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ABSTRACT

Tracking speakers is an important application in smart environments.

Acoustic tracking using microphone arrays is a challenging task due

to two major reasons: On the one hand, multiple persons may speak

simultaneously and thus the number of speakers varies over time; on

the other hand, due to the nature of reverberated speech, the provided

position hypotheses contain many gaps and clutter. In the proposed

approach, the “glimpsing model” is realized by neurobiologically in-

spired calculation of robust but sparse position hypotheses in combi-

nation with a Gaussian mixture cardinalized probability hypothesis

density filter. By iteratively applying the filter to the position hy-

potheses from multiple frequency bands, good results are achieved.

Using a statistical speech model derived from recordings, a real-time

capable implementation is used to track multiple speakers in a con-

ference room with significant reverberation.

Index Terms— speaker tracking, glimpsing model, cochlear

model, Peak-over-Average-Position, Gaussian mixture cardinalized

PHD filter

1. INTRODUCTION

Human listeners show an impressive ability to locate and separate

concurrent speakers by hearing in everyday situations. A popu-

lar theory, based on psychoacoustic experiments as well as biolog-

ical and neurological research, is the “Auditory Scene Analysis”

(ASA) [1]. It identifies atomic features and rules for their combina-

tion into objects or “streams” over time. To that end, both bottom-up

feature-driven processes and top-down model driven processes are

employed.

Bottom-up localization cues for humans are the intensity dif-

ference and the time difference between signals of both ears [2].

Encouraging results in speech separation and tracking have been

achieved by ASA-based computer models in anechoic or low rever-

beration conditions [3]. By simulation of the “precedence effect” –

the suppression of smaller secondary peaks following a strong first

wavefront – the negative effect of reverberation can be reduced [4, 5].

Basic research oriented computational ASA applications use two

sensors of an artificial human head, while technical localization solu-

tions often employ circular or t-shaped microphone arrays with eight

or more sensors. Recently, hybrid approaches applying biologically

inspired neural processing to microphone arrays were proposed [6].
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Fig. 1. Bottom-up processing: filter bank, spike generation, correla-

tion, backprojection, combination and peak detection (f.l.t.r.).

In reverberant and noisy environments, only a few clearly local-

ized time-frequency events can be found. The “glimpsing model”

suggests that human speech perception in adverse conditions is

based upon sparse clear events with high signal-to-noise ratio

(SNR) [7]. To localize and track multiple speakers in reverber-

ant environments, clearly localized “glimpses” can be integrated

to continuous speaker tracks. This poses several challenges: The

number of speakers varies over time and due to the nature of human

speech there will be missed detections, clutter and no association

between the measurements and the speakers.

Recently, several multi-target tracking algorithms like the mul-

tiple hypothesis tracker [8] or joint probabilistic data association [9]

have been proposed to handle these problems. Unfortunately, both

algorithms are computationally expensive since they need to han-

dle the data association between measurements and tracks. A new

approach to multi-target tracking based on random finite set (RFS)

theory has been proposed by Mahler: The probability hypothesis

density (PHD) filter [10] and a generalized version, the cardinalized

PHD (CPHD) filter [11], in order to handle the multi target tracking

more efficiently. In a nutshell, the efficiency is achieved due to the

fact that the spatial multi-target probability distribution is only ap-

proximated by its first order moment, denoted as the PHD, thereby

avoiding the combinatorial problem arising from the data associa-

tion. In comparison to the standard PHD filter, the CPHD filter not

only propagates the spatial probability distribution but also the cardi-

nality probability distribution, therefore providing a much better car-

dinality estimate. Several implementations of the PHD and CPHD

filters exist; most of them are either particle based [12] or Gaus-

sian mixture (GM) [13] based approximations. In this paper, a GM

CPHD filter variant [14] is chosen.

The input of the GM CPHD filter are position hypotheses gen-

erated in six steps as sketched in Figure 1. A circular eight micro-

phone array is used for signal acquisition. The auditory processing in

the cochlea is modeled by a filter bank for frequency separation fol-

lowed by a nonlinear transformation mimicking the coding of neural

pulses [2]. The robust Peak-over-Average-Position (PoAP) of spike

generation method is employed with phase-locking to signal max-



Fig. 2. Peak-over-average-Position (PoAP) spike generation.

ima, thus focusing on on-sets in order to imitate the “precedence

effect” and “glimpsing” only strong events [15]. The result of neural

pulse correlation is projected back to spatial coordinates. Subse-

quently, modulated peaks in the azimuth domain are detected, which

are then used to generate the input for a GM CPHD filter. Using a

statistical model derived from an initial recording, the CPHD filter

provides the multi target tracking results.

2. NEURO-FUZZY LOCALIZATION

The frequency selectivity of the basilar membrane is modelled by a

B = 16 band filter bank composed of gammatone filters equidis-

tantly spaced on the equivalent rectangular bandwidth (ERB) scale

between 200Hz and 3.6 kHz. The filter bank is implemented via

discrete Fourier transformation and overlap-add for time-domain re-

construction to provide online capability and avoid phase distortions

at the same time. The filters are defined in the spectral domain using

a gammatone approximation. To model the neural spike generation

in the organ of Corti, rectangular pulses are generated phase-locked

to signal maxima using the PoAP spike generation method [15] illus-

trated in Figure 2. The input signal x[t] is compared to its 30ms av-

erage x̃[t]. For each modulated interval [un, dn], where x[t] > x̃[t],
the maximum position

pn =
un≤t≤dn
argmax x[t]− x̃[t] (1)

is determined and a spike of height hn, computed from the sum of

the Peak-over-Average amplitudes in the interval, is generated. The

output s[t] can be modeled as a vector sequence (pn, hn)n =: Si
(b)

for each microphone signal with index i in each frequency band with

index b. By shifting the average relative to the signal, a basic simula-

tion of the “precedence effect” is achieved [5]. Only high SNR peaks

or “glimpses” are used as reliable witnesses for speech by accepting

only peaks more than a threshold tg above the average.

Time delay estimation between the ears in the auditory mid-

brain can be modeled via a cross-correlation of two signals in each

frequency band b in accordance with the basic Jeffress-Colburn

model [3, 2]. To reduce harmonic errors, a band and pair dependent

correlation frame size is computed. The cross-correlations e(b)
ij [k, τ ],

with τ denoting time delay, are calculated in 10ms steps by match-

ing all pairs of peaks inside the short-time frames. Due to the spikes

time-domain sparsity, this is faster than performing a correlation in

the spectral domain [15].

In order to represent the domain as a discrete set of coordi-

nates, spherical spatial source positions s = u(θ, φ) with θ =
−180◦,−179◦, . . . , 179◦ and φ = 0◦, 5◦, . . . , 45◦ are used. For

speaker separation by azimuth with the circular array, coarse ele-

vation precision is sufficient and under the far-field assumption the

source distance can be neglected. The time delay of arrival is given

by the difference of distances from the microphone positions mi,

mj to the source position s

τij(s) = (‖s−mj‖ − ‖s−mi‖)fs / c. (2)

The sampling frequency fs is 48 kHz and the speed of sound c =
343m/s is assumed to be constant. Using linear interpolation, the en-
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Fig. 3. Spatial likelihood for two concurrent speakers.

ergy e(b)
ij [k, τ(s)] for each source position s is calculated by inverse

mapping. Product-like combination of likelihoods using a Hamacher

fuzzy t-norm hγ yields robust estimates without “ghosts” [16]

hγ(x, y) =
xy

γ + (1− γ)(x+ y − xy)
=: x⊙ y. (3)

The microphones pairs’ likelihoods are combined by iterated appli-

cation of hγ to calculate a joint pseudo likelihood

e(b)[k, s] =
⊙

(i,j)

e
(b)
ij [k, τ(s)] (4)

in time-location-frequency space over all microphone pairs (i, j).
Reverberant speech is found to produce Gaussian distributed

peaks over longer time periods [17, 18]. Thus, a difference-of-

Gaussian like post-processing can be applied to sharpen the local-

ization results [15]. After calculating the average ẽ(b)[l, θ] over all

elevations φ and a window of L = 2 s frames with index l shifted

by 0.5 s, both a 5◦ and 45◦ average are calculated over azimuth, and

the latter is subtracted form the first. The azimuth PoAPs

P (b) =
{

(θn, l)|θn ∈ PoAPθ

(

ẽ(b)[l, θ]
)}

(5)

are extracted. Figure 3 shows the spatial likelihood for a recording

of two concurrent speakers at fixed positions. On the left it is plotted

against azimuth and frequency band. For higher frequencies the de-

creasing variance is clearly visible (a). The middle plot against time

and azimuth illustrates the time domain sparsity (b). The PoAPθ

position hypotheses P (b) are shown on the right (c).

Due to the nature of reverberated speech, the provided position

hypotheses still contain many gaps and clutter. Consequently, fur-

ther post-processing is required. Additionally, multiple persons may

speak simultaneously, thus the number of speakers varies over time.

In such cases, GM CPHD filters are known to provide good results.

3. TRACKING WITH A GM CPHD FILTER

The tracking of multiple speakers localized by the aforementioned

auditory processing inspired system is achieved by a GM CPHD fil-

ter variant following [14] which is in turn extended to handle multi-

ple frequency bands. Beginning with an RFS of n individual states

x(i) = (θ(i), θ̇(i))

X =
{

x(1), . . . , x(n)
}

(6)

at time k, the motion of a single speaker is modeled as a linear Gaus-

sian model with mean ζk−1 = xk−1 and covariance Q

fk|k−1(xk|xk−1) = N (xk;Aζk−1, Q) (7)

A =

(

1 ∆t
0 1

)

. (8)



The time step ∆t is set to 0.5 s. Given an RFS

Zb =
{

z
(1)
b , . . . , z

(n)
b

}

(9)

of single band measurements zb and due to the fact that the azimuth

PoAPs P (b) provide Gaussian distributed values for θ [18, 17], the

single sensor measurement model is also a linear Gaussian model

gb,k(zb|xk) = N
(

zb;Hζk, σ
2
b

)

(10)

H =
(

1 0
)

(11)

where σ2
b is the per band measurement variance depicted in Fig-

ure 4. The B = 16 bands are modeled as individual sensors Z =
[Z1, . . . , ZB ] each having its own set of band specific detection and

clutter probabilities. The main idea of fusing the per band measure-

ments in order to obtain the speaker positions is to apply the CPHD

filter update equation sequentially. Since the result will be largely

dependent on the order of the sensors a prioritization by detection

probability pb,D is performed for the multi-band sensor update.

In case of the GM CPHD filter, a birth intensity and cardinality

distribution needs to be provided. Since a simple sensor likelihood

model is used, a birth intensity model can easily be derived such

that new states are generated at the measurement position with an

angular speed of zero. As a result, the number of new born Gaussian

components Nn equals the sum of all measurements of all bands per

timestep k, in particular Nn =
∑B

b=1 |Zb|. Consolidating all CPHD

filter steps, the proposed algorithm works as follows:

1. Estimate GM components with the CPHD filter prediction.

(a) Update all the individual GM components with the

standard Kalman filter equation.

(b) Create Nn =
∑B

b=1 |Zb| new GM components accord-

ing to the birth model.

2. Prioritize sensors according to the detection probability.

3. Iteratively update GM components with measurements Zi ac-

cording to the CPHD filter update equation.

(a) Apply the CPHD filter update equation.

(b) Prune GM components according to [13].

4. Determine cardinality N from the a posteriori multi-object

cardinality distribution by choosing the number of objects

with the highest probability.

5. Extract states by choosing the N GM components with the

highest weights.

Speaker labels are assigned using a basic time-to-live (TTL) ap-

proach inspired by [17]. For each state, the label of the nearest

speaker from the last 5 s is selected, if existing, otherwise a new

label is chosen.

4. EVALUATION

Recordings of multiple speakers were made in the conference room

of our smart house, the FINCA [http://finca.irf.de]. The room is al-

most rectangular, about 3.7 × 6.8 × 2.6m3, with strong reverbera-

tion. A circular array with a radius of ra = 5 cm composed of eight

omni-directional microphones was used.

In order to derive a model of the room, speech and speaker, a

recording of a single speaker at fixed positions was made. From this

data, a reverberation time of 624 ± 54ms over all microphone sig-

nals was calculated using a blind estimation algorithm [19]. For the
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Fig. 4. P (b) statistics for a recording of a fixed single speaker.

bottom-up processing, the “glimpsing threshold” tg was set to 9 dB,

the Hamacher parameter γ to 0.3 by inspection and the window size

for the final temporal averaging was set to 2 s. Sensor statistics over

the P (b) position hypotheses were calculated as parameters for the

CPHD filters prioritization step. Each of the 16 bands differ greatly

in terms of detection probability, variance and clutter. In Figure 4

azimuth deviation σb and detection probability pb,D are plotted per

band. From the statistics, the birth pΓ and clutter pK cardinality

distributions are assumed to be Poisson distributed with an aver-

age number of birth and clutter measurements of λpΓ = 0.2 and

λb,pK = 0.001. The per band clutter intensity distributions κb (z)
are all chosen to be uniform with probability κ (z) = 0.05. For the

state prediction process, the state independent survival probability

and the process noise variance are ps = 0.99 and Q = 4◦.

For the tracking task, two speakers were speaking with consid-

erable overlap. The first speaker was sitting at a fixed position of

θ = 160◦ at a distance of 1.4m to the array and started speaking

immediately. The second speaker started after 30 s while walking

around the array from −135◦ to 135◦ and back again in a 1.25m

radius. The first speaker stopped talking 12 s after the rendezvous

point. Both speakers wore a lapel-microphone to provide a ground

truth for speech activity, presented in the e1,2 plot of Figure 5.

The TTL conjunction forms two continuous tracks, as shown in

Figure 5 (top). In the ˜|Zb| plot, the average (solid) and maximum

(dotted) number of position hypotheses is visible. This illustrates

the sparsity of the position hypotheses, which hampers the tracking

task. The overall Wasserstein distance [20] is depicted in the W2

plot. The average value is 8.93◦. Representing the wrong speaker

count, the cardinality error is shown in the εN plot. The overall

root mean square error for the azimuth estimates θ is 5.64◦; 1.73◦

for the first and 7.46◦ for the second speaker. Allowing a devia-

tion of one head width of 25 cm in speaker distance, a precision

of 96.0% (speakerwise 100% and 92.7%) was achieved, the recall

was 99.1% (98.1% and 100%). Continuous tracks are derived de-

spite the noncontinuous occurrences of speech “glimpses” over the

frequency bands. Comparing the plots, it can be seen that the larger

errors in the Wasserstein distance correspond to the cardinality er-

rors and speech gaps, for example at 50 s. The relative movement

discrepancy to the linear ground truth assumption is a possible cause

for the higher inaccuracy for the second speaker.

5. CONCLUSION

The GM CPHD filter was applied to the position hypotheses in the

multiple frequency bands provided by the neurobiologically inspired

bottom-up processing. By restricting the hypotheses to the most reli-

able ones and incorporating a sensor model into the GM CPHD filter,

the “glimpsing model” could be realized for the tracking task. The

real-time capable implementation performed favourably for tempo-

ral and spectral non-stationary speech signals. The applicability of

the proposed multiple concurrent speaker tracking approach to real-

world data recorded in a highly reverberant room was shown.
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