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ABSTRACT
Online tracking of speakers is an important task for applica-
tions in smart environments such as camera control, meet-
ing annotation and speech separation. Challenges for an
audio-only system are small-room reverberation, noise, the
unknown number of speakers, and gaps occurring in natural
speech. Combining models from neurobiology and cognitive
psychology with many-channel signal processing and pattern
recognition techniques, a hybrid method was developed. By
employing online CASA processing to signals from a micro-
phone array, the real-time capable method is able to track an
arbitrary number of concurrent moving speakers in highly re-
verberant environments.

Index Terms— microphone array, auditory scene analy-
sis, glimpsing model, speaker tracking

1. INTRODUCTION

Human listeners show an impressive ability to locate and sep-
arate concurrent speakers by hearing in everyday situations.
A popular theory, based on psychoacoustic experiments as
well as biological and neurological research, is the “Audi-
tory Scene Analysis” (ASA). Computational ASA localiza-
tion and tracking applications use two sensors of an artificial
human head and evaluate IID and ITD [1], while technical so-
lutions often employ circular or t-shaped microphone arrays
with eight or more sensors and evaluate only the time delay
of arrival [2]. Biologically inspired systems were shown to
outperform technical approaches to localization such as the
GCC-PHAT [3,4]. Recently, hybrid approaches applying neu-
ralbiologically inspired processing to microphone arrays were
introduced [3,5]. According to ASA, the auditory informa-
tion is clustered in a step called simultaneous grouping and
then combined over time in sequential integration by com-
mon features such as location, spectrum and pitch. There-
after model-based integration is done top-down using a pri-
ori knowledge such as speaker movement and speech mod-
els. Common tracking strategies are the clustering of lo-
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Fig. 1. Processing structure

calizations with probability-based methods such as the EM-
algorithm followed by rule-based combination [6] or particle
filtering. Difficulties are the movement and varying number
of speakers over time, and the fact that human speech contains
gaps and pauses. In reverberant and noisy environments, only
a few clearly localized time-frequency events can be found.
The “glimpsing model” suggests that human speech percep-
tion in adverse conditions is based upon sparse clear events
with high signal-to-noise ratio [7]. To localize and track mul-
tiple speakers in reverberant environments, clearly localized
“glimpses” can be integrated to continuous speaker tracks.

2. METHOD

The processing steps of the many-channel speaker tracking
are shown in figure 1. First, the signals of a circular micro-
phone array are sampled and each signal is processed by a
cochlear model, then microphone pairs are correlated by a
midbrain model, mapped into the spatial domain and com-
bined by a fuzzy t-norm. Speech localizations are calculated
by a simultaneous grouping. Then continuous tracks are de-
rived by using both sequential and model-based integration.

2.1. Cochlear and Midbrain Model

The implementation of the cochlear and midbrain model is
described in detail in [3]. The microphones’ signals are fil-
tered by a gammatone filterbank composed of nB = 16 bands
with center frequencies equidistantly spaced on the ERB scale
between 250 Hz and 3 kHz. The cochlear model makes use of
onset dominance and glimpses events with high modulation
(tg = 6 dB). Correlations between microphones are calcu-
lated in time frames of above 12 ms advanced in 6 ms steps.
Spherical far field source positions (θ, φ) for backprojection
are discretized with azimuth θ ∈ {0◦, 1◦.., 359◦}, and eleva-
tion φ ∈ {0◦, 5◦.., 35◦}. By fuzzy combination, robust but
sparse spatial likelihoods are calculated.



2.2. Peak Localization

In the presence of strong reverberation, the number of clearly
modulated events per second is small and secondary peaks
are hard to avoid. In a larger time context, reverberant speech
is found to produce Gaussian distributed peaks. Thus, when
considering larger time segments, the correlation results can
be modeled as “true” peaks plus noise [6].

To accommodate for fast moving speakers, a short moving
average over 0.5s is calculated over all data points with a shift
of 0.125s. To find angular peaks, a peak-over-average filter-
ing step in analogy to the difference-of-Gaussian processing
found in human perception is applied: A 45◦ average, span-
ning the reverberation induced artifacts, is subtracted from a
5◦ average. Since in most practical scenarios, speakers can be
separated by azimuth, the maximum value over all elevations
φ can be used:

êl,θ,b = max
φ
{ĕ(5)l,θ,φ,b − ĕ(45)l,θ,φ,b} . (1)

Then the positive values for each frame index l and azimuth θ
are collected over all bands b giving an estimate of the spectral
distribution

sl,θ,b = max {êl,θ,b, 0} (2)

sl,θ = (sl,θ,0, sl,θ,1, . . . , sl,θ,nB−1)
T . (3)

The energy values comprise a set of azimuth-spectrum tuples

Dl = {(θ, sl,θ) | ∑b sl,θ,b>te} (4)

for each time frame considered speech energy detections
where the sum exceed a threshold of te = −40 dB.

2.3. Simultaneous Grouping

According to the ASA theory, location as well as spectral cues
are used to group the auditory information as coming from a
certain source. Under the sparsity assumption no or only few
values originating from different speech sources collide in fre-
quency and angle. Coinciding energy in multiple frequency
bands at a similar azimuth provides independent speech indi-
cation.

The process of simultaneous grouping is here emulated by
clustering of the detections by azimuth and spectral similarity.
The spectral similarity between two detections x = (α, s) and
y = (β, t) is calculated as normalized scalar product

cs(x, y) =

∑
b sbtb√∑
b s

2
b

∑
b t

2
b

(5)

and the angular similarity is represented the angular distance

da(x, y) = (α− β) mod 360 . (6)

Detections Dl over three consecutive frames l− 1, l, l+ 1 are
clustered for each index l. The clusters are computed with

a density-based clustering approach inspired by the DBScan
algorithm [8] that iteratively expands regions with sufficient
density. For a detection x the set of neighbors is defined as

N(x) = {y|da(x, y) < ∆θ1 ∧ cs(x, y) > ∆S}, (7)

with a spectral correlation above ∆S = 0.7 and azimuths
closer than ∆θ1 = 12. The following steps are executed:

1. Mark all detections unvisited.
2. Find next unvisited detection x ∈ {Dl−1, Dl, Dl+1}

and its neighbors N(x).

(a) If |N(x)| is less than εn = 12, all unvisited detec-
tions are discarded as noise and marked visited.

(b) Otherwise, the unvisited detections in N(x) form
the next cluster Cκ and are marked visited. The
cluster is iteratively expanded by all unvisited
neighbors in N(y) to any y ∈ Ci until no such
neighbors are left.

3. If any unvisited detections are left, continue at 2.

By precalculation of a distance matrices, the neighborhood
query can be executed in O(log n) where n = |Dl|. Since
each detection is visited only once, the clustering is done in
O(n log n). From the elements (θ, s) in each cluster Cκ at a
given frame l, the average spectrum

Sκ,l =
1

nb

∑
(θ,s)∈Cκ,l

s (8)

is calculated as well as the clusters’ centroid azimuth
weighted by spectral energy

Aκ,l =

∑
(θ,s)∈Cκ,l

∑
b θsb∑

(θ,s)∈Cκ,l
∑
b sb

(9)

as estimate of the source angle. Considering the typical spec-
tral spread of natural speech sounds, clusters spreading less
than a third of the nb frequency bands are discarded as non-
speech such as machine noise or reverberation. The remain-
ing grouping results for each time frame l are represented by
the set of time-azimuth-spectrum tuples

R =
{

(l, Aκ,l,Sκ,l) |{sκ,l,b > 0}| > bnb/3c
}

(10)

representing speaker localizations.

2.4. Sequential and Model-Based Integration

The next step of the human auditory processing according to
ASA is the sequential integration of groups into simultane-
ous streams. It is not practical to compute these over larger
time periods by clustering for two reasons: First searching
for cluster points over long time periods would lead to long
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Fig. 2. Projected future speaker positions.

search times. Second, iterative updates are necessary for on-
line processing. Therefore, the sequential integration is done
by an online algorithm connecting clusters with similar spec-
tral and location cues.

The final ASA step of model-based integration is imple-
mented by using top-down knowledge in form of a simple
model of speaker movement. The tracks of a natural speaker
contain gaps due to speech pauses and omissions due to the
glimpsing rule. We use a time-to-live (TTL) rule for speaker
assignment over these gaps [6]. Adjacent localizations are as-
signed the same track if they are similar in both spectrum and
location. In order to model both fixed and moving speakers,
points at the same position as well as points on the same tra-
jectory are assigned the same track if not older than tTTL of
up to 12 s and closer than ∆θ2 = 40◦. The trajectories are de-
rived by linear interpolation of the last two 3 s stretches of the
previous elements within tTTL of each track, as illustrated in
figure 2. The trajectory can not be steeper than ∆θ/s = 40◦

for normal moving speakers.
Tracks are calculated implementing both steps by apply-

ing a number of rules successively for each time frame l.

1. Sequential Integration Localizations x = (l, ·, ·) ∈ R
for which a track element in the previous frame y =
(l − 1, ·, ·) ∈ Ti with similar spectra cs(x, y) > ∆S
and close azimuth da(x, y) < ∆θ2 exists are added to
the same track, Ti = Ti ∪ x.

2. Linear Movement Localizations are added to the near-
est track Tj = Ti ∪ x if they are on the same trajec-
tory if joined by either a gap or having similar spectra,
cs(x, y) > ∆S.

3. No Movement Localizations x are added the nearest
track Tj = Ti ∪ x containing an element y ∈ Tj no
farther than ∆θ2 and tTTL away.

4. Birth Rule For any remaining points, a new track k is
started, Tk = {x}.

Tracks consisting of one or two isolated localizations are dis-
carded as noise, gaps shorter than 2 s in the remaining tracks
are closed by linear interpolation.

3. EVALUATION

To test the real-world performance, recordings of multiple
moving speakers were made in a highly reverberant 3.7 ×
6.8× 2.6 m3 conference room of a smart house installation at
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Fig. 3. Scenario #2: Close speakers tracked using spectral
and spatial information (a) and spatial information only (b).

our university. Signals from a circular microphone array with
8 microphones in a 5 cm radius were recorded at 48 kHz. The
speakers were wearing lapel microphones for most record-
ings. They were ordered to follow a preassigned trajectory
that was matched to a linear ground truth. The optimal sub-
pattern assignment (OSPA) distance was used to evaluate the
tracking quality, it is defined on the space of finite sets of
tracks and reflects labeling errors [9]. Precision and recall
were calculated allowing an error corresponding to an aver-
age width of a human head of 0.2 m in the target distance.

In a first recording, one speaker was talking for one
minute towards the array on a fixed position. A reverberation
time of 624 ± 54 ms over all microphone signals was calcu-
lated using a blind estimation algorithm [10]. The speaker
was localized with an OSPA distance of 0.65◦, 100% preci-
sion and recall were achieved.

In a second recording, the effect of spatial proximity was
tested. One speaker was sitting at a fixed position and talking,
while a second speaker was talking overlapping while mov-
ing towards the first till up close and away again. In figure 3a,
speaker localizations R are shown with the calculated tracks
before linear interpolation plotted on top, connected by lines.
The sum over all bands is plotted with black representing high
values, white zero values or non-elements. Above and below,
the spectra for each track as well as the lapel microphone sig-
nals are plotted. The OSPA distance was 5.48◦, the precision
100% and recall 90.9%. When only the location cue is used
(∆S=0), the overlap in the spatial likelihood leads to distor-
tion of the tracks and deviation of the tracks into each other,
cp. figure 3b. The OSPA distance increased to 6.61◦.



−180

−135

−90

−45

0

45

90

135

180

R θ [◦]R θ [◦]

T1
T2

0

15
S1 b

0

15
lapel1 b

5 10 15 20 25 30 35 40

0

15

t[s]

S2 b

0

15
lapel2 b

Fig. 4. Scenario #3: Tracks for crossing trajectories.
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Fig. 5. Scenario #4: Two moving and talking speakers.

In a third scenario, crossing trajectories were investigated.
Two speakers were walking in concentric circles around the
microphone array in different directions, therefore crossing
their angular trajectory. As shown in figure 4, the tracks com-
puted accurately represent the crossing trajectories. Speaker
one was louder, almost drowning out the other at the crossing
point. However, due to the moving speaker rule, the trajec-
tory of speaker two is continued correctly after the crossing.
The OSPA distance was 6.68◦, the precision 100% and recall
86.7%. When comparing the spectra of the lapel microphones
to the clustered ones, it becomes apparent that the latter con-
tain more gaps, which is due to the glimpsing and onset dom-
inance.

In a fourth scenario, two speakers were first talking in
turns, then walking around the array while talking simulta-
neously. Results are depicted in figure 5. The OSPA distance
was 4.43◦, the precision 100% and recall 81.2%. The associ-
ation of the speakers over speech pauses via the large tTTL is
correct, but should be verified by integrating a speaker model.

4. CONCLUSIONS

The application of a cochlear and midbrain model to a micro-
phone array derives reverberation-robust spatial likelihoods.
It was combined with simultaneous grouping by density-
based clustering employing both spectral and spatial cues,
which efficiently provides sound speaker localizations. Se-
quential and model-based integration using spectral and spa-
tial cues is able to calculate accurate tracks for concurrent
speakers in a highly reverberant conference room. The im-
plementation copes well with difficult scenarios such as fast
movement and close or crossing trajectories. It is realtime-
capable with a latency below 1 s.
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