
Face Detection using GPU-based
Convolutional Neural Networks

Fabian Nasse1, Christian Thurau2 and Gernot A. Fink1

1 TU Dortmund University, Department of Computer Science, Dortmund, Germany
2 Fraunhofer IAIS, Sankt Augustin, Germany

Abstract. In this paper, we consider the problem of face detection un-
der pose variations. Unlike other contributions, a focus of this work re-
sides within efficient implementation utilizing the computational powers
of modern graphics cards. The proposed system consists of a parallelized
implementation of convolutional neural networks (CNNs) with a special
emphasize on also parallelizing the detection process. Experimental vali-
dation in a smart conference room with 4 active ceiling-mounted cameras
shows a dramatic speed-gain under real-life conditions.

1 Introduction

The past years yielded increasing interest in transfering costly computations to
Graphics Processing Units (GPUs). Due to parallel execution of commands this
often results in a massive speedup. However, it also requires a carefull adaption
and parallelization of the algorithm to be implemented. As noted in [1], convo-
lutional neural networks (CNNs) [8, 2, 4, 3] offer state of the art recognizers for
a variety of problems. However, they can be difficult to implement and can be
slower than other classifiers, e.g. traditional multi-layer perceptrons. The focus
of this paper resides within the implementation details of parallelizing CNNs
for the task of face detection and pose estimation and evaluating its run-time
performance. In contrast to [1], where GPU optimized CNNs were adapted for
document processing, the considered face detection task requires additional con-
siderations: In detail, the contributions of this paper are (a) extension of the face
recognition (and pose estimation) system in [3] by parallelizing important parts
of the computational process and implementing it on a graphics card, and (b)
further enhancing the system by an optimized detector. Experimental validation
takes place in a multi-camera environment and shows accurate detection and
high performance under real-life conditions.

The remainder of this paper is organized as follows: In Section 2 we give
a brief introduction to convolutional networks and how they are used in this
work. Section 3 explains in detail the process of face detection using CVs, and
Section 4 shows how this process can be efficiently parallelized. In Section 5 we
present experimental results of the proposed optimized face detection approach.
Finally we conclude this paper in Section 6.



2 Face Detection using GPU based Convolutional Neural Networks

2 Convolutional Neural Networks

20x20 4x16x16 4x8x8 4x1x1 1x1

pattern

input L1 L4=outputL2 L3

con-

volutions, 

5x5-filters
sub-

samplings

convolutions,

8x8-filters

full

connection

Fig. 1. structure of a simple convolutional net

In the following we will briefly introduce convolutional neural networks (CNNs) [8,
2, 4, 3]. In a nutshell, a CNN classifies an input pattern by a set of several concate-
nated operations, i.e. convolutions, subsamplings and full connections. Figure 1
shows a simple example for a CNN as it was used in [8]. For practical reasons the
net is organized in successive layers (L1 to L4). On the left side we see an input
image, in our case a monochromatic 20× 20 pixel image. Each subsequent layer
consist of several fields of the same size which represent the intermediate results
within the net. Each directed edge stands for a particular operation which is
applied on a field of a preceding layer and its result is stored into another field
of a successive layer. In the case that more than one edge directs to a field, the
results of the operations are summed. After each layer a bias is added to every
pixel (which may be different for each field) and the result is passed through a
sigmoid function, e.g. s(x) = a · tanh(b · x), to finally perform a mapping onto
an output variable.

Each convolution uses a different two-dimensional set of filter coefficients.
Note that in case of a convolution the size of the successive field shrinks because
the border cases are skipped. For subsampling operations a simple method is
used which halves the dimensions of an image by summing up the values of
disjunct 2x2-subimages and weighting each result value with the same factor.
The term ”‘full connection”’ describes a function, in which each output value
is the weighted sum over all input values. Note that a full connection can be
described as a set of convolutions where each field of the preceding layer is
connected with every field of the successive layer and the filters have the same
size as the input image. Thus, we do not treat full connections as a separate case
here. The last layer forms the output vector. In the given example the output
consists of a single value which finally classifies a given input image.



Face Detection using GPU-based Convolutional Networks 3

slide window original image

scaling steps

1

2
1

1

2

1

2 2

x

y

(a)

input image

320x240

(even,even)

(odd,even) (even,odd)
(odd,odd)

L1

L2

L3

L4

offset

layer

4x316x236

(0,0)

4x158x118

4x151x111

151x111

(1,0)

4x156x118

4x149x111

149x111

(0,1)

4x158x116

4x151x109

151x109

(1,1)

4x156x116

4x149x109

149x109

(b)

Fig. 2. Figure 2(a) shows a slide-window on an input image with different scaling
factors. Figure 2(b) shows the scheme of the location process for the CNN from Figure 1
and an input image of size 320x240 px.

An important attribute of CNNs is the availability of an efficient training
method. Since CNNs are based on the classical neural networks, each pixel of a
field can be represented by a neuron and the all afore mentioned operations can
be modeled by connections between neurons. For training, a modified version
of a standard backpropagation algorithm can be applied. For further details on
CNNs we recommend [2].

3 The Detection Process

For object/face detection we are usually interested in detecting all occurancies
of an object in a given image. For a trained CNN, we can use a simple sliding
window approach over a variety of scaled input images, see also Figure 2(a). The
window is shifted above the image to get one result at each position. To search
inside a specified size range the process is repeated with different scaling factors.
In the given example the image is downscaled each time with the factor 1/

√
2.

By choosing this factor we make the assumption that the trained CNN is robust
against variation in size at the range between two scaling steps.

One of the key advantages of CNNs are the inherent possibility for par-
allelizing the computational process when used as a detector. If a neural net is
repeatedly applied on overlapping image areas redundancies in calculation occur.
This is the case for convolutions as well as subsamplings in all layers. A signifi-
cant speed gain is reached by avoiding these redundancies. We accomplished this
by applying each operation within the net on the whole image at once instead
repeatingly on all subimages. In the case of a subsampling operation four differ-
ent offsets have to be considered depending on whether the 2x2-subimages start
with odd or even coordinates in horizontal or vertical direction respectively. For
the example given in figure 1 and an input image of size 320x240 this leads to
a scheme as shown in figure 2(b). To assemble the four output images to one



4 Face Detection using GPU based Convolutional Neural Networks

the coordinates have to be multiplied by two and the spatial offset given in the
last row must be added. Note that at the expense of precision the calculation of
some paths in the tree may be skipped. The assumption by doing so is that the
trained CNN is robust against small spatial shifts.

4 Parallelization of the Detection

main memory

block(2,0)

block(2,1)

block(2,2)

block(1,0)block(0,0)

block(1,1)block(0,1)

block(0,2) block(1,2)

block(2,1)

memory bank registers

thread

Fig. 3. Memory hierarchy for the CUDA architecture.

filter ...

...

net

parameters

main

memory input image

result image, 

layer L2

(0,0) (1,0)

bank 2

bank 1

conv. subs.

conv. subs.

1.

2. 2.

3.

3.

4.

... 4.

Fig. 4. Parallelizazion by dividing the input image into several rectangles.

The shown detection process was implemented and evaluated for the Nvidia
GeForce 8800 GT GPU using the CUDA-architecture, which allows using the
processing power of the graphics card for the purposes of scientific research. Note
that also the following method is dedicated to CUDA-devices, similar approaches



Face Detection using GPU-based Convolutional Networks 5

can be applied to other multi-core devices. According to the number of cores the
architecture consists of multiple threads each with its own set of registers. An
important task for the design of the parallel algorithm is to take the memory
hierarchy into account. Thus, figure 3 shows an overview. The host system (i.e.
the pc) as well as the threads have access to the global main memory of the
graphics card. Furthermore the threads are grouped into so called blocks. The
threads of a block share a small and fast memory bank.

The different bandwidths of the memory interfaces leads to the following
strategy: The data transfer between the host system and the main memory has
a low bandwidth. Thus, the communication here has to be minimized. At the
beginning the net parameters are loaded once from the host system into the main
memory. The same is done for every new input image. At the end of the detection
process the results are written back to the host. For the threads the access time
to the memory banks is much faster than to the main memory. Therefore most
of the calculation should be done with the data stored in the local memory
banks. Because for a convolution the pixel values have to be read several times
this brings a significant speed gain. Normally an input image is to large to be
stored in one memory bank, thus it is divided into equidistant rectangles. Each
rectangles is loaded from the main memory into another memory bank and the
partial images are treated by the threads of the according block. For the example
given above this approach is shown in figure 4. In this cutout one of the four
fields of Layer S2 is calculated.

At first the filter for the convolution is loaded from the main memory in
every block (1). Next, the rectangles are copied (2). Note, that the subimages
are overlapping according to the size of the filter. Next the filter and the subimage
are convolved parallely in each bank and the result is stored in local memory
(3). If the result field has more than one input edge (as in L3) step one to three
can be repeated with other input images and filters. Than the results can be
summed directly on the spot. In spite of writing the results of Layer S1 back
to the main memory it is kept in local memory and the subsampling from layer
L1 to L2 is done. After that the pieces are assembled in the main memory (4).
How many steps can be accomplished without writing data back to the main
memory or sharing data between blocks depends on the net structure and can
be optimized for a particular net. Not mentioned so far is the addition of a bias
and the use of a sigmoid function after each layer. For every thread the bias
value is kept in a register (not shown in fig. 3). The sigmoid function is applied
before writing the result value from a register back to local memory. Therefore
no additional reading operation on the local memory is required. Nvidia GPUs
support a complex instruction set with any kind of trigonometric or hyperbolic
functions respectively. Nevertheless, if you use a hardware device without or
with slow support for a particular function required for the sigmoid function, we
recommend the use of a taylor approximation, e.g. tanh(x/2) ≈ (d− 6)/(d + 6)
with d = 6+x·(6+x·(3+x)). Another important aspect not mentioned yet is how
a convolution between a subimage and a filter is handled in detail. Note, that
especially for convolutions concurrencies can form the bottleneck of the feasible



6 Face Detection using GPU based Convolutional Neural Networks

A

B C

A

B

C

filter

subimage

a) b)

Fig. 5. Reading access for a convolution with three threads A,B and C. a) lexicographic
access. b) spatially distributed access.

speed gain. According to Fig. 3 each subimage is treated by several threads
with reading access to the same memory bank. Thus, each thread computes
a subset of result values. Hence to the parallel execution concurrency between
reading accesses occur. Each thread needs to read the whole filter and threads
who compute neighboring values need access to overlapping image areas. To
reduce latency hence to a limited fan in, reading accesses should be spread.
This proceeding is demonstrated in figure 5 for an example with three threads
(A, B and C). Part a) shows the proceeding when the computation is done in
lexicographic order, as it is commonly done for a single process. When a thread
has finished one result it continues at the next position in line of the subimage
and restarts walking through the filter from the upper left corner. This causes
a strong likelihood for latencies during the whole process. A better approach is
shown in part b). Here the computation is spatially distributed over the subimage
as well as over the filter.

5 Experiments

In order to test our accelerated detector under real-time-conditions, we imple-
mented a recognition system for faces with variation of pose based on the re-
searches of [3]. According to Fig. 6 a) the CNN we used consists of 42.750 pa-
rameters and it was trained with 6.000 non-faces and 6.000 faces with annotated
poses (6 b). The system was applied in a smart conference room with 4 active
ceiling-mounted cameras (6 c,d).

Although the main focus of this paper resides within an efficient imple-
mentation, we still want to briefly report on the detection rates here. Given
a frontal/side view of a persons face the system is able to detect multiple per-
sons with an average accuracy of 80%-90% percent and occasional occuring false
positives (evaluated on a per frame basis for four longer sequences containing
multiple persons). For a better detection we added additional training material
for this particular environment, resulting in a well functional and usable system.
For sake of completeness we also evaluated the proposed system on three stan-



Face Detection using GPU-based Convolutional Networks 7

c) d)

a)

input,

32x32

conv.
conv.

subs.

susb.

full 

con.

full 

con.

L1,

6x28x28 L2, 

6x14x14

L3, 16x

10x10
L4, 16x

5x5 L5, 

100x1x1
L5,

9x1x1

b)

Fig. 6. Face detection system. a) CNN structure. b) annotation example. c) and d)
indoor-environment for testing

dard data-sets [7, 5, 6]. We get the following average detection rates : 81% [7],
75% [5], and 83% [6] (with an average of 8 false positives). Note that we did
not try to maximize detection rates for these data-sets since the applicability of
convolutional neural networks for face detection was already sufficiently shown
in [3].

To get an insight of the feasible acceleration by using a graphics card, we
compared the parallel method with a corresponding single-CPU implementation
(without a specific processor optimization). The GPU (Nvidia GeForce 8800 GT)
comes with 14 Multiprocessors each composed of 8 processors with a clock rate
about 600 MHz, while the CPU (Intel Pentium 4) comes with a clock rate about
3,4 GHz. Hence, the expected speed gain by full parallelization is about a factor
of 19,76. In practice the gain is smaller, because of above mentioned latencies
and additional overhead (e.g. loading data into the memory banks).

Table 1 shows the runtimes for our implementation. We tested three different
image sizes and according to Fig. 2(a) we measured the runtime after each scaling
step (up to eight). The given values specify the averagely elapsed milliseconds
per frame. As we can see the actual speed gain is depending on the image size
and number of scaling steps about a factor of ca. 11 up to 13.



8 Face Detection using GPU based Convolutional Neural Networks

0 1 2 3 4 5 6 7 8

800x600 GPU 318 488 581 619 647 672 695 715 733
CPU 4123 6165 7047 7554 7761 7858 7878 7885 7888

640x480 GPU 209 312 373 407 434 456 477 497 -
CPU 2637 3933 4490 4811 4915 4959 4996 5044 -

378x278 GPU 73 109 137 162 184 203 222 - -
CPU 851 1276 1470 1541 1557 1575 1594 - -

Table 1. runtime measurements for CPU and GPU (average milliseconds per frame).

6 Conclusions

We presented an parallelized implementation of convolutional neural networks
for the task of face detection and pose estimation. The proposed high perfor-
mance implementation showed a dramatic speedup compared to a conventional
CPU based implementation. Given reasonable image sizes and image scaling
steps we can expect speed gains about a factor of 11-13. Note that these speed
gains are very likely to increase with the next generations of GPUs (since we
effectively used an older generation of graphics cards, we expect further speedup
using the currently available Nvidia GTX 280 cards).

References

1. Chellapilla, K., Pur, S., Simard, P.: High performance convolutional neural net-
works for document processing. In: Tenth International Workshop on Frontiers in
Handwriting Recognition (2006)

2. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

3. Osadchy, M., LeCun, Y., Miller, M.: Synergistic face detection and pose estimation
with energy-based models. Journal of Machine Learning Research 8(2007) 8, 1197–
1215 (2007)

4. Osadchy, R., Miller, M., LeCun, Y.: Synergistic face detection and pose estimation
with energy-based models. In: Advances in Neural Information Processing Systems
(NIPS 2004), pp. 1197–1215. MIT Press (2005)

5. Rowley, H., Baluja, S., Kanade, T.: Rotation invariant neural network-based face
detection. Computer Vision and Pattern Recognition, 1998. Proceedings. 1998 IEEE
Computer Society Conference on pp. 963–963 (1998)

6. Schneiderman, H., Kanade, T.: A statistical method for 3d object detection applied
to faces and cars. IEEE Conference on Computer Vision and Pattern Recognition,
2000. Proceedings. 1, 746–751 (2000)

7. Sung, K.K., Poggio, T.: Example-based learning for view-based human face detec-
tion. Pattern Analysis and Machine Intelligence, IEEE Transactions on 20(1), 39–51
(1998)

8. Vaillant, R., Monrocq, C., LeCun, Y.: An original approach for the localisation of
objects in images. In: International Conference on Artificial Neural Networks, pp.
26–30 (1993)


