (Ψi|Ψj) = pa(Θj |Θi, (σi+σj)/2). (15)

As array consensus, we obtain the joint probability

p
(

Ψ
(1,2)
i |Ωj

)
= pa

(
Ψ

(1)
i |Ψ

(1)
j

)
pa

(
Ψ

(2)
i |Ψ

(2)
j

)
. (16)

Note that the 2D distance is intently omitted here to allow for
tracking with two arrays and small intersecting angles.

When assuming the signals from multiple speakers have
different spectra at the same time, the spectral similarity can
be used to find out which localizations of multiple micro-
phone arrays originated form the same source. The likelihood
based on the spectra of clusters from two arrays originating
from the same speaker can be expressed similarly to (6) as

ps

(
Ψ

(1)
i ,Ψ

(2)
i

)
= ps

(
Ψ

(2)
i ,Ψ

(1)
i

)
=

〈
t
(1)
i

||t(1)i ||
,

t
(2)
i

||t(2)i ||

〉
.

(17)
The pairs of clusters for the arrays are chosen by spectral

similarity, then tracks are formed by probabilistic spatial as-
sociation. A time-to-live rule is added to handle small speech
pauses [5]. Any track j whose newest detection is older than
tTTL = 2 s is discarded. Smaller gaps are filled by linear in-
terpolation. For each set of clusters Ψ

(1,2)
i ∈ E(1)

k ×E
(2)
k the

following algorithm is applied:

1. Assign all pairs Ψ
(1)
i ,Ψ

(2)
i their spectral likelihood w =

ps. Add a small bias δt for all pairs near an existing
track.

2. Choose the pair with the highest likelihood > εb.

3. Calculate pj = p(Ψ
(1,2)
i |Ωj) for all tracks i and choose

the likeliest track with pj > εa not older than tTTL. If
there is a gap, fill it by linear interpolation. If no such
track exists, start a new one.

4. Discount w for used angles by δb and continue at 2.

Since typically only a few speakers are active, the number
of clusters per array is small, leading to a small number of
potential combinations for association over the arrays and to
the existing tracks. This allows for fast online computation.
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Fig. 4. RMS error (left) and precision-recall curve for the
threshold εs on seq01.

3. EVALUATION

First basic evaluations illustrate some of this papers assump-
tions. Then the proposed method is tested with a number of
recordings from the freely available AV16.3 corpus. It con-
sists of recordings in a reverberant meeting room with a T60
of about 0.7 s and two circular eight channel microphone ar-
rays with a radius of 10 cm recorded at 16 kHz [11]. B = 16
bands in the range between 300 Hz and 3 kHz were used. A
localization is considered correct if the angles hit the target
within an average head width of 0.2 m or the 2D coordinates
are within a typical persons shoulder width of 0.5 m. The pre-
cision and recall are calculated in 0.6 s windows based on the
correct localizations. These margins should be sufficient for
most practical applications.

3.1. Spatial Likelihood

It was stated that the spatial likelihood value l(x) is correlated
with the actual source probability. Figure 4 shows a precision
and recall curve and the angular root mean square (RMS) er-
ror as function of the threshold εs. It can be seen that the
precision of the estimates increases with the likelihood, while
the recall decreases for increasing threshold values.

3.2. Tracking a single speaker

The first AV16.3 sequence consists of a single speaker that
is static while speaking at 16 positions in the room. Figure 2
shows the steps of our pipeline and the angular tracking result.
The utterances at all 16 positions are tracked correctly.

In sequence 11 one speaker moves his head fast in a short
time. Figure 5 shows the tracking result. The track is split
when the localizations clusters have a gap of 20◦ leading to a
small pi < εa (15). The 2D tracking has good accuracy where
the intersection angle θ(1) − θ(2) is larger than 20◦.

3.3. Tracking multiple speakers

In sequence 18, two concurrent speakers repeatedly put their
heads together and apart. Figure 6 shows the tracking result.
When the speakers are very close, both spatial and spectral in-
formation overlap so only one track is continued. The tracks
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Fig. 5. Tracking for seq11, one fast moving speaker. The
standard deviations of the tracks are plotted as errorbars.
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Fig. 6. Tracking for seq18, two concurrent speakers.

follow the speakers within about 4◦ and show gaps where the
clusters are sparse. The spectrum-based resolving of the am-
biguity can be seen by the 2D tracks. Again, the 2D accuracy
deteriorates when the intersecting angle is very small.

Table 1 summarizes the results for all sequences used in
the evaluation. In sequence 40, three speakers talk concur-
rently while two sit still and one moves around them. It can be
seen that the consecutive steps of EM-Clustering and tracking
increase the accuracy while the consensus leads to a smaller
recall. Offline methods with tuned post-processing are re-
ported to achieve an RMS of 2.5◦ on the dataset [10]. The



sequence method precision recall RMS
seq01 PoA 34%, 29% 90%, 91% 7.2◦, 9.3◦

[4] BS 90%, 83% 95%, 93% 3.7◦, 4.0◦

loc. [9] DB 90%, 86% 91%, 91% 3.3◦, 3.4◦

[*] EM 96%, 94% 99%, 98% 2.5◦, 2.4◦

[9] 93%, 87% 98%, 97% 3.1◦, 3.0◦

trk. [*] ang. 95%, 98% 89%, 89% 2.5◦, 2.0◦

[*] 2D 91% 80% 0.320 m
seq11 PoA 26%, 30% 94%, 97% 8.8◦, 9.0◦

[4] BS 67%, 57% 94%, 97% 6.2◦, 7.9◦

loc. [9] DB 82%, 81% 90%, 93% 5.5◦, 6.5◦

[*] EM 70%, 69% 97%,100% 5.6◦, 7.0◦

[9] 67%, 73% 97%, 97% 5.9◦, 6.9◦

trk. [*] ang. 66%, 72% 92%, 94% 5.6◦, 6.8◦

[*] 2D 83% 97% 0.408 m
seq18 PoA 88%, 88% 100%,100% 10.5◦,17.9◦

[4] BS 91%, 88% 88%, 86% 5.9◦, 5.8◦

loc. [9] DB 95%, 96% 88%, 83% 13.1◦, 8.4◦

[*] EM 92%, 95% 89%, 85% 6.3◦, 4.7◦

[9] 93%, 89% 87%, 83% 6.2◦, 5.0◦

trk. [*] ang. 97%, 99% 80%, 78% 4.1◦, 3.2◦

[*] 2D 99% 93% 0.202 m
seq40 PoA 56%, 44% 88%, 88% 6.4◦, 8.2◦

[4] BS 92%, 83% 84%, 87% 3.8◦, 4.1◦

loc. [9] DB 90%, 86% 91%, 91% 3.3◦, 3.4◦

[*] EM 94%, 93% 83%, 85% 3.4◦, 3.5◦

[9] 91%, 87% 77%, 80% 4.5◦, 4.3◦

trk. [*] ang. 97%, 94% 78%, 78% 2.9◦, 3.2◦

[*] 2D 98% 93% 0.631 m

Table 1. PoA, localization and tracking results for the pro-
posed method [*] and previous [4], [9]. Values for both mi-
crophone arrays are given in pairs.

2D tracking results show a rather large RMS of around half a
meter due to the occurrence of small itersection angles, how-
ever, the precision and recall with respect to practical appli-
cations is still reasonable. In comparison, the localizations
based on the sum spatial likelihood over all bands [4] shows
inferior performance. The EM clustering works better than
the density based clustering [9], and the multi-array tracking
performs better than the single array tracking [9], especially
in the multi-speaker scenarios.

4. CONCLUSION

Based on insights from studies of human perception, com-
mon signal processing techniques were reformulated for on-
line tracking of multiple speakers with multiple microphone
arrays. The system is real-time capable with a latency of 0.5 s.
The results show that the proposed method improves over the
previous hybrid approaches and is able to handle the tracking
of multiple concurrent speakers in real reverberant conditions.

The concurrent speakers are successfully separated and robust
postion estimates with good precision for practical applica-
tions are derived. For precise Euclidean coordinates, three
arrays and/or different geometries avoiding small intersecting
angles should be investigated. The coordinate estimates with
their individual variance can be used for multi-modal integra-
tion.
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