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ABSTRACT
Semantic descriptions or attribute representations have been
used successfully for object and scene recognition, and for
word-spotting. However, these representations have not been
explored deeply on human activity recognition (HAR). Par-
ticularly, in the manual order picking process, attribute rep-
resentations are beneficial for dealing with the versatility
of activities in the process. This paper compares the perfor-
mance of deep architectures trained using different attribute
representations for HAR. Besides, it evaluates their quality
from the perspective of practical application.

CCS CONCEPTS
• Human-centered computing → Laboratory experi-
ments; Empirical studies in HCI; • Computing method-
ologies→ Neural networks; Batch learning; Online learn-
ing settings;
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1 INTRODUCTION
Order picking is the process of taking and collecting articles
in a specified quantity to fulfill costumer demands. Order
picking efficiency is crucial for the success of an entire sup-
ply chain [8, 14, p.13-30]. The associated manual processes
need to be quantitatively determinable to allow for their
proper planning, assessment and optimization. Recently, Hu-
man Activity Recognition (HAR) was used for analyzing this
process. HAR associates activity labels to segments of multi-
channel time-series from sensors’ measurements. However,
this approach can hardly deal with the versatility of human
activities in order picking. Human activities share a consid-
erable amount of patterns. For example, an employee can
carry a box while walking or simply walk. Different items
such as boxes or articles can be picked with the left hand, the
right hand or both. Adding further classes for each variant
of similar activities results in immense annotation effort [5].
Beyond that, the desired definition of activities can differ
with regards to the use case of warehousing. It needs to be
adaptable and enable a posterior alteration of the activity
definition even after data recording and annotation is con-
cluded. An adaptable activity definition demands a high-level
concept to semantically describe human activities in order
picking.
Deep convolutional neural networks (CNNs) have been

used successfully to analyze and to recognize human activ-
ities [7, 9, 15–17]. A CNN for HAR processes time-series
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by using convolution and downsampling operations for ex-
tracting relevant features from raw measurements, e.g., from
Inertial Measurement Units (IMUs) [7].

In addition, [2, 3, 12, 17] suggest that attribute-based repre-
sentations of human activities are beneficial for HAR . Each
activity is represented by a set of attributes that semantically
and coarsely describe it. These attributes are for instance sim-
ple human movements and poses like moving the left foot or
right foot, forward, and upright, which can be considered as
"walking". Attributes serve as an intermediate layer between
sensor measurements and activity labels. The definition of
activities is not fixed and can be adjusted with regards to the
application demands.

Attribute representations are suitable for cases where data
is unbalanced, i.e., the number of sequences differs strongly
per class. Besides, they are appropriate for zero-shot learning,
which extends supervised learning to classify unseen classes
at training. It allows for recognizing unseen activities by
using familiar descriptions that are shared with known activ-
ities [10, 11, 24]. For example, activities like "walking" or "run-
ning" could share attributes related to the feet-movement;
even though, they differ on the speed.

In [17], CNNs were deployed for computing attributes of
human activities. As attribute annotations do not exist, these
were found using an evolutionary algorithm starting from a
random representation. However, they do not hold specifi-
cally any semantic descriptions of human activities. This is a
major issue for deploying them on applications, e.g., human
activities in order picking. Besides, they cannot be used to de-
scribe unseen activities. Attribute representations that have
been provided by a domain expert from warehousing may
be semantically clear. Thus, they might be usable to combine
for recognizing new activities. However, the performance
of representations provided by domain experts is unknown
yet. There is no set of semantic attributes to describe order
picking activities available at this point.
The goal of this paper is to compare different annotated

attribute-representations and their performance in HAR for
order picking activities. To address this issue, an order pick-
ing dataset from a motion capturing system along with com-
peting attribute representations is utilized.

The remainder of this paper is structured as follows. Sec-
tion 2 provides an insight on related work and underlines the
novelty value of this contribution. Next, an order picking sce-
nario as well as the seen and unseen activities are presented
in section 3. In section 4, the proposed method to define and
to compare attribute representations using deep learning is
outlined. The quantitative and qualitative evaluation of the
results follows in section 5. This contribution concludes with
a discussion in section 6.

2 RELATEDWORK
Deep convolutional neural networks (CNN) and recurrent
neural networks (RNNs) have been shown to succeed in
recognizing human activities on multichannel time-series,
e.g., from IMUs [7, 9, 15, 17]. CNNs conveniently combine
the learning of features and the classifier in an end-to-end
manner directly from raw data. The authors in [16] pro-
posed a CNN with convolutional layers, which are applied
along the temporal axis and over all the sensor measure-
ments from IMU’s data. In [21], these convolutions were ap-
plied to individual sensor measurements where filters were
shared among the sensors. In [15], the authors combined
convolutional layers and recurrent units for HAR on activ-
ities of daily living (ADL). In [9], three deep architectures,
namely a CNN, a long-short term memory (LSTM) network,
and a bidirectional LSTM network, were applied to classify
human-locomotion activities. The authors of [17] proposed
an attribute-based representation for HAR. They utilized an
evolutionary algorithm for deriving a suitable attribute rep-
resentation for HAR starting from a random one. By using
this representation, a comparable or even better performance
contrasted to similar networks was achieved.

In the context of order picking, the authors in [6] processed
raw measurements from IMUs for analyzing human move-
ments. IMUs were attached to three workers during field ex-
periments in two operating warehouses. Each of these units
obtain measures from three different sensors, an accelerom-
eter, a gyroscope and a magnetometer. The authors followed
a standard approach in pattern recognition. They segmented
sequences by means of a sliding-window approach, com-
puted a set of handcrafted statistical-features, and trained a
classifier. Specifically, they used a Support Vector Machine
(SVM), a Bayes and a Random Forest as classifiers. The au-
thors in [7] proposed a CNN for solving HAR in the order
picking process. This architecture processes time-series seg-
ments through a stack of temporal-convolutions, pooling
operations and fully-connected layers computing pseudo-
probabilities of human actions. In contrast to previous ar-
chitectures, this CNN contains parallel branches, one per
IMU. Each of these branches is composed of two or three
temporal-convolution layers and max-pooling operations
processing segments per IMU. This architecture, called IMU-
CNN, showed the state-of-the-art performance.

Attribute representations have been successfully used for
image classification, scene recognition and word spotting [1,
3, 10–12, 18]. The authors in [10, 11] targeted attribute-based
classification for detecting and recognizing objects in images
based on their semantic descriptions, specifically on objects
that are not used for training. The authors in [12] used high-
level semantic concepts to create more descriptive models
for human activity recognition, therefore evaluating video
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Figure 1: Four-step pipeline for evaluation of attribute-based activity representations in order picking scenarios

footage from daily or exercise related human activities. In
this context, the suitability for zero-shot learning approaches
was shown. A (human) activity recognition system called
NuActiv has been introduced in [3]. Applying a two-layer
zero-shot learning algorithm, two datasets were examined.
The datasets include exercise as well as daily life activities
from more than 20 subjects, where sensors were attached to
wrists, hips and arms of the subjects.

Human motion capturing in general is a topic of interest
in the field of industrial processes. The Carnegie Mellon Uni-
versity Motion Capture Database [4] is a free motion capture
data base often used in other contributions, i.e., [13]. It pro-
vides data captured and processed using the Vicon System.
Alongside data about activities of daily living or sports, it
as well contains data about industrial work, for example,
activities during building constructions [19]. However, the
authors describe a method to monitor the human posture in
industrial environment. Therefore, a 3D camera as well as
IMUs were used simultaneously. Several tailoring operations
were performed by eight workers in the stretch of two days.

3 ORDER PICKING SCENARIO
To evaluate competing attribute representations, an order
picking scenario has been created, see Figure 2. Its definition
is the first step of the pipeline as illustrated in Figure 1.
The scenario is a common picker-to-stock process. This

means that the order picker moves to collect the products
necessary for one order. The empty boxes in this scenario
have the dimensions L 400 mm x W 300 mm x H 220 mm.
They are provided via a conveyor at a height of 380 mm and
manually placed on a cart’s top deck at a height of 800 mm.
The employee drives the cart to two shelves where the stored
articles are put into the boxes. The articles are exemplary
portrayed by ballast sacks with a weight of 500 g. The process
ends when the filled boxes are placed on a second conveyor.

The scenario’s process exists in two variants. They differ in
the characteristics of the humanmotion, e.g., the handedness.
Both variants of the scenario are illustrated in Figure 2. The
first variant on the on the left solely includes process steps
that consist of seen activities that are trained individually
beforehand. The second variant on the right includes slightly
altered process steps and thus different manual activities. For
these activities no training data will be provided but they

will be used for testing. The concerned process steps are
highlighted in blue.
The unseen activities of the second variant are catego-

rized into three groups in regards to their semantic link with
the seen activities of the first variant. The idea is to train a
method of deep learning using solely the seen activities and
test it on both the seen and unseen activities. Figure 3 visual-
izes the expected role of the attribute-based representation as
a semantic link between the seen and unseen activities. This
is helpful to narrow down the practical benefits and short-
comings of competing attribute representations in regards
to specific groups of activities and attributes.

Group I: Lifting while walking. There exist recordings in
which the participants walk and stand. These two activi-
ties are recorded with the participant having his hands free
and while holding a box. Reaching forward and lifting the
box with both hands are recorded as well. But during the
latter activities, the participants were standing. It may be
possible to recognize the activities of reaching forward and
lifting when they are performed while walking. This is fea-
sible as the sensor patterns of the upper body are expected
to be very alike. The walking motion of the lower body is
present in the walking activities.

Group II: Both-handed cart handling. The activities of pushing
and pulling a cart are trained exclusively in their single-
handed variant. With this data available, pushing and pulling
a cart may be recognizable when performed with both hands.

Group III: Left-handed and both-handed article handling. Sim-
ilar to Case II, it has been recorded how participants handle
boxes with both hands and handle articles with the right
hand only. The shared properties of these activities can be
used to describe left-handed and both-handed article han-
dling activities.

4 METHOD
The goal of the proposed method is to compare competing
attribute representations in regards to their performance in
HAR for seen and unseen activities. As illustrated in Figure 1,
the method consists of defining attribute-based representa-
tions of activities present in a given scenario, deploying deep
learning and applying predefined evaluation criteria.
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Figure 2: Process Steps of the Order Picking Scenario. On the left is the scenario’s variant with process steps that consist of
seen activities. The list on the right contains slightly altered process steps with unseen activities that are highlighted in blue.

Figure 3: Three groups of unseen activities and the attribute-based representation as a semantic link to seen activities

Attribute Representations
Attributes are high-level semantic descriptions of classes,
objects or scenes that are used for different recognition tasks
[1, 10, 11, 18]. In HAR, collections of verbs and objects have
been deployed for describing semantically and coarsely hu-
man actions in images and videos [22, 23]. For instance, at-
tributes for HAR could be considered as simple particular
movements of human body parts, e.g., feet moving or pos-
tures, which might define the action of walking. An advan-
tage of using attribute representations is that human actions
share simple movements. For example, feet moving could rep-
resent the activities walking and running, differing in speed.
This sharing is suitable for tasks where datasets are unbal-
anced or testing sets contain unseen activities at training
[10].
In HAR, a function f : X → Y is learned. This function

maps a sequence x ∈ X to its respective activity class y ∈

Y . An attribute representation A can be seen as additional

mapping between the sequences X and their classes Y , i.e.,
f : X → A → Y . This additional layer allows to share
high-level concepts among classes.
An attribute representation A ∈ B[K,M ] contains K num-

ber of a binary vectors withM number of attributes. A binary
vector a is defined uniquely per class ki∀i = 1, 2, ...,K and
it contains values of "1" when a certain attribute is present;
otherwise the value is "0".

Deep Learning for HAR
For recognizing human activities using attribute represen-
tations, the CNN architecture, proposed in [7, 17], is used.
This architecture uses temporal-convolution operations for
extracting temporal-local dependencies of sequential inputs.
By stacking temporal- convolutions and -pooling operations,
CNNs extracts more complex features, being also robust
against translations and noise. In general, a CNN for HAR
classifies its input into classes using a softmax function
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[7, 9, 15]. The proposed architecture, however, maps an input
sequence into an attribute representation ã ∈ A, replacing
the softmax function by a sigmoid activation function, see
Equation 1. Its output corresponds to pseudo-probabilities
indicating if an attribute ãi is present or not in the represen-
tation.

ã = siдmoid(x) =
1

1 + e−x
(1)

In contrast to [7, 15, 17], input sequences are not com-
prised of IMUs’ measurements. Sequences correspond to
measurements of 3D global poses from a certain number of
human body-segments, which are provided by the motion
capturing system. For each segment, the motion capturing
system records six different measurements, which are con-
sidered as a channel, similar to IMU’s sensors. Thus, there
are D channels in total. By segmenting sequences using a
sliding window approach with window size of T and step of
s , the input’s size is [T ,D]. Following [7, 17], channels are
normalized to zero mean and unit variance. The architecture
contains parallel branches, which are composed of convo-
lution and max-pooling operations and a fully-connected
layer. Each of these branches processes sequences from each
of the human body segments. They are composed of two
blocks of two stacked convolutional layers and a subsequent
max-pooling layer. A convolutional layer has C = 64 filters
of size [5 × 1]. They perform convolutions along the time
axis. Max-pooling operations find the maximum of P = 2
values along the time axis with a stride of 1. The network is
trained using the binary-cross entropy loss. For predicting
the activity class of a testing sequence, a nearest neighbor ap-
proach is utilized by computing the cosine distance between
the computed ã and a ∈ A.

Evaluation criteria
The performance of competing attribute representations is
evaluated in two steps. First, standard metrics for HAR are
computed. Second, a qualitative aspects are presented.

Quantitative Metrics. The classification accuracy and the
weighted F1 (wF1) are computed. ThewF1 can be considered
as the weighted average of the precision and recall using the
proportion of activity classes in the testing set.

ωF1 =
∑
i

2 ·
ni
N

·
precisioni · recalli
precisioni + recalli

, (2)

where ni is the number of sequences per activity and N
is the number of sequences in the dataset. In contrast to the
classification accuracy, the weighted F1 is more appropriate
under highly unbalanced datasets.

Qualitative Aspects. Even though a specific attribute rep-
resentation yields good quantitative results, it may be un-
favourable for practical application. If the attributes’ defini-
tions are incomprehensible, their transfer to unseen activities
will be impeded. A representation of high quality holds a
low amount of attributes that are semantically easy to un-
derstand by a human, coherent and thus easy to transfer to
unseen activities. The definition of attribute-based represen-
tation for new activities should require as few new attributes
as possible. The evaluation of these aspects is performed by
warehousing experts.

5 EVALUATION
This section provides an insight on the utilized data set and
implementation details of the deep learning. Following the
pipeline as illustrated in Figure 1, the achieved results are
presented according to the evaluation criteria.

MoCap Dataset
A physical model of the order picking scenario has been built
in the "Innovationlab Hybrid Services in Logistics" at the TU
Dortmund University [20]. The MoCap dataset consists of
recordings conducted in the given scenario, see Figure 2.
While recordings of some activities already existed from
previous work, the majority of activities has been recorded
specifically for this contribution and they have been added
to the MoCap dataset. The data is composed of multichannel
time-series recorded by amotion capture system. This system
is based on photogrammetry methods for measuring object
poses on 2D and 3D spaces using a set of cameras. In total,
it contains 38 cameras. The data recording in the controlled
environment of the InnovationLab is illustrated in Figure 4.
The recording frame rate is 300 fps. The MoCap provides
global poses of 22 body segments. A pose is a combination
of position and angular values in [X ,Y ,Z ]. This leads a total
of D = 132 channels. The dataset contains recordings from
K = 27 classes.
The recording of the seen activities is not performed a

single sequence within the entire scenario. Instead, they are
recorded successively. Each activity is recorded with up to
to 8 participants. Both versions of the scenario’s processes,
the seen and unseen activities, are performed by 4 partici-
pants. For participants (1, 2, 3, 6) seen and unseen activities
have been recorded. The remaining four participants solely
performed seen activities. The recordings are annotated man-
ually. The global pose sequences are normalized with respect
to the lower back segment.

Recording from participants (1, 2, 7, 8), (4, 6) and (3, 5) are
used as the training, validation and testing sets respectively.
The testing set is divided in two sets, for the seen and unseen
activities. Sequences are extracted by means of a sliding-
window approach with window size of T = 200 or 660ms
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Figure 4: Data Recording in the InnovationLab. The image
above shows the physical set-up in the InnovationLab, the
lower image shows the Motion Capture Output.

and step of s = 10 or 33ms . Sequences are assigned the
most frequent activity label. Table 1 shows the number of
sequences per set and the proportion of classes.

Implementation Details
Three CNNs are trained using three different attribute repre-
sentations. CNNs are trained on the training set and deployed
on the validation set for determining suitable hyperparame-
ters for training. A final training is carried out on the training
and validation sets. The CNNs are deployed on the testing
seen and testing unseen sets. In addition, a standard CNN
using a softmax layer for recognizing seen activities is also
trained to compare the performance when using attribute
representations.
As human activities definitions vary with respect to hu-

manmotion, or to practical applications, a universal attribute
representation for order picking does not exist. Three differ-
ent attribute representations, two expert-given and a random
one, are used for training a CNN for HAR on the MoCap
dataset. The expert is a warehousing specialist who has prac-
tical experience with real-life order picking systems.

A1, expert-given, 17 Attributes, see Table 2. Ten attributes de-
scribe various arm motions like left arm reaching forward,
arms pull or right arm stretched out. The more general at-
tributes right Arm and left Arm are used to have a feature
shared by a majority of activities. Upper body movements
and leg motions are characterized by two attributes each.
Certain poses, which are taken while utilizing items, have
three attributes, e.g. pose box. Table 2 shows the attribute rep-
resentation A1 for the K = 27 activity classes, as described
in section 3.

A2, expert-given, 27 Attributes. The second representation is
more extensive than the first one. The attributes describe di-
rectional movements for individual body segments, e.g., right
hand moving forward, right hand moving up, left knee moving
forward and head moving down. In this aspect, the second
representation is more detailed than the first, as A1 does not
consider themovement of the knee, the elbow or the head. On
the contrary, individual poses to express that a specific item
is involved in the activity, such as a box-pose or a cart-pose,
are not present in A2. In A2, there are attributes to identify
special poses, for instance right elbow angled, right forearm
behind body or left arm raised, but they do not imply a specific
item.

The attributes ofA1 andA2 are oriented towards body-part
movements. For example, the action Walking (none) implies
a movement of the right and left leg or foot. Both representa-
tions were created having such striking characteristics of the
activities inmind.

A3, randomly generated, 54 Attributes. This representation is
generated randomly following the conclusion of [17], where
random attributes present comparable performance for Lo-
comotion and Gestures datasets. 54 attributes is double the
amount of activities.

The presented CNN is implemented in the Caffe frame-
work. CNN’s parameters are learned by minimizing a loss
function using stochastic gradient descent with RMSProp
rule. This loss function depends on the classifier: softmax loss
function, and the binary-cross entropy. The training hyper-
parameters are RMS decay of 0.95, base learning rate of 10−5,
batch size of 128 and the number of epochs of 2. Learning
rate is decreased after 1 epoch by y factor of γ = 0.1. Chan-
nels are normalized to a range of [0, 1]. Dropout of p = 50%
is applied to the first and second fully-connected layers. The
network is initialized using an orthogonal initialization.

Results
The three CNNs, one per attribute representation [A1,A2,A3],
and a CNN using a softmax layer are evaluated on the testing
sets.

Quantitative Results. Table 5 shows the accuracy and ωF1 of
the four CNNs using the three attribute representations and a
softmax classifier on the testing-seen set. In general, using an
attribute representation is beneficial for HAR in comparison
with a softmax classifier, following the conclusion in [17].
Even using a random representation, the performance is near
to the softmax. Deep architectures learn features and classify
sequence segments when targets are represented by a set
of attributes. Besides, sharing attributes among activities is
advantageous as information from frequent activities can be
used for predicting infrequent activities.
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Set Proportion [%]
No sequencesk1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k15 k16 k17

Training 14.5 13.8 15.3 15.7 1.4 1.7 3.8 1.8 1.2 3.4 0.5 1.5 6.3 6.3 6.3 6.3 288005
Validation 15.8 14.5 14.6 14.9 0.4 1.1 0.7 3.5 1.0 4.1 0.4 2.3 6.7 6.7 6.7 6.7 133934
Testing seen 14.0 13.7 16.1 15.8 3.7 2.6 3.8 5.1 0.9 1.7 0.5 0.7 5.4 5.4 5.4 5.4 165906

Table 1: Proportion of segmented sequences per activity class on the three sets.

Activity right
arm

left
arm

right
arm reach
forw.

left
arm
reach
forw.

right
arm

reaching
back

left
arm
reach
back

right arm
stretched

out

left arm
stretched

out

arms
push

arms
pull

upper
body
move
forw.

upper
body
move
back

legs
walk

legs
stand

pose
box

pose
article

pose
cart

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17
k1 Walking

(none)
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

k2 Walking
(box, both-handed)

1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

k3 Standing
(none)

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

k4 Standing
(box, both-handed)

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

k5 Reaching forward
(none,both-handed)

1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0

k6 Lifting
(box,both-handed)

1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0

k7 Putting down
(box,both-handed)

1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0

k8 Straightening up
(none)

0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0

k9 Reaching forward
(none,right-handed)

1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0

k10
Grabbing
(article,right-handed) 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0

k11
Lifting
(article,right-handed) 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0

k12
Putting down
(article,right-handed) 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0

k13 Pushing
(cart,right-handed)

1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1

k14 Pushing
(cart,left-handed)

0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1

k15 Pulling
(cart,right-handed)

1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1

k16 Pulling
(cart,left-handed)

0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1

k17
Reaching forward
Walking
(none,both-handed)

1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0

k18 Lifting & Walking
(box,both-handed)

1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0

k19 Pushing
(cart,both-handed)

1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1

k20 Pulling
(cart,both-handed)

1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1

k21 Reaching forward
(none,left-handed)

0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0

k22 Grabbing
(article,left-handed)

0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0

k23 Lifting
(article,left-handed)

0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0

k24 Putting down
(article,left-handed)

0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0

k25
Grabbing
article,both-handed 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0

k26
Lifting
article,both-handed 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 1 0

k27
Putting down
article,both-handed 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0

Table 2: An expert-given attribute representation A1. Classes k1 to k16 correspond to the seen activities, followed
by the three groups of unseen activities separated by horizontal double lines.
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Attribute Rep. Accuracy per activity class
k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k15 k16 k17

A1 77.0 65.4 85.5 73.4 53.9 52.2 69.3 61.3 68.1 94.7 74.7 84.9 98.6 96.6 69.9 65.2
A2 63.9 65.4 93.7 87.4 44.7 53.1 80.4 56.1 73.6 95.4 62.0 83.7 98.8 98.3 68.6 54.1
A3 50.4 60.4 91.2 78.0 10.9 10.9 78.5 17.0 0.0 89.9 0.0 89.9 92.8 87.0 56.1 43.9

Table 3: Accuracy per class ki on the testing-seen set.

Act. set Metric a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17
Seen Acc. [%] 97.2 93.4 82.7 72.5 61.0 53.1 96.6 98.0 96.3 67.5 80.5 60.3 97.4 85.7 87.5 94.9 99.1
Unseen Acc. [%] 83.1 82.3 52.7 11.9 6.8 9.4 1.2 34.5 80.3 0.0 28.1 17.1 97.3 56.5 53.4 0.0 83.3

Table 4: Accuracy per attribute for the A1 representation.

Seen
Attribute Rep Acc. [%] F1 [%]
A1 75.11 75.74
A2 74.46 73.76
A3 61.13 58.29
Softmax 64.21 62.18

Table 5: Accuracy and F1 of the CNNs for each of the
three attribute representations and the CNN using a
softmax layer on the testing-seen set.

Table 3 shows the accuracy per seen-class using the three
attribute representations. Classes with small proportion in
the dataset, i.e., [k5, ...,k10] show poor accuracy using the
random attribute representation.
An additional experiment is carried out on the testing-

unseen set. This aims to evaluate the attribute prediction
on sequences with activities that are not used for training.
Table 4 shows the accuracy per attribute on testing-seen
and -unseen sets using theA1 representation. For the testing-
seen set, the recognition of attributes in general yields high
accuracies. The attributes [a5,a6,a10,a12] present the low-
est accuracies. On the testing-unseen set, the recognition
of attributes show variable results, having high and low
accurate attribute recognition. For both datasets, attributes
[a1,2,3,a9,a13,14,15] yield the best performances. These results
show that attributes, being mainly associated to the classes
with the largest proportion in the testing sets, see Table 1,
are better recognized. Similar results are found using the
attribute representations A2 and A3.

Qualitative Results. On the one hand, A1 is easy to under-
stand for warehousing experts. Thus, they can easily adjust

it according to application demands. This is becauseA1 holds
the lowest amount of attributes and their descriptions are
easy to picture. On the other hand, the need to distinguish
activities as precisely as possible is expected to lead to a high
amount of attributes. For example, a new pose attribute is
necessary for each new item. Once further aspects such as
packaging processes are taken into account, this approach
may come up against a limit of semantic comprehensibility.
In a warehouse, the number of different items to interact
with is virtually infinite. On the long run, a high level of
granularity is necessary to maintain semantic comprehensi-
bility.
Hence, A2 uses more attributes than A1 to describe the

same amount of activities. This version already describes
activities with a more detailed observation of each segment.
The definition of further activities would therefore require
a smaller amount of new attributes compared to A1. This is
also because there are no individual pose attributes for each
item. However, in practical application it may be of interest
to differentiate between plain walking, walking with a box,
a picking list and so forth. Considering these differences, it
is difficult as there are no attributes that explicitly state the
respective items.
Even though the performance of the random representa-

tion A3 can be improved, the lack of semantic meaning is
inevitable [17]. A posterior alteration of the attribute defi-
nition is thus impossible for humans. An evolutionary algo-
rithm would have to be deployed every time new activities
are added or an activity’s definition is changed. The result-
ing computational effort makes this approach unfeasible for
practical application as an adaptable method.

6 DISCUSSION AND CONCLUSION
Three different representations, two expert-given and a ran-
dom one, are compared by deploying deep architectures on
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multichannel time-series for order picking. These architec-
tures process time-series computing attributes, which are
used for predicting human actions. In addition, a comparison
with a standard deep architecture for HAR using a softmax
classifier is shown. In general, using attribute representa-
tions presents comparable or better performance than the
standard CNN, even by using a random representation. Inter-
estingly, representations with a lower quantity of attributes
present a slightly better performance. Expert-given represen-
tations exhibit the best performances showing a semantic
relation between the attributes and the activities. Deep ar-
chitectures are able to compute attributes that belong to
frequent activities in the training set.

During the annotation of the attribute representations, the
semantic meaning of each attribute depends strongly on the
expert. The semantic meaning is subjective and thus possibly
ambiguous. There is no guideline for a consistent attribute
definition known to the authors.
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