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Abstract—A major application area of microphone array
processing is the localization of sound sources, mainly of speaking
persons. In contrast to most state-of-the-art approaches that
are based on correlation measures, we propose a neurologically
inspired system that generalizes findings about human spatial
hearing to the multi-channel case. It mimics the processing in
the human cochlea and the auditory mid-brain. To enhance
the localization quality, a new spike generation approach is
introduced, termed peak-over-average position (PoAP). A fuzzy
combination is used to remove putative artifacts. In contrast
to a human listener we employ multiple sensors to gain ro-
bustness in reverberant and noisy environments. Post-processing
estimates the locations of concurrent speakers. The robustness
of the proposed system is shown by comparison with the well-
known steered response power approach. Finally, we show the
applicability of our realtime neuro-fuzzy model to the concurrent
speaker localization task using real reverberant recordings.

Index Terms—microphone array, peak-over-average position,
glimpsing model, precedence effect, speaker localization

I. INTRODUCTION

The impressive ability of human listeners to locate and

separate concurrent speakers in everyday situations has been

a motor for research for over half a century. The fascinating

mechanisms that allow us to create a rich auditory world from

the movement of two eardrums have been partially demys-

tified. Psychoacoustic experiments as well as biological and

neurological research led to the popular “Auditory Scene Anal-

ysis” (ASA) theory [1]. It identifies atomic features, grouping

“cues”, and rules for their combination into “streams” over

time in human auditory processing. With growing computing

power, a variety of implementations were devised that use and

advance our understanding of ASA [2].

Localization cues for humans are intensity difference and

time difference between signals from both ears. Inspired by the

human spatial hearing, the auditory processing in the cochlea

is commonly modeled by a filter bank for frequency separation

followed by a transformation mimicking the coding of neural

pulses. Several implementations follow the classical cochlear

model of Lyon [3] and use half-way rectified square-root

compressed band signals to imitate the spike generation in

the auditory nerve. The signals from both ears are correlated,

modeling the binaural processing in the auditory mid-brain.

This leads to a time delay; hence, to the direction of the acous-

tic source. However, half-way rectification leads to blurred

correlation figures. Focusing on the phase-locking property of

the cochlea, one-way zero-crossings of the band filtered signal

itself yield better results [4].

Figure 1. Processing structure: filter bank, spike generation, correlation,
backprojection, combination and peak detection (from left to right).

Good results in speech separation and tracking have been

achieved under anechoic or low reverberation conditions by

ASA-based models [5]. Focusing on on-sets and imitating the

“precedence effect”, localization in reverberant conditions can

be improved [6,7]. The recently proposed “glimpsing model”

suggests that human speech perception is based upon sparse

clear events with high signal-to-noise ratio (SNR) [8]. Still,

reverberant and noisy environments remain a challenging task

for ASA-models.

Fixing the number of sensors at two — aimed at strict imi-

tation of the human prototype — is an unnecessary constraint

for a technical system. The use of multiple sensors facilitates

robust localization in noisy and reverberant environments,

by exploiting the redundancy among all channels. Recently,

hybrid approaches applying acoustic signal processing in

combination with biologically inspired neural processing to

subband or circular microphone arrays were proposed [9].

Here, such a hybrid approach is presented, that pursues

two strategies to cope with reverberation and noise. First, it

uses a small circular eight channel array, which provides non-

aliased time delays and good coherence. Second, biologically

inspired processing is implemented that singles out strong,

clearly localized peaks to determine the speakers positions. We

propose a refined cochlear model, employing a new and robust

method of spike generation based on modulation maxima.

Additionally, a fuzzy combination of modulated energy peaks

forms a sharp representation of sound events in azimuth-time

space. The systems performance and robustness in noisy and

reverberant environments is demonstrated with real recordings

with one and two concurrent speakers.

II. NEURO-FUZZY LOCALIZATION

The location hypotheses are generated in six steps as

sketched in figure 1. First, each channel is split individually

with a filter bank. Then, spikes are generated in each band. Mi-

crophone pairs are combined via cross-correlation to estimate

time-delays, which are projected back into the spatial domain.

Subsequently, these are combined using a fuzzy operation.

Finally, modulated peaks in the azimuth domain are detected.



Figure 2. Peak-over-average spike generation. Input signal x[t] and its
average x̃[t] with interval [un, dn] and maximum position pn on the left,
and the generated spike s[t] on the right.

A. Filtering

According to the Patterson-Holdsworth model, the fre-

quency selectivity of the cochlea is adequately modeled by a

filter bank composed of nb gammatone filters spaced according

to the ERB scale [2, pp. 15–19]. The filter bank is implemented

via discrete Fourier transformation and overlap-add for time

domain reconstruction to provide online capability and avoid

phase distortions at the same time. The filters are defined in

the spectral domain using a gammatone approximation [10]

G(b)[f ] = (1 + j(f − fb)/wb)
−4

, (1)

where j is the imaginary unit. For each band b, a time domain

signal x(b)[t] is calculated using the parameters of Glasberg

and Moore [2] with center frequency fb and bandwidth wb.

B. Spike Generation

In the mammalian cochlea, spikes are generated in a phase-

locked manner. Intensities are coded relative to the overall

amplitude [11]. The “precedence effect”, i.e. suppression of

smaller secondary peaks following a strong first wavefront, is

improving localization of reverberant signals [2,5]. Overall,

only high SNR peaks or “glimpses” are used as reliable

witnesses for speech. All these properties are incorporated in

a single nonlinear time domain step.

Modulated peaks pn in the signals x[t] of each frequency

band are detected as illustrated in figure 2. Here, n denotes

the peak index and t the sample index, the band index (b)
is omitted in this section for the sake of brevity. The signals

moving average x̃[t] is calculated with a a = fs ·30 ms sample

neighborhood to encompass two pitch periods, where fs

denotes the sampling frequency. Modulated intervals [un, dn]
are identified between zero-crossings of the average subtracted

signal x̂[t] := x[t]− x̃[t−d], shifted by d = fs ·3 ms samples.

The position

pn =
un ≤ t ≤ dn

argmax x̂[t] (2)

is termed the peak-over-average position PoAPt. To encode

the amplitude of the source signal, in accordance with the

spike count in the auditory nerve, the amplitude

hn = 2fb/1000
dn∑

t=un

(x̂i[t])
0.5

(3)

is modulated by the signals square-root compressed peak-over-

average values with a band dependent weighting to emphasize

higher frequencies. Each PoAPt event pn triggers a rectangu-

lar impulse with a width of 50 µs and height hn, as shown in

figure 2. This timing encodes the phase of the source signal.

A basic thresholding is applied to ignore peaks, that are less

than 6 dB over the average.

C. Spike Correlation

The basic Jeffress-Colburn model [2, p. 162] argues, that

time delay estimation between the ears in the auditory mid-

brain can be modeled via a cross-correlation of the two

signals. Here, two types of aliasing can occur: Spatial aliasing,

where one wavelength spans less than the distance of the two

microphones; and harmonic errors where multiple peaks fall

into the correlation window. The gammatone filters attenuation

is sufficiently high (> 24 dB) at fb ± 2wb to consider this

the bands’ boundaries. To avoid spatial aliasing, pairs (i, j)
satisfying the condition

P (b) =
{
(i, j)

∣∣ ‖mi − mj‖ < c / (fb + 2wb)
}

(4)

are used, where mi, mj denote the microphone positions,

‖ · ‖ is the Euclidean distance and c the speed of sound. To

reduce harmonic errors, we propose a band and pair dependent

correlation frame size

K
(b)
(i,j) = (14ms + ‖mi − mj‖ /c + 2 / (fb − 2wb)) fs, (5)

computed as the sum of the maximum pitch period of 14 ms,
the microphone pair distance and two wavelengths. The cross-

correlations e
(b)
ij [k, τ ], with τ denoting time delay, are calcu-

lated by matching all pairs of peaks inside the frames. Due to

the spikes time-domain sparsity, this is faster than performing

a correlation in the spectral domain.

D. Backprojection and Combination

Next, the time delays τ for each microphone pair are

mapped back into the spatial domain. Spatial source positions

s ∈ {u(θ, φ) := (r sin θ cos φ, r cos θ cos φ, r sin φ)
T
} (6)

are used to represent the domain as a fixed set of spherical

coordinates. Under the far-field assumption for a small circular

array, the radius can be fixed to an arbitrary distance, e.g.,

r = 1.5 m. The time delay of arrival is given by the difference

of distances from the microphone positions mi, mj to the

source position s:

τij(s) = (‖s − mj‖ − ‖s − mi‖)fs / c. (7)

Using linear interpolation, the energy e
(b)
ij [k, τ(s)] for each

source position s is calculated by inverse mapping. Due to

the spatial ambiguity, time delays for a single pair correspond

to two azimuths, which is resolved by the combination of mul-

tiple pairs. In contrast to the common additive combination,

we employ a Hamacher fuzzy t-norm based combination with

parameter γ which has proven to be a robust method [12]:

hγ(x, y) =
xy

γ + (1 − γ)(x + y − xy)
=: x ⊙ y. (8)

All desirable pairs are combined by iterated application of hγ ,⊙
i∈I xi := (((x1 ⊙ x2) ⊙ . . .) ⊙ xn), to calculate the peak

energy distribution e(b)[k, s] in time-location-frequency space:

e(b)[k, s] =
⊙

(i,j)∈P (b)

e
(b)
ij [k, τ(s)]. (9)



E. Peak Localization

In the presence of strong reverberation, the number of

clearly modulated events per second is small and secondary

peaks are observable. However, assuming slow moving speak-

ers, the true primary peaks prevail in a larger time context. The

moving average over one second, i.e. L = fs ·1 s is calculated

over all data points with a shift of fs · 250 ms samples:

ẽ(b)[k, s] =

k+L/2∑

k′=k−L/2

e(b)[k′, s]. (10)

For natural speech, spectral magnitudes are dependent across

frequency [13], which is exploited by multiple ASA grouping

cues such as “common fate” and onset [2]. It may be assumed

that no or only few e(b)[k, s] values originating from different

speech sources collide in frequency. If noise and reverberation

are independent across frequency, common peak positions

in the frequency bands provide independent “witnesses” for

speech. Thus the sum over all frequency bands will likely

produce peaks for speech energy peaks of a single source.

Time domain aliasing in the correlation occurs frequency-

dependent and therefore produces erroneous peaks at different

source locations in different frequency bands; hence, noise and

aliasing errors can be suppressed by counting the bands with

energy peaks, B[k, s] := {b | ẽ(b)[k, s] > 0}, and discarding

detections occurring in less than a third of the nb frequency

bands which corresponds to the typical spread of natural

speech sounds [11]:

ẽ[k, s] =

{∑
b∈B[k,s] ẽ

(b)[k, s] if |B[k, s]| ≥ ⌊nb/3⌋

0 otherwise
(11)

In the typical tabletop placement, only shallow positive ele-

vation angles are in the region of interest, and speakers can

be separated by azimuth. If discrimination by elevation is not

desired, ẽ[k, s] can be summed over elevation

ẽ[k, θ] =
∑

φ

ẽ[k, s = u(θ, φ)]. (12)

When considering larger time segments, the correlation results

can be modeled as “true” peaks plus noise [14]. To incorporate

the typical variations a 45◦ average, spanning the reverberation

induced artifacts, is subtracted from a 5◦ average representing

the signal. With this final angular peak-over-average evalua-

tion, positions of modulated peaks are computed:

p∗[k, θ] = PoAPθ ẽ[k, θ]. (13)

III. RESULTS

The proposed system is implemented in C++ utilizing

OpenMP and the FFTW, which allows for realtime perfor-

mance on commodity hardware. Following, results on simu-

lated reverberant signals and on real recordings are presented.
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Figure 3. Comparison of argmaxθ localization performance by azimuth
error average over positions in 1 to 1.5 m distance and 0◦ to 20◦ elevation
with simulated 12dB SNR.

A. Simulation

Extensive tests were performed in a simulated reverber-

ant environment to determine reasonable parameters. For the

Hamacher t-norm γ = 0.3 lead to robust location esti-

mates. Smaller values of γ make the processing more sus-

ceptible to noise, higher values produce sparser results. For

the backprojection, azimuth and elevation are discretized as

θ ∈ {0◦, 1◦, . . . , 359◦} and φ ∈ {0◦, 5◦, . . . , 35◦}. The frame

shift is fixed at 10 ms. A sampling rate of fs = 48 kHz is used

in conjunction with 16 bands with fb = 0.25, . . . , 3.6 kHz. The

speed of sound is fixed to c = 343m/s.
A rectangular 5×6×2.5 m room with speakers surrounding

a circular eight channel microphone array with ra = 5 cm
was simulated, employing the image source method [15] to

allow for varying reverberation times T60. Uncorrelated white

noise was added to achieve a SNR of 12 dB. The simulated

speakers were positioned at three different azimuths; 0◦, 10◦

and 20◦ elevation; and in 1 to 1.5 m distance around the array,

separately uttering 5 s of speech.

In figure 3, the root-mean-square (RMS) error for

argmaxθ e[k, θ] is plotted for the average over all positions.

The localization quality of PoAPt spike generation (dia-

monds) is compared to the zero-crossing method (circles);

Half-way rectification produced too few usable estimates. Ad-

ditionally, performance of the steered response power (SRP)

approach with Hamacher t-norm combination [12] is shown

(squares). To illustrate the effect of L = fs · 1 s temporal

averaging, the precision of argmaxθ ẽ[k, s] is plotted as well

(dark diamonds).

Compared with the zero-crossings and SRP, the PoAPt

detections are more robust against high reverberation with

around 20◦ error for reverberation times over 0.7 s. The RMS

azimuth error stays below 10◦ for all evaluated T60 times using

temporal averaging.

B. AV16.3 corpus

The freely available AV16.3 corpus provides real world data

and ground truth information for a variety of situations in

a mildly reverberant meeting room [16]. Two circular eight

channel microphone arrays with a radius of ra = 10 cm are

used for recording at fs = 16 kHz. The low sampling rate

provides only coarse phase information. The larger diameter

is responsible for lower spatial coherence and more spatial

aliasing. The usable frequency range is reduced to under

2 kHz, providing sparser peak events in time. nb = 12 bands

with fb = 0.2, . . . , 1.6 kHz were used.



Sequence 1 is a recording of a single speaker taking up

16 positions in the conference room in proximity to the

microphone arrays with a total length of 218 s. Figure 4

shows the detections for the first part of the sequence. A few

additional detections due to foot fall sound etc. occurred. The

RMS azimuth error over the whole sequence is 3.5◦ and 3.8◦

using array 1 and 2 respectively. Based on the average human

head width in 1.5 m distance, detections within a margin of

6◦ of the true azimuth are considered accurate. Applying this

border, the precision for array 1 and 2 is 92 % and 88 %
respectively. The RMS energy sum of the filter bank output

for the lapel microphone recording (figure 4 bottom) was used

as ground truth for speech activity with a −30 dB threshold.

In respect to this, the L = fs · 1 s frames detections achieve

99 % recall for both arrays.

C. FINCA Recordings

Several recordings were made in the conference room of

our smart house, the FINCA [http://finca.irf.de]. The room

is almost rectangular, about 3.7 × 6.8 × 2.6 m with a high

reverberation time of approximately 0.6 s. A circular tabletop

array with a radius of ra = 5 cm composed of eight omni-

directional microphones was used. Recordings were made with

a sampling rate of fs = 48 kHz. Using the smaller diameter

and higher sampling frequency in comparison to the AV16.3

setup, speech in the full frequency range can be localized.

Therefore, denser and more peaks are detected. nb = 16
bands spanning the range of voiced speech components with

fb = 0.25, . . . , 3.6 kHz were used. Peaks in the range between

1.5 and 3.6 kHz are significantly sharper localized.

To test concurrent speaker separation, one person was

sitting at the table, talking continuously, while the other was

walking through the room, pausing shortly between positions.

Resulting detections are depicted in figure 5. Both Speakers

utterances form clearly visible tracks of p∗[k, θ] detections.

The overall RMS azimuth error is 5.5◦. Within a 6◦ margin,

80 % precision is achieved.

IV. CONCLUSION

The proposed application of biologically inspired signal

processing methodologies for speaker localization employing

a microphone array resulted in reliable short and long-term

estimates for highly reverberant and low SNR conditions.

Furthermore, the system is able to localize multiple concurrent

speakers in real reverberant rooms. The robustness of our

approach stems from the presented PoAPt spike generation.

The proposed frequency and microphone distance dependent

window size reduces spatial aliasing and the influence of

ambiguous correlation peaks. By employing the Hamacher

t-norm for a fuzzy backprojection, the overall localization

performance is improved. Temporal averaging sharpens the

peak detections in a larger time context. The presented sys-

tem performs favorably for the speaker localization task in

comparison to state-of-the-art methods and runs in realtime

on commodity hardware.
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Figure 4. Localization for AV 16.3 Sequence 1: Detections (top), speech
energy from lapel microphone (bottom).
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